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Abstract: The advent of deep learning (DL) has revolutionized medical imaging, offering unprece-
dented avenues for accurate disease classification and diagnosis. DL models have shown remarkable
promise for classifying brain tumors from Magnetic Resonance Imaging (MRI) scans. However, de-
spite their impressive performance, the opaque nature of DL models poses challenges in understand-
ing their decision-making mechanisms, particularly crucial in medical contexts where interpretability
is essential. This paper explores the intersection of medical image analysis and DL interpretability,
aiming to elucidate the decision-making rationale of DL models in brain tumor classification. Lever-
aging ten state-of-the-art DL frameworks with transfer learning, we conducted a comprehensive
evaluation encompassing both classification accuracy and interpretability. These models underwent
thorough training, testing, and fine-tuning, resulting in EfficientNetB0, DenseNet121, and Xception
outperforming the other models. These top-performing models were examined using adaptive
path-based techniques to understand the underlying decision-making mechanisms. Grad-CAM and
Grad-CAM++ highlighted critical image regions where the models identified patterns and features
associated with each class of the brain tumor. The regions where the models identified patterns and
features correspond visually to the regions where the tumors are located in the images. This result
shows that DL models learn important features and patterns in the regions where tumors are located
for decision-making.

Keywords: transfer learning; deep learning; brain tumor classification; explainability; interpretability;
Grad-CAM; Grad-CAM++; integrated gradient

1. Introduction

The field of medical imaging has experienced a transformative paradigm shift with
the emergence of deep learning (DL), unlocking unprecedented opportunities for accurate
disease classification and diagnosis, as discussed in [1–5]. In the area of brain tumor
classification using Magnetic Resonance Imaging (MRI) scan images, these DL models
have shown exceptional promise [1,2]. The significance of brain tumor diagnosis from
MRI images lies in its pivotal role in modern healthcare, offering opportunities for early
detection and timely treatment, as is evident in [2,3,6]. DL models have demonstrated
significant promise in automating brain tumor classification tasks. However, their real-
world application and reliability, especially concerning accuracy and interpretability, are
still questioned [7].

Despite the impressive classification results produced by DL models, their “black-
box” nature impedes a comprehensive understanding of the decision-making rationale.
Also, their incorporation into clinical practice and decision-making needs adaptability, not
just in terms of classification performance, but also in interpretability and explainability.
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This study investigates the junction of medical image analysis and DL interpretability.
Brain tumors, characterized by their diversity and clinical significance as highlighted
in [2,3], demand precise classification for tailored treatment plans and improved patient
outcomes. While DL models have exhibited substantial prowess in this domain, their
inherent opacity presents a challenge, as discussed in [3,6]. The central issue revolves
around understanding how these models reach their conclusions, particularly crucial
in the context of medical decision-making. Today, interpretability techniques are used
to understand the decision-making processes of DL models in medical imaging. These
techniques aid in identifying crucial features and regions within images that impact the
model’s decisions, thus enhancing comprehension of the diagnostic process.

We conducted a broad performance evaluation of various state-of-the-art DL frame-
works with transfer learning such as AlexNet, DenseNet121, EfficientNetB0, GoogLeNet,
Inception V3, ResNet50, VGG16, VGG19, ViT Transformer, and Xception for brain tumor
MRI classification. This evaluation encompasses not only the assessment of classifica-
tion accuracy, but also a focus on evaluating the interpretability of the models. Adaptive
path-based techniques, including Grad-CAM++ [8], Grad-CAM [9], and Integrated Gra-
dients [10], are used to understand what these DL models learn in MRI images. Other
methods exist in the literature for feature extraction, such as the Stationary Wavelet Trans-
form (SWT) [11] and optimized hybridization methods like Particle Swarm Optimization
(PSO) and Artificial Bee Colony (ABC) [11]. However, in this work, our primary focus is on
state-of-the-art CNNs using a gradient-based optimization method.

The rest of this paper is structured as follows. Section 2 discusses the literature review
on explainability in medical imaging, while Section 3 covers the attribution methods used
in this work and the transfer learning models. Section 4 presents the proposed method.
Section 5 presents the dataset and discusses the results, while Section 6 concludes the work.

2. Literature on DL Models’ Explainability in Medical Imaging

The input image is passed through the algorithm via one forward, as well as backward
propagation. The resulting score is then computed forward, and the dependency gradient
amongst the convolution layers is then determined to build an attribution map. This
process is known as the Vanilla Gradient explainability method. It is an easy-to-understand
attribution approach with few processing power requirements because of its simplicity.
Vanilla Gradient and other attribution-based graphic aids for MRI imaging of brain tumors
were evaluated using an attribution-based scheme named NeuroXAI [12]. Both feature
segmentation and classification were visualized using these techniques. Vanilla Gradient
produced noisier attribution maps than the other attribution techniques and had gradient
saturation, which means that a change in a neuron has no effect on the network’s output
and, so, cannot be assessed. Similar results were observed utilizing Vanilla Gradient
for feature visualization in [13], where the dissimilitude intensification juncture from
computed tomography (CT) images is anticipated. Furthermore, Vanilla Gradient is unable
to distinguish between classes (such as healthy and diseased) [14]. This demonstrates that
Vanilla Gradient is unable to produce attribution maps that are distinct based on class. The
deconvolution network (DeconvNET) is essentially comparable to Vanilla Gradient, with
the primary distinction lying in the computation of gradients over a Rectified Linear Unit
(ReLU) function [15].

