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Abstract: Signals acquired by sensors in the real world arelinear combinations,
requiring na-linear mixture models to describe the resultant mixture spectrahéor
endmember 6s (pure pixel 6s) di stribution. T |
fraction through a novehybrid mixture model(HMM). HMM is a threestep process,
where the endembers are first derived from the imadbenselesusingthe N-FINDR
algorithm. These endmembers are used by the linear mixture model (LMM) in the second
step that providesn abundance estimation in a linear fashion. Finally, the abundance
values along vth the training samples representing the actual ground proportions are fed
into neural network based muléiyer perceptron (MLP) architecture as input to train the
neurons. The neural output further refines the abundance estimates to account for the
nonlinear nature of the mixing classes of interest. HMM is first implemented and validated
on simulated hyper spectral data of 200 bands and subsequently on real time MODIS data
with a spatial resolution of 250 rithe results on computer simulated data shioav the
method gives acceptable results for unmixing pixels with an overall RMSE of
0.0089+£ 0.0022 with LMM and 0.003& 0.0001 with the HMM when compared to actual
class proportions. The unmixed MODIS images showed overall RMSE with HMM as
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0.0191+ 0.022 as compared to the LMM output considered alone that had an overall
RMSE of 0.2005 0.41, indicating that individual class abundances obtained from HMM
arevery close tdhe real observations.

Keywords: mixture model; suipixel classification; nottinear unmixing; MODIS

1. Introduction

Hyper spectral imaging spectrometers collect data in the foranahage cube that represents
reflected energy from the Earthodés surface mat e
of the reflected sorce radiation [1]. The mixed spectrum phenomenon caasgged pixel problem
because the intrinsic scale of spatial variation in land cover (LC) due to the heterogeneous and
fragmented landscapes [2] is usually finer than the scale of sampling impodelitmage pixels (for
example, MODIS data at 250 m tdkfh spatial resolution) resulting in mixed pixels. Mixed pixéiss
are a mixture of more than one distinct object and exist for one of two reasons. Firstly, if the spatial
resolution of the sensor it high enough to separate different LC types, these can jointly occupy a
single pixel, and the resulting spectral measurement will be a composite of the individual spectra that
reside within a pixel. Secondly, mixed pixels can also result when distinttpes are combined into a
homogeneous mixture. This happens indepehdehthe spatial resolution of the sensor [3].

Commonly used approaesto mixed pixel classification & been linear spectral unmixing [4],
supervised fuzzg means classificatiofb], ANN (artificial neural networKs[6,7] and Gaussian
mixture discriminant analysis [8tc. which use a linear mixture model (LMM) to estimate the
abundance fractions of spectral signatures lying within a pixel. LMM assumes that the reflectance
spectum of a mixture isa systematic combination of the comporéemnstflectance spectra in the
mixture (called endmembers). The combination of these endmembers is litleacadmponent of
interestregardinga pixel appearin spatially segregated patternk.However, the components are in
intimate association, the electromagnetic spectrum typically interacts with more than one component
as it is multipy scattered, and the mixing systematics between the different components are highly
nortlinear. In other wrds, norlinear mixing occurs when radiance is modified by one material before
interacting with another one under the assumption that incident solar radiation is scattered within the
scene itself and that these interaction events may involve severabfypesind cover materials [9]
and require noiinear mixture model for unmixing the components of interest. In such cases, LMM
have mostly failed in modeling a mixed pixel {1@] and nodinear models have been found to be
appropriate as evident from vaus studies [2], including vegetation and canopy discriminatioh [13
water quality assessment [12], etc.

If there areM spectral bands and classes, then associated with each pixeNsdimensional vectoy
whose components are the gray values correspondingtblibeds. LeE =[e;, §u.6, 6+41. ., &] be
a M x N matrix, where {g} is a column vector representing the spectral signature (endmember) of
the nth target material. For a given pixel, theundanceor fraction of thenth target material present in
a pixel i s, antl ¢hese vakias arb the cbmponents oNtdemensional abundance vector
U. Assuming LMM [15], the observation vectpis related t&E by
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y=EU +¢ 1)

whered accounts for the measurement noise. We further assume that the components of the noise
vector d are zeremean random variables that are i.i.chdépendent and identically distributed)
Therefore, the covar i an 8evhmatsrthéxariande, andis®M xMo i s e
identity matrix. Two constraints imposed on the abundances in equation (1) are-thegatinity and
sumto-one given as

2,20, "n:1 4 N )

n

and

N
aa,=1 (3)
n=1
This allows proportionsf each pixel to be partitioned between classes. Alimear mixture model
(NLMM) is expressed as:

y =fE,U) + « (4)

where,f is an unknown noifinear function that defines the interaction betw&eandU. Theory and
experiments demonstratieat we will get the fractions of endmembers wrong by using a linear model
when spectral mixing actually is ndinear [10,11]. NoHinear effects are an area of active research in
particular applications where LMM generally results in poor accuracy [12].

