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Abstract: The purpose of this paper is to look at some existing methods of semantic
information quantification and suggest some alternatives. It begins with an outline of
Bar-Hillel and Carnap’s theory of semantic information before going on to look at Floridi’s
theory of strongly semantic information. The latter then serves to initiate an in-depth
investigation into the idea of utilising the notion of truthlikeness to quantify semantic
information. Firstly, a couple of approaches to measure truthlikeness are drawn from
the literature and explored, with a focus on their applicability to semantic information
quantification. Secondly, a similar but new approach to measure truthlikeness/information is
presented and some supplementary points are made.
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1. Introduction

The term ‘information’ can mean many things. Here information is understood as factual semantic
content, where if s is an instance of semantic content then:

1. s consists of one or more data

2. the data in s are well-formed

3. the well-formed data in s are meaningful
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‘Factual’ simply means that the semantic content is about some state of affairs associated
with a fact. So entries in Encyclopedias, road signs and maps are some examples of semantic
information. Furthermore, such structured data count as pieces of semantic information relative to
systems or languages in which they are well-formed and meaningful. For more on this standard
definition see [1].

It is important to emphasise that the term ‘information’ is a polysemantic one, applied to a range of
phenomena across a range of disciplines. The semantic conception of information used in this paper
is but one of many conceptions, drawn from the philosophy of information field. For some alternative
views on and surveys of information, including criticism of the view that information is a kind of data,
see [2], [3] and [4].

In this paper we consider only semantic information represented by propositions [5], and the
inspected approaches can be seen to fall under the logical approach to semantic information
theory [4] (p. 315). Hence, semantic information is understood in terms of propositions and throughout
this paper represented using statements in a basic propositional logic (i.e., the information that p).
Finally, as will become clearer, a veridicality thesis for semantic information is endorsed, where if i
counts as an instance of semantic information then it is semantic content that is also true [6].

So information is carried by statements/propositions and judgements such as ‘statementA yields more
information or is more informative than statement B’ are naturally made [7]. The motivations for and
the aims of this enterprise to develop ways to quantify semantic information can be straightforwardly
appreciated. The following cases and considerations will serve to illustrate this:

• Imagine a situation in which a six-sided die is rolled and it lands on 4. Given the following
collection of statements describing the outcome of the roll, which is the most informative? Which
is the least informative?

– The die landed on 1

– The die landed on 1 or 2 or 4

– The die landed on 4

– The die landed on 4 or 5

– The die did not land on 4

A formal framework for the quantification of semantic information could assign a numerical
measure to each statement and rank accordingly.

• Take a simple domain of inquiry, involving the following two questions:

– Is Berlin the capital city of Germany? (A)

– Is Paris the capital city of France? (B)

Now, there is a coherent sense in which the following ranking of answer statements in terms of
highest to lowest informativeness is right:

1. A ∧B
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2. A

3. A ∨B

4. ¬A ∧ ¬B

A ∧ B precisely describes the truth of the domain, it gives the correct answer to both questions.
A is also true but only provides information about one of the items, giving the correct answer to
the first question. A ∨ B only tells us that the answer to at least one of the questions is ‘yes’, but
not which one. ¬A∧¬B on the other hand is false and would provide an incorrect answer to both
questions.

What is a suitable formal framework for the quantification of semantic information that can
rigorously capture these intuitions and provide a way to measure the complete range of statements
within a domain of inquiry?

• Take a more general example of a logical database consisting of a collection of facts. How can
the information content of the database be measured? Why is one database more informative than
another?

• Information is often treated as a commodity and one factor that will determine the value of a piece
of information is going to be its quantitative measure. A formal method to measure the information
yield of a statement could therefore facilitate its informational valuation.

Thus motivations and aims for the task of this paper are clear.

2. Bar-Hillel and Carnap’s Theory of Semantic Information

Bar-Hillel and Carnap’s seminal account of semantic information [8,9] measures the information
yield of a statement within a given language in terms of the set of possible states it rules out and a logical
probability space over those states.

The general idea is based on the Inverse Relationship Principle, according to which the amount of
information associated with a proposition is inversely related to the probability associated with that
proposition. This account will henceforth be referred to as the theory of Classical Semantic Information
(CSI) [10]. Using some a priori logical probability measure pr on the space of possible states, two
measures of information (cont and inf ) are provided, such that:

cont(A) =df 1− pr(A)

and

inf(A) =df −log2(pr(A))

In order to demonstrate these definitions, take a very simple propositional logical space consisting
of three atoms [11]. The space concerns a weather framework, where the three properties of a situation
being considered are whether or not it will be (1) hot (h), (2) rainy (r) and (3) windy (w) [12]. Since
there are three variable propositions involved, there are eight logically possible ways things can be, there
are eight possible states. Here is a truth table depicting this:
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State h r w

w1 T T T
w2 T T F
w3 T F T
w4 T F F
w5 F T T
w6 F T F
w7 F F T
w8 F F F

Now, each possible state can be represented using a state description, a conjunction of atomic
statements consisting of each atom in the logical space or its negation, but never both. For example,
the state description for w1 is h ∧ r ∧ w and the state description for w8 is ¬h ∧ ¬r ∧ ¬w. For the
sake of example, the probability distribution used will be a simple uniform one; that is, since there are
eight possible states, each state has a probability of 1

8
that it will obtain or be actual [13]. Using these

parameters, here are some results:

Statement (A) cont(A) inf(A)

h ∧ w ∧ r 0.875 3
¬h ∧ ¬w ∧ ¬r 0.875 3

h ∧ r 0.75 2
h ∨ w 0.25 0.415
h ∨ ¬h 0 0
h ∧ ¬h 1 ∞

Note that with the formulas for cont() and inf(), it is clear that the following relationships hold between
logical entailment and semantic information, simply due to the fact that A ` B ⇒ pr(A) ≤ pr(B):

A ` B ⇒ cont(A) ≥ cont(B)

A ` B ⇒ inf(A) ≥ inf(B)

Bar-Hillel and Carnap also provided some formulas to measure relative information, amongst them:

cont(A|B) =df cont(A ∧B)− cont(B)

and

inf(A|B) =df inf(A ∧B)− inf(B)

Given these definitions, it so happens that cont(A|B) = cont(B ⊃ A) and inf(A|B) =

−log2(pr(A|B)).

It is worth briefly noting that Bar-Hillel and Carnap’s account was subsequently expanded upon by
Jaakko Hintikka. Amongst the contributions made by Hintikka are:

• Further investigation into varieties of relative information.
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• Extension of the CSI account to full polyadic first-order logic, making use of his distributive
normal forms.

• Introduction of his distinction between surface information and depth information. The latter is
defined similarly to the approach used by Bar-Hillel and Carnap. The former is used to address
the ‘scandal of deduction’: according to Bar-Hillel and Carnap’s account logical truths or proofs
of logical validity give no information. In order to accommodate a sense in which they do give
information, Hintikka developed a way to measure the information yield of deductive inferences.

Readers further interested in Hintikka’s contributions are advised to consult [14–16].

2.1. Some Comments on the Theory of Classical Semantic Information

Does the CSI account overall provide an acceptable measure of semantic information, in line with
the motivations and aims discussed in the introduction? To a certain extent its results accord with our
intuitions and are expected. True state descriptions yield much information; a statement which narrows
things down to just one of the possible states yields a lot of information. By contrast, if a statement
tells us that it will be hot and rainy but tells us nothing about whether or not it will be windy (h ∧ r), it
would yield less information, as the calculations agree. Further still, a statement which only says that it
will be hot or windy (h ∨ w) yields relatively little information. Finally, a tautological statement, which
gives no reduction of the original eight possibilities, appropriately yields no information. Despite these
results, there are significant cons that indicate the inadequacy of the CSI account in accommodating
certain criteria associated with the type of quantitative account of semantic information that is in line
with present motivations and aims.

The most prominent issue concerns its assignment of maximal information yield to contradictions,
what has elsewhere been termed the Bar-Hillel-Carnap Paradox [1]. Can no non-contradiction provide
more information than a contradiction? Surely this is not the case. Furthermore, do contradictions yield
any information at all? These questions will be discussed shortly.

Bar-Hillel and Carnap provide the following commentary on the matter:

It might perhaps, at first, seem strange that a self-contradictory sentence, hence one which no
ideal receiver would accept, is regarded as carrying with it the most inclusive information.
It should, however, be emphasised that semantic information is here not meant as implying
truth. A false sentence which happens to say much is thereby highly informative in our sense.
Whether the information it carries is true or false, scientifically valuable or not, and so forth,
does not concern us. A self-contradictory sentence asserts too much; it is too informative to
be true [8] (p. 229).

No doubt the notion of information expounded in the above passage is at odds with the ordinary sense
of information as discussed in the introduction. It is fair to say that the more a sentence says the more
informative it is. But when does a sentence ‘say much’? We intuitively judge the statement A∧B to say
more than the statement A ∨ B not just because it is less probable or excludes more possible states, but
also because it does a better, more detailed job of describing how presumably things are. For any two
true statements A and B such that pr(A) < pr(B), it is fair to say that A yields more information than B.
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On the other hand, not only is A∧¬A false, but it does not at all do a good job of describing how things
presumably are or could be. It does not discriminate and selectively narrow down on a potential state of
affairs (unless a contradiction does actually occur!).

Further to this issue, the CSI account’s indifference to truth and falsity means that it cannot distinguish
between true and false statements with the same probability. If it actually is hot, rainy and windy (i.e.,
h∧r∧w is the true state description), then in the sense of information we are interested in, the statement
h ∧ r ∧ w yields more information than the statement ¬h ∧ ¬r ∧ ¬w. Even the statement h ∧ r, which
has a higher probability, yields more information than ¬h∧¬r∧¬w, since it contains more truth. These
considerations suggest that at the least semantic information is not just about content and should be
meant as implying truth.

3. Floridi’s Theory of Strongly Semantic Information

In part prompted by these considerations, Luciano Floridi has developed a Theory of Strongly
Semantic Information (TSSI), which differs fundamentally to CSI. It is termed ‘strongly semantic’ in
contrast to Bar-Hillel and Carnap’s ‘weakly semantic’ theory because unlike the latter, where truth values
do not play a role, with the former semantic information encapsulates truth.

Floridi’s basic idea is that the more accurately a statement corresponds to the way things actually are,
the more information it yields. Thus information is tied in with the notion of truthlikeness. If a statement
perfectly corresponds to the way things actually are, if it completely describes the truth of a domain of
inquiry, then it yields the most information. Then there are two extremes. On the one hand, if a statement
is necessarily true in virtue of it being a tautology, it yields no information. On the other, if a statement
is necessarily false in virtue of it being a contradiction, it also yields no information. Between these
two extremes and perfect correspondence there are contingently true statements and contingently false
statements, which have varying degrees of information yield.

Using the weather framework introduced above, let the actual state be w1. The following ranking of
propositions, from highest information yield to lowest information yield illustrates this idea:

1. h ∧ r ∧ w

2. h ∧ r

3. ¬h ∧ ¬r

4. ¬h ∧ ¬r ∧ ¬w

5. h ∧ ¬h, h ∨ ¬h

It is time to take a look in more detail at Floridi’s account as given in [17]. The informativeness of
each statement s [18] is evaluated as a function of (1) the truth value of s and (2) the degree of semantic
deviation (degree of discrepancy) between s and the actual situation w. This degree of discrepancy
from the actual situation is measured by a function f , which takes the statement as input and outputs
some value in the interval [-1, 1]. This allows for the expression of both positive (when s is true) and
negative (when s is false) degrees of discrepancy. Basically, the more a statement deviates from 0, the
less informative it is.



