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Abstract: This paper tackles the challenge of time series forecasting in the presence of missing data.
Traditional methods often struggle with such data, which leads to inaccurate predictions. We propose
a novel framework that combines the strengths of Generative Adversarial Networks (GANs) and
Bayesian inference. The framework utilizes a Conditional GAN (C-GAN) to realistically impute
missing values in the time series data. Subsequently, Bayesian inference is employed to quantify the
uncertainty associated with the forecasts due to the missing data. This combined approach improves
the robustness and reliability of forecasting compared to traditional methods. The effectiveness of
our proposed method is evaluated on a real-world dataset of air pollution data from Mexico City.
The results demonstrate the framework’s capability to handle missing data and achieve improved
forecasting accuracy.
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1. Introduction

Time series forecasting plays a crucial role in various domains from finance and
weather prediction to inventory management and anomaly detection. It involves uncover-
ing patterns and trends in historical data to predict future values over time. However, the
accuracy of these predictions hinges on several critical factors:

• Data Quality: High-quality data, free from errors and inconsistencies, is essential for
reliable forecasts.

• Method Selection: The choice of an appropriate forecasting method hinges on the
characteristics of the time series data. For instance, stationary data are often well-suited
for ARIMA (Autoregressive Integrated Moving Average) models. In contrast, non-
stationary data may necessitate more advanced techniques. Additionally, nonlinear
neural network models can be effective for complex time series.

• Incorporation of External Factors: Often, relevant external factors, like weather pat-
terns or economic trends, can significantly influence future values. Including these
factors in the forecasting model can improve its accuracy.

A particularly significant challenge in time series forecasting is the presence of missing
data. Missing data points disrupt the underlying patterns and can severely impact both
data quality and model selection. Traditional statistical methods, such as ARIMA models,
are often limited by their linear nature, leading to lower accuracy when dealing with
complex relationships and missing values.

To address these limitations, various approaches have been developed, which are
categorized as statistical and physical methods. Ref. [1] proposed a novel method for
ultra-short-term wind power prediction combining nonlinear data analysis, decomposition,
and machine learning. Statistical methods, like interpolation or moving averages, are
generally suited for short-term forecasting. Conversely, physical methods, based on domain
knowledge, are often used for long-term forecasting. However, each approach has its own
limitations and may not be universally applicable.

Information 2024, 15, 222. https://doi.org/10.3390/info15040222 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15040222
https://doi.org/10.3390/info15040222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-3087-7375
https://doi.org/10.3390/info15040222
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15040222?type=check_update&version=1


Information 2024, 15, 222 2 of 17

Neural networks (NNs) have become a prevalent choice for modeling time series data.
Ref. [2] reviewed various neural network techniques used for time series prediction tasks.
Their key strength lies in their ability to represent complex or dynamic relationships using
relatively simple architectures. Unlike traditional statistical methods, neural networks
do not require prior assumptions about the underlying statistical properties of the data.
Ref. [3] used a neural network to forecast daily average PM10 concentrations in Belgium.
This makes them well suited for problems where the data distribution is unknown or
non-standard.

The detrimental effect of missing data on forecasting accuracy has been extensively
documented. Ref. [4] addressed time series forecasting with missing data using a combina-
tion of neural networks and meta-transfer learning. Techniques like transfer learning and
ensemble learning have demonstrated promise in mitigating this issue. Ref. [5] introduced
a domain adaptation approach for neural networks to compensate for drift in electronic
nose systems. Transfer learning leverages knowledge gained from similar datasets to
improve performance on the target data with missing values. Ensemble learning combines
predictions from multiple models to potentially yield more robust results. However, there
is still a need for more effective methods that can comprehensively address the complex-
ities of missing data in time series forecasting. Ref. [6] presented a novel framework for
applying transfer learning to time series forecasting problems.