In this context, ANN based NLMMs outperform the traditional linear unmixing models. ANNs have
been widely studied as a promising alternativadcomplishthe difficult task of estimating fractional
abundances of endmembers. Atkinsstnal [2] applied a MLP (milti-layer perceptron) model to
decompose AVHRR imagerandit was superior to the linear unmixing model and a fuzmeans
classifier. Another popular ANN modelARTMAPG introduced to identify the life form components
of the vegetation mixture [13]sing Landsat data could capture dimear effects, performing better
than LMM [16]. ART MMAP, an extension of ARTMAP was designed specifically for mixture
analysis with enhanced interpolation function @nplrovides better prediction of mixture informain
than ARTMAP [17].A regression tree has also been used ranlinear unmixing model [7]. All of
these methods stand alone and work on the data directly when endmembers ara kniownThe
objective of this paper is to develop an automated procedure to unmix hyperspectral imagery for
obtaininga fraction that accounts for the ndinear mixture of the class types. We call this matiel
Hybrid Mixture Model (HMM). HMM is carried out inthree stages: (ilEndmembers are extracted
from the image itself using an iterativeMINDR algorithm; (ii)the endmembers are used in the linear
unmixing model for abundance estimation; (tie abundance values along with the actual ground
proportionsare used to refine the abundance estimates using MLP for the individual classes to account
for the nonlinear nature of the mixing classes of interest

This paper is structured in six sections. Methods for automatic endmember extraction, linear
unmixing and MLP are discussed fBection 2 followed by the description of HMM Bection 3. Data
preparation is dealith in Section 4 with the experimental results and discussid@eation 5. Section
6 concludes with model limitations.
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2. Methodology
2.1.Automatic Endmember Extracti®The NFINDR Algorithm

The N-FINDR algorithm [18] is a fully automatic technique for endmember extraction from the
image,which isbriefly described here

(i) Let N denote the number of classes or endmembers to be identified.

(i) PerformaPCAM ecomposi tion of the data and reduce

(iii) Pick N pixels from the set and compute the simplex volume generated by the spectra of the N
pixels. The volume of the simplex is proportional to

1 1 ... 1
& & - &
V=dete, €, .. & (5)

eN-ll Q\l 12 e Q\l N

(iv) Replace each endmember with the spectrum of each pixel in the data set and recompute the
simplex volume. If the volume increases, the spectrum of the new pixel is retained as a potential
endmember.

(v) The above steps are executedattieely considering all pixels, and the final set of retained
spectras taken as the endmembers.

2.2.0rthogonal Subspace Projection (OSP) to Solve Linear Mixture Model

OSP proposed by Chang [19] involves (a) finding an operator which eliminates undpesictal
signatures, and then (b) choosing a vector operator which nzasirfie signal to noise ratio (SNR) of
the residual spectral signature.

If we assume that there arktargets, £, At t+1, € , N present in an image scene, then there
areN spectrally distinct endmembers with corresponding target signaturgs asgg,ee,, €+, €n, €
where M > N (overa determined system), wheEguation (1) is a standard signal detection model.
Since we are interested in detecting one target at a wimesan divide the set dfl targets into a
desiredtarget, sayf and a class of undesired targets, & 1 t«1€ , n. We need to eliminate the
effects caused by the undesired targets that are considered as interfgbaf®te the detection of takes
place. With annihilation of the undesired target signatures, the detectabilitaaflte enhanced. In order
to find the abundance ofte h  t ar g e, firsnais separatedifron{eU &6, &+, &N E.

