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Abstract: The accuracy of reservoir flow forecasting has the most significant influence on 

the assurance of stability and annual operations of hydro-constructions. For instance, 

accurate forecasting on the ebb and flow of Vietnam’s Hoabinh Reservoir can aid in the 

preparation and prevention of lowland flooding and drought, as well as regulating electric 

energy. This raises the need to propose a model that accurately forecasts the incoming flow 

of the Hoabinh Reservoir. In this study, a solution to this problem based on neural network 

with the Cuckoo Search (CS) algorithm is presented. In particular, we used hydrographic 

data and predicted total incoming flows of the Hoabinh Reservoir over a period of 10 days. 

The Cuckoo Search algorithm was utilized to train the feedforward neural network (FNN) 

for prediction. The algorithm optimized the weights between layers and biases of the 

neuron network. Different forecasting models for the three scenarios were developed. The 

constructed models have shown high forecasting performance based on the performance 

indices calculated. These results were also compared with those obtained from the neural 

networks trained by the particle swarm optimization (PSO) and back-propagation (BP), 

indicating that the proposed approach performed more effectively. Based on the 

experimental results, the scenario using the rainfall and the flow as input yielded the 

highest forecasting accuracy when compared with other scenarios. The performance 

OPEN ACCESS



Information 2014, 5 571 

 

 

criteria RMSE, MAPE, and R obtained by the CS-FNN in this scenario were calculated as 

48.7161, 0.067268 and 0.8965, respectively. These results were highly correlated to actual 

values. It is expected that this work may be useful for hydrographic forecasting. 

Keywords: Cuckoo Search algorithm; artificial neural network; prediction;  

flow forecasting; reservoir 

 

1. Introduction 

The prediction of hydrographic factors, especially flow forecasting, plays an important role in water 

resource reconcilement as well as in the prevention of natural calamities. A reservoir is one of the 

defense mechanisms for flood and drought disasters. During the flood period, the opening of the dam’s 

spillway gate should be adequate to ensure that the reservoir capacity will not exceed its limits and the 

discharges will not cause overflow downstream; during the drought period, the reservoir needs to 

impound water and release adequately to fulfill water demands. Such operations require a model 

capable of accurately forecasting incoming flow. The flow forecasts of water reservoirs as one of the 

hydrographic forecast study fields has been developed to meet essential water reconcilement procedures, 

hydroelectric problems, and agricultural irrigations. Since high forecasting accuracy can significantly 

reduce the economic losses of the state and its people, this field of study has gained much attention. 

Intelligent approaches have been used to tackle different science and engineering problems.  

The artificial neural network (ANN) was determined to be a successful tool to predict the interfacial 

tension at the crystal/solution interface [1]. Chamkalani et al. [2] showed the superiority of the least 

square support vector machine in predicting the compressibility factor in the petroleum industry.  

ANN optimized with Particle Swarm Optimization algorithm was found to be the best model in 

predicting Recovery Factor and Cumulative Steam to Oil Ration during steamflooding [3]. It was also 

proven that ANN is an efficient tool for the prediction of pure organic compounds’ surface tensions for 

a wide range of temperatures [4]. An ANN model, optimized by the imperialist competitive algorithm, 

was efficiently applied to predicting the amount of asphaltene precipitation and bubble point pressure 

for a conventional oil sample during successive depressurization stages [5]. Among intelligent 

approaches, ANN, a soft computing technique, has emerged as one of the most powerful tools in many 

disciplines [6–12]. Artificial neural networks have the notable ability to derive meaning from 

complicated or imprecise data, and can be used to extract patterns and detect trends that are too 

complicated to be recognized by either humans or computing techniques. These are appropriate for 

continuous valued inputs and outputs. Neural networks are best at identifying patterns or trends in data 

and well suited for prediction and forecasting needs. 

When a neural network is structured for a particular application, it must be trained before being 

used to classify testing data. The aim of the training phase is to minimize a cost function defined as the 

mean squared error or sum of squared error between its actual and target outputs by adjusting weights 

and biases. Presenting a satisfactory and efficient training algorithm has always been a challenging 

subject. A popular approach used in the training phase is the back-propagation (BP) algorithm which 

includes the standard BP [13] and the improved BP [14–16]. However, researchers have pointed out 
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that the BP algorithm—a gradient-based algorithm—has disadvantages [17–19]. Heuristic algorithms 

are known for their ability to produce optimal or near optimal solutions for optimization problems. 