Information 2011, 2 67

Floridi stipulates five conditions, that “any feasible and satisfactory metric will have to satisfy”
[17] (p. 206):

Condition 1. For a true s that conforms most precisely and accurately to the actual situation w,
f(s) = 0.

Condition 2. For an s that is made true by every situation (i.e., a tautology), f(s) = 1.

Condition 3. For an s that is made true in no situation (i.e., a contradiction), f(s) = −1.

Condition 4. For a contingently false s, −1 < f(s) < 0 [19].

Condition 5. For a contingently true s that is also made true by situations other than the actual
one (so does not conform to w with the highest degree of precision), 0 < f(s) < 1.

For cases that fall under the fourth condition, f measures degree of inaccuracy and is calculated as
the negative ratio between the number of false atomic statements (e) in the given statement s and the
length (l) of s.

Inaccuracy : f(s) = − e(s)
l(s)

To get values for e and l, it seems that some simplifying assumptions need to be made about a
statement’s form. Statements to be analysed in this way are in conjunctive normal form, with each
conjunct being an atomic statement. e is the number of false conjuncts and l is the total number of
conjuncts. This point will be discussed in more detail shortly.

For cases that fall under the fifth condition, f measures degree of vacuity and is calculated as the ratio
between the number of situations, including the actual situation, with which s is consistent (n) and the
total number of possible situations (S) or states.

V acuity : f(s) = n(s)
S

Of the inaccuracy metric Floridi writes, “[it] allows us to partition s = sl into l disjoint classes
of inaccurate s {Inac1, ..., Inacl} and map each class to its corresponding degree of inaccuracy” [17]
(p. 208).

The model Floridi uses to illustrate his account, denoted E, has two predicates (G and H) and three
objects (a, b and c). So in all there is a set of 64 possible states W = w1, ..., w64. An application of the
inaccuracy metric to the model E is presented in Table 1 (degree of informativeness calculations will be
explained below).

For vacuous statements, Floridi writes “[the vacuity metric] and the previous method of semantic
weakening allow us to partition s into l − 1 disjoint classes Vac = {Vac1, ...,Vacl−1}, and map each
class to its corresponding degree of vacuity” [17] (p. 209). The semantic weakening method referred to
consists of generating a set of statements by the following process. In this case, the number of all atomic
propositions to be used in a statement is 6. Start with a statement consisting of 5 disjunctions, such as

Ga ∨Gb ∨Gc ∨Ha ∨Hb ∨Hc
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Table 1. Classes of inaccuracy.

number of
erroneous atomic
messages in s

Class of
inaccuracy

Cardinality of
Inaci

Degree of
inaccuracy

Degree of
informativeness

1 Inac1 6 −1
6

≈ 0.972

2 Inac2 15 −1
3

≈ 0.888

3 Inac3 20 −1
2

0.75

4 Inac4 14 −2
3

≈ 0.555

5 Inac5 7 −5
6

≈ 0.305

6 Inac6 1 −1 0

This is the weakest type of statement and corresponds to Vac1. Next, replace one of the disjunctions
with a conjunction, to get something like

(Ga ∨Gb ∨Gc ∨Ha ∨Hb) ∧Hc

This is the second weakest type of statement and corresponds to Vac2. Continue this generation
process until only one disjunction remains. Table 2 summarises an application of this process to the
model E:

Table 2. Classes of vacuity.

number of
compatible
situations including
w

Class of vacuity Cardinality
of Vaci

Degree of
vacuity

Degree of
informativeness

63 Vac1 63 63
64

0.031
31 Vac2 31 31

64
0.765

15 Vac3 15 15
64

0.945
7 Vac4 7 7

64
0.988

3 Vac5 3 3
64

0.998

Say that the actual situation corresponds to the state description Ga ∧ Ha ∧ Gb ∧ Hb ∧ Gc ∧ Hc.
Table 3 summarises an example member of each class:

With a way to calculate degrees of vacuity and inaccuracy at hand, Floridi then provides a
straightforward way to calculate degrees of informativeness (g), by using the following formula, where
once again f stands for the degree of vacuity/inaccuracy function:

g(s) = 1− f(s)2

Thus we have the following three conditions:

1. (f(s) = 0)⇒ (g(s) = 1)
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2. (f(s) = +1 ∨ f(s) = −1)⇒ (g(s) = 0)

3. (0 < f(s) < +1) ∨ (−1 < f(s) < 0)⇒ (0 < g(s) < 1)

Table 3. Classes of inaccuracy and vacuity examples.

Class Statement
Inac1 Ga ∧Ha ∧Gb ∧Hb ∧Gc ∧ ¬Hc
Inac2 Ga ∧Ha ∧Gb ∧Hb ∧ ¬Gc ∧ ¬Hc
Inac3 Ga ∧Ha ∧Gb ∧ ¬Hb ∧ ¬Gc ∧ ¬Hc
Inac4 Ga ∧Ha ∧ ¬Gb ∧ ¬Hb ∧ ¬Gc ∧ ¬Hc
Inac5 Ga ∧ ¬Ha ∧ ¬Gb ∧ ¬Hb ∧ ¬Gc ∧ ¬Hc
Inac6 ¬Ga ∧ ¬Ha ∧ ¬Gb ∧ ¬Hb ∧ ¬Gc ∧ ¬Hc
Vac1 Ga ∨Gb ∨Gc ∨Ha ∨Hb ∨Hc
Vac2 (Ga ∨Gb ∨Gc ∨Ha ∨Hb) ∧Hc
Vac3 (Ga ∨Gb ∨Gc ∨Ha) ∧Hb ∧Hc
Vac4 (Ga ∨Gb ∨Gc) ∧Ha ∧Hb ∧Hc
Vac5 (Ga ∨Gb) ∧Gc ∧Ha ∧Hb ∧Hc

Furthermore, this is extended and an extra way to measure amounts of semantic information is
provided. As this extension is simply derivative and not essential, I will not go into it here. Suffice
it to say, naturally, the higher the informativeness of s, the larger the quantity of semantic information it
contains; the lower the informativeness of s, the smaller the quantity of semantic information it contains.
To calculate this quantity of semantic information contained in s relative to g(s), Floridi makes use of
integrals and the area delimited by the equation given for degree of informativeness.

3.1. Some Comments on Floridi’s Theory

It will be evident to the reader that the classes of inaccuracy and vacuity presented by Floridi are not
comprehensive in that they do not accommodate the full range of statements which could be constructed
in the logical space of E. Once again, say that the actual situation corresponds to Ga∧Ha∧Gb∧Hb∧
Gc ∧Hc.

Take the false statement Ga ∧Ha ∧ Gb ∧ ¬Hb ∧ ¬Gc, consisting of 5 conjoined atoms, 2 of which
are false. A simple extension of Floridi’s method for dealing with inaccuracy would naturally result in
several other classes and the degree of inaccuracy of this statement would be −2

5
.

Or take the following false statement:

s = (Ga ∨Ha) ∧Gb ∧ ¬Hb ∧ (¬Gc ∨ ¬Hc)

How should the formula given for inaccuracy be applied here? There is no clear-cut way to determine
the values for e and l going by Floridi’s description of the formula.

As for the possible classes of vacuity in E, it is clear that beyond those listed in above table, for any
x such that 2 ≤ x ≤ 63, it is possible to construct a statement such that the degree of vacuity is x

64
.
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In total the classes given by Floridi deal with 14 different types of propositions: 1 (true state
description) + 1 (tautologies) + 1 (contradictions) + 6 (classes of inaccuracy) + 5 (classes of vacuity).
Since there are 64 possible states in the space E, there are 264 different propositions (propositions being
satisfied by a set of states, so 264 different sets of states). With an aim of developing a system that can
deal with the complete range of propositions in a given logical space, we must look further.

Another aspect of Floridi’s system which draws consideration is a certain asymmetry between the
metrics for false statements and true statements. False statements are dealt with syntactically and true
statements are dealt with by analysing their models. Might there be one approach that deals appropriately
with both? A consequence of this separation between the false metric and true metric is that the same
numerical value might be given to both a false statement and a true statement with otherwise different
information measures. For example, take the following two statements:

1. (A ∧B) ∨ (B ∧ C) ∨ (C ∧D) (true)

2. A ∧B ∧ ¬C ∧ ¬D (false)

Relative to an actual state corresponding to the state description A ∧ B ∧ C ∧ D, both 1 and 2 are
given informativeness measures of 0.75. Yet it would seem that the first, true statement yields more
information.

The central idea behind Floridi’s theory is right. Both false and true statements can deviate from the
precise truth. For false statements, the more falsity and less truth they contain, the greater the deviation
hence the less information. For true statements, the less precise they are the greater their deviation, hence
the less information. However as we have just seen it falls short of providing rigorous metrics, which
can deliver appropriate and relatively consistent measures for the complete class of propositions in a
logical space.

4. Information Quantification via Truthlikeness

As we have seen so far, the CSI approach to quantifying semantic information does not stipulate a
veridicality condition for information. Floridi’s TSSI on the other hand holds that semantic information
should be meant as implying truth. This paves the way for an alternative approach to quantifying
semantic information; rather than measuring information in terms of probability, the information given
by a statement is to be measured in terms of its truthlikeness. Discussion in Section 3.1 suggested
however that Floridi’s contribution in [17] is perhaps of more conceptual rather than technical value, as
the metrics provided can make way for some more detailed and refined improvements.

At any rate, there already is a mass of formal work on truthlikeness to draw from [20]. Indeed
the truthlikeness research enterprise has existed for at least a few decades now, far before any idea of
utilising it to quantify semantic information. Whilst there are quite a few approaches to truthlikeness in
the literature, to keep things simple and in some cases for certain technical reasons, I will look at two
of them. The presentation given here of these two accounts is kept relatively simple and guided by the
task at hand, which is to investigate their applicability to semantic information quantification. While
seemingly a simple concept in essence, the notion of truthlikeness has resisted a straightforward formal
characterisation. Over the last few decades of research, a variety of rival approaches have developed,
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each with their own pros and cons. In turn it follows that information quantification via truthlikeness
measures is also not going to be a straightforward matter with a definitive account.

We start with a prominent and elegant approach to truthlikeness first proposed by Pavel Tichy and
expanded upon by Graham Oddie [21] (p. 44). This approach is an example of approaches that measure
the truthlikeness of a statement A by firstly calculating its distance from a statement T using some
distance metric ∆, where T is a state description of the actual state (so T is in a sense the truth). Actually,
the distance metric is ultimately a function that operates on states. ∆(wi, wj) measures the distance
between states wi and wj and we use the notation ∆(A, T ) in effect as shorthand for an operation that
reduces to ∆ operation on states corresponding to A and T .

The result of this distance calculation is then used to calculate the statement’s truthlikeness (Tr);
the greater this distance, the less truthlike the statement and vice versa. This inverse relation is simply
achieved with the following formula:

Tr(A, T ) = 1−∆(A, T )

To see this approach at work, consider again the canonical weather framework, with w1 being the
actual state (throughout the remainder of this paper w1 is assumed to be the actual state in all examples):

Table 4. Truth Table for 3-Proposition Logical Space.