Let the correspondingpsctral signature of the desired target material be denoted as d. THe trm
can be rewritten to separate the desired spectral signature d from the rest as:

EU= a,+ U (6)
andEquation (1) is rewritten as
y =da,+U g-q (7)

whered = g, is the desired target signature pahdU is M x (N-1) matrix = [@, €168+, &), Is e
the undesired target spectral signature, which are the spectral signatures of the reNfialning
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undesired targets;,t é 7 #,+1€ , ~. Equation(7) is called ad, U) model;d is aM x 1 column
vector [d, O, ém]™, od i (Bl 1)a 1 column vector containingNi 1) component fractions of
U =, [ &0 D é " Using the ¢, U) model, OSP can annihilaté from the pixel vectoy
prior to detection ofstsimilar to [20] by the operator

P=1 UU* (8)

whereU” = (UTU)"'U" is the pseuddinverse ofU. The projectorP is aM x M matrix operator that
maps the observed pixel vectpinto the orthogonal complement bf U has same structure as the
orthogonal complement projector from the theory of least squares. Applying P td, t¥ rhodel
results in a new signal detection model (OSP model) given by

Py=kda, U g K] (9)

where the undesired signallihhasbeen annihilated and the original noise has also been suppressed to
Pd. The operator miniraes energy associated with the signatures not of interest as opposed to
minimizing the total least squares error. It should be noted Rhaperating onUo r e dhec e s
contribution ofU to about zero. So,

Py =Pda, (10)
onusing a linear filter specified by a weight vectdron the OSP model, the filter output is given by
x"Py=x"Pda, «' R (11)
anoptimal criteron here is to maxinze SNR of the filter output
T 24T pl
SNR(x)= x Pda;d P x

x"PE{d {} P
(12)

a; x"Pdd"P"x

s x'PP'x

where E{} denotes the expected value. Maxation of this is a generakd eigenvalueigenvector
problem

0"HH0 @ _00 O (13)

where_ _ v U . The eigenvectomwhich has the maximurais the solution of the problem and it

turns out to bed. The idempotentR? = P) and symmetricR' = P) properties of the interference
rejection operator are used. One of the eigenvalues Rel and the value of X (filter), which
maximizes the SNR is

X" =kd" (14)

where k is an arbitrary scalar. It leads to an overall classification operator for a desired target in the
presence of multiple undesired tasg@hd white noise given by tlex M vector

q =d'P (15)

This result first nulls the interfering signatures, and then uses a matched filter for the desired signature
to maximie the SNR. When the operator is applied to all the pixels in a sceneMeadhpixel is
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reduced to a scalar which is a measure of the presence of the signature of interest. The final resul
reduces thé& images into a single image where the high intensity indicates the presence of the desired
signal. Applyingd'P on (10) gives

d"PPy=d'PRla, ' PR| (16)
therefore,
d"Py
a =

is the abundance estimate of tiib target material. In the absence of noise, the estimate matches with
the exact value iEquation (7). Another way of removirtge undesired signal based on band ratios is
hinted by [21]. For a noise subspace projection method, see [22].[38}towed thathe full linear
unmixing and OSP used here, and as described by Harsanyi and Chang [20] are identical. Full lineau
unmixing can be performed when the spectra for all the endmembers present in the image ase known
priori. Often, knowledge of all the endmembspectra is not available. Therefore partial unmixing
methods for estimating the presence of one or a few desired, known spectra only are desirable [24]. Ir
general, these approaches are effective when the number of spectral bands is higher than the targ
signatures of interest.

The value ofl} is the abundance of tiith class (in an abundance magpjdranges from 0 to 1 in
any given pixel and there are as many abundance maps as the number of Ztasseslicates
absence of a particular class and 1 indicates presence of only that class in a particular pixel.
Intermediate values between 0 and 1 represent a fraction of that class. For example, 0.4 may represel
40% presence of a class in an abundance mé&ph& remaining 60% could be some other class.

2.3. Artificial Neural NetworKANN) based Multilayer Perceptror{MLP)

The advent of ANN approaches is mainly due to their power in pattern recognition, interpolation,
prediction, forecasting, classificati@md process modeling [24]. A MLP network comprises a number
of identical units orgamed in layers, with those on one layer connected to those on the next layer so
that the output of one layés used as input to the next layér.detailed introduction on MLP can be
found inthe literature [2428]. The main aspects here are: e order of presentation of training
samples should be randamd from epoch to epoch; and (ii)) the momentum and learning rate
parameters are typicallypisted (and usually decreased) as the number of training iterations increases.
Individual algorithms were implemented in C programming language. GRASS (Geographic Resources
Analysis Support Syster®)a free and open source packageas used for visuaationof results and
statistical analysis was carried in R in a Linux system running®&Ez PentiurlV processor with
3.5 GB RAM

