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Abstract: Introduction: Type 2 diabetes mellitus is a major global health concern, but interpreting
machine learning models for diagnosis remains challenging. This study investigates combining
association rule mining with advanced natural language processing to improve both diagnostic
accuracy and interpretability. This novel approach has not been explored before in using pretrained
transformers for diabetes classification on tabular data. Methods: The study used the Pima Indi-
ans Diabetes dataset to investigate Type 2 diabetes mellitus. Python and Jupyter Notebook were
employed for analysis, with the NiaARM framework for association rule mining. LightGBM and
the dalex package were used for performance comparison and feature importance analysis, respec-
tively. SHAP was used for local interpretability. OpenAI GPT version 3.5 was utilized for outcome
prediction and interpretation. The source code is available on GitHub. Results: NiaARM generated
350 rules to predict diabetes. LightGBM performed better than the GPT-based model. A comparison
of GPT and NiaARM rules showed disparities, prompting a similarity score analysis. LightGBM’s
decision making leaned heavily on glucose, age, and BMI, as highlighted in feature importance rank-
ings. Beeswarm plots demonstrated how feature values correlate with their influence on diagnosis
outcomes. Discussion: Combining association rule mining with GPT for Type 2 diabetes mellitus
classification yields limited effectiveness. Enhancements like preprocessing and hyperparameter
tuning are required. Interpretation challenges and GPT’s dependency on provided rules indicate
the necessity for prompt engineering and similarity score methods. Variations in feature importance
rankings underscore the complexity of T2DM. Concerns regarding GPT’s reliability emphasize the
importance of iterative approaches for improving prediction accuracy.

Keywords: GPT; association rule mining; classification; interpretability; diagnostics

1. Introduction

Type 2 diabetes mellitus (T2DM), also known as non-insulin-dependent diabetes, is
a prevalent and serious health condition, causing significant illness and death. In 2021,
it was reported that around 537 million adults live with diabetes. Projections suggest
that the prevalence of diabetes will continue to grow, reaching an estimated 643 million
people by 2030 and 783 million by 2045 [1]. It can lead to significant complications such
as cardiovascular problems, kidney dysfunction, vision impairment, or even death. Every
five seconds, a life is lost due to diabetes. Only in 2021, approximately 6.7 million deaths
were caused by diabetes [1]. Early detection through diagnostic methods allows for timely
intervention and healthcare, potentially mitigating or postponing these negative outcomes.

Precision medicine, which uses patient-specific data in conjunction with AI to develop
personalized treatment recommendations for hypertensive patients with T2DM based on
their health characteristics, has the potential to reduce healthcare costs, alleviate patient
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stress, and enhance overall quality of life [2]. Advancements in diagnostic research have
evolved to the point where AI and portable handheld devices, like smartphone-based
retinal cameras, are used for the detection of diabetic retinopathy, a diabetes-related eye
disease [3]. Furthermore, in a recent study, Tao et al. explored the possibility of employing
continuous glucose monitoring profiles and a deep learning nomogram as a tool to predict
diabetic retinopathy in individuals with T2DM [4]. Additionally, the rise of large language
models (LLMs), such as generative pretrained transformer (GPT), has introduced endless
opportunities, since they are extensively trained on vast numbers of data.

Large language models (LLMs), such as GPT, have the capability to revolutionize
various domains, from summarizing patient data to patient management and all the way
to assisting in making a diagnosis [5]. Numerous studies have taken on the challenge of
diagnosing T2DM in recent years with various models such as glmnet, lightGBM, random
forest, XGBoost, logistic regression, support vector machine, naive Bayes, soft voting,
different decision trees, K-means clustering, association rule mining, and others [6–8].
None of these studies utilized the association rule mining approach in conjunction with
GPT to make predictions.

Association rule mining is an approach to finding patterns between variables in large
datasets, and its result is the formation of several IF-THEN rules. These rules, by themselves,
do not make any predictions and yet have to be summarized. Recognizing the challenge
of interpretability and prediction based on complex association rules, GPT possesses the
capability of processing vast amounts of rules, interpreting, and recognizing patterns.
Lacking consciousness or awareness, GPT relies solely on public data and provided rules,
integrating information to simplify the process of making straightforward classifications.
Concurrently, it effortlessly provides the rules that form the basis of decision making, thus
clarifying the particular rules utilized to arrive at a decision.

Logistic regression and XGBoost are classification models that rely on tabular data
for prediction, whereas GPT is designed to work with textual data. The given text can
be processed and stored in a dictionary format that resembles tabular data. When used
together with association rules, we believe it has the potential to achieve high performance.

This manuscript aims to explore the synergies between association rule mining and
state-of-the-art LLPs, particularly GPT, in improving the classification and interpretability of
T2DM diagnosis. Through a proof-of-concept study on a prominent diabetes classification
dataset, we seek to demonstrate how this integrated approach can enhance diagnostic
accuracy and provide actionable insights for healthcare practitioners.

In this proof-of-concept study, we explore the interactions between association rule
mining and state-of-the-art NLP techniques to enhance the classification and interpretability
of the results demonstrated on a well-known diabetes classification dataset.

To date, we have not encountered any studies conducting GPT-based diabetes classifi-
cations on textual data based on the association rules, let alone examining the interpretation
of GPT.