State h r w

w1 T T T
w2 T T F
w3 T F T
w4 T F F
w5 F T T
w6 F T F
w7 F F T
w8 F F F

Before continuing with some examples, the introduction of some terminology is in order. We firstly
recall that a state description is a conjunction of atomic statements consisting of each atom in the logical
space or its negation, but never both and that each state description corresponds to a state. In our example
T = h ∧ r ∧ w.

A statement is in distributive normal form if it consists of a disjunction of the state descriptions of
states in which it is true. For example, h ∧ r is true in states w1 and w2, so its distributive normal form
is (h∧ r ∧w)∨ (h∧ r ∧¬w). For notational convenience throughout the remainder of this paper, when
listing a statement in its distributive normal form, state descriptions may be substituted by the states they
correspond to. For example, h ∧ r may be represented with the term w1 ∨ w2.

Now, take the possible states w1, w8 and w5, which correspond to the state descriptions h ∧ r ∧ w,
¬h∧¬r∧¬w and ¬h∧ r∧w respectively. The difference between w1 and w8 is {h, r, w}; they differ in
every atomic assertion. w5 and w1 on the other hand differ by only {h}. So ¬h∧ r ∧w is more truthlike
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than ¬h ∧ ¬r ∧ ¬w, because the distance between w5 and the actual state w1 is less than the distance
between w8 and w1.

The general formula to calculate the distance between A and T is:

∆(A, T ) =
d

|WA|
(1)

where

• Let wT stand for the state that corresponds to T .

• WA stands for the set of states in which A is true.

• A weight with value 1
n

is assigned to every atomic element, where n is the number of propositions
in the logical space. So in our example, weight(h) = weight(r) = weight(w) = 1

3
. This weight is

used to calculate the value of the distance between two states, with each atomic assertion difference
adding 1

n
. So ∆(w5, w1) = 1

3
and ∆(w8, w1) = 1.

• d is the sum of atomic assertion differences between A and T . That is, the sum of ∆(wa, wT ) for
each wa ∈ WA.

So the statement¬h∧r∧w (the state description forw5) has a truthlikeness (information measurement
for our purposes) of 2

3
and the statement ¬h ∧ ¬r ∧ ¬w (the state description for w8) has a truthlikeness

(information measurement) of 0.
This approach extends to the complete range of statements involving h, r and w. According to

Formula 1, the distance of a statement from the truth is defined as the average distance between each
of the states in which the state is true and the actual state. Take the statement h ∧ ¬r, which makes
assertions about only 2 of the 3 atomic states. It is true in both w3 and w4, or {h, ¬r, w} and
{h, ¬r, ¬w} respectively. w3 has a distance of 0.33 and w4 has a distance of 0.67 from w1 so the
average distance is 0.33+0.67

2
= 0.5. Note that henceforth the truthlikeness function (Tr) will be replaced

by an information yield function (info), so that

info(A, T ) = 1−∆(A, T )

Also, given that T is set as w1 throughout this paper, info(A, T ) will generally be abbreviated to
info(A).

Table 5 lists some results using this method. How do these results fare as measures of information
yield? Statement #1 (complete truth) clearly yields the most information and #21 (complete falsity)
clearly yields the least. #10, #11, #15 and #16 indicate that for a disjunctive statement, the more false
constituents it has the less information it yields. In general, the more false constituents contained in
a formula the more likely a decrease in information yield, as indicated by the difference between #5
and #9.

Statements #7, #17 and #21 make sense; the greater the number of false conjuncts a statement has,
the less information it yields, with the upper bound being a statement consisting of nothing but false
conjuncts, which is accordingly assigned a measure of 0. Although #17 and #19 have the same measure,
#17 has one true conjunct out of three atomic conjuncts and #19 has zero true atomic statements out
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of one atomic statement. From this it can be said that the assertion of a false statement detracts more
from information yield than the absence of an assertion or denial of that statement. Half of #14 is true,
so it is appropriately assigned a measure of 0.5. #20 further shows that falsity proportionally detracts
from information yield. The difference between #18 and #16 is perhaps the most interesting. Although
#18 has one true conjunct out of two and #16 contains no true atoms, #16 comes out as yielding more
information, further suggesting the price paid for asserting falsity in a conjunction. Also, note that some
false statements yield more information than some true statements. An interpretation of the Tichy/Oddie
method, which will provide a way to further understand some of these results, is given in Section 4.6.

One possible issue with this method is that tautologies are not assigned a maximum distance and
hence are assigned a non-zero, positive measure. Without going into detail, it seems that this is a more
significant issue for a quantitative account of information than it is for an account of truthlikeness. The
implication that tautologies have a middle degree of information yield strongly conflicts with the intuition
and widely accepted position that tautologies are not informative. Whilst an explanation of this result
will be discussed in Section 4.6, the simplest and perhaps best way to get around this issue would be to
just exclude tautologies from this metric and assign them a predefined distance of 1 hence information
yield of 0. Although an expedient, this move would put the tautology alongside its extreme counterpart
the contradiction, which is also excluded. In the case of contradictions (#22), these calculations do not
apply, because since they are true in no states this would mean division by zero.

4.1. Quantifying Misinformation

One task that Floridi leaves for a subsequent stage of research in his paper to which we shall now turn
is “the extension of the quantitative analysis to the semantic concepts of quantity of misinformation” [17]
(p. 217). However before undertaking this task a clarification is in order. Without getting caught up in the
veridicality thesis debate [22,23], in this paper semantic information is defined as true semantic content
and semantic misinformation is defined as false semantic content. For example, in Table 5, statement #1
would be considered a piece of semantic information and statement #7 would be considered a piece of
semantic misinformation. Given this, here are two issues to consider:

1. Statement #7, a piece of misinformation, has a non-zero, positive information measure;

2. Some pieces of misinformation (false statements) yield more information than some pieces of
information (true statements).

In order to address these issues, I refer to some points made by Floridi in his objections to reasons to
think that false information is a type of semantic information [22](p. 361):

1. • Reason 1. Misinformation can include genuine information.

• Objection 1. This just shows that misinformation is a compound in which only the true
component qualifies as information.

2. • Reason 2. Misinformation can entail genuine information.

• Objection 2. Even if one correctly infers only some semantically relevant and true
information from misinformation, what now counts as information is the inferred true
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consequence, not the original misinformation. Besides, ex falso quod libet sequitur, so any
contradiction would count as information.

Table 5. Information yield results using Tichy/Oddie metric.

# Statement (A) T/F info(A)

1 h ∧ r ∧ w T 1

2 h ∧ r T 0.83

3 h ∧ (r ∨ w) T 0.78

4 h ∧ (¬r ∨ w) T 0.67

5 (h ∧ r) ∨ w T 0.67

6 h T 0.67

7 h ∧ r ∧ ¬w F 0.67

8 h ∨ r T 0.61

9 (h ∧ ¬r) ∨ w T 0.6

10 h ∨ r ∨ w T 0.57

11 h ∨ r ∨ ¬w T 0.52

12 h ∨ ¬r T 0.5

13 h ∨ ¬h T 0.5

14 h ∧ ¬r F 0.5

15 h ∨ ¬r ∨ ¬w T 0.48

16 ¬h ∨ ¬r ∨ ¬w F 0.43

17 h ∧ ¬r ∧ ¬w F 0.33

18 (h ∨ ¬w) ∧ ¬r F 0.33

19 ¬h F 0.33

20 ¬h ∧ ¬r F 0.17

21 ¬h ∧ ¬r ∧ ¬w F 0

22 h ∧ ¬h F N/A

Thus in this approach statements can have both a true, information component and a false,
misinformation component.

Continuing on, how might the approach in this section to quantifying information be used in order
to quantify misinformation? To begin with, it seems that one straightforward stipulation to make is that
true statements should have a measure of 0, for they are not misinformative. So unlike information
measures, where both true and false statements can have relevant measures, with misinformation
attention is confined to false statements [24]. Of course, the more falsity in a false statement, the more
misinformation it yields. As with the information measure just given, the first metric to devise is one
which measures the degree of deviation from complete misinformation (∆misinfo). A deviation of 0 will
translate to maximum misinformation and a deviation of 1 will translate to no misinformation. So the
metric for this deviation will at least satisfy these conditions:
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1. all true statements have a predefined deviation of 1;

2. all contingently false statements have a deviation greater than or equal to 0 and less than 1.

Two ways to go about measuring this deviation come to mind. The first is to use the complement of
the deviation for information measures: ∆misinfo(A, T ) = 1−∆info(A, T ).

For the second, I’ll use some terminology given by Oddie [21](p. 50), who discusses a reversal
operation Rew() on states such that:

Rew(U) = the state V such that for any atomic state B, B is true in U if and only if B is false in V .

This reversal operation on states is extended to a reversal operation on propositions. The reversal of a
proposition A is the image of A under Rew():

Rev(A) = the proposition B such that A contains state U if and only if B contains Rew(U), for any
state U .

Where wT is the actual state, the second way to measure misinformation deviation would be to
measure the distance of a statement from Rew(wT ). In our example, wT = w1 so Rew(wT ) = w8.

These two approaches turn out in fact to be equivalent. From here one can go on to calculate a
statement’s quantity of misinformation simply by subtracting its deviation or distance from 1; the greater
the distance, the less misinformation yielded by the statement:

misinfo(A) = 1−∆misinfo(A, T )

From this it follows that

info(A) + misinfo(A) = 1

and the following hold:

• info(Rev(T )) = 0

• info(A) + info(Rev(A)) = 1

• misinfo(A) = info(Rev(A))

As this section has shown, unlike the CSI framework, truthlikeness approaches such as this one
accommodate semantic misinformation.

4.2. Adjusting Atom Weights

It is worth briefly mentioning the possibility of adjusting atomic weights in order to reflect differences
in the informational value of atomic statements. As we have seen, where n stands for the number of
propositional atoms in a logical space, each atom is assigned a standard weight of 1

n
for the purposes

of ∆ calculation. In the 3-proposition weather example being discussed, this results in each atom being
assigned a weight of 1

3
. As a consequence of this even distribution of weight, the three statements

h ∧ r ∧ ¬w, h ∧ ¬r ∧ w and ¬h ∧ r ∧ w are all assigned the same information yield measure.
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Beyond this there is the possibility of adjusting the weights so that the resulting assignment is
non-uniform. Such a modification could perhaps be used to model cases where different atomic
statements (hence respective compound statements containing them) have different informational value.
There is much room to interpret just what is meant here by ‘informational value’. Statement A could
have a greater informational value than B if an agent prefers the acquisition of A over the acquisition of
B, or if the agent can do more with A than B. Variable weights could also perhaps be used to reflect
extra-quantitative or qualitative factors. These are some preliminary thoughts.

The minimum requirement is that the sum of the values assigned to the atoms comes to 1. This is
to ensure that values for ∆ are appropriately distributed between 0 and 1, with 1 being the maximum,
reserved for Rew(wT ).

With this in mind, take the following weight assignments:

• weight(h) = 1
6

• weight(r) = 2
6

• weight(w) = 3
6

With such an assignment, the information yield measurement distribution changes significantly. Some
results are given in Table 6.

Table 6. Results with adjusted weights.