3. Hybrid Mixture Model (HMM)

Despite many attempts of using ANN for unmixing models, Abi#ded nodinear unmixing
techniqus remain largely unexplored for genepairpose applications [12]. Only [1,7,9,29] have
producedsome of the pioneering work in NLMM to be considered as a general model forhabid
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nortlinear unmixing independent of physical properties of the obsenasted. Some of these
applications arehowever, difficult and complex in their implementation. LMM is easy to implement,
generalze and reconstruct. Therefore, in our approach, we make use of the LMM output as the input to
NLMM to refine the fraction estiates. The MLP architecture can be extended to produce a
continuousvalues output for supixel classification problesr The entries to the MLP mod& the
abundance'dseeFigure 1) output obtained from LMM, which is denoted Byvan wh e r e | = 1,
and the neuron count at the input layer equals the number of endmember classes (estimated by a full
constrained LMM) as shown Figure2 [30].

Figure 1. Architecture of thenulti-layer perceptroMLP) model.

1
f NLMM

2
f NLMM

Hidden neurons

E
f NLMM
Input neurons Output neurons

Input — Abundance estimate from the linear model
Output — Abundance estimate from the non-linear model

Figure 2. Hybrid mixture mode(HMM ) method for spectral mixture analysis.
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The training process is based on an error {pokagationalgorithm [29], where the respective
weights in the output and hidden nodes (W and Wigure 3)are modified depending on the error
(de), the i nput data and the | earning paramet
and output layer nodes is defined by the logistic function
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1

1+e”
e of t heiscalcuapdas thé diffgrence between the fraction (f) estimation oukpwts, f
i = 1, ¢é E, provided by t he netsgienbyactal detiortale c t
abundances available for the training samples. The resulting isrrbackpropagated until the
convergence is reached. One of the earlier works by Ffazh [12] attempted a similar NLMM
methodology, which made use of a modified MLP neural network (NN), whose entries were
determined by a linear activation functionopided by a Hopfield NN (HNN). The combined
HNN/MLP method used the LMM to providan initial abundance estimation and then refined the
estimation using a nelmear model. As per Plaz al.[12], this was the first and only approach in the
literature that integrated linear and NLMM.

f(x)= (18)

Figure 3. MLP structural diagram

Abundance from

linear estimates
(1)
LMM —— Desired
MLP Output Output
MLP Weights
W,V -———

Error Ae
>=

Threshold

Update Weights

Stop

4. Data
4.1.Computer Simulations

One of the major problems involved in analyzing the quality of fractional estimation methods is the
fact that ground truth information about the real abundances of materials@ksulevels is difficult
to obtain in real scenarios [29]. In order to i@vthis shortcoming, a simulation of hyperspectral
i magery was <carried out to examine the algori
libraries of four minera alunite, buddingtonite, kaolinite and calcite [31] were used to generate
syntheticdata. Plazat al [12] used the signatures of soit)@nd vegetation geto create a simulated
image with nordinear mixtures using a simple logarithmic function. The abundanceasfcee were
assigned according tequation(19)

yxy)=a e, Qxy) (19)
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where,y denotes a vector containing the simulated discrete spectrum of the pixel at spatial coordinates
(x,y) of the simulated imagey(&,y) = p(X, ig the contribution of endmembeyae n ¢(x,Wis the
fractional alindance of gat (x,y). A limitation here is that even though all the pixels are mixed in

di fferent proportions, there are no instance
hyperspectral signature to be solely from one material, and theriefeadly it should be identical to

the endmember i tsel f. Her e, as the abundance
suppressing the contribution of t hat particul
approache$ B and thereforestarts dominating in the observed spectral signature. Of course, it will
appear as negative numbers. This is against our physical understanding as to how awratériasi

almost not present in the pixel, contribaite the observation in a dominant wahat is, the model is

not able to highlight the endmember of the correct material when its contribution is 1 and gives a
wrong endmember when its contribution is @ dvercome this limitation, we modify the model in
Equation(19) byEquation(20):

y(x.y) = 8 sig, §(x.y) (20)

where,sig, is the signature correspondingith mineral,s,(x,y) = log(1+ Uy(x,y)) is the contribution
of endmembergandU,(x,y) is the fractional abundance gfie the pixel at (x,y).