Cuckoo Search (CS) is a recent heuristic algorithm proposed by Yang and Deb [20,21]. Among the 

heuristic algorithms, the CS is considered as one of the most powerful ones. When given enough 

computation, the CS will always find the optimal solution. The CS and improved CS algorithms have 

been used in solving various problems, and is considered to outperform other algorithms [21–24]. 

Therefore, in this study, we used CS in training neural networks. 

There are a number of factors that can affect flow forecasts, such as: rainfall, temperature, humidity, 

soil, geological elements, and human activities. However, in this work, the slow-varying factors can be 

omitted as inputs for the calculation because they have only a small effect. Of the main weather related 

factors, rainfall is the most influential factor. Equally influential to flow forecasting is how much water 

the reservoir can naturally hold. Regarding the period of the prediction, forecast methods can be 

categorized into several models: short term forecast (1–2 days ahead); mid-term forecast (5–10 days 

ahead); long term forecast (1 month ahead); and, ultra long term forecast (for a season). In this study, 

we solve the problem of forecasting total incoming flows of the Hoabinh Reservoir over a period of the 

next 10 days. Our proposed models have been constructed with some essential input factors, which are 

refined and optimized for efficiency. Finally, the outputs are compared to retrieve the best model for 

flow forecasting. 

The paper is organized into six sections: an introduction in Section 1, the literature review is 

provided in Section 2; the CS algorithm is presented in Section 3; Section 4 is dedicated to describing 

the process of neural network training, the research design is provided in Section 5; results are shown 

in Section 6; and finally, Section 7 presents the conclusion. 

2. Literature Review 

The ANN has been widely used in different applications. This section provides a glimpse into the 

literature concerning the use of ANN in water modeling and water resources management. Dolling and 

Varas [8] developed neural networks to predict flows during the spring and summer season for San 

Joan River basin, Argentina. They used meteorological information gathered during April, May and 

June as input variables. Output variables were the seven monthly flows for the period of July through 

January. The results showed that a feed-forward neural network having an architecture 30-20-7 had a 

good performance. Ünes [25] used an ANN, a two-dimensional mathematical model, and a multiple 

linear regression (MLR) model to investigate the plunging flow parameters. A one-hidden layer 

multilayer perceptron (MLP) with four nodes and one output neuron was used as the ANN structure.  

In order to evaluate the performances of different models, the criteria, including mean square error, 

mean absolute error, and correlation coefficient were used. The results indicated that the ANN model 

forecasts are much closer to the experimental data than the MLR and mathematical model forecasts. 

Sivapragasam et al. [12] used the multilayer feedforward network (FNN) with back-propagation 

learning algorithm to forecast monthly flows of the Mississipi River at the Vicksburg gauging station. 

This study concluded that it is better to develop individual models for each month separately with 

information from previous years for the same month. Akhtar et al. [26] used ANN to predict the river 

flow at the Hardinge Bridge (Bangladesh). Their model was based on the ANN multi-layer perceptron 
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networks trained with gradient based methods. The ANN showed its ability to forecast discharges  

3 days ahead with an acceptable accuracy. The study found that one-day previous discharge along with 

composite rainfall gives the best results in comparison with other options. Taghi Sattaria et al. [27] 

evaluated the performances of different neural networks in predicting of daily reservoir inflow to the 

Eleviyan reservoir in Iran. In the study, the daily inflow into the Eleviyan reservoir between the years 

2004–2007 was considered. The obtained results showed that performance statistics of 8-1-1 (8 inputs, 

1 hidden layer, and 1 output layer) MLP architecture was best in predicting the inflow in this dataset. 

An ANN model was developed to forecast river flow in the Apalachicola River [28]. The model used a 

feed-forward, back-propagation network structure with an optimized conjugated training algorithm. 

This study used long-term observations of rainfall and river flow during 1939–2000 [28]. The results 

indicated that the neural network model developed in this study was capable of providing good 

forecasting of river flow at different time-scales. Results obtained from the ANN model were also 

compared with those from a traditional autoregressive integrated moving average (ARIMA) 

forecasting model. Results showed that the ANN model provided better accuracy in forecasting river 

flow than did the ARIMA model. 