Generative Adversarial Networks (GANs) have emerged as a powerful tool in various
data science applications. Ref. [7] discussed Generative Adversarial Networks (GANs)
in the context of neural networks. These deep learning models are adept at generating
realistic and synthetic data. Notably, Conditional Generative Adversarial Networks (C-
GANs) allow for generating data conditioned on specific features, making them particularly
well suited for the task of imputing missing values in time series data. Ref. [8] explored
image-to-image translation using conditional adversarial networks. By training a C-GAN
on complete time series examples, the model can learn the underlying data distribution
and generate realistic values to fill in the missing gaps. Ref. [9] proposed a conditional
LSTM-GAN architecture for melody generation based on lyrics.

Bayesian inference offers a complementary approach by providing a framework for
quantifying the uncertainty associated with forecasts, especially when dealing with missing
data. Ref. [10] introduced a probabilistic inference-based least squares support vector
machine for noisy environments. This uncertainty quantification is crucial because missing
data inherently introduce an element of doubt in the predicted values. Ref. [11] explored
neural networks for probability prediction, including applications in nuclear stability and
decay. By integrating Bayesian inference with a GAN-based imputation approach, the
realistic missing value replacements can not only be generated, but the level of confidence
is also estimateed.

While there have been attempts to merge neural networks with Bayesian approaches,
these efforts have not fully exploited the strengths of both techniques. Existing methods
include using neural networks for tasks like distribution identification with statistical
backpropagation [12], probability distribution recognition, and sampling with Monte Carlo
or Markov chains. Ref. [11] provided a general overview of neural networks. Ref. [10]
discussed deep learning for sampling from various probability distributions. However, the
computational complexity of calculating conditional probabilities often necessitates numeri-
cal methods like Markov Chain Monte Carlo (MCMC) to determine posterior distributions.
In contrast, our proposed approach leverages the unique advantages of both neural net-
works and Bayesian inference. At each step, Bayesian inference utilizes the newly arrived
data as the prior distribution and the neural network’s output as the likelihood. This allows
us to obtain the posterior distribution and subsequently update the prior distribution with
the new data for the next iteration.

In this paper, a novel time series forecasting framework is proposed that leverages
the strengths of both GANs and Bayesian inference. The framework utilizes a C-GAN
architecture to impute missing values in the time series data. Following imputation,
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Bayesian inference is integrated to quantify the uncertainty associated with the forecasts.
This combined approach allows for more robust and reliable forecasting in the presence of
missing data. The effectiveness of proposed method is evaluated on a real-world dataset
of air pollution data from Mexico City. This application demonstrates the framework’s
capability to handle missing data and improve forecasting accuracy in a practical scenario.

2. Time Series Forecasting with Missing Data Using Neural Networks

This paper explores the application of neural networks for time series forecasting
particularly when dealing with missing data. While ARIMA models are commonly used
for non-stationary time series (like air pollution prediction), their performance can deteri-
orate with missing data, noise, or limited samples. Neural networks offer a more robust
alternative for such scenarios; see Figure 1.

Figure 1. Time series forecasting using neural networks. Here, xk+m is m-step ahead prediction. x̂k+m
is the neural network approximation of xk+m. xk is the time series. x̄k is the missing data.

2.1. Neural Networks for Time Series Forecasting

The prediction of a time series is presented with {xi}, i = 1 · · · N. At time k, the
NARMAX model [13] can be used to predict the m-step ahead value xk+m as

xk+m = Φ(xk, xk−1, . . . , xk−n) (1)

where Φ is an unknown nonlinear function, n is the best regression times, or

xk+m = Φ[Xk] (2)

where Xk = [xk, xk−1, . . . , xk−N+1]. A neural network to predict xk+m can be expressed as

x̂k+m = NN[(xk, xk−1, . . . , xk−n)] (3)

where x̂k+m is the output of the neural network, n is the approximation regression times,
and k = 1, · · · , N, NN(·) is the neural network.