2. Materials and Methods
2.1. Dataset and Features

This study was conducted on the Pima Indians Diabetes [9] dataset. The dataset
comprises 768 samples, eight predictors, and one outcome class. The following attributes
can be found in the dataset: number of times pregnant (Pregnancies), 2 h plasma glucose
concentration (Glucose), diastolic blood pressure [mmHg] (BloodPressure), triceps skin
fold thickness [mm] (SkinThickness), 2 h serum insulin level [mu U/mL] (Insulin), body
mass index (BMI), diabetes pedigree function (DiabetesPedigreeFunction), age [years], and
the outcome as diabetic or non-diabetic status (see Table 1).
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Table 1. Feature descriptions.

Features Meaning

Pregnancies Number of times pregnant
Glucose Plasma glucose concentration (2 h in an oral glucose tolerance test)

BloodPressure Diastolic blood pressure (mmHg)
SkinThickness Triceps skin fold thickness (mm)

Insulin 2 h serum insulin (mu U/mL)
BMI Body mass index (weight in kg/(height in m)2)

DiabetesPedigreeFunction Diabetes pedigree function
Age Age (years)

Outcome Diabetes

The outcome class is slightly imbalanced, with 35% of patients diagnosed with T2DM.
The descriptive statistics for all predictors according to the outcome are displayed in Table 2.

Table 2. Descriptive statistics of the dataset.

Features Non-diabetic—0 1 Diabetic—1 1 p-Value 2

Pregnancies 3.3 (±3.0) 4.9 (±3.7) <0.0001
Glucose 110.0 (±26.1) 141.3 (±31.9) <0.0001

BloodPressure 68.2 (±18.1) 70.8 (±21.5) <0.0001
SkinThickness 19.7 (±14.9) 22.2 (±17.7) 0.013

Insulin 68.8 (±98.9) 100.3 (±138.7) 0.066
BMI 30.3 (±7.7) 35.1 (±7.3) <0.0001

DiabetesPedigreeFunction 0.4 (±0.3) 0.6 (±0.4) <0.0001
Age 31.2 (±11.7) 37.1 (±11.0) <0.0001

1 mean (±SD). 2 Wilcoxon rank sum test for continuous values.

2.2. Research Tools

We conducted all analyses in the programming language Python (version 3.12.1), using
a Jupyter Notebook. A minimalistic framework for Numerical Association Rule Mining
(NiaARM) [10] was used to extract the association rules. NiaARM was used since it enables
the management of numerical attributes without the need for discretization [11,12], unlike
in other traditional approaches [13,14], where discretization results in the loss of information
and its bias can cause inaccuracies in the outcomes [15]. LightGBM [16] was employed
as one of the advanced machine learning models for performance comparison against
GPT’s decisions. It is based on gradient boosting machines with gradient-based one-side
sampling (GOSS) and exclusive feature bundling (EFB) which reduces the computational
cost and improves the efficiency of the algorithm. We utilized the dalex package in order
to obtain feature importance on the level of local and global interpretability [17]. Shapley
additive explanations (SHAP) denote a local interpretability technique utilized to offer
insights into how models make decisions, with an emphasis on comprehending decisions
on the individual level [18].

We conducted the research on a personal computer with the following specifications:
AMD Ryzen 9 3900X 12-core processor 3.80 GHz with 64 GB of RAM.

OpenAI GPT version 3.5, gpt-3.5-turbo-16k-0613, was used to predict the outcome
and obtain the interpretation of results. It is limited to 180,000 tokens per minute and 3500
requests per minute using the application programming interface (API) [19]. It is important
to note that GPT was not fine-tuned, but only instructed to make decisions based on the
provided set of association rules.

The source code is provided on GitHub: https://github.com/lkopitar/GenAI_NiaARM/
(accessed on 20 February 2024).

https://github.com/lkopitar/GenAI_NiaARM/
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2.3. Study Design

We aim to enhance the capabilities of GPT by incorporating association rules to im-
prove classification metrics (F1-score, AUC, specificity, sensitivity). While acknowledging
the irrelevance of accuracy due to class imbalance, we will include it for comparison with
similar problems in other studies.

The dataset did not undergo any specific preprocessing. The dataset was stratified
into a training and test set in a ratio of 80/20, resulting in 614 training samples. Since we
dealt with an imbalanced dataset (0.65/0.35), where the minority class represents diabetic
patients (diabetic status (0)), we oversampled the training set with the oversampling method
SMOTE [8,20]. Consequently, oversampling resulted in 800 training samples. The whole
preprocessing, rule generation, and GPT testing process is displayed with a pseudocode in
Algorithm 1.

Algorithm 1: Pseudocode of the whole process.