The above mentioned studies revealed that ANN-based models have been successfully used in the 

area of river flow forecasting. However, in order to increase the reliability of forecasting results of the 

ANN-based model, there is a need to focus attention on optimizing the parameters of the model.  

In other words, training phase plays an important role in developing the ANN-based models. In the 

examined literature, the BP algorithm, a gradient-based algorithm, has been widely used in the training 

phase. However, many studies have pointed out the drawbacks of this algorithm, including the 

tendency to become trapped in local minima [29] and having a slow convergence [30]. Heuristic 

algorithms, including genetic algorithm (GA) [31], particle swarm optimization (PSO) [32], and ant 

colony optimization (ACO) [33], have also been proposed for the purpose of training. Recently, 

several heuristic algorithms inspired by the behavior of natural phenomena were developed for solving 

optimization problems and have been proven to be effective. The Cuckoo Search (CS), proposed by 

Yang and Deb [20], was inspired by the egg laying and breeding characteristics of the Cuckoo birds. 

Studies have shown that CS outperformed other algorithms such as PSO and GA [22–24]. Moreover, 

the CS is capable of reducing the aforementioned drawbacks of back propagation. 

Taking into account the available literature, there is still room for the improvement of the  

ANN-based models in the problem of flow forecasting. This leads us to propose a new approach in this 

study for accomplishing a successful forecasting of incoming flows. The merit of the CS algorithm and 

the success of ANN in the prediction and forecasting have encouraged us to combine ANN and the CS 

algorithm. In this study, we propose an approach based on the multilayer feed-forward network 

improved by the CS algorithm for forecasting incoming flows, which makes use of the optimizing 

ability of the CS algorithm. In general, the scientific contribution provided by the current research is 

the new approach applied herein. To the best of our knowledge, this combination of the two artificial 

intelligence techniques is applied for the first time in the forecasting field. Although the models are 

developed for a specific application, they can be used as basic guides for other application areas. 
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3. Cuckoo Search Algorithm 

The CS was inspired by the special lifestyle of the cuckoo species [20,21]. The cuckoo birds lay 

their eggs in the nests of host birds and they may remove the eggs of the host bird. In the process, some 

of these eggs, which look similar to the host bird’s eggs, have the opportunity to grow up and become 

adult cuckoos. In other cases, the eggs are discovered by host birds and the host birds will throw them 

away or leave their nests and find other places to build new ones. Each egg in a nest represents a 

solution, and a cuckoo egg stands for a new solution. The CS uses new and potentially better solutions 

to replace inadequate solutions in the nests. The CS is based on the following rules: each cuckoo lays 

one egg at a time, and dumps this egg in a randomly chosen nest; the best nests with high quality eggs 

(solutions) will carry over to the next generation; and the number of available host nests is fixed, and a 
host bird can detect an alien egg with a probability of [0,1]ap ∈ . In this case, the host bird may either 

throw the egg away or abandon the nest to build a new one in a new place. The last assumption can be 

estimated by the fraction pa of the n nests being replaced by new nests (with new random solutions). 

For a maximization problem, the quality or fitness of a solution can be proportional to the objective 

function. Other forms of fitness can be defined in a similar way to the fitness function in genetic 

algorithms. Based on the above mentioned rules, the steps of the CS can be described as the pseudo 

code as shown Algorithm 1. The algorithm can be extended when each nest has multiple eggs 

representing a set of solutions. 

Algorithm 1. Pseudo code of the Cuckoo Search (CS). 

Begin 

Objective function f(x), x= (x1,...,xd)T 

Generate an initial population of n host nests xi (i=1,2,...,n), each nest containing a random solution;

while (t <MaxGeneration) or (stop criterion); 

Get a cuckoo randomly by Lévy flights; 

Evaluate its quality/fitness Fi; 

Choose a nest among n (say, j) randomly; 

if (Fi > Fj), 

Replace j by the new solution; 

end 

A fraction (pa) of worse nests are replaced by new random solutions via Lévy flights; 

Keep the best solutions (or nests with quality solutions); 

Rank the solutions and find the current best; 

Pass the current best solutions to the next generation; 

end while 

Return the best nest; 