The human brain’s artery segmentation was studied using different attribution tech-
niques for interlayer CNN visualization using TorchEsegeta, a structure for image-based DL
algorithms that can be understood and explained [16]. Since other techniques also indicated
non-vessel activation, their primary focus was on the vessels; Vanilla Gradient and Decon-
vNET produced results that were more comprehensible to humans than other attribution
techniques like Deep Learning Important Features (DeepLIFT) and Grad-CAM++.

Guided back-propagation (GBP) integrates both the DeconvNET [17] and Vanilla
Gradient. Comparing this approach to applying each technique separately yields less noisy
attribution maps as there are fewer active voxels. As compared to Vanilla Gradient, GBP
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presented purpose-specific attribution maps in the NeuroXAI framework with much less
noise [12]. An extra refining mechanism for GBP was suggested in [17] to further reduce
the quantity of noise and the influence of indiscriminate attributions on predicting brain
disorders using MRI. GBP is likely to offer attribution maps with reduced noise, but it
could furthermore produce attribution maps that are too sparse, which are unhelpful for
comprehensive image characterization [18]. Although they are not class discriminative, all
three of the gradient-based techniques are quite sensitive to the way the neural network
layers collect information. ReLU and pooling layers may also cause local gradients to
saturate. As a result, significant characteristics may disappear as the network’s layers
advance, which might lead to an inadequate model clarification or even a concentration on
unimportant features. Layerwise relevance propagation (LRP) is an Explainable Artificial
Intelligence (XAI) technique that employs principles unique to LRP to propagate the class
score backward through the neural layers to the input image [19]. The core idea of LRP is to
preserve inter-neuron interdependence, ensuring that information acquired by one layer of
neurons is equally transferred to the next lower layer. LRP addresses the challenges posed
by the saturation problem since the decomposition relies on propagating relevance scores
between neurons rather than gradients. In a study focused on the detection of abdominal
aortic aneurysms using CT images, LRP demonstrated a distinct class difference based on
activation differences in the aortic lumen [20].

Deep Learning Important Features (DeepLIFT) is an XAI technique that addresses
the saturation problem by employing a neutral reference activation, such as the neuron
activation in CT scans without pathology or disease [21]. The difference between a new
neuron’s activation and the reference activation is described by this reference activation. An
attribution map is generated by computing the contribution scores for each neuron based on
these differences. To discern individuals with Multiple Sclerosis (MS) using MRI, DeepLIFT
was compared to LRP and Vanilla Gradient [22]. Based on the quantitative evaluation,
DeepLIFT extracts target-specific characteristics much better than Vanilla Gradient and
marginally better than LRP. Gradient saturation is something that both LRP and DeepLIFT
can handle, which might be why they outperform Vanilla Gradient in this classification
challenge. Among the most popular model-specific attribution techniques is the class
activation map (CAM) [23,24]. Rather than using numerous dense layers, it employs a
Global Average Pooling (GAP) layer, which adds linearity before the last dense layer
and after the last convolution layer. Low-dimensional attribution maps are produced
by CAM since they only utilize information from the last convolution layer. As a result,
the low-dimensional CAM can show if a model can generally focus on particular targets,
but because of its poor specificity, it is unable to discriminatively define characteristics
depending on the class [25,26]. Additionally, it was revealed through perturbation analysis
of several attribution methodologies that gradient-based approaches have greater rigor
than CAM [13]. However, CAM can be indicative when performing patch-based (more
targeted) tumor analysis as opposed to whole-image tumor analysis [27,28], or when the
classes in a classification task exhibit obvious visual distinctions, such as between healthy
and Alzheimer’s brains [29].

The use of XAI techniques has increased dramatically as a result of COVID-19 detec-
tion [30]. Generally speaking, these techniques may be distinguished by either using the
entire CT scan or only the lung segmentation for COVID-19 identification. In particular,
there was a significant performance difference in attribution mapping for COVID-19 detec-
tion based on the entire picture. The most common attribution technique was Grad-CAM,
an extension of CAM, which produced both very specific [31,32] and non-specific attribu-
tions [22,33,34], but generally was able to approximately pinpoint the possible COVID-19
lesions to produce reliable predictions. A priori segmentation of the lungs was proposed
to eliminate the impact of non-target-specific characteristics [34–40]. In this manner, only
characteristics from the lungs may be extracted by both the DL algorithms and the XAI
approaches. In this sense, the XAI techniques and the DL algorithms can only extract char-
acteristics from the lungs. Compared to utilizing the whole CT image with Grad-CAM, this
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anatomically based XAI approach demonstrated greater specificity. This indicates the bene-
fits of medical-based data reduction for DL and XAI algorithms, that is lowering the number
of trainable characteristics and/or getting rid of uninformative characteristics based on the
input image. When the entire image was used, comparable non-target-relevant attribution
maps were observed as well (in the absence of data reduction) for cerebral hemorrhage
detection [41] and automated grading of expanded perivascular spaces in acute stroke [42].
In a manner akin to the COVID-19 investigations, prior anatomical segmentation was em-
ployed to categorize and illustrate mortality risks based on cardiac PET [43], Alzheimer’s
disease [44], and schizophrenia based on MRI [45]. Grad-CAM’s low-dimensional attribu-
tion maps, however, continue to cause poor specificity even while data handling reduces
the prevalence of non-target-specific characteristics [46,47]. The authors proposed that the
active characteristics surrounding the tumor correlate with areas harboring occult micro-
scopic illness based on the Grad-CAM attribution maps, in research for the categorization
of lung cancer histology based on CT images [7]. This is more plausible, though, due to
Grad-CAM’s poor dimensionality, as CT lacks the spatial resolution necessary to identify
these tiny illnesses.