#Preprocessing :
Dtrain, Dtest ← DataStratification(data, 80%, 20%)
Dbalanced_train ← SMOTE(Dtrain)
#Rulegeneration
while TRUE do

Resrules, Resper f , Ratiooutcome_0, Covoutcomes ← NULL
Resrules, Resper f ← NiaARM(Dbalanced_train)

Ratiooutcome_0, _← GetOutcomeRatio(Resrules)
Covoutcomes ← GetOutcomesCoverage(Resrules)

if 400 ≥ len(Resrules) ∧ (0.3 ≤ Ratiooutcome_0 ≤ 0.7) ∧ Covoutcomes ≥ 1
10 then

if Resper f [ f itness, support, con f idence] ≥ ALL(0.7) then
break

end
end

end
#GPTtesting
Outcome_RuleList_Map← newdata f rame()
for idx ← 1, 2, . . . , len(Dtest) do

test_sample← toDictionary( Dtest[idx])
test_outcomes, GPT_rulesets← [ ]
for n← 1, 2, 3, 4, 5 do

Predoutcome, Predruleset ← GPT(test_sample, Resrules)
test_outcomes, GPT_rulesets← AppendToLists(Predoutcome, Predruleset)

end
outcome, rulelist← extractionMajorityVoting(test_outcomes, GPT_rulesets)
Outcome_RuleList_Map← addRow(outcome, rulelist)

end
return Outcome_RuleList_Map

After the preprocessing step, we performed association rule mining on the training
set to obtain the most relevant rules, aiming to comprehensively represent and cover the
training set.

We utilized the NiaARM framework (method NiaARM()) to conduct association rule
mining. NiaARM yields a rule list (variable Res_rules), a set of rules composed of an-
tecedents and consequents. It accepts parameters such as optimization algorithm, metrics,
and maximum number of iterations or function evaluations. Differential evolution (DE) [21]
was used as an optimization algorithm with the following default parameter values: pop-
ulation size (value: 50), scaling factor (value: 0.5), and crossover probability (value: 0.9).
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Given that these are default parameters, they serve as a solid starting point. For this
research, we did not plan to conduct parameter optimization due to limited resources.
Support and confidence were used as evaluation metrics in this step.

We established the requirement that a rule list should not exceed 400 rules, primar-
ily considering the limitations of GPT. Additional criteria were implemented to prevent
extreme imbalance in the representation of outcome classes by the following rules:

• The proportion of an outcome class should always be between 0.3 and 0.7, ensuring
that rule representation is not highly imbalanced.

• The number of rules containing the outcome must be at least 1/10 of the total gener-
ated rules.

As a final criterion, we selected the first set of rules that exceeded the average perfor-
mance of more than 0.7 for all of the following metrics: average fitness, average support,
and average confidence.

In the subsequent step, the provided prompt was input into GPT five times. The prompt
is comprised of three messages:

• Message 1: You will be provided with a set of rules presented in a RuleList format,
each containing an antecedent and a consequent. For example, a rule might be given as
[A([19, 67])]⇒ [B([59, 98]), C([2.56, 8.3])], signifying that if ‘A’ falls within the range
of 19 and 67, it implies that ‘B’ must fall within the range of 59 and 98, and ‘C’ must
fall within the range of 2.56 and 8.3. The rule list is as follows:

• Message 2: The rule list is provided as a list of rules.
• Message 3: For the test sample: < TEST_SAMPLE > determine the ‘Outcome’ value.

Respond with an answer in the following format ‘Outcome = x’ where x can be either ‘0’
or ‘1’. Additionally, provide a set of rules that significantly contributed to the obtained
result in highest frequencies. Provide them in the following format ‘Rules = [Rule1;
Rule2; Rule3; Rule4]’. Rules should be written as an [antecedent]⇒ [consequent] and
should be separated by a semicolon.

The test sample (< TEST_SAMPLE >) is provided in a dictionary format as follows:
{‘Pregnancies’: 2.0, ‘Glucose’: 56.0, ‘BloodPressure’: 56.0, ‘SkinThickness’: 28.0, ‘Insulin’:
45.0, ‘BMI’: 24.2, ‘DiabetesPedigreeFunction’: 0.332, ‘Age’: 22.0}.

For each test sample, GPT generated responses five times, providing predictions along
with a set of rules that contributed to the obtained result with the highest frequency. These
predictions and the associated set of rules for a particular test sample were temporarily
stored (method extractionMajorityVoting()). The set of rules for a particular test sample is
expected to be selected from the NiaARM pool of generated rules. Regarding predicted
values, there are instances where GPT may be uncertain and responds in a way that makes
it impossible to distinguish the predicted outcome value. This issue was addressed by
re-feeding the GPT with the same prompt until the appropriate prediction was obtained
(method GPT()). The final prediction was determined by applying the majority voting rule
to the five predictions (method extractionMajorityVoting()).

For example, GPT predicted the following outcomes [1, 1, 1, 0, 0] for the test sample ‘x’
with the corresponding sets of the most frequent rules [rule list 1, rule list 2, rule list 3, rule
list 4, rule list 5]. Therefore, the decision for sample ‘x’ indicates a diabetic status (value 1),
determined by the rules present in rule lists 1, 2, and 3, respectively.

The architecture of the proposed approach is presented in Figure 1.
In the next subsection, we present an example prompt with its corresponding response,

along with an accompanying explanation. The rule list is kept simplified.
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Figure 1. Architecture of the proposed approach.

