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Abstract: With the development of deep learning in the field of computer vision, convolutional
neural network models and attention mechanisms have been widely applied in SAR image target
recognition. The improvement of convolutional neural network attention in existing SAR image target
recognition focuses on spatial and channel information but lacks research on the relationship and
recognition mechanism between spatial and channel information. In response to this issue, this article
proposes a hybrid attention module and introduces a Mixed Attention (MA) mechanism module
in the MobileNetV2 network. The proposed MA mechanism fully considers the comprehensive
calculation of spatial attention (SPA), channel attention (CHA), and coordinated attention (CA). It can
input feature maps for comprehensive weighting to enhance the features of the regions of interest,
in order to improve the recognition rate of vehicle targets in SAR images.The superiority of our
algorithm was verified through experiments on the MSTAR dataset.

Keywords: mixed attention mechanism; MA-MobileNetV2; vehicle target recognition; synthetic
aperture radar (SAR)

1. Introduction

Many template-based and machine learning-based SAR image target recognition al-
gorithms [1–6] have been proposed and achieved certain effectiveness. However, these
traditional SAR image target recognition algorithms have the following drawbacks. (1) In-
sufficient feature extraction: traditional SAR image target recognition algorithms often use
manually designed feature extraction methods, which can only extract local features of the
image and cannot consider the global characteristics of the targets, resulting in insufficient
feature extraction. (2) Feature redundancy: due to the manual feature extraction methods
used in traditional SAR image target recognition algorithms, there are often a large number
of redundant features, which not only reduce the recognition accuracy but also increase
the computational complexity. (3) Difficult feature selection: Due to the presence of a
large number of redundant features in traditional SAR image target recognition algorithms,
feature selection is required to reduce the number of features. However, due to the complex
interactions between features, it is often difficult to select the optimal subset of features.
(4) Difficult feature combination: traditional SAR image target recognition algorithms
typically use classifiers based on shallow models, which can only handle simple linear
feature combinations and cannot handle complex nonlinear feature combinations, resulting
in low recognition accuracy. These drawbacks pose significant challenges to the practical
application of SAR image target recognition.

Convolutional neural network models can automatically extract important features
of different targets; weight sharing using convolution layers, and spatial invariance using
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pooling operations. By utilizing the powerful feature representation capability of convolu-
tional neural network models, the workload in SAR image target recognition is significantly
reduced. At the same time, it avoids the limitations of manually designing target features
and greatly improves the recognition capability of SAR image targets [7]. The application
of convolutional neural networks in SAR image target recognition has become a research
hotspot [8–20].

In deep learning, models typically need to handle high-dimensional and complex
input data. These inputs contain a large amount of information, but not all of it contributes
to the model’s output. Therefore, models need to focus more attention on the parts of the
input data that are relevant to the task, in order to improve the accuracy and efficiency of
the model’s recognition. Attention mechanisms are methods for weighting the input data,
highlighting the important features of the target. This allows the model to better focus on
the parts of the image that are relevant to target recognition, thereby improving recognition
accuracy. Researchers have proposed several new attention mechanism modules, which
can be mainly divided into three categories: spatial attention [21], channel attention [22,23],
and spatial–channel coordinated attention [24]. Meanwhile, in the field of SAR image
target recognition, some researchers have also devoted themselves to applying attention
mechanisms to improve the recognition performance of networks [25–30].

Zhang et al. [25] proposed an effectively lightweight attention mechanism convolu-
tional neural network model (AM-CNN) for SAR automatic target recognition. Compared
with traditional convolutional neural networks and state-of-the-art methods, this model
has significant advantages in terms of performance and efficiency. Li et al. [28] proposed
a fully convolutional attention block (FCAB), which can be combined with convolutional
neural networks to refine important features in synthetic aperture radar (SAR) images and
suppress unnecessary features, resulting in significant performance gains for SAR recogni-
tion. Wang et al. [29] proposed a non-local channel attention network for SAR image target
recognition based on the GoogLeNet structure, which combines an asymmetric pyramid
non-local block (APNB) and SENet. The use of SENet allows for channel dependencies
based on feature fusion at different scales, improving recognition accuracy. Xu et al. [30] pro-
posed a multi-scale capsule network with coordinate attention (CA-MCN), which deploys
multiple dilation convolution layers to extract robust features and incorporates coordinate
attention for target recognition at multiple scales.