In classification tasks when there is a discernible radiological difference between the
classes, Grad-CAM, like CAM, can be class discriminative [10,48–51]. However, addi-
tional attribution methods like Vanilla Gradient and GBP should be utilized in cases of
tasks with less clear radiological distinctions, such as predicting survival based on tumor
features, where Grad-CAM lacks fine-grained information [13,16]. In MRI imaging of
brain tumors, research that paired GBP with Grad-CAM, a technique known as guided
Grad-CAM (gGrad-CAM) showed improved localized attribution maps with greater res-
olution [12]. These supports integrate the benefits of attribution techniques for accurate
and comprehensible model visualization. Numerous further enhanced versions of Grad-
CAM, including Grad-CAM++, have been developed. To improve target-specific feature
localization over Grad-CAM, Grad-CAM++ was introduced [6]. Grad-CAM may reduce
the disparity in relevance between the various gradients since it averages the feature map
gradients. Grad-CAM++ substitutes a weighted average, which quantifies each feature
map unit’s significance, in its stead. In terms of knee osteoarthritis prediction using MRI, it
demonstrated better target-specific attribution maps than Grad-CAM [9].

3. Path-Oriented Methods and Transfer Learning Models

We explored the complexities of transfer learning models and path-oriented methods.
This investigation is essential because it offers a thorough grasp of the theoretical underpin-
nings of the models we trained and the attribution techniques used to ensure explainability.
Through providing in-depth analyses of these techniques, we want to provide clarification
on the fundamental ideas that underpin how they work. This theoretical foundation is
essential to understanding the subtleties of the models and their interpretability, which
is consistent with our goal of developing a deeper grasp of the theoretical foundations of
these approaches in addition to putting them into practice.

3.1. Path-Oriented Methods
3.1.1. Grad-CAM and Grad-CAM++

Grad-CAM and Grad-CAM++ focus on visualizing the areas in the image that con-
tribute significantly to the CNN’s decision-making process, providing interpretability to
the model’s predictions. For Grad-CAM, let A be a feature map of class c and Yc the output
that corresponds to class c. Its weights αc

k at the ij-th position of the k-th feature map is
expressed as:

αc
k =

1
Z ∑

i
∑

j

∂Yc

∂Ak
ij

, (1)
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where Z represents the feature map’s size and Ak
ij the activation of the unit in position ij

of the k-th feature map. In Grad-CAM++, the gradient weight αkc
ij and ReLU function that

correspond to class c are added, and the weight wc
k is expressed as:

wc
k = ∑

i
∑

j
ReLU

(
∂Yc

∂Ak
ij

)
αkc

ij . (2)

The localization heatmap L of class c in position ij is expressed as:

Lc
ij = ∑

k
wc

k Ak
ij. (3)

ReLU is applied to enhance the relevance of positive gradients. These Equations (1)–(3)
collectively represent the process of generating a heatmap that highlights the important
regions in the input image for making predictions related to class c.

3.1.2. Integrated Gradient (IG)

Using this method, an attribution map is produced that shows the image parts that
are important for the categorization choice. The output hc(y) represents the confidence
score for predicting class c given a classifier h, input y, and class c. To compute Integrated
Gradients (IG), we performed a line integral between a reference point y′ and an image y
in the vector field generated by the gradient of hc(y) with respect to the input space. This
vector field helps IG determine the importance or attribution for each feature, such as a
pixel in an image. Formally, IG is defined as follows for each feature i:

IIG
i (y) =

∫ 1

0

∂hc(γIG(α))∂γIG
i (α)

∂γIG
i (α)∂α

dα, (4)

where γIG(α), α ∈ [0, 1] is the parametric function representing the path from y′ to y, with
γIG(0) = y′ and γIG(1) = y. Specifically, γIG is a straight line connecting y′ and y.

3.1.3. Saliency Mapping

Saliency Mapping uses an analysis of each pixel’s impact on the classification score to
determine how salient it is in an input image. Saliency maps show the visual regions that
influence the classification choice with a linear scoring model [52]:

Sc(I) = wT
c I + bc, (5)

where bc is the bias for class c, wc is the vector of weights, and I is a single-dimensional
vectorized description of the image’s pixels. It is easy to see that, in such a situation, the
related pixels of I are important based on the importance of the components of wc. We
cannot simply use this insight since Sc(I) is a non-linear function of the image in CNNs.
However, by evaluating the first-order Taylor expansion, we can roughly estimate the class
score function with a linear function in the vicinity of a given image I0:

Sc(I) ≈ wT I + b, (6)

where w is the derivative of Sc with respect to the image I at the point (image) I0:

w =
∂Sc

∂I

∣∣∣∣∣
I0

. (7)

Equation (7) can also be used to calculate the image-specific class saliency. In this case, the
derivative’s magnitude shows which pixels require modification.
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3.2. Transfer Learning Models

When faced with having a model excel in a related, yet slightly different challenge,
transfer learning (TL) becomes pertinent. Rather than training the model from the initial
stage, this approach involves leveraging the acquired knowledge, specifically the parame-
ters, from the initial task and applying it to the new, related task. This process facilitates a
more efficient adaptation of the model to the novel task by capitalizing on the previously
acquired expertise. The TL models under consideration include AlexNet, VGG16, VGG19,
GoogLeNet, ResNet50, Inception V3, DenseNet121, Xception, EfficientNetB0 and Vision
Transformer (ViT).