2.4. Demonstration Example

Prompt: You will be provided with a set of rules presented in a RuleList format, each
containing an antecedent and a consequent. For example, a rule might be given as [A([19,
67])]⇒ [B([59, 98]), C([2.56, 8.3])], signifying that if ‘A’ falls within the range of 19 and 67,
it implies that ‘B’ must fall within the range of 59 and 98, and ‘C’ must fall within the range
of 2.56 and 8.3. The rule list is as follows: RuleList([[Insulin([79, 595]), BMI([10.81, 63.30]),
BloodPressure([0, 99])]⇒ [DiabetesPedigreeFunction([1.22, 2.08]), Outcome(1), Pregnancies([6,
17])], . . . [BloodPressure([73, 119])]⇒ [Insulin([0, 639]), Outcome(0), DiabetesPedigreeFunc-
tion([1.55, 2.42]), Pregnancies([0, 12])]]). For the test sample: {‘Pregnancies’: 2.0, ‘Glucose’:
56.0, ‘BloodPressure’: 56.0, ‘SkinThickness’: 28.0, ‘Insulin’: 45.0, ‘BMI’: 24.2, ‘DiabetesPedigree-
Function’: 0.332, ‘Age’: 22.0} determine the ’Outcome’ value. Respond with an answer in the
following format ‘Outcome = x’ where x can be either ‘0’ or ‘1’. Additionally, provide a set
of rules that significantly contributed to the obtained result. Provide them in the following
format ‘Rules = [Rule1; Rule2; Rule3; Rule4]’. Rules should be written as an [antecedent]
⇒ [consequent] and should be separated by a semicolon.

Response: ‘Outcome = 0. Rules = [[Insulin([0, 315])⇒ Pregnancy([2, 8]), Outcome(0)],
[BMI([5.33, 60.51])⇒ Pregnancy([2, 6])], [BloodPressure([83, 112])⇒ Glucose([95, 142]), Out-
come(0)], [BloodPressure([23, 59])⇒ Pregnancy([0, 2]), Outcome(1)], [BloodPressure([87, 122])
⇒ Glucose([95, 199]), Outcome(0)], [Insulin([0, 427]), BMI([8.15, 64.29])⇒ Outcome(0), Preg-
nancy([2, 12])], [Insulin([63, 518]), DiabetesPedigreeFunction([1.08, 2.08]), BloodPressure([11,
114]), BMI([19.46, 66.36]) ⇒ Outcome(1), Pregnancy([0, 17])], [BloodPressure([61, 85]) ⇒
Glucose([95, 197]), Outcome(0)], [BloodPressure([11, 24])⇒ Glucose([95, 148]), Outcome(0)],
[BMI([3.83, 58.95]) ⇒ Pregnancy([0, 2]), Outcome(1)], [BMI([2.54, 59.88]) ⇒ Pregnancy([0,
17]), Outcome(0)], [BloodPressure([0, 79])⇒ Glucose([95, 142]), Outcome(0)]]’.

Explanation: Outcome 0 and the provided set of rules are then extracted and stored in
the list of responses and rules (variables test_outcomes and GPT_rulesets in Algorithm 1).
The same prompt is run five times. Majority voting then determines the final prediction.
Only rules corresponding to the final prediction are kept in the pool. For instance, if GPT
predicts four times that the outcome is 0, and that becomes the final decision, four different
set of rules are stored in the pool for that prediction.
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In this demonstration example, a prediction yields an outcome of 0 with 12 rules being
important for the decision in favor of outcome 0. Assuming a similar number of rules will
be generated in the remaining three sets, this will bring up to 3 × 12 rules in favor of the
predicted outcome 0.

Real-world scenario: We consider the most frequently reported rules (see Table 3)
and the following patient:

• Gender: female.
• Age: 35.
• Insulin: 250 (mu U/mL).
• BMI: 21.5.
• BloodPressure: 100/70 mmHg.
• Glucose: 100 mg/dL.
• DiabetesPedigreeFunction: 0.2.
• Pregnancies: 2.

Table 3. Comparison of NiaARM and GPT-recognized rules with frequency values of at least 0.1.

Predicted NiaARM Rules GPT-Recognized Rules Similarity Frequency

0

[Insulin([0, 427]),
BMI([8.148, 64.294]),
BloodPressure([11, 114])]
=>
[Outcome(0),
Pregnancies([2, 12])]

[Insulin(0, 427),
BMI(8.148, 64.294),
BloodPressure(11, 114)]
=>
[Outcome(0),
Pregnancies(2, 12)]

0.965 0.012

0
[Insulin([281, 386])]
=>
[Outcome(0)]

Insulin(0, 744)]
=>
[Outcome(0)]

0.813 0.012

1
[Insulin([157, 209])]
=>
[Outcome(1)]

[Insulin(0, 846)]
=>
[Outcome(1)]

0.813 0.058

1

[Insulin([0, 601])]
=>
[BloodPressure([71, 76]),
Pregnancies([0, 7]),
Outcome(0),
DiabetesPedigreeFunction
([1.568, 2.42])]

[Insulin(0, 601)]
=>
[BloodPressure(71, 76),
Pregnancies(0, 7),
Outcome(0),
DiabetesPedigreeFunction
(1.568, 2.42)]

0.967 0.023

1

[Insulin([0, 427]),
BMI([8.148, 64.294]),
BloodPressure([11, 114])]
=>
[Outcome(0),
Pregnancies([2, 12])]

[Insulin(0, 427),
BMI(8.148, 64.294),
BloodPressure(11, 114)]
=>
[Outcome(0),
Pregnancies(2, 12)]

0.965 0.016

The rules dictate the following:

• Rule 1: [Insulin([0, 427]), BMI([8.148, 64.294]), BloodPressure([11, 114])] ⇒ [Out-
come(0), Pregnancies([2, 12])]. The patient’s insulin level (250 pg/mL) falls within the
range of the first rule, and the patient’s BMI (21.5) and blood pressure (100/70 mmHg)
also fall within the ranges specified in the rule. Therefore, we can apply this rule
to the patient. The rule predicts an outcome of 0 (non-diabetic) and a range of
2–12 pregnancies, which corresponds to the patient; even if the pregnancy level was
absent or none, it still would. Predicted: 0.