# Statement (A) info(A)

1 h ∧ r ∧ ¬w 0.5

2 h ∧ ¬r ∧ w 0.67

3 ¬h ∧ r ∧ w 0.83

4 h ∧ ¬r ∧ ¬w 0.167

5 ¬h ∧ ¬r ∧ w 0.5

6 ¬h ∧ r ∧ ¬w 0.33

It can be seen that although statements 1, 2 and 3 all share the same form (2 true atoms and 1 false
atom), none share the same information yield measure. In such a case, 3 yields more information than 1
due to the fact that its two true atoms are of greater informational value than the two true atoms contained
in 1.

One potential issue with such a modification is the treatment of misinformation quantification.
Although 1 has a lower information yield measure than 3, it does not seem as right to say that conversely
it has a greater misinformation yield, since it contains the same amount of falsity as 3. Is there a
corresponding misinformational value?

4.3. Contradictions

As we have just seen, it is not mathematically possible to calculate a value for contradictions using
this truthlikeness method (since contradictions contain no states, this mean a division by 0). How then
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should contradictions be dealt with? One option is to simply exclude contradictions from the metrics
and assign them a predefined deviation of 1 hence information yield of 0. As we have seen, this is the
approach that Floridi takes.

This however is arguably too rash a move and there are good reasons to adopt an approach in which
the metrics are adjusted or expanded in order to accommodate contradictions. To begin with, the class
of contradictions is not homogeneous with regards to information yield and different contradictions can
be treated as having different non-zero information yields.

Take a logical space consisting of 100 atomic propositions, p1, p2...p100, all true relative to the actual
state. Now the statement p1 ∧ p2 ∧ p3 ∧ ...∧ p99 ∧ p100 yields maximal information. If we conjoin it with
¬p100 to get the contradiction p1 ∧ p2 ∧ p3 ∧ ...∧ p99 ∧ p100 ∧¬p100, the original information remains and
the resulting statement should not instantly be assigned an information measure of 0. To put it another
way, if one contradictory atom is inserted into a database with much information, whilst this means that
there is now some misinformation within the database, surely there is still a lot of information within
the database. If the contents of the database were to be represented as a statement (the statement being a
contradiction), it would be good to have a way to measure information that can deal with the fact that the
database still contains much information and that is also sensitive to the fact that different contradictions
have different information yield measures; for example, p1 ∧ p2 ∧ p3 ∧ ... ∧ p99 ∧ p100 ∧ ¬p100 clearly
yields more information than p1 ∧ ¬p1.

Now that the case has been made, in order to accommodate contradictions and have a way to
assign them positive, non-zero measures of information, the following framework is suggested. All
non-contradictions are dealt with as before, using the standard metrics with classical propositional logic.
For contradictions, a many-valued framework such as that associated with the paraconsistent logic LP is
employed [25]. In this framework, a third truth value, B (true and false) is introduced. Importantly, since
contradictions can hold in states involving B, the denominator in calculations involving contradictions
need no longer be 0.

In the classical framework, each atomic element is assigned a weight given by 1
n

and the value of
the distance between a T and an F is equal to this weight. For this extended framework, the classical
distances are still the same and the distance between B and a T or an F is 1

2n
. Semantically speaking, the

reason for this is that B consists of both T and F, so it half corresponds to either one of them. Formally,
the distance calculation between A and T now becomes:

∆(A, T ) =
d+ dB

|WA|
(2)

where

• Let wT stand for the state that corresponds to T . This state will consist of only Ts and Fs.

• WA stands for the set of states in which A is true.

• where n is the number of propositions in the logical space:

– A weight with value 1
n

is assigned to every classical atomic state (T or F). The distance
function ∆(wa, wT ) deals with calculations involving classical states.
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– A weight with value 1
2n

is assigned to every non-classical atomic state (B). The distance
function ∆B(wa, wT ) deals with calculations involving the non-classical states.

• d is the sum of atomic assertion differences between A and T involving the truth values T and F.
That is, the sum of ∆(wa, wT ), for each wa ∈ WA.

• dB is the sum of atomic assertion differences between A and T involving the truth value B. That
is, the sum of ∆B(wa, wT ), for each wa ∈ WA.

To see this approach at work we again consider the weather framework. The list of 27 possible states
looks like this:

Table 7. LP Truth Table for 3-Proposition Logical Space.

State h r w State h r w State h r w

w1 T T T w10 B T T w19 F T T
w2 T T B w11 B T B w20 F T B
w3 T T F w12 B T F w21 F T F
w4 T B T w13 B B T w22 F B T
w5 T B B w14 B B B w23 F B B
w6 T B F w15 B B F w24 F B F
w7 T F T w16 B F T w25 F F T
w8 T F B w17 B F B w26 F F B
w9 T F F w18 B F F w27 F F F

Take the statement h ∧ ¬h. It holds in w10 − w18. In this set of states there are 6 instances of F and
15 instances of B. Therefore, the distance is:

∆(h ∧ ¬h, h ∧ r ∧ w) =
(6× 1

3
)+(15× 1

6
)

9
= 0.5

Table 8 lists some results, with all statements being classical contradictions. These results are
reasonable. #1 is the contradiction which yields the most information and can simply be seen as
a conjunction of the maximum information yielding true state description h ∧ r ∧ w and the false
contradicting atom ¬h. Conversely, #13 is the contradiction which yields the least information and can
simply be seen as a conjunction of the minimum information yielding completely false state description
¬h ∧ ¬r ∧ ¬w and the true contradicting atom h. In between these two extremes, the sensitivity of this
approach to various forms of contradictions is clear. The significant number of contradictions with a
measure of 0.5 emphasises how the Tichy/Oddie measure can be seen as gauging the balance between
the truth and falsity contained in a statement (a detailed interpretation of the Tichy/Oddie approach,
related to this balance gauging, is given in Section 4.6). For the basic contradiction #5, half of its atomic
assertions are true and half are false; similarly for #8 and #9. Comparing #6 to #8 and #7 to #9, it can
be seen that whether a collection of basic contradictions are disjunctively or conjunctively connected
makes no difference and the measure remains 0.5; whether h ∧ ¬h becomes (h ∧ ¬h) ∧ (r ∧ ¬r) or
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(h∧¬h)∨ (r ∧¬r), the balance between truth and falsity remains a constant. However, as indicated by
#10 and #12, there can be a difference between the conjunction of a basic contradiction with a non-basic
contradiction and the corresponding disjunction.

Table 8. Results for contradictions.

# Statement (A) info(A)

1 h ∧ ¬h ∧ r ∧ w 0.67

2 h ∧ ¬h ∧ r ∧ ¬r ∧ w 0.583

3 ((h ∧ ¬h) ∨ (r ∧ ¬r)) ∧ w 0.583

4 (h ∧ ¬h) ∨ (r ∧ ¬r ∧ w) 0.5256

5 h ∧ ¬h 0.5

6 (h ∧ ¬h) ∨ (r ∧ ¬r) 0.5

7 (h ∧ ¬h) ∨ (r ∧ ¬r) ∨ (w ∧ ¬w) 0.5

8 (h ∧ ¬h) ∧ (r ∧ ¬r) 0.5

9 (h ∧ ¬h) ∧ (r ∧ ¬r) ∧ (w ∧ ¬w) 0.5

10 (h ∧ ¬h ∧ ¬r) ∨ (w ∧ ¬w) 0.474

11 h ∧ ¬h ∧ ¬r 0.417

12 (h ∧ ¬h ∧ ¬r) ∧ (w ∧ ¬w) 0.417

13 h ∧ ¬h ∧ ¬r ∧ ¬w 0.33

4.4. Truthlikeness Adequacy Conditions and Information Conditions

It was seen with the CSI account that if A ` B then cont(A) ≥ cont(B) and inf(A) ≥ inf(B). This is
not going to hold in general for a Tichy/Oddie truthlikeness approach to information quantification.

For example, looking back at Table 5, although ¬h ∧ ¬r ∧ ¬w ` ¬h, info(¬h ∧ ¬r ∧ ¬w) = 0 <

info(¬h) = 0.334. However since both of these statements are false, this example is not an issue;
given two false statements such as these, the logically stronger one is understandably further away from
the truth.

The question of interest is whether or not this property holds when A and B are both instances
of information, when they are both true. So the pertinent question is this: among true statements,
does information as truthlikeness here covary with logical strength? Put formally, does the following
condition hold?:

If A and B are true statements and A ` B, then info(B) ≤ info(A)

As it turns out, this condition does not hold. To begin with, it can be seen that although h∨¬r∨¬w `
h ∨ ¬h, info(h ∨ ¬r ∨ ¬w) = 0.48 whereas info(h ∨ ¬h) = 0.5. But leaving aside cases where
tautologies are involved, this result also does not hold more generally, in cases where only contingently
true statements are involved. For example, although (h∧¬r)∨w ` h∨w, info((h∧¬r)∨w) = 0.6 <

info(h ∨ w) = 0.61. This is not an isolated case either.
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Remark In a logical space containing three propositional variables, there are 2187 possible ways to
have two true statements A and B such that A ` B. Out of these, 366 are such that info(A) < info(B).

An interesting example arises in a space with four atoms. Take the 4-proposition logical space
obtained by adding the propositional variable d to the 3-atom weather framework, with the actual state
corresponding to the state description h∧r∧w∧d. Whilst it is the case that¬h∨¬r∨w ` ¬h∨¬r∨w∨¬d,
info(¬h ∨ ¬r ∨ w) = 0.482 whilst info(¬h ∨ ¬r ∨ w ∨ ¬d) = 0.483.

This result seems quite counter-intuitive; the addition of a false disjunct to an already true statement
slightly increases its information yield. Contrary to this result, it is fair to say that information
is proportional to accuracy, and that the addition of disjunctions, particularly when false, decreases
accuracy. Also, this result seems contrary to the notion of information loss. If the information¬h∨¬r∨w
stored in a database were corrupted and the salvaged remains were the weakened ¬h∨¬r∨w∨¬d, this
would ordinarily be described as a case of information loss. Or if a signal is transmitting the message
¬h ∨ ¬r ∨ w and it became ¬h ∨ ¬r ∨ w ∨ ¬d due to noise, once again it can be said that there is
information loss.

The failure of Tichy/Oddie truthlikeness, hence for our purposes information, to covary with logical
strength amongst true statements is discussed by Ilkka Niiniluoto, who whilst developing his own
account of truthlikeness in [26] surveys how various approaches to truthlikeness fare against a range
of adequacy conditions [27]. Though an interpretation of the Tichy/Oddie method that can serve to
explain its failure to satisfy this condition and justify its use will be discussed shortly, in the meantime
we will take a brief look at Niiniluoto’s preferred approach to truthlikeness, which satisfies all of the
adequacy conditions he lists.

4.5. Niiniluoto on Truthlikeness

As with the Tichy/Oddie approach to truthlikeness, the task for Niiniluoto is to define some distance
function ∆ such that ∆(A, T ) ∈ [0, 1]. He looks at six distance functions, which are listed below. Firstly,
a recap and establishment of terms to be used:

• ∆(wi, wj) calculates the distance between states wi and wj . This is the sum of atomic differences
multiplied by the atomic weight ( 1

n
).

• wT is the actual state, that corresponds to the true state description T .

• WA is the set of states in which A is true.

• B is the set of all states in the logical space.

Here are the distance functions:

• ∆min(A, T ) = the minimum of the distances ∆(wa, wT ) with wa ∈ WA.

• ∆max(A, T ) = the maximum of the distances ∆(wa, wT ) with wa ∈ WA.