3.2.1. AlexNet

The deep CNN architecture AlexNet made significant contributions to the develop-
ment of DL and computer vision. By winning the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in 2012, it was first discussed in [53] and considerably advanced the
state-of-the-art in image classification problems. It contains 5 convolutional layers and
3 fully connected layers for a total of 8 layers. The convolutional layers are separated by
max-pooling layers, which are used to down-sample and capture important information.

3.2.2. VGG16

The contemporary transfer learning model VGG16, boasting sixteen weighted layers,
stands as a state-of-the-art solution. Demonstrating its power on the ImageNet dataset, the
model achieved an accuracy rate of 92.7% for the top-five test results. The VGG16 achieved
the top spot in the Large Scale Visual Recognition Challenge (ILSVRC) organized by the
Oxford Visual Geometry Group (VGG) [54]. The increased depth of the VGG model enables
it to aid the kernel in capturing more intricate features.

3.2.3. VGG19

Within the VGG19 model, an extension of the VGG16 architecture with 19 weighted
layers, three additional fully connected (FC) layers contribute to a total of 4096, 4096,
and 1000 neurons respectively, as reported in [54]. This model encompasses a Softmax
classification layer alongside five max-pooling layers. The convolutional layers within the
architecture use the ReLU activation function.

3.2.4. GoogLeNet

The best-performing model, GoogLeNet, was presented by Google at the 2014 Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC14) [55]. The inner layers of the
neural network were expanded to output diverse correlation distributions, based on the
theory that achieving different probability distributions highly correlated with the input
data would optimize the efficiency of each layer’s neural network output.

3.2.5. ResNet50

The residual network ResNet50 is 50 layers deep [54]. The ResNet50 design integrates
a combination of convolution filters of various sizes to address the degeneration of CNN
models and shorten training times. A max-pooling layer, an average pooling layer, and a
total of 48 convolutional layers make up this architecture.

3.2.6. Inception V3

Inception V1 was the name given to Google’s initial proposal of GoogLeNets, which
was followed by Inception V2 and Inception V3 [56] the following year. To reduce the
size of the feature maps, Inception V3 employs convolutional layers with a stride of two
in combination with pooling layers. The first Inception module of Inception V3 replaces
the 7-by-7 layer convolutional layer with 3-by-3 layer convolutional layers, which is a
modification from Inception V2’s first Inception module. The network’s width and depth
are increased in Inception V3 with the aforementioned upgrades to enhance performance.
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3.2.7. DenseNet121

The DenseNet model was proposed in [57]. Its primary components are the DenseBlock
(DB), transition layer, and growth rate. DenseNet121 has the advantage of requiring fewer
parameters, allowing for the training of deeper models during computation. Additionally,
the fully connected layer of the model also has a regularization effect, which can help
prevent overfitting on smaller datasets.

3.2.8. Xception

Inception V3 was updated by Google to create Xception [58], which split regular
convolution into spatial convolution and point-by-point convolution. Depthwise Separable
Convolution (DSC) was used in place of the original Inception module. While pointwise
convolution utilizes a 1-by-1 kernel to convolve point by point, reducing the number of
parameters and computations, spatial convolution is conducted on each input channel.

3.2.9. EfficientNetB0

The EfficientNetB0 CNN architecture was proposed in [59]. Enhancing accuracy and
efficiency through balanced scaling of the model’s depth, breadth, and resolution is the aim
of EfficientNet. The design presents a fixed-ratio compound scaling technique that scales
all three dimensions of depth, breadth, and resolution consistently.

3.2.10. Vision Transformer (ViT)

This architecture adopts the Transformer’s encoder component, revolutionizing im-
age processing by segmenting the image into patches of a specified size like 16 × 16 or
32 × 32 dimensions [60,61]. This patch-based method enhances training with smaller
patches. After flattening, the patches are fed into the network. Unlike traditional neural
networks, the model lacks positional information about the sequence of samples. To ad-
dress this, the encoder incorporates trainable positional fixed vectors, eliminating the need
for hard-coded positions.

3.3. Performance Evaluation

Some of the most important performance measures frequently used are accuracy,
precision, recall, and the so-called F1 score. To describe these measures, let us denote by
TP, TN, FP, and FN the number of true positives, true negatives, false positives, and false
negatives, respectively. Here, TPs are instances where the model accurately predicted the
presence of the positive class. TNs are instances where the model accurately predicted
the absence of the negative class. FPs are instances where the model predicted a positive
outcome when it ought to have been negative. FNs are instances where the model predicted
a negative outcome when it ought to have been positive. The performance measures are
defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 =
2 · Precision · Recall
Precision + Recall

. (11)

4. Method

This paper proposes a comprehensive framework for brain tumor classification while
integrating the model’s explainability. This approach comprises two phases: phase (a) for
classification and phase (b) for explainability, as illustrated in Figure 1.
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Phase (a): This phase integrates a CNN model with TL for the classification of brain
tumor types based on MRI data. In this approach, the acquired features of a pre-trained
CNN model serve as an initial foundation, proving particularly advantageous in scenarios
involving sparsely labeled data. The data are fed into a CNN, which subsequently processes
the data through convolutional layers to capture intricate patterns and spatial hierarchies
within the MRI images. Following this, the pooling layer is employed to down-sample
and reduce the feature space, optimizing computational efficiency. Progressing along the
activation path, the dense layer plays a pivotal role in transforming high-level features
for effective classification. Finally, the model makes decisions about tumor types based
on the combination of these learned features. When the decision is made, a medical
expert becomes curious and seeks to understand how the model makes decisions based on
their expertise.