For a single-layer neural network, the neural model NN(·) in (3) is

x̂k+m = ϕ
[
WkX̂k

]
(4)

where Wk ∈ Rn is the weight matrix, ϕ is the activation function, and X̂k = [xk, xk−1, . . . , xk−n].
For multilayer neural networks,

x̂k+m = Vkϕ
[
WkX̂k

]
(5)

where the weight of the hidden layer Wk ∈ Rm×n, and the weight of the output layer
Vk ∈ R.
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For a deep neural network

x̂k+m = Vkϕ
{

W1ϕ1
[
· · ·Wl X̂k

]}
(6)

where l is the number of hidden layers.
The proposed method is out-of-sample prediction: This refers to using new, unseen

data to test how well the model performs on data which it has not encountered before.
(1) The data are split into two sets: a training set and a testing set. (2) The model is trained
on the training set. (3) The trained model is used to make predictions on the testing set
(data it has not seen before). (4) The predictions are compared to the actual values in the
testing set to assess the model’s accuracy on unseen data.

2.2. Neural Networks Training with Missing Data

Traditional neural network training requires large amounts of data and struggles with
uncertainties like missing values. To address this challenge, transfer learning is utilized.
This technique uses pre-trained models on similar data to improve learning when dealing
with limited datasets.

In this paper, the datasets from similar domains (denoted as Λa and Λb) are used
to compensate for missing information in the target domain (Λa). Formally, Λa and Λb
represent matrices of past observations:

Λa = Xa = [xa
k , xa

k−1, . . . , xa
k−n]

Λb = Xb = [xb
k , xb

k−1, . . . , xb
k−n]

(7)

Λa and Λb belong to similar domains because they share similar geographical conditions,
such as position and physical characteristics.

These matrices capture the temporal dynamics of each domain. By exploiting the
inherent relationships between these domains, the knowledge from Λb is extracted to fill
the gaps in Λa; see Figure 2.

Figure 2. Transfer learning for neural network training. Here, xk+m is m-step ahead prediction. x̂k+m
is the neural network approximation of xk+m. Λa and Λb are different datasets. xk is the time series
of xk. x̄k is the missing data of Λa.

Two strategies can be employed:

1. Joint Training: Train model Ma directly using both datasets {Λa,Λb}.
2. Pre-training and Fine-tuning: Pre-train Ma with the complete data Λb; then, fine-tune

it with the target data Λa.

The success of this approach hinges on effectively transferring features from the
information-rich domain (Λb) to the data-scarce target domain (Λa).

The objective of the neural network modeling is to minimize the modeling error
defined as shown below:

ek = x̂k+m − xk+m (8)
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The updating law for the weights Wk and Vk is obtained by

NN(·) = arg min
Wk ,Vk

{
1

2N

N

∑
k=1

e2
k

}
(9)

This is achieved by updating the weights

Wk+1 = Wk − η
∂J

∂W
, Vk+1 = Vk − η

∂J
∂V

(10)

The following gradient method can minimize (9),

Wk+1 = Wk − η ∂J
∂W + α∆Wk

Vk+1 = Vk − η ∂J
∂V + α∆Vk

(11)

where ∆Wk = Wk − Wk−1 and α is the positive constant, 0 < η < 1.

3. Addressing Missing Data in Time Series Forecasting with Generative Adverserial
Networks (GANs) and Bayesian Inference

While neural networks are powerful tools for time series forecasting, their training
requires large amounts of complete data. When dealing with time series containing missing
values, directly applying them can hinder performance. This section proposes a two-step
approach to address this challenge.

3.1. Learning the Underlying Distribution with Conditional GANs

A time series to be considered as

y =
{

xi, x̄j
}

where xi (i = 1 · · · N) represent observed data points, and x̄j (j = 1 · · · M) represent missing
values.

To learn the underlying distribution p(xi) of the real time series xi (even with limited
data), a Conditional Generative Adversarial Network (C-GAN) is employed.

A C-GAN is a type of neural network architecture involved in a two-player game.
One player, the generator, attempts to create samples that statistically resemble the training
data. The other player, the discriminator, aims to distinguish between real data and the
generator’s creations. Through this competition, the generator progressively learns to
produce realistic samples; see Figure 3.