• ∆sum(A, T ) = the sum of all distances ∆(wa, wT ) with wa ∈ WA, divided by the sum of all
distances ∆(wb, wT ) with wb ∈ B.
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• ∆av(A, T ) = the sum of the distances ∆(wa, wT ) with wa ∈ WA divided by |WA|.

• ∆γ
mm(A, T ) = γ∆min(A, T ) + (1− γ)∆max(A, T ) for some weight γ with 0 ≤ γ ≤ 1.

• ∆γλ
ms(A, T ) = γ∆min(A, T ) + λ∆sum(A, T ) for some two weights γ and λ with 0 ≤ γ ≤ 1 and

0 ≤ λ ≤ 1.

∆av is the Tichy/Oddie approach. Niiniluoto’s preferred metric for truthlikeness is ∆γλ
ms , which he

terms the weighted min-sum measure [26] (p. 228). Once again, this distance calculation is then used
to calculate truthlikeness: Tr(A, T ) = 1 − ∆γλ

ms(A, T ). Table 9 lists some results using the min-sum
measure, with γ being assigned the value 0.89 and λ being assigned the value 0.44.

Table 9. Information yield results using Niiniluto’s min-sum measure.

# Statement (A) T/F info(A)

1 h ∧ r ∧ w T 1

2 h ∧ r T 0.96

3 h ∧ (r ∨ w) T 0.93

4 h ∧ (¬r ∨ w) T 0.89

5 h T 0.85

6 (h ∧ r) ∨ w T 0.81

7 (h ∧ ¬r) ∨ w T 0.78

8 h ∨ r T 0.74

9 h ∧ r ∧ ¬w F 0.67

10 h ∨ r ∨ w T 0.67

11 h ∨ ¬r T 0.67

12 h ∨ r ∨ ¬w T 0.63

13 h ∨ ¬r ∨ ¬w T 0.6

14 h ∧ ¬r F 0.59

15 h ∨ ¬h T 0.56

16 (h ∨ ¬w) ∧ ¬r F 0.48

17 ¬h F 0.41

18 h ∧ ¬r ∧ ¬w F 0.33

19 ¬h ∨ ¬r ∨ ¬w F 0.26

20 ¬h ∧ ¬r F 0.22

21 ¬h ∧ ¬r ∧ ¬w F 0

22 h ∧ ¬h F N/A

4.6. An Interpretation of the Tichy/Oddie Approach

Returning to the Tichy/Oddie approach, it is time to investigate further some of its problematic aspects
that were touched upon earlier and see what we might make of them in relation to task of quantifying
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information. But before doing so, an initial general point to make is that when it comes to considerations
of information/misinformation yield, there is a certain asymmetry between true and false statements.
Whilst false statements (misinformation) can be judged to yield some truth (information), true statements
are ordinarily judged to just contain information and do not yield any misinformation. But like false
statements can yield some information, perhaps there is a sense in which true statements can lead to
some misinformation. Given an actual state corresponding to the state description h ∧ r ∧ w, it is
straightforward to say that the false statement h ∧ ¬r ∧ ¬w, whilst misinformative on the whole, still
yields some information. On the other hand, the statement h∨¬w∨¬r, whilst true, does not give one the
complete truth about the domain of inquiry and the majority of its disjuncts are false. As will be shown
now, such a statement can be seen as being potentially misinformative in the sense that it can potentially
lead to falsity and it is this type of view that can be associated with and justify usage of the Tichy/Oddie
approach for certain applications.

In Section 4.4 we saw that whilst it is the case that (h ∧ ¬r) ∨ w ` h ∨ w, info((h ∧ ¬r) ∨ w) <

info(h ∨ w). In light of the interpretation to be now provided, this result finds some support. h ∨ w
contains no false atoms, whereas (h ∧ ¬r) ∨ w contains one, namely ¬r. Expanding upon this example
to emphasise the point, take a logical space consisting of five atoms ({pn|1 ≤ n ≤ 5}), such that each is
true in the actual state. Whilst it is the case that (p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4) ∨ p5 ` p1 ∨ p5, the antecedent
statement makes many false assertions whereas the consequent makes none. In this way the Tichy/Oddie
approach can be seen to measure not only how much atomic truth a statement contains, but also how
much atomic falsity it contains. Also, in light of Section 4.1, these types of results can be seen as part of
adopting a uniform method for the measurement of information and its complementary misinformation.

Something along the lines of the idea just outlined can be rigorously captured by viewing the
Tichy/Oddie approach in terms of expected utility. We begin by assigning each state (or state description)
a utility value, where the value for a state w (val(w)) is determined using the following method:

• Let n stand for the number of propositional variables in the logical space.

• Let t stand for the number of true atomic elements, relative to the actual state, in the state w.

• val(w) = t
n

.

So in the case of our 3-atom logical space with w1 being the actual state, each state is valued as
follows:

• val(w1) = 1

• val(w2) = val(w3) = val(w5) = 2
3

• val(w4) = val(w6) = val(w7) = 1
3

• val(w8) = 0

Now, given a statementA that holds in n states, convert it to distributive normal form, which will have
n state description disjuncts. Imagine an agent is to choose one and only one of the disjuncts. The value
of the selected disjunct’s corresponding state determines the utility or informational value of the choice.
Using the standard decision theoretic framework, we can say that the estimated utility of A (eu(A)) is:
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eu(A) =
n∑
i=1

val(wi)× pr(wi)

where val(wi) is the value of a state and pr(wi) is the probability of it being chosen. Each disjunct has
the same probability of being selected as any other, so for each state the probability of it being chosen
is 1

n
. This estimated utility value equates to the statement’s truthlikeness/information measure using the

Tichy/Oddie approach.
Going back to the sound argument (h∧¬r)∨w ` h∨w, here are both antecedent and consequent in

distributive normal form followed by a decision-theoretic-style tabulation of the two statements:

• (h ∧ ¬r) ∨ w ≡ w1 ∨ w3 ∨ w4 ∨ w5 ∨ w7

• h ∨ w ≡ w1 ∨ w2 ∨ w3 ∨ w4 ∨ w5 ∨ w7

w1 w3 w4 w5 w7

(h ∧ ¬r) ∨ w 1 2
3

1
3

2
3

1
3

eu((h ∧ ¬r) ∨ w) = (1× 1
5
) + (2

3
× 1

5
) + (1

3
× 1

5
) + (2

3
× 1

5
) + (1

3
× 1

5
) = 0.6

w1 w2 w3 w4 w5 w7

h ∨ w 1 2
3

2
3

1
3

2
3

1
3

eu(h ∨ w) = (1× 1
6
) + (2

3
× 1

6
) + (2

3
× 1

6
) + (1

3
× 1

6
) + (2

3
× 1

6
) + (1

3
× 1

6
) = 0.61

Thus the information measurement of a statement here can be seen in terms of its expected utility,
whereby both the positive (truth, information) and the negative (falsity, misinformation) are factored
into calculations. Analysing the Tichy/Oddie measure in this way explains its counter-intuitive results.
The tautology can be seen as suspension of judgement and sits at 0.5, favouring neither information nor
misinformation.

Also, take the example in Section 4.4, where info(¬h ∨ ¬r ∨ w) < info(¬h ∨ ¬r ∨ w ∨ ¬d). Whilst
the addition of a false disjunct to a statement is grounds to think that its information measure should
decrease, seen in terms of expected utility, the addition of one false disjunct results in the addition of
one more model to the set of satisfying states, namely the state corresponding to the state description
h ∧ r ∧ ¬w ∧ ¬d. As can be seen, this addition actually results in a greater overall expected utility.

Apparently Tichy himself offered a similar analysis as an argument in defence of his truthlikeness
measure [26](p. 238). Niiniluoto is dismissive of the argument, but whilst his reasons are arguably
legitimate, they pertain specifically to considerations of truthlikeness. At this point it is important to
stress that although we are using the notion of truthlikeness to quantify information, this is not to say
that they amount to one and the same thing and a consideration in accounting for one need not be a
consideration in accounting for the other. Furthermore, the concept of information is generally treated
more pluralistically than truthlikeness, “it is hardly to be expected that a single concept of information
would satisfactorily account for the numerous possible applications of this general field” [28]. This point
of view could accommodate the suggestion that for some purposes of semantic information quantification
this approach might be suitable. In fact, some of Niiniluoto’s claims could be seen as offering support
for the use of the Tichy/Oddie approach in a framework for information measurement. For example, he
commences his case with the following:
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even if it were the case that function Mav [the Tichy/Oddie measure] serves to measure the
degree of trustworthiness (or pragmatic preference for action) of a hypothesis, it would not
follow that Mav is an adequate measure of truthlikeness. These two concepts are clearly
distinct. Tichy tends to think that a disjunction of two constituents h1 ∨ h2 is something
like a lottery ticket which gives us the alternatives h1 and h2 with equal probabilities: if
we ‘put our trust’ to h1 ∨ h2, we have to make a ‘blind choice’ between h1 and h2. This
idea is irrelevant, if we are dealing with answers to cognitive problems - the connection
between truthlikeness and practical action is quite another question which has to be studied
separately[26](p. 238).

In closing and without elaboration, it suffices to mention that terms employed here, such as
‘trustworthiness’ and ‘practical action’ could be not inappropriately associated with the notion of
information.

Contradictions under this Interpretation

The contradiction-accommodating extension to the Tichy/Oddie approach outlined in Section 4.3 can
be dealt with nicely using this interpretation. A straightforward way is to modify the standard classical
way, where the value of a state w becomes:

val(w) = 1
2n
b+ 1

n
t

where b stands for the number of B-valued atomic elements in the state and t stands for the number
of T-valued atomic elements in the state.

Example Take the statement h ∧ ¬h ∧ r ∧ ¬r ∧ w, which as listed in Table 8 as #2 has an information
measure of 0.583. This statement holds in states w13 and w14 of Table 7. Now

• val(w13) = 2
3

• val(w14) = 1
2

so

eu(h ∧ ¬h ∧ r ∧ ¬r ∧ w) = (2
3
× 1

2
) + (1

2
× 1

2
) = 0.583

As mentioned earlier, the adoption of a paraconsistent framework here is for instrumental purposes,
with no commitment to the actual obtainability of paraconsistent states. One small issue with
the interpretation given in the previous example is that it somewhat entertains the possibility of
paraconsistent states. The decision theoretic framework outlined here involves an agent making a
choice between possible states, with the possibility that one of the states is the actual state. For
cases of contradiction measurement, the states being dealt with are paraconsistent ones. However
since the preference here is to remain neutral and refrain from endorsing the possibility or actuality
of paraconsistent states, a modified interpretation in terms of classical states is appropriate.
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Example In the previous example, the contradiction h ∧ ¬h ∧ r ∧ ¬r ∧ w corresponded to a choice
between two paraconsistent states, w13 and w14. How can this decision-theoretic analysis be made in
terms of classical states only? To begin with, take w13, which has the following valuations of atomic
elements: v(h) = B, v(r) = B and v(w) = T. We can say that one of these valuations, namely
v(w) is definite, since it results in a classical value. The others though are not definite and result in the
paraconsistent valuation of B. In terms of the decision-theoretic analysis, a valuation of B means that the
atomic element actually has a value of T or F, but there is no indication as to which one in particular.
So it is to be treated as a ‘wildcard valuation’, to be substituted by either T or F. Using this system,
substitutions for B in w13 result in the following set of classical states of Table 4 in Section 4: {w1, w3,
w5 and w7.