Phase (b): This phase uses explainability techniques, including Grad-CAM, Grad-
CAM++, IG, and Saliency Mapping. The explanation aims to shed light on how the
CNN model arrives at its classifications, providing valuable insights to the medical expert.
Grad-CAM and Grad-CAM++ offer the visualization of crucial regions in the MRI images
that contribute to the model’s decisions. IG provides a comprehensive understanding of
feature importance by perturbing input features, while Saliency Mapping highlights salient
features influencing the classification. Together, these explainability techniques bridge
the gap between the model’s predictions and human interpretability, fostering trust and
comprehension in the application of DL models to medical imaging. After the model is
explained, the focus shifts smoothly to the part where medical experts take over and make
sense of it. The explained visualizations and insights provided by techniques like Grad-
CAM, Grad-CAM++, IG, and Saliency Mapping serve as a bridge between the complex
nature of DL classifications and the expertise of medical experts.

Figure 1. Comprehensive framework for brain tumor classification that integrates classification
and model explainability. Phase (a) involves integrating a Convolutional Neural Network (CNN)
model with Transfer Learning (TL) for brain tumor classification based on MRI data. Pre-trained
CNN features form the foundation, beneficial for scenarios with limited labeled data. Data undergo
convolutional layers to capture intricate patterns and spatial hierarchies, followed by pooling for
feature space reduction. Dense layers transform features for classification. Phase (b) employs explain-
ability techniques (e.g., Grad-CAM, Grad-CAM++, IG, Saliency Mapping) to elucidate the CNN’s
decision-making process, aiding medical expert understanding. These techniques visualize crucial
regions in MRI images, highlight feature importance, and bridge the gap between DL predictions
and human interpretability, fostering trust in medical applications.
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5. Results and Discussion

In this section, we present the outcomes of our study, offering a comprehensive
overview of the key findings and their interpretation.

5.1. Dataset

For easy access and reference, the dataset used in this study is currently available on
Kaggle [62]. This brain tumor dataset comprises 3264 2D slices of T1-weighted contrast-
enhanced images, encompassing three distinct types of brain tumors—glioma, meningioma,
and pituitary tumors—along with images of a healthy brain. We allocated 90% of the
dataset for training and validation, reserving the remaining 10% for testing. We applied
various data augmentation techniques to further enrich the training and validation subsets.
The augmented subsets were subdivided into 90% for training and 10% for validation.
The original images, initially sized at 299 × 299, were resized to 150 × 150 to enhance
computational efficiency and facilitate model training. Figure 2 visually presents samples
from each of the four classes within the dataset, and Figure 3 illustrates the proportion of
each of the four classes in the dataset.

Gliomas are tumors derived from glial cells and can manifest as either benign or
malignant. Among them, glioblastoma multiforme stands out as a particularly aggressive
variant, posing significant challenges in terms of therapeutic intervention [3]. Pituitary
tumors arise in the pituitary gland; these tumors can disrupt hormonal balance. They
may present as growths that secrete hormones or as non-functioning growths. Common
sub-types include prolactinomas and growth-hormone-secreting tumors, each with its
distinct clinical implications. Meningiomas are generally benign, slow-growing tumors
originating from the meninges. The symptoms associated with meningiomas vary based
on the size and location of the tumor, making their clinical presentation diverse and often
dependent on individual cases [3].

Figure 2. Sample of each image in the dataset. A glioma tumor image typically exhibits abnormal
growth in the brain, indicating potential malignancy. No tumor images represent a healthy state
without any abnormal growth or lesions. Meningioma tumor images showcase tumors arising from
the meninges, the protective layers around the brain, and the spinal cord. Pituitary tumor images
depict tumors in the pituitary gland, influencing hormone regulation and potentially affecting various
bodily functions.
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Figure 3. Brain tumor distribution. This pie chart effectively visualizes the relative proportions of
different brain tumor types, offering a clear and concise representation of the distribution within
the studied sample. The dataset comprises 926 MRI images of glioma tumors, 500 images with no
tumors, 901 images featuring pituitary tumors, and 937 images showing meningioma tumors.