Simulated synthetic nelinear mixture hyperspectral data of 200 bands (250 x 250) using four
minerals were classified using Maximum Likelihood Classifier (MLC) with signatures from the
spectral libraries. This constitutes higésolution (HR) images. Thesmages were used to generate
synthetic mixed pixels of 25 x25 (referred to as {oegolution (LR) images). Four endmembers were
extracted from LR images, and subsequently, abundance images were estimated corresponding to ea
endmember. Percentage abance for a group of 10 x 10 pixels was computed for this entire HR
classified image (250 x 250) obtained from MLC. This new image of a size of 25 x25 was used as
reference for validating the LR abundance output. However, the HR MLC based classified output
(250 x 250) was not validated as the same spectral library which was used for generating the
individual class signatures for classification of the HR image and was also used to create the synthetic
images. Abundance values from 15% of the pixels obtafred linear unmixing along with the
corresponding proportions obtained from the 250 x 250 classified image obtained by MLC were used
to train the neurons in MLP. For example, each input sample to the MLP has the abundance values
obtained from OSP for eaatf the four classes (0.2, 0.3, 0.1, 0.4 = 1 or 100% of a pixel) and the
proportion of each class as derived from HR MLC based classified map (0.18, 0.27, 0.2, 0.35 =1 or
100% of a pixel) by considering 25 x 25 classified pixels and finding the perceataggch class
separately which is equivalent to 1 x 1 LR pixel spatially. Testing was done on the entire output
abundance images (100% pixels).

4.2.MODIS Data

The training and testing data (pertaining to Kolar district, Karnataka State, India) usadytthst
model consisted of (i) IRS LISS$ Multispectral withthreespectral bands of 23.% 23.5 m spatial
resolution acquired on December 25, 2002 and (ii) MO&Btday composite (of 1®ecemberto
26 December 2002) data wigevenbands at 250 and 500 m. The fractional LC for each MODIS pixel
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was computed in four steps: (i) LISE data of 1000x 1000 pixels were geoorrected, resampled to

25 m and classified into six LC classes (agriculture, talsettlement, forest, plantati/orchard,
wasteland/barren land and water bodies) using MCMODIS images (100 100 pixels; 10 times
smaller than the size of LISB) were coregistered to LISSII data and resampled to 25Q (i) Six
endmembers were extracted using-MNIDR from the MODIS bands and the data were unmixed to
estimate abundances for each pixel at the MODIS image; ¢sgl&inally, 15% MODIS abundance
pixels obtained from LMM were randomly selectecbassociateé with the corresponding LISBI
classified pixed (as ground truth) at the same spatial locationgain the neurons in MLP based
HMM. The weights were adjusted until fractions of LC obtained from HMM were nearly the same as
that of LISSIII (desired output). The learned network was applied on theltga set that included all

the abundance values for all the classes in the entire image obtained from LMM. The HMM outputs
were six abundance maps, one for each class.

5. Experimental Results and Discussion
5.1.Simulated Data

Three images from the 2@fands are shown in Figure 4 and the classified output of the 250
hyper spectral 200 bands data is shown in Figure 5. The proportions of eacloof thenerals were
computed based on 2010 groups of pixels for 625 groups [(2%0250) divided by (10x 10)].
N-FINDR was used to extract the endmembers from the synthetic mixed pixels, which are shown in
Figure 6. The endmembers identified by the algorithm (drawn in red) have a good match with the
actual ones (green in color). Abumtas of each of the minerals from the artificial mixed pixels
obtained from LMM are as shown in FigureifebFigure 7 a is the 10 times dowampled image of
the original mineral classified image (2%0250) shown in Figure 5 to compare hard classificatio
with the abundance map visually. A thileger MLP architecture was made witbur input, one
hidden andour output layers.

Figure 4. A 200 band hyperspectral image generated from spectral libraries of four
different minerals:g) band 1 (b) band 100(c) band 200.
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Figure 5. Mineral classified map.
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Figure 6. Comparison between the true endmembers and endmembers computed from the
N-FINDR algorithm. (Xaxis:band number, Yaxis:reflectance value.)
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(b)i (e) abundances maps of the four minerals obtained from linear mixture (hdthdl).