• Rule 2: [Insulin([281, 386])]⇒ [Outcome(0)]. The patient’s insulin level (250 pg/mL)
does not fall within the range of the second rule. Therefore, we cannot apply this rule
to the patient. Predicted: None.



Information 2024, 15, 162 8 of 17

• Rule 3: [Insulin([157, 209])]⇒ [Outcome(1)]. The patient’s insulin level (250 pg/mL)
falls outside the range of the third rule. Therefore, we cannot apply this rule to the
patient. Predicted: None.

• Rule 4: [Insulin([0, 601])]⇒ [BloodPressure([71, 76]), Pregnancies([0, 7]), Outcome(0),
DiabetesPedigreeFunction ([1.568, 2.42])]. The patient’s insulin level (250 pg/mL) falls
within the range of the fourth rule. Therefore, we can apply this rule to the patient.
Predicted: 0.

• Rule 5: [Insulin([0, 427]), BMI([8.148, 64.294]), BloodPressure([11, 114])] ⇒ [Out-
come(0), Pregnancies([2, 12])]. The patient’s insulin level, BMI, and blood pressure fall
within specified ranges of the fifth rule. Therefore, we can apply the rule. Predicted: 0.

Three rules were applicable for the given patient, all of which favored non-diabetic
status. This resulted in a score of [0, None, None, 0, 0], with a confidence of 1, calculated as
3/3. Naturally, this is relevant under the assumption that the prediction model achieves at
least good performance with an AUC higher than or equal to 80 [22].

3. Results
3.1. Niaarm Rules

The final rule list generated by NiaARM consisted of 350 rules, with an average
fitness of 0.81, average support of 0.72, and average confidence of 0.90. In total, 58 rules
included the outcome feature, with 36 rules having the outcome as a consequent and 22
as an antecedent. Among these 58 rules, both outcome classes were equally represented
at 50% (29 rules each). Outcome 1 was predominantly present as an antecedent (82%,
18 of 22 rules), whereas outcome 0 appeared in 69% of rules (25 of 36 rules) as one of
the consequents.

3.2. Model Performance

In terms of model performance, lightGBM (F1-score: 0.714, AUC: 0.780, specificity:
0.82, sensitivity: 0.741, accuracy: 0.792) performed better than the GPT association rules-
based model (F1-score: 0.656, AUC: 0.73, specificity: 0.7, sensitivity: 0.759, accuracy: 0.721)
across all five evaluation metrics.

3.3. GPT Predictions and Reported Rules

In total, GPT predicted a non-diabetic status (value 0) 349 times, while in 293 decisions,
GPT predicted a diabetic status (value 1). According to GPT, non-diabetic status was
determined with 2952 unique rules (out of 7514 rules reported in total) and diabetic status
with 1904 unique rules (out of 2663 rules reported in total).

Each test sample contributes to at least three and at most five sets of rules. In theory,
for all 154 test samples, we can obtain from 462 (=3 × 154) to 770 (=5 × 154) rule lists,
where each rule list can hold a different number of rules. Theoretically, the most dominant
scenario, where every prediction for a test sample was made in favor of a diabetic status,
would result in 380 unique rules (approximately 1904/5). Comparing the count of available
rules in NiaARM (350) with the reported 2952 unique rules for non-diabetic status and 1904
for diabetic status reveals a disparity.

Given the substantial variance between the rules reported by GPT and NiaARM,
we will restore rule interpretability by employing a similarity score method to compare
NiaARM rules with those reported by GPT. Results will be reported later.

Figure 2 displays the ten most frequently reported rules that contributed to the pre-
dicted non-diabetic status with the highest frequency according to GPT.
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Figure 2. Ten GPT-recognized rules that contributed to predicted non-diabetic status with the highest
frequency. Percentages in the circular pie chart represent the proportions among the ten most
impactful rules.