However, the aforementioned methods for improving the attention part of convo-
lutional neural networks only consider spatial information, channel information, or the
coordination between spatial and channel information separately. They do not take into
account the comprehensive weighting of spatial information, channel information, and the
coordination between spatial and channel information. In response to this issue, a SAR
image vehicle target recognition network based on a Mixed Attention (MA) mechanism,
called MA-MobileNetV2, is proposed by introducing the Mixed Attention mechanism into
the MobileNetV2 network [31]. The Mixed Attention mechanism can fully consider the
computations of spatial attention (SPA), channel attention (CHA), and coordinate attention
(CA), and weight the input feature maps complementarily to enhance the representation
of features in the regions of interest. This presentation considers the computations of
spatial attention, channel attention, and coordinate attention in deep neural network-based
SAR image vehicle target recognition, effectively improving the accuracy of SAR image
vehicle target recognition. Due to the incomplete SAR image vehicle target dataset in
actual measurement scenarios, experiments were conducted on the MSTAR dataset. The
results show that MA-MobileNetV2 has superior performance, with an average recogni-
tion accuracy of 99.85% for the 10 target classes. The average recognition accuracy has
been improved by 3.1% compared to the unmodified MobileNetV2 network, and it also
outperforms the recently reported SAR image vehicle target recognition algorithms based
on attention-related improvements.
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The structure of this paper is arranged as follows: Section 2 provides a detailed descrip-
tion of the basic structure of the MobileNetV2 model and each attention module. Section 3
presents the experimental parameter settings and analysis of the experimental results.
Section 4 summarizes the work of this paper and discusses future research directions.

2. The Proposed Method
2.1. The MobileNetV2 Model

The MobileNetV2 model is a lightweight deep neural network proposed by Google. It
significantly reduces the required number of computations and memory while maintaining
the same level of accuracy. A key feature of MobileNetV2 is the use of inverted residuals
and bottleneck residual blocks, which are composed of linear activation functions. The
entire MobileNetV2 model is primarily composed of bottleneck structures. The structure of
MobileNetV2 is shown in Table 1.

Table 1. Structure of MobileNetV2.

Input Operator Expansion Output
Channels

Operator Repeat
Times Stride

128 × 128 × 3 Conv2d - 32 1 2
64 × 64 × 32 Bottleneck 1 16 1 1
64 × 64 × 16 Bottleneck 6 24 2 2
32 × 32 × 24 Bottleneck 6 32 3 2
16 × 16 × 32 Bottleneck 6 64 4 2

8 × 8 × 64 Bottleneck 6 96 3 1
8 × 8 × 96 Bottleneck 6 160 3 2
4 × 4 × 160 Bottleneck 6 320 1 1
4 × 4 × 320 Conv2d - 1280 1 1

4 × 4 × 1280 Avgpool - - 1 -
1 × 1 × 1280 Conv2d - k - -

The structure of the bottleneck, as shown in Figure 1, is composed of three parts: the
expansion convolution part, the depthwise convolution part, and the projection convolution
part. The entire structure uses ReLU6 as the activation function, as depicted in Figure 2.

The expansion convolution increases the number of channels in the input feature map
using a 1 × 1 convolutional kernel. Its purpose is to enhance the ability of the depthwise
convolution to extract meaningful information. By increasing the number of channels, the
model can learn more feature representations, thereby improving its expressive power. The
depthwise convolution performs convolutions separately for each input channel, using
fewer parameters for computation, resulting in fewer parameters compared to traditional
convolutions. On the other hand, the projection convolution, which is the opposite of the
expansion convolution, uses a 1 × 1 convolutional kernel. Its output channels are smaller
than the input channels, limiting the size of the model. The purpose of the projection
convolution is to ensure that the number of channels does not increase excessively, thereby
reducing the number of model parameters. The ReLU6 activation function is calculated
according to the following formula:

f (x) = ReLU(x) = min(max(x, 0), 6) (1)
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2.2. The Channel Attention Module