(a)




Information2012, 3 431

The number of hidden nodes in the hidden layer, learning rate, momentum and epoch were varied ir
steps to estimate the best abundance values that could account for #inreeaty in the mineral
mixtures(as shown irFigure 8, until the performance saturatehble 1lists the values of the training
parameters along with the training time and the overall RMSE of the MLP network for every 500
epochs. Three measures of performance were used to evaluate the output from artificial BM&Eet
correlation, Bivariate Disoution Functions (BDFs). BDF is helpful to visuai the accuracy of
prediction by mixture models. BDFs were plotted against the real proportions as sheigoren 9
P e ar s on énsomgntr coretlationt at 95% confidence interval and RMSE betweerctin and
estimated proportion from LMM and HMM are givenTiable 2.The average RMSE of the LMM was
0.0089 +0.0022 while the average RMSE of the HMM was 0.0030 % 0.0001 demonstrating the
superiority of the HMM over the LMM. The MLP network can succdisapproximate virtually any
function when trained correctly.

Figure 8. Abundances maps of the four minerals obtained from HMM.

(b)
Ol | 1

Table 1.Details of training for unmixing of simulated dataset

No. of  Learning Momentum Training Unmixing Overall

epochs rate term time (sed  time (sec) RMSE
500 0.90 0.5 4 8 0.0160
1000 0.85 0.4 5 8 0.0117
1500 0.80 0.3 7 7 0.0030
2000 0.70 0.2 7 6 0.0071
2500 0.60 0.1 8 5 0.0115

Table 2.Correlation and RMSE between actual and predicted proportions for simulated data

Classes Correlation (r) (p < 2.2é%) RMSE

LMM HMM LMM HMM
Alunite 0.67 0.97 0.0120 0.0032
Buddingtonite 0.71 0.98 0.0073 0.0029
Kaolinite 0.73 0.98 0.0088 0.0031

Calcite 0.75 0.99 0.0076 0.0029
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Figure 9. Bivariate Distribution FunctiongBDFs) of simulated test data for the four
minerals obtained from HMM.
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5.2.MODIS Data

In order to validate the MODIS unmixed image LISSIII classified imagewith an overall
accuracy of 95.63% and individual class producers accuracy ranging fr&mo927% and users
accuracy ranging from 88% 98% was used. Linear unmixing was applied on MODIS data to obtain
the abundance maps5% MODIS abundance pixels obtained from LMM were randomly selected to
relate with the corresponding LISB classified pixels (aground truth) at the same geographical
locationsto train the neurons in HMM. MLP architecture wieveninputs (sincesevenbands of
MODIS data were used)ne hidden andsix output layers (as six different LC classes) was
constructed. The MLP based HMMas executed with varied learning rates, momentum and epochs.
The momentum term and the learning rate were altered after evegp80Bs. Table Bsts the values
of the training parameters along with the training time and the overall RMSE of the Mikérkein
the MODIS images after every 500 epochke fraction maps obtained from LMM and HMM are
shownin Figures 1i g and 11bg.

BDFs against the real and estimated proportions from MODIS data for LMM and HMM were
plotted as shown in Figure 12andFigur 1 3 r espect i vel ymomdntcagreladfian atr s o n
95% confidence interval and RMSE between the actual and estimated proportion from LMM and HMM
are given inrable 4.



Information2012, 3 43¢C

Table 3.Details of training for unmixing of MODIS images

No.of Learning Momentu Training Unmixing Overall
epochs rate mterm  time (sec) time (sec) RMSE
500 0.90 0.05 25 11 0.0220
1000 0.85 0.05 22 11 0.0197
1500 0.80 0.03 22 10 0.0195
2000 0.70 0.02 18 9 0.0191
2500 0.60 0.01 18 8 0.0195

Figure 10. (a) LISSII classified map resampled to 100 x 100 pixels. Abundance maps for
(b) agriculture (c) built-up/settlement (d) forest (e) plantation/orchard (f) wastelang
(g) water bodies obtained from LMM.
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Figure 11. (a)LISSII classified map resampled to 100 x 100 pixels. Abundance maps for
(b) agriculture; €) built-up/settlement; d) forest; € plantation/orchard; f wastelang
(g) water bodies obtained from HMM.
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Figure 12. BDFs of MODIS test data from LMMaj agriculture; b) built-up/settlement;
(c) forest; @) plantation/orchard;g) wasteland;f) water bodies.