Figure 3. Learning the underlying distribution with Conditional GAN. Here, xk+m is m-step ahead
prediction. x̂k+m is the neural network approximation of m-step ahead prediction, xk is the time
series, and Z is random noise.
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In our case, the C-GAN utilizes information from the observed data points xi. This
allows it to capture the relationships within the time series and generate data points that
are likely to have occurred alongside the observed values.

Here is a breakdown of the C-GAN components:
(1) Latent Space: This space contains random noise, which is used as an input to the

generator
Z = {zk}, zk ∼ N (0, 1) (12)

where zi represents components, and zi represents normally distributed random numbers
with normalized amplitude under Z = Z

max{|Z|} .
(2) Conditioning Signal Space: This space incorporates information from the observed

data points x, influencing the type of data the generator creates.
(3) Truth Space: This represents the actual distribution of the missing values

PT : ET → [0, 1], PT(ET) =
∫

prdτ

where pT is the probability distribution of the truth space, ET ∼ pT
(4) Generator: This network takes noise from the latent space and conditioning signals

as inputs, and it outputs potential missing data points that align with the observed data.

PG : EG → [0, 1], PG(EG) =
∫

pGdτ

(5) Discriminator: This network attempts to differentiate between real missing values
x̄j and the generator’s outputs. It helps refine the generator’s ability to produce realis-
tic data.

G : Z × xk → x̂k+m
D : Z × xk × xk+m → 0

(13)

By training these components together, the C-GAN learns to generate missing data
points that statistically match the observed time series.

The two-player game is represented by Equation (23), in which both players are both
differentiable with respect to their inputs and parameters. Each player has a cost function
that depends on the parameters of both players. The discriminator aims to minimize
JD(θD, θG) by optimizing over θD alone [14]. Conversely, the generator seeks to minimize
JG(θD, θG) by adjusting its own parameters θG only. θD ∈ ΘD and θG ∈ ΘG are defined as
the discriminator and generator strategies, respectively. The strategy spaces are denoted by
ΘD and ΘG.

The probability distribution function of the generated space is defined as pG, which is
a function parameterized by the parameters θG, pG(KT , θG). The training goal is to estimate
θG, which can be achieved by maximizing the likelihood between the spaces KT and KG:

θG∗ = arg max
θG

EKT∼pT log pG(KT ; θG), (14)

which can be considered as a minimization of the divergence KL

θG∗ = arg min
θG

DKL(pT(KT)||pG(K; θG)). (15)

where DKL is the Kullback–Leibler divergence (KL distance), which is defined by

KL(p(a | x)∥p(b | x)) =
n

∑
i

pi(b | x)log
(

pi(b | x)
pi(a | x)

)
(16)

Then, the generator produces pG with the same probability distribution of pT

pT() → pG(θ
G) (17)
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The player cost functions are

JD, JG : θD × θG → R (18)

Then, a local Nash equilibrium (θD, θG) is obained if

∂JD

∂θD = 0,
∂JG

∂θG = 0 (19)

and
∂2 JD

∂θD2 ≥ 0,
∂2 JG

∂θG2 ≥ 0 (20)

Since the discriminator function can be interpreted as a binary classifier to distinguish
between true and false, it is beneficial to use the cross-entropy function for binary classifi-
cation as the cost function for the discriminator, as suggested by [15]. The cross-entropy
function can be defined as follows:

JD = E(T)[logD(xk, xk+m; θD)]

+Ez∼pz(z)[log(1 − D(G(z, xk, xk+m; θG)), u, y)]

Then,
JD = EpT [log(p(T)] + Ez∼pz(z)[log(p(G)]

Considering the game as zero sum,

JG + JD = 0 (21)

The objective function of the GAN is

min
G

max
D

V(D, G), V(D, G) = JG = −JD (22)

Once the GAN has been trained, pG becomes a mapping from the latent space to
the generated gain space, which is conditioned by the response of a dynamic system.
Specifically,

pG = G(Z, xk, xk+1, θG) (23)

where θG is the parameter vector. The learning process of GAN is shown in Figure 4.