End 

When generating new solutions, x(t+1), for the ith cuckoo at iteration (t+1), the following Lévy flight 

is performed: 

( 1) ( ) é ( )t t
i ix x L vyα λ+ = + ⊕  (1)
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where 0α >  is the step size, which depends on the scale of the problem. The product ⊕ denotes  

entry-wise multiplications. Lévy flights provide a random walk. The Lévy flight is a probability 

distribution which has an infinite variance with an infinite mean. It is represented by: 

L vy ~ ,  (1 3)é u t λ λ−= < ≤  (2)

There are several ways to achieve random numbers in Lévy flights; however, a Mantegna algorithm is 

the most efficient [21]. In this work, the Mantegna algorithm was utilized to calculate this step length. 

Studies have indicated that CS is very efficient in dealing with optimization problems. However, 

several recent studies made some improvements to make the CS more practical for a wider range of 

applications without losing the advantages of the standard CS [34–36]. Notably, Walton et al. [37] 

made two modifications to increase the convergence rate of the CS. The first modification was made to 

the size of the step size α. In the standard CS, α is constant; whereas, in the modified CS, α decreases 

when the number of generations increases. The second modification was to add an information 

exchange between the eggs to speed up convergence to a minimum. In the standard CS, the searches 

are performed independently and there is no information exchange between individuals. However, in 

the modified CS, there is a fraction of eggs with the best fitness that are put into a group of top eggs.  

It has also been indicated that adding the random biased walk to modified CS results in an efficient 

optimization algorithm [38]. However, in this work, we use the standard CS for training neural 

networks to forecast incoming flow. 

4. Training Artificial Neural Network 

An ANN has two types of basic components, namely, neuron and link. A neuron is a processing 

element and a link is used to connect one neuron with another. Each link has its own weight.  

Each neuron receives stimulation from other neurons, processes the information, and produces an 

output. Neurons are organized into a sequence of layers. The first and the last layers are called input 

and output layers, respectively, and the middle layers are called hidden layers. The input layer is a 

buffer that presents data to the network. It is not a neural computing layer because it has no input 

weights and no activation functions. The hidden layer has no connections to the outside world.  

The output layer presents the output response to a given input. The activation coming into a neuron 

from other neurons is multiplied by the weights on the links over which it spreads, and is then added 

together with other incoming activations. A neural network in which activations spread only in a 

forward direction from the input layer through one or more hidden layers to the output layer is known 

as a multilayer feedforward neural network (FNN). For a given set of data, a multi-layer FNN can 

provide a good non-linear relationship. Studies have shown that an FNN even with only one hidden 

layer can approximate any continuous function [39]. Therefore, an FNN is an attractive approach [40]. 

Figure 1 shows an example of an FNN with one hidden layer. In Figure 1, R, N, and S are the numbers 

of input, hidden neurons, and output, respectively; iw and hw are the input and hidden weights 

matrices, respectively; hb and ob are the bias vectors of the hidden and output layers, respectively; x is 

the input vector of the network; ho is the output vector of the hidden layer; and y is the output vector of 

the network. The neural network in Figure 1 can be expressed through the following equations: 
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where f is an activation function. 

When implementing a neural network, it is necessary to determine the structure in terms of number 

of layers and number of neurons in the layers. The larger the number of hidden layers and nodes, the 

more complex the network will be. A network with a structure that is more complicated than necessary 

over fits the training dataset [41]. This means that it performs well on data included in the training 

dataset, but may perform poorly on that in a testing dataset. 

Figure 1. A feedforward neural network (FNN) with one hidden layer. 
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Once a network has been structured for a particular application, it is ready for training. Training a 

network means finding a set of weights and biases that will give desired values at the network’s output 

when presented with different patterns at its input. When network training is initiated, the iterative 

process of presenting the training dataset to the network’s input continues until a given termination 

condition is satisfied. This usually happens based on a criterion indicating that the current achieved 

solution is good enough to stop training. Some of the common termination criteria are sum of squared 

error (SSE) and mean squared error (MSE). Through continuous iterations, the optimal solution is 

finally achieved, which is regarded as the weights and biases of a neural network. Suppose that there 

are m input-target sets, xkp−tkp for k = 1, 2,..., m and p = 1,2,...,S; ykp and tkp are predicted and target 

values of pth output unit for sample k. Thus, network variables arranged as iw, hw, hb, and ob are to be 

changed to minimize an error function, E, such as the SSE between network outputs and desired 

targets is as follows: 

( )2

1 1

 ,   
m S

k k kp kp
k p

E E where E t y
= =

= = −   (5)
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5. Research Design 

The forecasting model development includes: (1) collecting the dataset, (2) selecting an ANN 

structure, (3) selecting transfer functions, (4) selecting a training algorithm, and (5) evaluating the 

model performance. In this section, the process of developing a forecasting model based on ANN and 

CS is represented. 