5.2. Training, Regularization, and Testing

As discussed in Section 5.1, 90% of the dataset was reserved for training and validation.
This 90 % dataset was then augmented and shuffled to ensure randomness before splitting
into 90% for training and 10% for validation. The hyperparameters, such as the number of
layers, filter sizes, and dropout rates, were optimized to enhance the model’s predictive
capabilities. This involved a systematic exploration of different hyperparameter combina-
tions using Grid Search. It took several days to run the Grid Search for hyperparameter
tuning. Throughout this process, we explored various combinations of hyperparameters,
such as learning rates ranging from 0.001 to 0.1, batch sizes from 16 to 32, epochs from 10
to 150, as well as filter sizes and the number of filters. After completing the search, the
best combination of hyperparameters was found to be a learning rate of 0.001, a batch size
of 32, and 10 epochs. We used the categorical cross-entropy as a loss function with the
Adam optimizer. The details of these hyperparameters are provided in Table 1. Figure 4
depicts the training and validation losses, as well as the training and validation accuracies
for the top-performing models. It is evident from this figure that the models did not exhibit
further learning beyond epoch 10, as indicated by the convergence of the training and
validation losses. Hence, we preferred to stop training at epoch 10. The testing phase
aimed to evaluate the trained model’s generalization to new, unseen data. The 10% test
dataset as discussed in Section 5.1, consisting of 327 images, was used for this purpose.
Metrics such as accuracy, precision, recall, and the so-called F1 score were computed to
assess the model’s performance. The model training and hyperparameter tuning of our
pre-trained models demanded substantial computational resources, and the efficiency of
the process hinged on the specifications of our Dell computer, featuring an Intel Core i7
processor. The use of a powerful GPU, specifically the P100 model, played a pivotal role in
accelerating the training speed. With 32 GB of system RAM, our system efficiently handled
the computational load, facilitated by the Kaggle kernel environment. The implementation
was carried out in Python version 3.9.7 and TensorFlow version 2.12.0.
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Table 1. Training hyperparameters.

Hyperparameter Setting

Batch size 32
Learning rate 0.001
Epochs 10
Training and validation split 90%
Test split 10%
Optimizer Adam
Input size 150 × 150 pixels
Loss function Categorical cross-entropy

Figure 4. EfficientNetB0, DenseNet121, and Xception, during training and validation. The plots
illustrate the training and validation loss, as well as the training and validation accuracy over
multiple epochs.

5.3. Classification Results

The detailed training outcomes are presented in Table 2 and visually represented in
Figure 5. Moving on to the test results, a summary is provided in Table 3, and Figure 6
visually highlights the superior performance of the best model.
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This section also undertakes a thorough analysis and interpretation of the confusion
matrix derived from the classification. A detailed examination follows, shedding light on
the interpretability results. Specifically, results for adaptive path-based techniques, such as
Grad-CAM, Grad-CAM++, IG, and Saliency Mapping, are discussed in depth.

The training outcomes, as detailed in Table 2, offer insights into the model’s ability
to learn from the training data. High training accuracy and low training loss often signify
successful training, yet these metrics may not necessarily ensure performance on the
test data. Among the models investigated in this study, DenseNet121, EfficientNetB0,
GoogLeNet, Inception V3, ResNet50, and Xception stood out with an acceptable training
accuracy, ranging from 99.86% to 100%. These high accuracy scores indicate that these
models have effectively learned the statistical regularities present in the training data.
Furthermore, the associated training loss values were remarkably low, showcasing the
models’ efficiency in minimizing errors during the training phase. It is imperative to note
that achieving high training accuracy does not necessarily guarantee superior performance
on unseen datasets, emphasizing the importance of the comprehensive evaluation of the
test data for a more robust assessment of model generalization.

Table 2. Training results.

Model Name Parameters Training Accuracy Loss

AlexNet 61.9 M 0.8763 0.3233
DenseNet121 8.1 M 0.9986 0.0057
EfficientNetB0 5.3 M 0.9991 0.0042
GoogLeNet 11.2 M 0.9997 0.0027
Inception V3 23.9 M 0.9989 0.0084
ResNet50 25.6 M 0.9991 0.0044
VGG16 138.4 M 0.8698 0.4011
VGG19 143.7 M 0.8570 0.3953
Vision Transformer 86 M 0.7484 0.5115
Xception 22.9 M 1.0000 0.0021

In contrast, models with notably lower training accuracy, spanning from 74.84% to
87.63%, such as AlexNet, VGG16, VGG19, and Vision Transformer, while still demon-
strating commendable performance on the training data, exhibited comparatively higher
training loss values. This suggests a slightly higher level of modeling error during the
learning process for these models. The inferior performance of VGG16, VGG19, ViT Trans-
former, and AlexNet may be due to a combination of huge parameter counts and excessive
model complexity, which may not be adequately aligned with the task’s features. To in-
crease the generalization capacity of these models, regularization strategies like dropout or
batch normalization may need to be further refined or optimized, as well as further data
augmentation.

The classification results, as detailed in Table 3, provide valuable insights into the
model’s capability to classify the test data; it became evident that EfficientNetB0 emerged
as the superior model among all those considered in this study. Upon closer examination
of the results, it was apparent that some of the models may not be suited for this specific
task, with some requiring more computational resources due to higher parameter counts,
as observed in VGG16 and VGG19.

Figure 6 compares the 10 deep learning models used in this study, highlighting
each model’s performance across key criteria such as accuracy, precision, recall, and F1
score percentages. This graphical representation offers a concise summary of these models’
effectiveness in classifying brain tumors from MRI images, enabling a quick and informative
comparison. EfficientNetB0, exhibiting the best performance, showed great promise and
warrants further consideration.
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Figure 5. Training accuracy and loss are the two main keys that are shown in this figure, which shows
the training outcomes of several models. A distinct DL model is represented by each bar in the plot,
and the height of the bar indicates the model’s training accuracy. Additionally, the loss values for
each model are displayed as a line plot superimposed on the same graph.

Table 3. Test dataset classification results where various metrics are considered for each model.