GPT identified two rules that have a higher frequency of contributing to predicting
non-diabetic status (see Figure 2 and in detail Table 3). Both were, on average, reported in
approximately 25% of decisions favoring non-diabetic status (92/349 and 90/349), covering
1.21% (92/7514 and 90/7514) of the rules reported as impactful (see Table 3). Among the
ten most impactful rules, these two rules constitute approximately 19% of the overall
contribution (see Figure 2). Both rules include insulin levels as an antecedent and non-
diabetic status as a consequent. However, one of them incorporates additional features as
antecedents (BMI, blood pressure), resulting in the prediction of non-diabetic status and
the number of pregnancies. Interestingly, the third most recognized rule does not even
consist of the outcome as a feature (see Table 3). Apart from that observation, we have
noticed that four other rules (4th, 6th, 7th, 10th) included only diabetic status (Outcome 1)
either as an antecedent or consequent (see Figure 2). These rules were as follows:

• ‘[Insulin(0, 400), BMI(9.709, 65.806), Outcome(1)]⇒ [Pregnancies(0, 6)]’.
• ‘[Insulin(0, 558)]⇒ [Outcome(1), DiabetesPedigreeFunction(1.255, 2.42), Pregnancies(2, 16)]’.
• ‘BloodPressure(23, 59), BMI(3.832, 58.949), Pregnancies(0, 2)]⇒ [Outcome(1)]’.
• ‘[Insulin(157, 209)]⇒[Outcome(1)]’.

Among the ten most impactful rules, the top three represent half (50.9%) of all gener-
ated rules that were reported by GPT (see Figure 2), which cover around 3.2% of all rules
being reported as impactful for predicting non-diabetic status throughout 349 predictions
(see Table 3; the third rule contributed 0.75% (56/7514)).

Regarding GPT-recognized rules that contributed to predicting diabetic status, Figure 3
displays the ten most frequently reported rules. Similar to the previous example, it should
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be noted that the percentages in the graph only represent the proportion among the ten
most impactful rules according to the GPT.

Figure 3. Ten GPT-recognized rules that contributed to predicted diabetic status with the highest
frequency. Percentages in the circular pie chart represent the proportions among the ten most
impactful rules.

It is evident that the most impactful reported rule dictated that all values fell within
the insulin level range [0, 846]. On the dataset level, the insulin levels range from 0 to
846 mu U/mL. This rule covers around 5.8% of rules reported as impactful for predicting
diabetic status throughout 293 predictions (see Table 3), meaning that this rule is reported
in more than every second prediction in favor of diabetic status (52.9 %). Among the ten
most impactful rules, this rule showed up to represent 38% (155/408) of decisions (see
Figure 3). On average, this rule is reported in slightly over one-third (38%) of all decisions
made in favor of non-diabetic status.

3.4. Computational Time Analysis

The process of searching for association rules with sufficient fitness, support, and cov-
erage is time-consuming. On average, it took 2.57 min (95% CI: 0.42–4.72) for a dataset of
size 800 × 9. The process of predicting and retrieving important rules for a single instance
takes approximately 3.23 s (±0.6), repeated five times, therefore around 15 s.
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3.5. Comparing and Mapping GPT-Reported Rules with NiaARM-Generated Rules

Comparing the number of rules provided by NiaARM (350 rules) with rules reported
and recognized by GPT (4856 unique rules), it was apparent that GPT modifies and possibly
generates new rules. That led us to an interesting challenge of comparing the rules. The ex-
act comparison of rules returned zero matches. Then, we decided to compare exact matches
between antecedents and consequents (for example, [A(0, 1), B(0, 1)] ⇒ [C(0, 1)] has a
match with [B(0, 1), A(0, 1)]⇒ [C(0, 1)]). This comparison also resulted in zero matches.

Next, we looked for matches between antecedents and consequents, neglecting all val-
ues. For each match, we calculated a similarity score. In total, we obtained 57,611 matches
with various similarity scores. We focused only on the ten rules that had the most frequent
impact on the decision according to GPT. Brief results are displayed for both outcomes
(see Table 3). Most rules have a very high similarity score (above 0.975) where the only
difference was in an extra square bracket that GPT ‘forgot’ to add.

On the other hand, decisions of the outperforming prediction model lightGBM relied
predominantly on features such as glucose, age, and BMI, followed by diabetes pedigree
function, blood pressure, skin thickness, insulin, and number of pregnancies (see Figure 4).

Figure 4. A ranking diagram of feature importance displayed as the average impact on model output
magnitude. The bigger the average impact, the higher the importance of the feature.

Beeswarm plots display a correlation of the feature value with its contribution (Shapley
additive explanations (SHAP) value) to the diagnosis outcome across all samples (see
Figure 5). Glucose, the feature with the highest feature importance, displayed that high
levels of glucose contribute to diabetic status (positive SHAP value), while low values
contribute to non-diabetic status (negative SHAP value). Similar observations can be made
in the cases of age and BMI. Low and high values of the diabetes pedigree function are
distinguishable, although it is important to note that the majority of them have minimal
influence on the model’s output (see Figure 5). While previously mentioned features
carry varying degrees of importance, blood pressure can be considered as unstable and
dependent on other features.
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Figure 5. Feature importance displayed as an average impact on model output magnitude.

4. Discussion

Non-insulin-dependent diabetes mellitus is a chronic medical condition where high
blood glucose levels occur due to the body’s inability to effectively produce insulin.

Our results show that utilizing association rules for GPT-based prediction has limited
efficacy in enhancing the classification of diabetic patients (accuracy: 0.721, AUC: 0.73, F1-
score: 0.656, specificity: 0.7, sensitivity: 0.759). Comparing the results of previous studies,
our approach of GPT rule-based predictions achieves similar scores to the K-Nearest Neigh-
bors Algorithm (accuracy: 71.9%) and classification and regression tree (CART) (accuracy:
72.8%) [23]. It does not lag behind when compared to other methods addressing a similar
problem, such as Classification Based on Associations (CBA: 72.9–76.17%) [24–26], Classifi-
cation based on Multiple Association Rules (CMAR: 72.85–75.1%) [24,25], and HARMONY
(72.34%) [25].