5.1. Scenarios 

Three different scenarios were developed to forecast flow. In all scenarios, different combinations 

of inputs were taken into account. The output of the forecasting models in all scenarios was the 

predicted flow Q(t+10), indicating the water flow that will occur over the next 10 days. The details of 

each scenario are given in the following paragraphs. 

The first scenario: Suppose Q(t) is the flow at the current time. In this scenario, the inputs are: the 

current flow Q(t), the flow over the last 10 days Q(t−10), and the flow over the last 20 days Q(t−20). 

The second scenario: For the hydrographic study, the rainfall on the rivers’ valleys is also directly 

influenced by the incoming flows that appear in the front of dedicated water reservoirs. Therefore, in 

this scenario, we considered the rainfall in the relative times of measurements as inputs. Suppose X(t) 

is the current rainfall. The inputs include: the current flow Q(t), the flow over the last 10 days Q(t−10), 

the flow over the last 20 days Q(t−20), the rainfall amount at the current time X(t), the rainfall amount 

over the last 10 days X(t−10), and the rainfall amount over the last 20 days X(t−20). 

The third scenario: In this scenario, we consider the rainfall and the flow measured over the current 

entire day as inputs. Hence, there are eight inputs: the current flow Q(t); the flow over the last 10 days 

Q(t−10), the flow over the last 20 days Q(t−20), the rainfall amount of the current time X(t), the rainfall 

amount over the last 10 days X(t−10), the rainfall amount over the last 20 days X(t−20), the rainfall 

measured over the current entire day Xday(t), and the flow measured over the current entire day Qday(t). 

The flow is measured in cubic meters per second (m3/s) and the unit for rainfall measurement is 

millimeters (mm). 

5.2. Dataset 

The dataset was retrieved from hydrographic data in the years of 1990–2012 at the Tabu gauging 

station by the Songda River (the closest station that faces the front of the Hoabinh Reservoir).  

The measurements were taken in the dry season (from December to May of the following year).  

The dataset was divided into two groups. The first group (68% of the dataset) (from the end of 1990 to 

the beginning of 2005) was used for training the model. The second group (32% of the dataset) (from 

the end of 2005 to the beginning of 2012) was employed for testing the model. The training dataset 

served in model building, while the testing dataset was used for validating the developed model. 

5.3. Structure of the Neural Network 

The structure of an ANN is dictated by the choice of the number in the input, hidden, and output 

layers. Each dataset has its own particular structure, and therefore determines the specific ANN 

structure. The number of neurons comprised in the input layer is equal to the number of features (input 
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variables) in the data. The number of neurons in the output layer is equal to the number of output 

variables. The three layer FNN was utilized in this work since it can be used to approximate any 

continuous function [42,43]. Regarding the number of hidden neurons, the choice of an optimal size of 

hidden layer has often been studied, but a rigorous generalized method has not been found [44].  

Hence, the trial-and-error method is the most commonly used method for estimating the optimum 

number of neurons in the hidden layer. In this method, various network architectures are tested in order 

to find the optimum number of hidden neurons [45]. In this study, the choice was also made through 

extensive simulation with different choices of the number of hidden nodes. For each choice, we 

obtained the performance of the concerned neural networks, and the number of hidden nodes providing 

the best performance was used for presenting results. The activation function from input to hidden is 

sigmoid. With no loss of generality, a commonly used form, f(n) = 2/(1 + e−2n) − 1, is utilized; while a 

linear function is used from the hidden to output layer. 

5.4. Encoding Strategy 

There are three ways of encoding and representing the weights and biases of FNN for every solution 

in evolutionary algorithms [30]. They are the vector, matrix, and binary encoding methods. In this 

study, we utilized the vector encoding method. The objective function is to minimize error values.  