Model Name Accuracy % Precision % Recall % F1 Score %

AlexNet 78 80 77 77
DenseNet121 97 97 97 97
EfficientNetB0 98 98 98 98
GoogLeNet 91 93 92 92
Inception V3 96 97 96 96
ResNet50 95 96 96 96
VGG16 85 85 86 85
VGG19 85 85 85 85
ViT Transformer 70 72 72 70
Xception 96 97 96 96

Figure 6. Visualizing the comparison of different DL models to provide a clear overview of their
performance. The main performance indicators used to assess the effectiveness of various models are
highlighted in the legend. The top model is EfficientNetB0 due to its excellent results in accuracy,
precision, recall, and F1 score, which demonstrate its ability to provide well-balanced and accurate
predictions on the provided test dataset.
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Figure 7 displays the confusion matrix for the EfficientNetB0 model. The diagonal
elements represent samples that were accurately predicted. Out of the total of 327 samples,
321 were predicted correctly, resulting in an overall accuracy of 98%. The element in
row 1 and column 2, a value of 2, indicates that EfficientNetB0 incorrectly learned the
classification boundary between classes 1 and 2. This implies that the model confused data
initially belonging to class 2 with class 1. Conversely, the element in row 4 and column 1, a
value of 0, signifies that the classification boundary between classes 1 and 4 was correctly
learned by EfficientNetB0, and the model did not confuse data initially belonging to class 4
with class 1.

Figure 7. EfficientNetB0 confusion matrix. The matrix systematically breaks down the model’s pre-
dictions, highlighting instances of true positives (correctly identified cases), true negatives (correctly
rejected cases), false positives (incorrectly identified cases), and false negatives (missed cases) for
each tumor class.

For the model DenseNet121 in Figure 8, the confusion matrix shows that, out of the
total of 327 samples, 320 were accurately predicted, resulting in an overall accuracy of 97%.
The value 3 in row 1 and column 2 indicates that the classification boundary between classes
1 and 2 was incorrectly learned by DenseNet121, suggesting that the model confused data
initially belonging to class 2 with class 1. Similarly, the presence of 0 in row 2 and column 1
implies that the classification boundary between classes 2 and 1 was correctly learned by
DenseNet121, and the model did not confuse data initially belonging to class 1 with class 2.

Figure 8. DenseNet121 confusion matrix.
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Figure 9 depicts the confusion matrix for the model Xception. Out of the total of
327 samples, 315 were accurately predicted, resulting in an overall accuracy of 96%. The
value of 1 in row 1 and column 2 indicates that the classification boundary between classes
1 and 2 was incorrectly learned by Xception, suggesting that the model confused data
initially belonging to class 2 with class 1. Additionally, the presence of 0 in row 1 and
column 4 signifies that the classification boundary between classes 1 and 4 was correctly
learned by Xception, and the model did not confuse data initially belonging to class 4 with
class 1.

Figure 9. Xception confusion matrix.

5.4. Interpretability Results

In Figures 10–12, we present a detailed look into the explainability results of our
top-performing models: EfficientNetB0, DenseNet121, and Xception. Figure 10 provides
insights into the interpretability of EfficientNetB0, highlighting crucial image regions using
techniques such as Grad-CAM, Grad-CAM++, IGs, and Saliency Mapping. Moving to
Figure 11, we explore the explainability of DenseNet121, our second-best model, uncovering
the significant features influencing its predictions. Figure 12 reveals the interpretability
degrees of Xception, our third-best model, showcasing the impact of various image regions
on the classification decisions. These visualizations offer a transparent view into the
decision-making processes of our models, facilitating understanding and trust.

Based on our obtained results, both the Grad-CAM and Grad-CAM++ methods demon-
strated similar outcomes, offering visual explanations for the decision-making processes
of EfficientNetB0, DenseNet121, and Xception in predicting brain tumors. These methods
accurately pinpointed the exact location of the tumor, and the visualizations generated by
both approaches closely aligned, suggesting a consistent portrayal of the crucial regions
or features influencing the model’s predictions. However, it is essential to note that IG
faced challenges in precisely pinpointing the tumor’s location, and Saliency Mapping
exhibited some noise. Despite these challenges, both Grad-CAM and Grad-CAM++ consis-
tently provided excellent visual explanations for the decision processes of EfficientNetB0,
DenseNet121, and Xception, significantly enhancing our understanding of their predictive
mechanisms.

In the case of “no tumor”, the presence of a red cloud color, though less intense and
more centralized compared to images with tumors, indicates that features associated with
the absence of tumors are faint and centered in the image. This insight provides clarity on
how the deep learning model interprets images without tumors.
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Figure 10. EfficientNetB0 explainability: We used a variety of explainability approaches, such as
Grad-CAM, Grad-CAM++, IG, and Saliency Mapping, in our evaluation of EfficientNetB0 for brain
tumor classification. These techniques played an important role in assisting in identifying the specific
regions in MRI scan images that corresponded to the tumor types such as glioma, meningioma, no
tumor, and pituitary. By using these techniques, we were able to determine the critical locations for
the categorization of each tumor type and obtain important insights into EfficientNetB0’s decision-
making process.