In determining the metrics to evaluate the performance of our approach, we favored
AUC (area under the ROC curve) and F1-score. These metrics were selected due to their
appropriateness for assessing the effectiveness of models in medical classification tasks,
particularly in scenarios characterized by imbalanced datasets typical of diabetic patient
classification. While accuracy is commonly used [23–26], it may not adequately capture
the performance of models when classes are imbalanced. AUC provides a holistic measure
of the model’s ability to discriminate between diabetic and non-diabetic patients across
various threshold levels [27], making it robust to class imbalances. Additionally, the F1-
score, which balances precision and recall, is crucial in medical scenarios where both false
positives [28] and false negatives [29] carry significant clinical implications. By utilizing
AUC and F1-score alongside accuracy, we ensure a comprehensive evaluation of our
approach’s performance, considering different aspects of classification effectiveness.

Despite not-so-promising results, we believe that with some preprocessing steps, such
as feature discretization [6], we could achieve better prediction performance. Additionally,
hyperparameter tuning of NiaARM and GPT could be implemented and potentially further
improve the classification performance.

The integration of GPT with association rule mining improves the clarity of the
diabetes classification model by generating a collection of rules that depict the connections
between input features and diabetic status. This enhances the comprehensibility of the
model, facilitating easier understanding.

In our study, GPT was constrained by specific instructions, limiting its access to general
knowledge and freedom to make decisions based on external sources. Improving instruc-
tion through prompt engineering could potentially enhance its diagnostic performance.
During the testing phase, each test sample was provided individually to ensure that GPT
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produced only one answer. Although we attempted to test dozens of test samples at once,
it rarely resulted in an equal number of outputs.

Apart from that, there are other limitations to this study that need to be acknowledged.
Firstly, exploring the application of GPT-4 could potentially yield even more accurate
results, albeit with the challenge of rule summarization due to token limitations. Secondly,
the study was conducted using a specific dataset, and generalization to other domains and
datasets may require further investigation. Thirdly, the dataset used in this study offers
limited representativeness, as it comprises exclusively women over the age of 21, all residing
in close proximity to Phoenix, Arizona, and of Pima Indian heritage [9]. This homogeneity
may lead to skewed results and biased decision making. Consequently, it emphasizes the
necessity for future research dedicated to mitigating dataset biases and devising strategies
to improve the applicability of the approach to diverse datasets. Further, the research could
extend its scope to encompass other medical conditions, evaluating the applicability of the
methodology and its efficacy across diverse medical scenarios. Moreover, by incorporating
laboratory results, this might improve the accuracy and comprehensiveness of association
rules and GPT’s decision making. Regarding association rule mining, improvements could
be made to the association rule mining process, such as optimizing the parameters of the
NiaARM framework.

In terms of the association rule mining approach, our findings suggest several strengths
and weaknesses worth considering. The approach demonstrates its capability to generate a
large number of rules, thereby providing a comprehensive representation of the training set.
By leveraging support and confidence metrics, we ensured the inclusion of only relevant
rules, thereby enhancing the overall quality of the generated rules. The implementation
of specific criteria aimed to achieve a balance in rule selection. However, it is essential
to acknowledge the weaknesses present in this approach. The complexity of the rules
generated can pose challenges in interpretation due to their considerable number, making it
difficult to identify the most relevant ones. Additionally, reliance on default parameters may
not always yield optimal results for specific datasets, potentially leading to a suboptimal
rule list.

Moreover, our study highlights the time-consuming nature of the association rule min-
ing process. On average, it took 2.57 min for the algorithm to search for performance-wise
ideal association rules within our dataset. Additionally, the process of predicting and re-
trieving important rules for a single instance took approximately 3.23 s, repeated five times,
totaling around 15 s. These findings underscore the need for efficient optimization strategies
in future research endeavors.

Regarding the integration of association rules into the GPT part, our expectations align
with previous research indicating potential improvements in classification metrics with the
provision of an optimal rule list. Furthermore, the ability to make predictions based on rule
sets offers a promising avenue for implementing a rule-based decision-making process,
which could enhance the overall predictive capabilities of the model.

Association rules, generated by NiaARM, covered both outcome classes equally as
desired. This requirement ensured that our model was not biased towards any particular
class, fostering balanced and fair predictions. The outcome representing diabetic status
was mainly observed as an antecedent, while the outcome representing non-diabetic status
was mainly observed as a consequent. As a result, we obtained lower predictive sensitivity
than specificity, which does not align with our expectations. It appears that rules with an
outcome of diabetic status as a consequent still outweighed the rules with a non-diabetic
status as a consequent. The reason for this might lie in a rule where a broad range of insulin
levels automatically determines diabetic status. Moreover, it is worth noting that this rule
was reported in more than half (52.9%) of the predictions made by the GPT-based model.

Additionally, upon checking, it was observed that none of the predictions simultane-
ously reported both GPT-generated rules ([Insulin(0, 744)] ⇒ [Outcome(0)] and
[Insulin(0, 846)] ⇒ [Outcome(1)]) as rules that contributed to the decision. Due to the
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high cost of conducting such analysis, in the future, we would suggest tracking insulin and
other parameters along with local interpretations at the individual level [30].