Since none of the 3 valuations for w14 are definite, substitutions for B in w14 result in a set consisting
of all the classical states of Table 4: {w1 − w8}.

Given this translation to sets of classical states, we can reframe the situation for an agent choosing
amongst the states corresponding to h ∧ ¬h ∧ r ∧ ¬r ∧ w as follows. The original calculation was:

eu(h ∧ ¬h ∧ r ∧ ¬r ∧ w) = (val(w13)× 1
2
) + (val(w14)× 1

2
)

With the modified way, val(w13) and val(w14) are replaced with ‘sub’ estimated utility calculations,
involving the classical states they translate to. Here are the replacements:

• val(w13) = eu(w1 ∨ w3 ∨ w5 ∨ w7) = 2
3

• val(w14) = eu(w1 ∨ w2 ∨ w3 ∨ w4 ∨ w5 ∨ w6 ∨ w7 ∨ w8) = 1
2

So that the estimated utility is once again 0.583.

4.7. Adjusting State Description Utility Values

Given this decision-theoretic interpretation of the Tichy/Oddie method, one possible extension is to
adjust the way in which utilities are assigned to state descriptions. As we have seen, the standard method
uses a simple, linear utility function; for all levels l, there is a constant difference between l and l + 1

/ l − 1. As a simple example of this extension, take a basic quadratic utility function. Where x stands
for the standard linear utility of a state description, its modified utility value y is calculated as follows:
y = x2.

What does a utility function such as this one say in terms of state description distribution and
information yield? Roughly speaking, it favours high-valued state description efficiency: the more
efficiently one statement gets to containing a high valued state description disjunct the better, where
more efficiently means doing so with less state description disjuncts.

In the ranking of all possible 255 propositions in the 3-atom logical space, from highest to lowest
information yield, the original method using a standard linear utility and the method with this quadratic
utility function agree on the first eight positions, after which differences start to appear. To illustrate
the higher premium given to relatively small state collections involving w1, whilst the linear way places
w1, w8 below w1, w2, w8, the quadratic way places w1, w8 above w1, w2, w8.

If the rate of increase of the utility function is sufficiently large or set it a certain way, it is even
possible to get the covariation with logical strength amongst true statements condition to hold, although
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at the cost of a skew where a disproportionate number of states containing w1 are placed at the top of the
rankings.

The utility and decision theory literature is rich and this decision theoretic analysis of the Tichy/Oddie
method (and in general other similar methods) opens the door up to further experimentation and the
application of decision theoretic resources to truthlikeness/information methods.

5. Another Method to Quantify Semantic Information

In this section a new, computationally elegant method to measure information along truthlikeness
lines is proposed. As will be seen, this value aggregate approach differs to both the Tichy/Oddie and
Niiniluoto approaches, lying somewhere in between.

As has been well established by now, each statement corresponds to a set of states W in a logical
space. Each of the states in this logical space can be valued, with the actual state being the uniquely
highest valued. The rough idea behind the value aggregate approach is a simple one, with two factors
concerning state distribution in W involved in determining the information yield of a statement:

1. the greater the highest valued state of W the better for information yield.

2. given a collection of states with a highest value member w, the fewer other states of lesser value
than w the better for information yield. Also, given other states of lesser value, the closer they are
to w the better.

This determination is a two-tier process; first rank a statement according to the first factor and then
apply the second. For example, the state description corresponding to the actual state (in our case
h ∧ r ∧ w) ranks highest relative to the first factor. It then also ranks highest relative to the second
factor because there are no other states of lesser value than w1 in its state collection. Accordingly, its
information yield is maximal.

As another example, the statement h∨r, which corresponds to states w1 - w6, yields more information
than the statement h ∨ ¬r, which corresponds to states w1 - w4, w7, w8, because although both have the
same highest valued state and the same number of lesser valued states, the lesser valued states for h ∨ r
are closer to the highest valued state.

Whilst this informal idea is still perhaps somewhat loose, it motivates and can be linked to the formal
method that will now be detailed. To begin with, each state is once again assigned a value and ranked,
where the value for a state w (val(w)) is determined using the following method:

• Let n stand for the number of propositional variables in the logical space

• Let t stand for the number of true atoms in a state w relative to the actual state

• val(w) = t
n×2n

So in the case of our 3-atom logical space with w1 being the actual state, each state is valued as
follows:

• val(w1) = 3
24
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• val(w2) = val(w3) = val(w5) = 2
24

• val(w4) = val(w6) = val(w7) = 1
24

• val(w8) = 0

Now, given a statement A, its information yield is measured using the following algorithm:

1. Determine the set of states W in which A holds (W = {w |w |= A})

2. Place the members of W into an array X1 of length |W | and order the members of X1 from lowest
to highest value

This process is represented with a function arraystates(), so that X1 = arraystates(W ).

3. Let X2 stand for an empty array with 2n spaces. Next, start by placing the first (lowest) element
of X1 in the first position of X2. In general, place the nth element of X1 in the nth position of X2.

Unless the statement being measured is a tautology, then length(X1) < length(X2). So once the
last element of X1 has been reached, use this last element to fill in all the remaining places of X2.

This process is represented with a function lineup(), so that X2 = lineup(X1).

4. Finally, sum up all the values of each element of X2 to get the information measure

info(A) = sum(X2) = sum(lineup(X1)) = sum(lineup(arraystates(W ))).

Following is an example of this value aggregate method.

Example Let A be the statement h. Then:

• W = {w1, w2, w3, w4}

• X1 = [w4, w3, w2, w1]

• X2 = [w4, w3, w2, w1, w1, w1, w1, w1]

• info(h) = sum(X2) = val(w4) + val(w3) + val(w2) + 5val(w1) = 0.8333

Remark With a ranking (highest to lowest) of all 255 possible statements (propositions, state
collections), in the 3-atom space, the ordering of statements given by this method largely agrees with
Niiniluoto’s min-sum measure (with γ and λ as given in Section 4.5) for a significant portion of the first
half of ordered statements. In fact it agrees for the first 107 positions, after which telling differences
emerge. Also, it agrees more with the Tichy/Oddie approach towards the bottom of the rankings.

Table 10 contains some results using the value aggregate method. They seem reasonable and it
is evident that their spread is closer to the Niiniluoto spread than the Tichy/Oddie. Also, unlike the
Tichy/Oddie approach, where the differences between h, h∧ r and h∧ r∧w are constant, with the value
aggregate approach the first of these differences is greater than the second. This variation is akin to the
quadratic nature of Floridi’s degrees of informativeness [17] (p. 210).
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Table 10. Information yield results using the value aggregate method.

# Statement (A) T/F info(A)

1 h ∧ r ∧ w T 1

2 h ∧ r T 0.9583

3 h ∧ (r ∨ w) T 0.9167

4 h ∧ (¬r ∨ w) T 0.875

5 h T 0.8333

6 (h ∧ r) ∨ w T 0.7917

7 (h ∧ ¬r) ∨ w T 0.75

8 h ∨ r T 0.7083

9 h ∧ r ∧ ¬w F 0.6667

10 h ∨ ¬r T 0.625

11 h ∨ r ∨ w T 0.625

12 h ∧ ¬r F 0.625

13 h ∨ r ∨ ¬w T 0.5833

14 h ∨ ¬r ∨ ¬w T 0.5417

15 (h ∨ ¬w) ∧ ¬r F 0.5417

16 ¬h F 0.5

17 h ∨ ¬h T 0.5

18 ¬h ∨ ¬r ∨ ¬w F 0.4583

19 h ∧ ¬r ∧ ¬w F 0.3333

20 ¬h ∧ ¬r F 0.2917

21 ¬h ∧ ¬r ∧ ¬w F 0

22 h ∧ ¬h F N/A

5.1. Adequacy Conditions

As mentioned earlier in Section 4.4, Niiniluoto states a number of adequacy conditions “which
an explicate of the concept of truthlikeness should satisfy” [26] (p. 232). An investigation into the
applicability of these conditions to an account of semantic information quantification (whether all or
only some apply) will not be pursued here; apart from perhaps an occasional comment, I do not intend
to discuss matter. Suffice it to say, at the least most of them seem applicable.

Nonetheless, in order to initiate this new method I here include a list of these conditions plus a
summary of how the value aggregate approach, along with the Tichy/Oddie and Niiniluoto approaches,
fare against them. This summary confirms that the value aggregate approach is similar but not equivalent
to either of the other two approaches.

The presentation of these conditions will largely conform to their original form, so bear in mind for
our purposes that Tr() corresponds to info() and as ∆ decreases/increases info() increases/decreases.
Before listing the conditions, some terms need to be (re)established:

• Niiniluoto uses the term constituent as a more general term for state descriptions.
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• A is used to refer to statements in the logical space in general. IA is the set of numbers used to
index the set of states corresponding to the statement A. For example, in our weather framework,
the statement h corresponds to the states {w1, w2, w3, w4}, so letting A stand for h we have
IA = {1, 2, 3, 4}.

• Si is used to refer to the constituent (state description) that corresponds to state wi.

• S∗ is reserved for the state description that corresponds to the actual state w∗, so in our case
S∗ = S1.

• B stands for the set of mutually exclusive and jointly exhaustive constituents. So in our case
B = {wi | 1 ≤ i ≤ 8}. I is the set of numbers corresponding to B.

• ∆ij stands for ∆(wi, wj).

• An element wj of B is called a ∆-complement of wi, if ∆ij = max∆ik, k ∈ I. Also, our weather
framework example is ∆-complemented; if each wi ∈ B has a unique ∆-complement wj in B, such
that ∆ij = 1, the system (B,∆) is said to be ∆-complemented.

Here are the conditions:

(M1) (Range) 0 ≤ Tr(A, S∗) ≤ 1.

(M2) (Target) Tr(A, S∗) = 1 iff A = S∗.

(M3) (Non-triviality) All true statements do not have the same degree of truthlikeness, all false
statements do not have the same degree of truthlikeness.

(M4) (Truth and logical strength) Among true statements, truthlikeness covaries with logical strength.

(a) If A and B are true statements and A ` B, then Tr(B, S∗) ≤ Tr(A, S∗).

(b) If A and B are true statements and A ` B and B 0 A, then Tr(B, S∗) < Tr(A, S∗).

(M5) (Falsity and logical strength) Among false statements, truthlikeness does not covary with logical
strength; there are false statements A and B such that A ` B but Tr(A, S∗) < Tr(B, S∗).

(M6) (Similarity) Tr(Si, S∗) = Tr(Sj, S∗) iff ∆∗i = ∆∗j for all Si, Sj .

(M7) (Truth content) If A is a false statement, then Tr(S∗ ∨ A, S∗) > Tr(A, S∗).

(M8) (Closeness to the truth) Assume j /∈ IA. Then Tr(A∨Sj, S∗) > Tr(A, S∗) iff ∆∗j < ∆min(A, S∗).

(M9) (Distance from the truth) Let ∆∗j < ∆∗i. Then Tr(Sj ∨ Si, S∗) decreases when ∆∗i increases.

(M10) (Falsity may be better than truth) Some false statements may be more truthlike than some true
statements.

(M11) (Thin better than fat) If ∆∗i = ∆∗j > 0, i 6= j, then Tr(Si ∨ Sj, S∗) < Tr(Si, S∗).
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(M12) (Ovate better than obovate) If ∆∗j < ∆∗i < ∆∗k, then Tr(Sj ∨ Si ∨ Sk, S∗) increases when ∆∗i

decreases.