The CS algorithm was used to search optimal weights and biases of neural networks. The amount of 

error is determined by the squared difference between the target output and actual output. In the 

implementation of the CS algorithm to train a neural network (CS-FNN), all training parameters,  

θ = {iw, hw, hb, ob}, are converted into a single vector of real numbers, as shown in Figure 2.  

Each vector represents a complete set of FNN weights and biases. 

Figure 2. The vector of training parameters. 

 

The aim of the training phase is to identify the optimal or near-optimal parameter, θ*, from the cost 

function E(θ). 

5.5. Examining the Performance 

To examine the performance of a neural network, several criteria are used. These criteria are applied 

to the trained neural network to determine how well the network works. These criteria are used to 

compare predicted values and actual values. They are as follows: 

Root mean squared error (RMSE): This index estimates the residual between the actual value and 

predicted value. A model has better performance if it has smaller a RMSE. An RMSE equal to zero 

represents a perfect fit. 
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where tk is the actual value, yk is the predicted value produced by the model, and m is the total number 

of observations. 

Mean absolute percentage error (MAPE): This index indicates an average of the absolute percentage 

errors; the lower the MAPE the better. 
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Correlation coefficient (R): This criterion reveals the strength of relationships between actual values 

and predicted values. The correlation coefficient has a range from 0–1, and a model with a higher R 

means it has better performance. 
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1  are the average values of tk and yk, respectively. 

6. Experimental Results 

In the following experiments, we used the CS algorithm to train FNN (CS-FNN) for flow 

forecasting in three mentioned scenarios. The model were coded and implemented in the MATLAB 

environment (MATLAB R2014a) [46]. A five-fold cross validation method was utilized to avoid  

over-fitting. As mentioned, the one-hidden-layer network architecture was used. The optimum number 

of neurons in the hidden layer was determined by varying their number, starting with a minimum of 

one and then increasing in steps by adding one neuron each time. In other words, various network 

architectures were tested in order to obtain the best performing architecture. The best performing ANN 

architecture for the dataset used was then identified, thus, providing the results with the smallest error 

values during the training. Initially, weights and biases were set in the range of [−10, 10]. Different 

parameters were tried to obtain the best performance. The parameters for CS were set as follows: the 

step size (α ) was 0.01; the number of nests was 30; the net discovery rate (pa) was 0.1. 

To show the efficiency of the proposed approach, the FNNs using PSO (PSO-FNN) and BP (BP-FNN) 

for training were also applied to the problem. Different parameters were tried to obtain the best 

performance. For BP-FNN, the gradient descent with momentum (GDM) method was used; with a 

learning rate µ of 0.01 and a momentum α of 0.9. For PSO-FNN, the number of initial population was 

30 with c1 and c2 set to 2, w decreased linearly from 0.9–0.4, and the initial velocities of particles were 

randomly generated in [0,1]. The criterion for finishing the training process was the completion of the 

maximum number of iterations (equal to 500 in this study). 

In the first scenario, the dataset included three input variables and one output variable. For the first 

scenario, the best performing architecture was 3-4-1, that is, with one hidden layer and four neurons, 

which resulted in a total of 16 weights and five biases. Table 1 showed the performance comparisons 

on the testing dataset for the three algorithms. The forecasting values and actual values were presented 

in Figure 3. In the figure, the data index (testing sample no.) is on x-axis and the values of the 
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incoming flow along the y-axis. The differences between the actual and forecasting values of the 

incoming flow are called errors. There will always be errors of forecasting. By sight, we can know 

whether the model performs well. 

Table 1. Performance statistics of the models on testing dataset in the first scenario. 

Model RMSE MAPE R 

BP-FNN 110.49 0.157268 0.7509 
CS-FNN 99.2994 0.135368 0.7762 

PSO-FNN 101.0622 0.136568 0.772 

Figure 3. The forecasting and actual values in the first scenario. 

 

In the second scenario, the dataset included six input variables and one output variable. For this 

scenario, the best performing architecture was 6-8-1, that is, with one hidden layer and eight neurons, 

which resulted in a total of 56 weights and nine biases. Table 2 presented the performance comparisons 

on the testing dataset for the three algorithms. The forecasting values and actual values were presented 

in Figure 4. 