Figure 4. The learning process of a Generative Adversarial Network (GAN) is visualized. The real
distribution of xk+m is represented in black (pT). The green line depicts the generator’s distribution
(pG) in. The blue line shows the discriminator’s distribution (pD). Training starts at point (a) and
progresses toward point (d), (b,c) are intermediate points in the training process. Ideally, after training,
the generator’s distribution (pG) approaches the real data distribution (pT) and the discriminator’s
distribution (pD) approaches zero.
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3.2. Bayesian Inference for Forecasting

Once the C-GAN is trained, it can generate potential values to fill in the missing data
points. However, there might be some uncertainty associated with these generated values.
To address this, Bayesian inference is applied; see Figure 5.

Figure 5. Bayesian inference for forecasting. Here, p(xk | yk) is the liklihood, p(xk) is the prior (from
the GAN model), and p(yk | xk) is the posterior.

Bayesian inference is a statistical method that incorporates prior knowledge or beliefs
into the analysis. In this paper, the C-GAN is used to generate data points alongside the
observed data to create a probability distribution for the missing values. This distribution
reflects not only the generated values but also considers the inherent uncertainty in the data,

p(yk | xk) =
p(xk | yk)p(xk)

∑p(xk)
∝ p(xk | yk)p(xk) (24)

At the operating point xi, p(yk | xk) is the probability property (posterior distributions) of
yk under the probability distribution xk.p(xk) is from the GAN model (prior distribution),
and p(xk | yk) is the likelihood, which will be modeled by deep neural networks with
transfer learning.

The model of the neural network discussed above is used to generate the likelihood
p(xk | yk). Because

p(a | b) =
p(b, a)
p(b)

, E[b|a] = ∑
x

bp(b|a) (25)

the neural network modeling in fact is to minimize the likelihood distribution error as

L =
n

∏
i=1

p
(

θi, xi
k

)
=

n

∏
i=1

p
(

θi|xi
k

)
p
(

xi
k

)
(26)

The objective of calculating p(xk | yk) for the neural network is to update the weights value.
In order to maximize the likelihood, the logarithm cost function is used,

E = − ln L = −
n

∑
i=1

N

∑
j=1

ln p
(

θi
j|xi

k

)
−

n

∑
i=1

ln p(xi
k) (27)

where N is the training data number.
(1) Given xk and xk+1, the structure of the GAN for identification can be implemented

as follows:
x̂k+1 = σ(WO(k)[Xk]) tanh(xk) (28)

where
xk+1 = σ(WF(k)[Xk])xk) (29)

where WF and WO are the weights.
(2) To compensate for the mapping, multilayer perceptrons are used as

K̂G = F(WΨ) (30)

where W is the weight matrix and Ψ = [Xk, xk+1]
T is the input vector.
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By combining the C-GAN’s ability to learn the underlying distribution and Bayesian
inference’s capability to handle uncertainty, a more robust approach is created for time
series forecasting with missing data.

4. Air Pollution Forecasting
4.1. Air Pollution Data of Mexico City

Mexico City’s environmental monitoring network consists of 43 stations, as shown
in Figure 6. As per 2020 data, five stations experienced complete failure throughout the
year, while seven stations faced at least 50% failure. The remaining stations had failure
rates between 4.7% and 33% (Figure 7). Red bars represent the total percentage of failures,
orange bars indicate stations with frequent failures (25.92%), and blue bars depict stations
with rare faults. Notably, PM10 data exhibit inconsistencies in half of the seasons [16].

Figure 6. Environmental monitoring network in Mexico City. The digital number displayed here is
the station number.

Figure 7. Failures of the monitoring stations in 2020.

These missing data issues make traditional methods like AR, ARX, ARIMA, and
ARMA models unsuitable for forecasting air pollution in Mexico City. While NNs can
potentially handle such datasets, standard training methods may not be sufficient. This
is the primary motivation for our proposed meta-transfer learning approach. When such
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events occur, researchers often resort to deleting “unhelpful” information and relying on
historical data from previous years to train the neural network.