(M13) (∆-complement) Tr(A, S∗) is minimal, if A consists of the ∆−complements of S∗.

Table 11 gives a summary of the measures against the adequacy conditions, where +(γ) means that
the measure satisfies the given condition with some restriction on the value of γ and (λ) [29]:

Table 11. Measures against adequacy conditions.

Condition Niiniluoto (ms) Tichy/Oddie (av) Value Aggregate
M1 + + +

M2 + + +

M3 + + +

M4a + − +

M4b + − +

M5 +(γ) + +

M6 + + N/A
M7 + + +

M8 +(γ) − +

M9 + + +

M10 +(γ) + +

M11 + − −
M12 + + +

M13 +(γ) + +

The value aggregate method will satisfy those seeking a covariation of information and logical
strength. As can be seen, it fails only M11. For example, ∆∗2 = ∆∗3 = ∆∗5, yet info(w2 ∨ w3 ∨ w5) =

info(w2 ∨ w3) = info(w2). The value aggregate method, like the Tichy/Oddie method, does not
differentiate sets of states such as these. In terms of information, it could be argued that satisfaction
of this condition is not essential; removing or adding a state description disjunct in this example does
not inform an agent any more or less of the true state.

5.2. Misinformation and Adjusting Utilities

Using the value aggregate method, a metric for misinformation measurements can simply be obtained
by inverting the utility values for each state; where u is original utility of a state, its new utility
becomes 1 − u. As with the Tichy/Oddie method, this is equivalent to misinfo(A) = 1 − info(A).
Unlike the Tichy/Oddie method though, where there is a perfect symmetry between truth and falsity,
the accumulation of values with the aggregate approach results in a skew towards the information
measure. As a consequence there are significant differences between the two in terms of misinformation
value calculations. For example, whilst the Tichy/Oddie approach gives misinfo(w1 ∨ w8) =

misinfo(w4∨w5) = 0.5, this new approach gives misinfo(w1∨w8) = 0.125 < misinfo(w4∨w5) = 0.375.
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Also, the value aggregate method can be extended to incorporate different utility functions for
different purposes, in the same way as discussed in Section 4.7. As described in earlier Section 5,
with the value aggregate approach the last element in the array X1 is the highest valued and is used
to fill in the remaining positions of X2. In the case of w1 in particular, this means that a collection of
states consisting of w1 and relatively few other states will jump ahead quite quickly given the continued
addition of the highest valued element.

The adoption of a non-linear utility function could be used to regulate this. For example, a simple
logarithmic utility function such as y = 20log2(x + 1) (x being the value of the standard utility) places
w1, w8 below w1, w3, w5, w7, whereas with the original standard linear utility this order is reversed. Also
to note, as long as the actual state is assigned the highest utility, the information measure will covary
with logical strength for true statements, whatever utility function is used.

6. Combining CSI and Truthlikeness Approaches

I would like to now briefly discuss the possibilities of (1) using a CSI-style inverse probabilistic
approach as a basis for a quantitative account of semantic information (2) combining the CSI approach
and truthlikeness approaches.

With regards to (1), there seems to be inherent issues with the CSI inverse probabilistic approach.
Thinking about the two approaches to semantic information quantification we have looked at (CSI and
truthlikeness), Table 12 depicts a rough conceptual principle that can be extracted. The four possible
ways of combining the two factors under consideration are represented using a standard 2x2 matrix, with
each possible way being assigned a unique number between 1 and 4. 1 represents ‘best’ for information
yield and 4 represents ‘worst’.

Table 12. Possibility reduction and truth/falsity combinations.

More Truth than Falsity More Falsity than Truth
High Reduction of Possibilities 1 4
Low Reduction of Possibilities 2 3

Therefore, narrowing down the range of possibilities is a good thing for information yield when done
truthfully. On the other hand, if done falsely it is a bad thing. Borrowing an idea from decision theory,
this type of reward/punishment system can be formally captured with a simple scoring rule. Take the
following, where for a statement A:

• if A is true then give it an information measure of cont(A)

• if A is false then give it an information measure of −cont(A)

Whilst this approach would give acceptable results for true statements, when it comes to false
statements it is too coarse and does not make the required distinctions between the different classes of
false statements. A state description in which every atom is false is rightly assigned the lowest measure.
Furthermore, other false statements which are true in the state corresponding to that false state description
will be assigned acceptable measures.
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But this approach also has it that any false state description will be accorded the lowest measure. So
the state description h∧ r∧¬w (w2) would be assigned the same measure as ¬h∧¬r∧¬w (w8), which
is clearly inappropriate. Furthermore, equal magnitude supersets of the states correlating to these state
descriptions (e.g., w2, w4 and w4, w8) would also be assigned equal measures.

Given the aim to factor in considerations of truth value, the problem with any account of information
quantification based on a CSI-style inverse probabilistic approach is related to the failure of Popper’s
content approach to truthlikeness. As Niiniluoto nicely puts it:

among false propositions, increase or decrease of logical strength is neither a sufficient
nor necessary condition for increase of truthlikeness. Therefore, any attempt to
define truthlikeness merely in terms of truth value and logical deduction fails. More
generally, the same holds for definitions in terms of logical probability and information
content [30] (p. 296).

With regards to (2), one option is to adopt a hybrid system. As was seen, the CSI approach works well
when its application is confined solely to true statements. So perhaps a system which applies the CSI
approach to true statements and a truthlikeness approach to false statements could be used. Furthermore,
apart from such hybrid systems, there is the possibility of combining calculations from both approaches
into one metric. For example, an incorporation of the CSI approach into the value aggregate approach
could help distinguish between, say w2 and w2, w3, which as we saw are given the same measure using
the value aggregate approach.

7. Formula-Based Approaches

Classes of update semantics for logical databases can be divided into formula-based and model-based
approaches. Basically, with model-based approaches the semantics of an update for a database are
based on the models of that database and with formula-based approaches statements in the database are
operated on instead [31] (p. 12).

Borrowing this classification division for our investigation, it can be seen that the approaches
discussed so far would fall under a model-based approach to semantic information quantification.
Beyond suggesting the possibility of a formula-based approach, I will also outline a method that can
be seen to fall on this side of the divide. This experimental outline is more so for the sake of illustration
rather than anything else, though it could be useful.

To begin with, statements are first converted to conjunctive normal form. Although this means that
logically equivalent statements are treated the same, they are still being dealt with directly and there is
no analysis whatsoever of the models that they correspond to.

A logical statement is in conjunctive normal form (CNF) when it consists of a conjunction of
disjunctive clauses, with each disjunct in each conjunction being a literal (either an atom or a negated
atom). A ∧ B ∧ ¬C and (A ∨ ¬B) ∧ (A ∨ C) are two examples of statements in CNF. Also, here the
normalised statements are fully converted to CNF, meaning that all redundancies are eliminated. Here is
the procedure:

• use equivalences to remove↔ and→.
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• use De Morgan’s laws to push negation signs immediately before atomic statements.

• eliminate double negations.

• use the distributive law A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C) to effect the conversion to CNF.

• if a conjunct contains both A and ¬A (i.e., A ∨ ¬A), remove it.

• use absorption lawA∧(A∨B) ≡ A so that for any literal that occurs as a sole disjunct (i.e., occurs
in a disjunctive clause of which it is the only member), remove any others disjunctive clauses that
contain that literal.

• use rule of unsatisfiability A ∨ ⊥ ≡ A so that for any literal A that occurs as a sole disjunct
(i.e., occurs in a disjunctive clause of which it is the only member), remove its negation from any
disjunction it occurs in. So A ∧ (B ∨ ¬A) becomes A ∧B.

Given a normalised statement, how can its information yield be measured? Let us start with the
simplest type of statement in CNF, one consisting of a conjunction of literals. Each literal has a value of
magnitude 1. At this stage there are two ways to go about this. The first method (Method 1) involves just
positively incrementing the total information yield of the statement as each true literal is encountered.
The second method (Method 2) involves also decrementing the total information yield of the statement
as each false literal is encountered.

Take the statement h ∧ r ∧ ¬w. It contains 2 true literals and 1 false literal. Going by Method 1, the
total information yield of this statement is 2. Going by Method 2, where the misinformation instances of
a statement count against its total information yield, the total information yield of this statement is 1.

This is all very simple and gives the right results. h ∧ r ∧ w has a maximal information yield of 3.
h ∧ r ∧ ¬w and h ∧ r have the same information yield of 2 going by Method 1, but going by method 2
the former is ‘punished’ for its assertion of misinformation and goes down to 1.

The introduction of proper disjunctions makes things more complicated. How can the calculation
method reflect the fact that h ∨ r yields less information than other statements such as h and h ∧ r.
The more disjuncts a disjunction contains, the less information it yields; information yield is inversely
related to the number of disjuncts. Hence, where n is the number of disjuncts in a disjunction, a simple
yet potentially suitable measure of the maximum information yield of the disjunction is 1

n
. With this

way, each literal in the disjunction has a value of magnitude 1
n2 .

To illustrate all of this, take the statement h ∨ r ∨ w. The total information yield of this statement is
3× 1

9
= 1

3
. Given a disjunction with false literals, the results depend of whether Method 1 or Method 2

is adopted. For the statement h ∨ r ∨ ¬w, Method 1 gives a result of 1
3

+ 1
3

= 2
3

and Method 2 gives a
result of 1

3
+ 1

3
− 1

3
= 1

3
.

Table 13 lists results using Method 1 and results using Method 2. Clearly these methods are not as
refined as the model-based approaches we have looked at, with the variation in assignments of measure
values being significantly cruder. Method 1 is clearly just about aggregating truth. Interestingly, the
results for Method 2 can be ranked in the same order as the results for the Tichy/Oddie approach in
Table 5.
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Table 13. Information yield using formula-based approach.

Method 1 Method 2
# Statement (A) T/F info(A)

1 h ∧ r ∧ w T 3

2 h ∧ r ∧ ¬w F 2

3 h ∧ r T 2

4 h ∧ (r ∨ w) T 1.5

5 h ∧ (¬r ∨ w) T 1.25

6 h ∧ ¬r ∧ ¬w F 1

7 h ∧ ¬r F 1

8 h ∧ ¬h F 1
9 h T 1

10 (h ∧ r) ∨ w T 1

11 (h ∧ ¬r) ∨ w T 0.75

12 h ∨ r T 0.5

13 h ∨ r ∨ w T 0.33

14 (h ∨ ¬w) ∧ ¬r F 0.25

15 h ∨ ¬r T 0.25

16 h ∨ ¬h T 0.25

17 h ∨ r ∨ ¬w T 0.22

18 h ∨ ¬r ∨ ¬w T 0.11

19 ¬h ∧ ¬r ∧ ¬w F 0

20 ¬h F 0

21 ¬h ∧ ¬r F 0

22 ¬h ∨ ¬r ∨ ¬w F 0

# Statement (A) T/F info(A)

1 h ∧ r ∧ w T 3

2 h ∧ r T 2

3 h ∧ (r ∨ w) T 1.5

4 h ∧ (¬r ∨ w) T 1

5 (h ∧ r) ∨ w T 1

6 h T 1

7 h ∧ r ∧ ¬w F 1

8 h ∨ r T 0.5

9 (h ∧ ¬r) ∨ w T 0.5

10 h ∨ r ∨ w T 0.33

11 h ∨ r ∨ ¬w T 0.11

12 h ∨ ¬r T 0

13 h ∨ ¬h T 0

14 h ∧ ¬r F 0

15 h ∧ ¬h F 0

16 h ∨ ¬r ∨ ¬w T −0.11

17 ¬h ∨ ¬r ∨ ¬w F −0.33

18 h ∧ ¬r ∧ ¬w F −1

19 (h ∨ ¬w) ∧ ¬r F −1

20 ¬h F −1

21 ¬h ∧ ¬r F −2

22 ¬h ∧ ¬r ∧ ¬w F −3

8. Estimated Information

In closing I shall briefly introduce the idea of estimated information. Within the literature a distinction
is made between the semantic and epistemic problems of truthlikeness [32] (p. 121):

• The semantical problem: “What do we mean if we claim that the theory X is closer to the truth
than the theory Y ?”