Figure 11. DenseNet121 explainability: We used a variety of explainability approaches, such as
Grad-CAM, Grad-CAM++, IG, and Saliency Mapping, in our evaluation of DenseNet121 for brain
tumor classification. These techniques played an important role in assisting in identifying the specific
regions in MRI scan images that corresponded to the tumor types such as glioma, meningioma, no
tumor, and pituitary. By using these techniques, we were able to determine the critical locations for the
categorization of each tumor type and obtain important insights into DenseNet121’s decision-making
process.
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Figure 12. Xception explainability: We used a variety of explainability approaches, such as Grad-CAM,
Grad-CAM++, IG, and Saliency Mapping, in our evaluation of Xception for brain tumor classification.
These techniques played an important role in assisting in identifying the specific regions in MRI scan
images that corresponded to the tumor types such as glioma, meningioma, no tumor, and pituitary.
By using these techniques, we were able to determine the critical locations for the categorization of
each tumor type and obtain important insights into Xception’s decision-making process.

5.5. Discussion

The findings of evaluating the performance of different DL models provide intriguing
new information on the relationship between total accuracy and model complexity, which
is reflected by the number of parameters shown in Table 2. EfficientNetB0, DenseNet121,
and Xception showed impressive accuracy values of 97-98% with much fewer parameters,
indicating how well they use information for the tasks at hand. On the other hand, the
accuracy was about 85% for VGG16 and VGG19, which have importantly greater parameter
counts of more than 138 million. There is a clear exchange between model accuracy and
complexity, highlighting the necessity of striking a balance. Interestingly, models with a
reasonable amount of parameters, such as AlexNet, ResNet50, GoogLeNet, and Xception,
achieved competitive accuracy in the 80-96% range, striking a medium ground. Even with
a low number of parameters, the ViT Transformer showed greater accuracy variability,
highlighting the impact of the architectural design on model performance.

Grad-CAM, Grad-CAM++, IG, and Saliency Mapping showed important areas that
matched the glioma, meningioma, and pituitary classifications. What stood out was
the remarkable similarity in the outcomes between the Grad-CAM and Grad-CAM++
methods, precisely pinpointing tumor locations. This consistency paints a clear picture
of the essential regions influencing predictions across all three models; see Figures 10–12.
These visualizations played a crucial role, not just in making our models transparent, but
also in fostering a deeper understanding and instilling trust in how the decisions were
made. Our contributions are outlined as follows:

• Model evaluation: The study comprehensively assesses various DL architectures,
providing valuable insights into which models are most effective for brain tumor
classification. This evaluation is crucial for guiding the selection of appropriate
models in real-world medical imaging applications.

• Brain tumor diagnosis: Diagnosing a brain tumor is a challenging process that requires
the correct and rapid examination of MRI scan images. The study’s findings directly
contribute to enhancing the accuracy and reliability of DL models for identifying brain
tumors, focusing on this specific medical area. This is critical for early diagnosis and
treatment planning for patients.
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• Model interpretability: The incorporation of explainability approaches, such as Grad-
CAM, Grad-CAM++, IG, and Saliency Mapping, represents a significant scientific
contribution. By using these methods, the study increases the interpretability of DL
models, shedding light on the decision-making processes and providing valuable
intuition into how these models arrive at their classifications, particularly in the
context of brain tumor diagnosis.

6. Conclusions

In essence, the objective of this investigation was to assess the proficiency of diverse
DL models in categorizing brain tumors. Following a series of comprehensive experiments
and detailed analysis, it became apparent that these models exhibited varying degrees of
competence for the assigned task. Models such as DenseNet121, EfficientNetB0, ResNet50
GoogLeNet, and Inception V3 distinguished themselves as top performers with almost
flawless levels of accuracy, precision, recall, and F1 scores. For detailed classification
results, refer to Table 3. Conversely, AlexNet and the innovative ViT Transformer, a
recent contender in the field, displayed potential, but fell behind in terms of accuracy and
achieving an optimal equilibrium between precision and recall. This research accentuates
the significance of carefully selecting the most suitable DL model that aligns with the
specific requirements of the application. It further underscores how advancements in
neural network architectures, exemplified by the ViT Transformer, persist in shaping the
field of DL and computer vision, presenting captivating prospects for future advancements.

In summary, both Grad-CAM and Grad-CAM++ consistently provided a more accept-
able insight into model interpretability compared to other methods tested in our study. Put
simply, these methods precisely revealed the location of tumors, significantly enhancing our
understanding of how DL models make decisions in classifying brain tumors. Therefore,
it can be concluded that Grad-CAM’s and Grad-CAM++’s heatmaps have improved our
interpretative accuracy, playing a pivotal role in refining our understanding of DL model
decision-making processes. These methodologies have been instrumental in enhancing the
precision of our interpretations. This study contributes to selecting the correct DL model
for brain tumor classification tasks while shedding light on ongoing challenges in making
these models transparent and interpretable. However, further extensive work could be
carried out to compare correlation measures and feature localization precision among the
different studied models.
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Abbreviation Expansion
CNN Convolutional Neural Network
CT Computed Tomography
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DL Deep Learning
DeconvNET Deconvolution NETwork
DeepLIFT Deep Learning Important Features
F1 Score Harmonic Precision–Recall Mean
Grad-CAM Gradient-weighted Class Activation Mapping
GBP Guided Back Propagation
LRP Layerwise Relevance Propagation
MRI Magnetic Resonance Imaging
ReLU Rectified Linear Unit
SHAP SHapley Additive exPlanation
TL Transfer Learning
VGG Visual Geometry Group
XAI Explainable Artificial Intelligence
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