Our approach leverages transfer learning with various initial conditions and 20 aux-
iliary tasks to improve air pollution forecasting for three monitoring stations: ATI, PED,
and ACO. The distances between these stations are ACO-ATI (36.43 km) and ACO-PED
(46.10 km).

Achieving accurate air pollution forecasts presents several challenges. Historical data
often originate from various environmental monitoring stations, which are each susceptible
to mechanical, electrical, or breakdown issues. These inconsistencies lead to missing data
points within the time series [17]. To address this, researchers often resort to deleting
data, ensuring all stations have the same data points. However, this approach discards
potentially valuable information and limits the accuracy of forecasts, especially for long-
term predictions.

Furthermore, climatic conditions can significantly impact pollutant dynamics. For
example, the COVID-19 pandemic led to decreased traffic, altering historical data patterns.
This highlights the need for forecasting methods that can adapt to such changes.

Current methods typically address missing data by deleting data points or adjust-
ing the training window based on an NN’s cost function [17]. These approaches discard
valuable information and limit forecasts to short-term horizons. Additionally, these meth-
ods often involve tuning hyperparameters like the learning rate, number of epochs, and
amount of acceptable missing data, which can significantly impact performance but lack
clear guidelines.

4.2. Air Pollution Forecasting Using Neural Networks

Air pollution forecasting is a promising application of time series prediction using
neural networks (NNs). Researchers typically aim to predict concentrations of various
pollutants, such as PM10, PM2.5, sulfur dioxide, carbon monoxide, and nitrogen oxides, in
parts per million (ppm) [18]. Existing studies on air pollution forecasting with NNs often
focus on spatio-temporal series, incorporating factors like air velocity, temperature, and
wind direction [19]. While over 139 studies utilizing NNs for air pollution forecasting were
published between 2001 and 2019, only 70 specifically focused on feedforward NNs for
forecasting (see Table 1).

Table 1. Overview of air pollution forecasting for PM10 using neural networks.

Reference PM10 Time-Scale Input Training Testing Hidden Layer Hidden Node Active Function η α Epochs Missing Data R

[20] Monthly - 5 72 12 1 20 Tansigmoidal 0.01–1 0.5 5000 - 0.7

[21] Daily
Mean and
maximum

one day ahead
25 1460 365 - - - - - - - 0.65

[3] Daily One-day 5 488 244 2 5 Tanh - - - 15 0.8

[22] Daily One-day 4
Cross

validation
shuffle

Cross
validation

shuffle
1 - Tanh 0.0001–1 - - - 0.88

[23] Daily One-day ahead 6 1460 365 1 4 - - - - Averaged 0.67–0.81
[24] Hourly 24 h ahead 8 13,140 4380 1 7 Logistic - - - - 0.7–0.82
[24] Hourly 24 h ahead 8 13,140 4380 1 6 Logistic - - - - 0.65–0.83

[25] Daily Maximum
one-day ahead 18 150 90 1 7 - - - - - -

[26] Daily One day
ahead 5 722 372 1 3 - - - - 25 0.78

[27] Hourly Hourly 16 495 42 1 8 Sigmoid 0.3 0.3 - 2 0.912
[28] Hourly One hour ahead 7 - Random 1 9–36 Logistic 0.1 0.3 5000 2–11 0.72
[29] Hourly One hour ahead 15 12,800 2240 1 26 - - - - 7 0.8–0.87
[30] Hourly 24 h ahead 5 - - 1 3 Tanh - - - - 0.61
[31] Daily Maximum One day ahead 27 500 150 1 8 Sigmoid - - - - -

[32] Daily Maximum
one day ahead 5 2000 650 1 10 Tanh Sigmoid - - 1000 35 0.05–0.72

[33] Daily - 9 240 125 1 - - - - - Averaged 0.68
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The challenging problem of predicting air pollution in Mexico City is for 150 days.
The neural network (NN) is formulated as shown below:

x̂k+150 = NN[xk, . . . , xk−10] (31)

where xk represents the air pollution time series and x̂k+150 is the predicted value.
The NN has 10 inputs (xk, . . . , xk−10) and one output (x̂k+150). The network topology

has one hidden layer with 10 neurons. It can be seen that adding another hidden layer did
not significantly improve prediction accuracy.