• The epistemic problem: “On what evidence are we to believe that the theory X is closer to the
truth than the theory Y ?”

The focus of this paper has been the semantical problem of information quantification; what do we
mean when we say that statement A yields more information than statement B? The epistemic problem
relates to estimating information yield; given some partial evidence E, are we to estimate that statement
A yields more information or less information than statement B?
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Of course, an account of the semantical problem is primary, with any account of the epistemic problem
being secondary, based on a semantical foundation. Nonetheless a method to estimate information yield
is of the highest importance.

In practice judgements of information yield are going to be made with limited evidence, without
knowledge of the complete truth (the one true state description). If an agent already knows the complete
truth in a domain of inquiry then there would be no new information for them to acquire anyway,
no statement in the domain of inquiry could be informative for them. In such scenarios, the actual
information yield of any statement is already known, or can be calculated.

In general though, calculations of information yield are of interest to agents who do not know the
complete truth and who are seeking new information. When such agents must choose amongst a set
of different statements, their aim is to choose the statement that they estimate will yield the most
information relative to the actual state (which the agent has limited epistemic access to). In making
this estimation and choice the agent will often already posses some evidence and this evidence will rule
out certain possible states from consideration in the calculations.

The standard formula for estimated utility in decision theory can be used to calculate the expected
information yield of a statement A given prior evidence E:

infoest(A|E) =
n∑
i=1

info(A, Si)× pr(Si|E)

n stands for the number of possible states in the logical space and Si stands for the state description
corresponding to state i.

Given a certain piece of information as evidence, the difference between actual and estimated
information yield calculations for a statement can be marked. For example, with info() as the
Tichy/Oddie method:

• info(h ∧ r ∧ w) = 1

• infoest(h ∧ r ∧ w|h ∨ ¬r ∨ ¬w) = 0.48

• info(¬h ∧ ¬r ∧ ¬w) = 0

• infoest(¬h ∧ ¬r ∧ ¬w|h ∨ ¬r ∨ ¬w) = 0.52

Interestingly, although the completely true h ∧ r ∧ w has a maximum information yield of 1 and the
completely false ¬h∧¬r∧¬w has a minimum information yield of 0, even certain true statements used
as evidence in estimation calculations will give ¬h ∧ ¬r ∧ ¬w a higher estimated information measure
than h ∧ r ∧ w.

9. Conclusions

The main point of this paper has been the advocacy of quantitative accounts of semantic information
based on the notion of truthlikeness. Whilst this is in contrast to traditional inverse probabilistic
approaches such as Bar-Hillel and Carnap’s CSI, it is not to be seen as an attempt to completely dismiss
their legitimacy. Such accounts prove useful in certain applications and effectively capture certain
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aspects of information, particularly the deep intuition that information is proportional to uncertainty
reduction [33].

However there are certain features of an approach such as CSI which are at odds with both ordinary
senses of information and criteria associated with certain applications of information. A truthlikeness
approach on the other hand strongly resonates with these ordinary senses and satisfies these criteria.
Furthermore, such an approach naturally accommodates the corresponding notion of misinformation.
As was seen, fortunately there is already a significant body of work on truthlikeness to draw from. Yet
also, as evidenced in this paper there is still room for further investigation, experimentation and the
development of new quantification methods, with a specific focus on information.

Apart from any suggested or implied above, two possibilities for further research are:

• The extension of information as truthlikeness approaches to richer systems beyond classical
propositional logic. The methods in this paper that were drawn from the truthlikeness literature
were actually extended to first order classical systems and even to systems of second order logic
[21,26]. Also what, if any, are the possibilities for non-classical systems?

• New semantic content (information and misinformation) is acquired by agents, who usually
already possess some content. This makes things a bit more interesting. For example, if an agent
already possesses the information h∧ r, then the information w is going to be more informative to
the agent than the information h∧r, even though the latter yields more information. Or if an agent
holds the content A and accepts the content ¬A, they will need to revise their content base in order
to maintain consistency. Often there will be more than one way to carry out such a revision, so one
question to ask is which way will result in the revised content base with the greatest information as
truthlikeness measure? Belief revision [34], the process of changing beliefs to take into account the
acquisition of new content, comes into play here. This area has a very rich research field already
and there remains potential work to be done on drawing connections between and integrating the
fields of belief revision and truthlikeness/information.
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A. Appendix

Adequacy condition results for the value aggregate method.

• Let WA stand for the set of states satisfying statement A.

• wT denotes the actual state.

• S∗ = T .

• Consult Section 5.1 for further terminology.

Theorem A.1. (M1) 0 ≤ Tr(A, T ) ≤ 1.

Proof. X = lineup(arraystate(WA)). The lowest possible value for sum(X) is 0, when each item of X
is the lowest valued state (2n × 0 = 0). The highest possible value for sum(X) is 1, when each item of
X is the highest valued state (2n × n

n×2n
= 1).

Theorem A.2. (M2) Tr(A, T ) = 1 iff A = T .

Proof. X = lineup(arraystate(WA)). sum(X) = 1 iff each item of X is the highest valued state (i.e.,
wT ). Each item of X is the highest valued state iff the statement being measured is a state description of
the actual state.

Theorem A.3. (M3) All true statements do not have the same degree of truthlikeness, all false statements
do not have the same degree of truthlikeness.

Proof. Evident with the results from Table 10.
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Theorem A.4. (M4) Among true statements, truthlikeness covaries with logical strength:

(a) If A and B are true statements and A ` B, then Tr(B, T ) ≤ Tr(A, T ).

(b) If A and B are true statements and A ` B and B 0 A, then Tr(B, T ) < Tr(A, T ).

Proof. We will show that (b) holds, since this entails (a).

• XA
1 = arraystates(WA)

• XB
1 = arraystates(WB)

• XA
2 = lineup(XA

1 )

• XB
2 = lineup(XB

1 )

Now

• where n is the number of propositional variables, the values of the states will be drawn from the
following: 0

(n×2n)
, 1
(n×2n)

, 2
(n×2n)

... n
(n×2n)

.

• Since A and B are true, wT ∈ WA and wT ∈ WB.

• since A ` B and B 0 A, WA ⊂ WB

So XA
2 is going to contain at least 1 more instance of wT than XB

2 . Say that XB
2 does just have 1

less instance of wT and that this is replaced by an instance of the second highest valued state (which will
have a value of n−1

n×2n
). This is the upper limit, the closest XB

2 will come to having a sum value greater
than XA

2 , so it will suffice to show that in this case sum(XB
2 ) < sum(XA

2 ).
The term X[i] denotes position i of array X . Let m be the position at which XA

2 [m] 6= XB
2 [m]. So

1 ≤ m ≤ 2n − 1 and for each i ∈ {x | 1 ≤ x ≤ m − 1}, XA
2 [i] = XB

2 [i], so the value of sum() is equal
for both arrays up to point m.

After and including point m, whilst the remaining elements of XA
2 sum up to (2n −m)× n

(n×2n)
, the

remaining elements of XB
2 sum up to n−1

(n×2n)
+ ((2n −m)− 1)× n

(n×2n)
.

So the final thing to show is that (2n −m)× n
(n×2n)

> n−1
(n×2n)

+ ((2n −m)− 1)× n
(n×2n)

n(2n−m)
(���n×2n)

> (n−1)+n(2n−m−1)
(���n×2n)

n2n − nm > n2n − nm− 1

Theorem A.5. (M5) Among false statements, truthlikeness does not covary with logical strength; there
are false statements A and B such that A ` B but Tr(A, T ) < Tr(B, T ).

Proof. Evident with the results from table 10.

Theorem A.6. (M7) If A is a false statement, then Tr(T ∨ A, T ) > Tr(A, T )

Proof. SinceA is false, it follows that wT /∈ WA. The set of states corresponding to T ∨A isWA∪{wT}.
Let
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• X2 = lineup(arraystates((WA)))

• X2′ = lineup(arraystates((WA ∪ {wT})))

So we need to show that sum(X2′) > sum(X2).
Say the highest valued element of WA is wa and that wa takes up the last n positions in X2. The

addition of wT results in it replacing wa for the last n − 1 positions. Since val(wT ) > val(wa),
sum(X2′) > sum(X2).

Theorem A.7. (M8) Assume j /∈ IA. Then Tr(A ∨ Sj, T ) > Tr(A, T ) iff ∆∗j < ∆min(A, T )

• X2 = lineup(arraystates((WA)))

• X2′ = lineup(arraystates((WA ∪ {wj})))

Proof. First we show that

∆∗j < ∆min(A, T )⇒ Tr(A ∨ Sj, T ) > Tr(A, T )

If the antecedent here holds, then (∀w)(w ∈ WA ⊃ val(wj) > val(w)). Therefore the sum of X2′

will have a greater value than the sum of X2.
Second we show that

Tr(A ∨ Sj, T ) > Tr(A, T )⇒ ∆∗j < ∆min(A, T )

via the contraposition

∆∗j > ∆min(A, T )⇒ Tr(A ∨ Sj, T ) < Tr(A, T )

If the antecedent here holds, then (∃w)(w ∈ WA ∧ val(wj) < val(w)). Therefore the sum of X2′

will have a lower value than the sum of X2, since one instance of w ∈ WA is taken off from the sum()
calculations and replaced by the lower valued wj , resulting overall in a lower value.

Theorem A.8. (M9) Let ∆∗j < ∆∗i. Then Tr(Sj ∨ Si, T ) decreases when ∆∗i increases

Proof. There are two states, wj which corresponds to Sj and wi which corresponds to Si, with the value
of wj being greater than the value of wi. Let X2 = lineup(arraystates({wj, wi})), so Tr(Sj ∨ Si) =

sum(X2). Let X2′ = lineup(arraystates({wj, wi′})), where wi′ replaces wi when ∆∗i increases. Since
wi is replaced by a lower wi′ , then sum(X2′) < sum(X2).

Theorem A.9. (M10) Some false statements may be more truthlike than some true statements.

Proof. Evident with the results from table 10.

Theorem A.10. (M12) If ∆∗j < ∆∗i < ∆∗k, then Tr(Sj ∨ Si ∨ Sk, T ) increases when ∆∗i decreases.

Proof. This is straightforward; any increase for Tr(Si) means an increase in the value ofwi, which means
an overall total increase in sum().

Theorem A.11. (M13) Tr(A, T ) is minimal, if A consists of the ∆−complements of T .
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Proof. IfA is the ∆-complement of T then it is the state such that each atom is false. Therefore Tr(A, T )

is a minimal 0.
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