In the third scenario, the dataset included eight input variables and one output variable. For the third 

scenario, the best performing architecture was 8-9-1, that is, with one hidden layer and nine neurons, 

which resulted in a total of 81 weights and 10 biases. Table 3 presented the performance comparisons 

on the testing dataset for the three algorithms. The forecasting values and actual values were presented 

in Figure 5. To analyze the quality of forecasting, the percentage of accurate forecasts (PAF) of the 

forecasting model was additionally investigated on the testing dataset. The PAF among all forecasts 

was calculated as the number of accurate forecasts divided by the total number of forecasts. In our 

study, an accurate forecast was defined as the forecast in which the forecasting value is within  

90%–110% of the actual value (i.e., the forecasting error is ±10%). The higher the PAF, the more 

effective the model. For the third scenario, the PAF results indicated that the proposed CS-FNN model 

can reach a PAF value of 86.67%, whereas the PSO-FNN and BP-FNN models reach 58.09% and 

49.52%, respectively. This means that the proposed CS-FNN model yielded the highest PAF. 
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Table 2. Performance statistics of the models on testing dataset in the second scenario. 

Model RMSE MAPE R 

BP-FNN 103.22 0.142246 0.7866 
CS-FNN 84.0647 0.116846 0.8179 

PSO-FNN 100.5382 0.131646 0.7964 

Figure 4. The forecasting and actual values in the second scenario. 

 

Table 3. Performance statistics of the models on testing dataset in the third scenario. 

Model RMSE MAPE R 

BP-FNN 76.1 0.108368 0.8737 
CS-FNN 48.7161 0.067268 0.8965 

PSO-FNN 66.9347 0.094968 0.8767 

Figure 5. The forecasting and actual values in the third scenario. 
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It was observed from Tables 1–3 that the CS-FNN has a smaller RMSE and MAPE as well as a 

bigger R in all scenarios than those of the BP-FNN and PSO-FNN. The results indicate that the 

proposed CS-FNN presents better performance in forecasting. The time series of actual and predicted 

values obtained using three different training algorithms are compared in Figures 3–5. The nearly 

perfect agreement between the trends in the plots of the time series of actual and predicted values in 

these figures, obtained using different training algorithms, suggest that the FNN-based models used are 

appropriate for flow forecasting. However, when a high forecasting accuracy is sought, the FNN-CS is 

the most suitable model. Also, from tables and figures, the combination of inputs in the third scenario 

yielded the highest forecasting accuracy when compared with those in the first and second scenarios. 

The performance criteria RMSE, MAPE, and R obtained by the CS-FNN in the third scenario were 

calculated as 48.7161, 0.067268, and 0.8965, respectively. These results were highly correlated to the 

actual values. Theoretically, a forecasting model is accepted as ideal when MAPE is small and R is 

close to 1. The performance criteria indicate that the results obtained from the CS-FNN are satisfactory 

when compared with the results from studies on forecasting. 

For the third scenario, the sensitivity analysis for the ANN models as per Garson’s method [47] was 

also conducted. Q(t) was found to be the most important input parameter, followed by X(t), Qday(t), 

Xday(t), Q(t−10), X(t−10), Q(t−20), and X(t−20). 

Based on the obtained results, it can be concluded that the model based on CS-FNN can be accepted 

as a tool for forecasting flow. 

7. Conclusions 

Forecasting flow is important for water resource management and planning. In this study, different 

FNN-based models were developed and compared in order to forecast flow into the Hoabinh Reservoir. 

This study took advantage of a CS algorithm to train neural networks for hydrographic forecast 

problems. The CS algorithm was utilized for the training of feedforward neural networks. The obtained 

results showed that the neural network using CS performs well in all scenarios. The results of the CS-FNN 

were also compared against those of the BP-FNN and PSO-FNN in terms of RMSE, MAPE and R 

achieved. The CS-FNN was found to outperform the BP-FNN and PSO-FNN. These findings demonstrate 

the remarkable advantage of CS and the potential of ANNs in forecasting reservoir flows. The results 

of the present study also show that a comparative analysis of different training algorithms is always 

supportive in enhancing the performance of a neural network. This work can thus make a contribution 

to the development of the water resource reconcilement field. For future research, we will develop and 

incorporate our model in a user-friendly software tool in order to make this forecasting task easier. 
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