4.3. GAN and Bayesian Inference for Air Pollution Forecasting

This section describes our proposed approach that leverages Generative Adversarial
Networks (GANs) for imputing missing data in air pollution time series, which is followed
by Bayesian inference for uncertainty quantification.

The GAN architecture consists of two sub-networks: a generator (G) and a discrim-
inator (D). The generator, depicted in Figure 3, aims to create realistic missing value
imputations. It takes three inputs:

• Real Time Series (xk): The actual air pollution data points surrounding the missing
value.

• Real Predicted Value ( xk+1): The predicted value for the next time step based on the
available data.

• Gaussian Noise Vector (z): A random noise vector that introduces variability and
helps the generator create diverse imputations.

The generator utilizes multilayer perceptrons (MLPs) to process these inputs and
generate an imputed value (x̂k+1) for the missing time step. The discriminator, on the
other hand, acts as a critic, aiming to distinguish between real data points (xk+1) and the
imputed values (G(z, xk, xk+1)) generated by the network. By continuously evaluating the
generator’s outputs, the discriminator helps it learn to produce more realistic imputations.

The training process involves optimizing both the generator and discriminator through
well-defined loss functions. The loss function for the discriminator (LD) is formulated.
It encourages the discriminator to assign high probabilities to real data points and low
probabilities to the generated imputations (D(G(z, xk, xk+1), xk, xk+1)),

LD = −E[log(D(k, xk, xk+1))]− E[log(1 − D(G(z, xk, xk+1), xk, xk+1)] (32)

Meanwhile, the generator’s loss function (LG) is defined in the following equation. It
aims to minimize the discriminator’s ability to differentiate between real and generated
data (D(G(z, xk, xk+1), xk, xk+1)),

LG = −E[log(D(G(z, xk, xk+1), xk, xk+1)] (33)

To enhance the diversity of generated imputations, random parity flips with a proba-
bility of p f = 0.2 are introduced. This disrupts the association between the real data and
conditioning signals during training, forcing the generator to learn more robust imputa-
tion strategies.

Figures 8 and 9 compare the distributions of real data (xk) and the data generated by
the GAN. While the overall shapes appear similar, further improvements are necessary to
better capture the real data variance, as indicated by the high Frechet Inception Distance
(FID) value of 31 for xk.
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Figure 8. Distribution of truth space gains.

Figure 9. Distributions of gains.

Figures 10 and 11 are used to present the prediction results for the two air pollution
indices, ATI and PED.
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Figure 10. Forecasting results of the station ATI.
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Figure 11. Forecasting results of the station PED.

4.4. Comparison with Other Methods

The initial weights for all NNs are random in [−1, 1]. The active function are sigmoid
functions.

There are 1100 training data that are in April 2020. As discussed before, there are
a lot of glitches or loss data in the training dataset. The failure rate is about 23%. The
neural models are used to make a 150-day prediction. There are 2000 test data that are in
September 2020. Figure 12 shows 200 data in the test phase.
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Figure 12. PM10 forecasting. (a) DNN, (b)TL-DNN3, (c) ML-DNN3, (d) MTL-DNN3.

The comparison results of PM10 forecasting are shown in Figure 13. So, the prediction
errors increase with time, because it is difficult for the long-term prediction. But meta-
transfer leaning has big advantages than the other neural models when the training datasets
are not ideal.
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Figure 13. Testing errors of different neural models.

The proposed method is compared with the following baseline models:

1. Single-Layer Neural Network (NN) [3]: This network has one hidden layer with 10
neurons (Π10×1).

2. MutiLayer Perceptron (MLP) [3]: This network has two hidden layers, with 10 and
35 neurons, respectively (Π10×35×15×1).