While GPT’s assigned task was to utilize NiaARM rules and identify the rules it relied
on, it struggled to correctly identify the rules that had the greatest impact. Moreover, it
presented rules that closely resembled the actual rules generated by NiaARM. The exact
reason for providing rules that resemble the actual rules could be attributed to the extensive
number of provided rules, which confused the model. To address this issue, it would be
advisable to present rules multiple times within various sub-prompts, utilizing a chain-
of-thought prompting approach. It is a technique that enhances the capacity of LLMs
to engage in intricate reasoning to a considerable extent [31]. Despite these challenges,
the utilization of a similarity score method proved effective in extracting the authentic rules.

Glucose, age, and body mass index were identified as the most impactful features by
lightGBM, which corresponds to the previous studies that include them in their
models [8,32,33]. The same features were neglected from GPT, except for the BMI. The
World Health Organization reports that diabetes is diagnosed if the two-hour plasma
glucose level is at least 200 mg/dL or 11.1 mmol/L [34]. In contrast, lightGBM considered
insulin to be non-essential for predicting the status, whereas GPT recognized it as one of
the most influential features.

It is interesting that GPT recognized two rules that simultaneously determine both
diabetic and non-diabetic status based on insulin levels, where insulin levels between 0
and 744 mu U/mL lead to a decision of diabetic and non-diabetic status. The rules are as
follows: [Insulin(0, 744)]⇒ [Outcome(0)] for non-diabetic status and [Insulin(0, 846)]⇒
[Outcome(1)] for diabetic status. However, we later discovered that the first GPT-recognized
rule is linked to the rule [Insulin([281, 386])]⇒ [Outcome(0)] and the second rule is linked
to the rule [Insulin([157, 209])] ⇒ [Outcome(1)]. Patients suffering from T2DM typically
exhibit increased insulin levels unless beta cell dysfunction has occurred [35–37].

Furthermore, when comparing interpretability with our baseline model, XGBoost pre-
dominantly relies on glucose levels for predicting diabetic status, with insulin levels ranking
barely above the second-to-last place in terms of feature importance. This is in contrast
to our approach, where insulin plays a crucial role. Regarding explainability, in XGBoost,
higher values of glucose are distinctly separated from lower values, with their frequent
contribution to the decision in favor of diabetic status evident. In contrast, for insulin levels,
we cannot make a similar assertion.

Elevated blood sugar levels (hyperglycemia), reduced responsiveness to insulin (in-
sulin resistance), and insufficient insulin production are the defining features of T2DM [38].
Furthermore, it is known that patients who exhibit insulin resistance and hyperinsulinemia
(an elevated amount of insulin in the blood, considered as an indicator of insulin resistance)
face an increased risk of developing T2DM, obesity, cardiovascular disease, cancer, and pre-
mature mortality [38,39]. The issue with our dataset is that it lacks information, such as the
presence of hyperinsulinemia, and we are unsure in which stage the T2DM patients are;
therefore, we cannot rely heavily on insulin levels alone.

Another observation is that GPT recognized the same rule to be impactful for pre-
dicting diabetic as well as non-diabetic status. This rule indicates that insulin levels, body
mass index, and blood pressure determine non-diabetic status in females who have been
pregnant more than once. One of the potential reasons for including a rule for predict-
ing diabetic status that does not directly determine diabetic outcome is that the diabetic
outcome was present in only 29% of cases when the outcome was included as a conse-
quent. GPT’s decisions may have relied more on the rules containing an outcome of 0,
particularly in scenarios when feature values fell outside the range. Diabetes increases the
prevalence of hypertension and elevated blood pressure [40]. Elevated blood pressure and
hyperglycemia, high blood sugar levels, frequently coexist [41,42]. It was also reported
that elevated blood pressure is significantly and independently associated with the de-
velopment of diabetes [43,44]. Tian et al. went further and demonstrated that diabetes
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is correlated with arterial stiffness [45], of which the risk factors are age, elevated blood
pressure, diabetes, and others [46,47].

We consider the interpretability of the GPT association rule-based model to be of
utmost importance, as it helps medical professionals understand the underlying factors
contributing to the classification of diabetic patients [48]. However, the concern of leaving
interpretability solely to GPT is reasonable, given GPT’s tendency to produce hallucinatory
outputs and potentially tailor results to fit the user’s context. The generated outcomes may
lack real-world reliability. For that reason, the iterative steps involving the use of GPT as a
prediction tool and majority voting based on multiple responses enhanced the robustness
of our predictions, reducing the likelihood of uncertainties in the final outcome.

5. Conclusions

Our research explores the integration of association rules with GPT-based prediction
to classify non-insulin-dependent diabetes mellitus, producing outcomes similar to those
of established techniques. However, obstacles in interpretation and dataset inclusivity
emphasize the need for ongoing improvement. Future efforts should prioritize refining pre-
processing methods, fine-tuning hyperparameters, and improving computational efficiency
to enhance clinical applicability. Collaboration between domain experts and technological
advancements is crucial for advancing diagnostic precision in diabetes classification.
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