The channel attention mechanism can improve the recognition accuracy of the model
by selecting channels that are more important for the recognition task and reducing the
interference from irrelevant channels. The structure of the Channel Attention Module is
shown in Figure 3. The channel attention mechanism first compresses the input feature map
in the spatial dimension using average pooling and max pooling, obtaining two different
vectors of size C × 1 × 1: Fc

avg and Fc
max. They represent the average-pooled feature and

max-pooled feature, respectively. Then, Fc
avg and Fc

max are inputted into a shared network to
obtain the channel attention maps MLP(Fc

avg) and MLP(Fc
max), where the shared network

consists of a Multilayer Perceptron (MLP) with one hidden layer. After applying the
shared network to Fc

avg and Fc
max, the output feature vectors are merged using element-wise

summation, and then passed through the sigmoid function to obtain the final channel
attention weights Mc(F). The calculation formula is as follows:

Fc
avg = AvgPoolc(F) (2)

Fc
max = MaxPoolc(F) (3)

Mc(F) = sigmoid(MLP(Fc
avg) + MLP(Fc

max)) (4)

where F represents the input feature, Mc(F) represents the channel attention weights,
AvgPoolc represents average pooling operation along the channel dimension, and MaxPoolc
represents max pooling operation along the channel dimension.
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2.3. The Spatial Attention Module

The spatial attention mechanism can control the attention weights of different positions
in order to focus more on important areas and locations with higher information content,
thereby helping the model better capture important information in the image. The structure
of the Spatial Attention Module is shown in Figure 4. To calculate spatial attention, average
pooling and max pooling operations are applied along the channel axis, obtaining two
different feature descriptors of size 1 × H × W: Fs

avg and Fs
max. These feature descriptors

are then concatenated to generate a 2 × H × W feature descriptor. The 2 × H × W feature
descriptor is further convolved through a standard convolutional layer and passed through
the sigmoid function to obtain the final spatial attention weights Ms(F). The calculation
formula is as follows:

Fs
avg = AvgPools(F) (5)

Fs
max = MaxPools(F) (6)

Ms(F) = sigmoid( f (Fs
avg; Fs

max)) (7)

where F represents the input feature, Ms(F) represents the spatial attention weights, f rep-
resents the standard convolution operation, AvgPools represents average pooling operation
along the spatial dimension, and MaxPoolc represents max pooling operation along the
spatial dimension.
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2.4. The Spatial and Channel Coordinated Attention Module

The spatial and channel coordinated attention not only considers channel information
but also takes into account position information related to the orientation. It can learn the
dependency relationship between features based on the spatial location, thereby better
capturing the relationship between different regions in the image. The structure of the
Spatial and Channel Coordinated Attention Module is shown in Figure 5. To calculate
the spatial and channel coordinated attention, average pooling is applied along the X-axis
and Y-axis of the input feature map, resulting in Fh

avg of size C × 1 × W and Fw
avg of size

C × H × 1. These feature maps are concatenated to generate a feature description of size
C × 1 × (H + W). The C × 1 × (H + W) feature description is convolved through a standard
convolutional layer and then decomposed into feature descriptions of sizes C × 1 × W and
C × H × 1. The feature descriptions are then passed through sigmoid functions to obtain
the final spatial attention weights Mh(F) and Mw(F). The calculation formula is as follows:

Fh
avg = AvgPoolh(F) (8)

Fw
avg = AvgPoolw(F) (9)

(Mh(F); Mw(F)) = sigmoid( f (Mh
avg; Mw

avg)) (10)

where F represents the input feature, Mh(F) represents the attention weights along the
spatial X-axis, Mw(F) represents the attention weights along the spatial Y-axis, f represents
the standard convolution operation, AvgPoolh represents average pooling operation along
the spatial X-axis, and AvgPoolw represents average pooling operation along the spatial
Y-axis.
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2.5. The Mixed Attention Convolutional Neural Network (MA-MobileNetV2)

Channel attention can automatically weight the channel dimension, spatial attention
can automatically weight the spatial dimension, and the Spatial and Channel Coordi-
nated Attention Module can weight the spatial distribution on channels. As shown in
Figures 3–5, these three weighting methods have complementarity in different dimensions
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and can complementarily weight the feature maps to improve the recognition accuracy of
the network.