3. Deep Neural Network (DNN1) [24], Π10×5×6×3×5×1: DNN1 has four hidden layers
4. Deep Neural Network (DNN2) [24], Π10×70×60×35×1: DNN2 has three hidden layers
5. Bayesian Inference with neural networks (Bayesian) [34]: This network uses the same

deep neural network architecture as DNN1.
6. Meta-transfer learning (MTL) [4]: This network uses the same deep neural network

architecture as DNN1.
7. Proposed mothed in this paper (BayesianGAN): GAN with Bayesian inference.

All data were normalized using the following equation:

xk =
xk − min{xk}

max{xk} − min{xk}
(34)

where xk is the data point, min{xk} is the minimum value in the dataset, and max{xk} is
the maximum value in the dataset.

All neural networks were initialized with random weights uniformly distributed between
−1 and 1. The activation function used for all hidden layers was the sigmoid function.

The training dataset consisted of 1100 data points from April 2020. As mentioned
earlier, these data contained missing values, resulting in a failure rate of approximately 23%.
Despite these challenges, we used neural network models to perform 150-day predictions.
The test dataset comprised 2000 data points from September 2020. Figure 12 displays
200 data points from the test phase for visual comparison.

Figure 13 (with the corresponding figure caption) illustrates the comparison of PM10
forecasting performance for different models. As expected, prediction errors tend to
increase with longer prediction horizons due to the inherent difficulty of long-term forecast-
ing. However, our proposed meta-transfer learning approach (MTL-DNN3) demonstrates
significant advantages over other neural network models, particularly when dealing with
non-ideal training datasets with missing values.
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The following metrics are used to compare forecasting errors:

MSE = 1
N ∑N

i e2
k

MAPE = 1
N ∑N

i

∣∣∣ ek
xk

∣∣∣ (35)

where ek is the prediction error at time step k + 150 (xk+150 − x̂k+150), and N is the total
number of data points in the test set (N = 2000). The Mean Absolute Error (MAE) is the
average absolute difference between predicted and actual values. The Mean Absolute
Percentage Error (MAPE) indicates the sensitivity to outliers.

Table 2 summarizes the testing errors for all models. The table allows for a quantitative
comparison of the performance across different models.

Table 2. Prediction errors.

Neural Model MSE MAPE

NN 490.2 35.4
MLP 367.5 27.1
DNN1 310.8 30.1
DNN2 257.1 21.4
Bayesian 79.3 15.3
MTL 74.5 17.7
BayesianGAN 15.6 5.9

5. Conclusions

This paper presented a novel time series forecasting framework that leverages the
power of Generative Adversarial Networks (GANs) and Bayesian inference to address
the challenge of missing data. Our approach utilizes a C-GAN to realistically impute
missing values in the time series, which is followed by Bayesian inference to quantify the
uncertainty associated with the forecasts. This combined strategy offers several advantages:

(1) Improved Accuracy: By imputing missing values with realistic data, the framework
provides a more complete picture for the forecasting model, leading to more accurate
predictions.

(2) Uncertainty Quantification: Bayesian inference allows us to estimate the level of
confidence in the forecasts, which is particularly important when dealing with missing
data. Users can interpret the predictions alongside the associated uncertainty for better
decision making.

(3) Robustness: The framework demonstrates robustness in handling real-world
datasets with missing values, as shown in the application to air pollution forecasting in
Mexico City.

Here are some limitations of the paper: (1) GAN can be susceptible to overfitting,
especially with limited data. (2) Interpreting the GAN’s imputation process can be chal-
lenging. (3) The method cannot explicitly address how uncertainty arises due to missing
data. (4) Training GANs can be computationally expensive in terms of time and resources.

This framework has the potential to be applied to various time series forecasting
tasks where missing data are a concern. Further research directions include the follow-
ing: (1) exploring different GAN architectures and hyper-parameter tuning to optimize
the imputation process; (2) investigating the application of this framework to other time
series forecasting problems beyond air pollution; and (3) developing methods for incor-
porating additional information sources, such as weather data, to potentially enhance
forecasting accuracy.
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