The structure of the Mixed Attention Module is shown in Figure 6. To calculate
mixed attention, the input feature is weighted using channel attention (CHA), spatial
attention (SPA), and coordination attention (CA), respectively. The final output feature
map is obtained by applying the weighted mixed attention. The calculation of features and
weights follows the broadcasting mechanism. The formula for computing the attention is
as follows:

F′ = F ∗ Mc(F) ∗ Ms(F) ∗ (Mh(F) ∗ Mw(F)) (11)

where F represents the input feature, Mc(F) represents the attention weights for channel
attention, Ms(F) represents the attention weights for spatial attention, Mh(F) represents the
attention weights along the spatial X-axis, Mw(F) represents the attention weights along
the spatial Y-axis, and F′ represents the feature weighted by the Mixed Attention Module.
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The MA-MobileNetV2 network incorporates the mixed attention into the MobileNetV2
network, taking into account the comprehensive weighting of spatial attention, channel
attention, and coordinated attention between spatial and channel dimensions on the input
feature map. This enhances the representation of features in the region of interest and
improves network performance. The structure of MA-MobileNetV2 is shown in Table 2,
with bold sections indicating the locations where the Mixed Attention Module is introduced.
The recognition process of MA-MobileNetV2 is illustrated in Figure 7. Firstly, the input
image goes through the backbone network to obtain the feature map. Then, the obtained
feature map is weighted using the Mixed Attention Module. The weighted feature map is
then fed into pooling layers and fully connected layers to obtain the final recognition result.
In the next section, the algorithm’s performance will be validated through experiments.

Table 2. Structure of MA-MobileNetV2.

Input Operator Expansion Output
Channels

Operator Repeat
Times Stride

128 × 128 × 3 Conv2d - 32 1 2
64 × 64 × 32 Bottleneck 1 16 1 1
64 × 64 × 16 Bottleneck 6 24 2 2
32 × 32 × 24 Bottleneck 6 32 3 2
16 × 16 × 32 Bottleneck 6 64 4 2

8 × 8 × 64 Bottleneck 6 96 3 1
8 × 8 × 96 Bottleneck 6 160 3 2
4 × 4 × 160 Bottleneck 6 320 1 1
4 × 4 × 320 Conv2d - 1280 1 1

4 × 4 × 1280 CHA - 1280 1 -
4 × 4 × 1280 SPA - 1280 1 -
4 × 4 × 1280 CA - 1280 1 -
4 × 4 × 1280 Avgpool - - 1 -
1 × 1 × 1280 Conv2d - k - -
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3. Results and Analysis
3.1. Experimental Data and Parameter Settings

This article uses the MSTAR dataset as the training set for training and testing. The
MSTAR dataset is a publicly available dataset developed jointly by the Advanced Research
Projects Agency (DARPA) of the US Department of Defense and the Air Force Research
Laboratory (AFRL) for synthetic aperture radar (SAR) target recognition. The slice of
MSTAR data is the imaging result of X-band airborne SAR. The size of each image in the
MSTAR dataset under SOC is 128 × 128, containing 10 types of targets. Figure 8 shows
an example of each category in the MSTAR dataset, and Table 3 shows the partitioning
of SOC in the MSTAR dataset. Each model of target in the dataset has a large number
of images with different azimuth angles, ranging from 0 to 180◦, with azimuth intervals
of approximately 1 to 2◦. In addition, there are two elevation angles available for each
model, 17◦ and 15◦. This article uses data with a pitch angle of 17◦ for training, and data
with a pitch angle of 15◦ for testing, proving the superiority of the algorithm proposed in
this article.
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Table 3. Number of ten-class military vehicles under SOC in MSTAR data.

Class Number of Targets (17) Number of Targets (15) Sum. of Targets (17 and 15)

2S1 299 274 573
BMP2 233 195 428

BRDM_2 298 274 572
BTR60 256 195 451
BTR70 233 196 429

D7 299 274 573
T62 298 273 571
T72 232 196 428

ZIL131 299 274 573
ZSU_23_4 299 274 573

Sum 2746 2425 5171

The MA-MobileNetV2 network is trained and tested on the MSTAR target slice dataset
introduced in Table 3 and Figure 8, using data at a 17◦ angle for training and data at
a 15◦ angle for testing, to verify the recognition performance of the MA-MobileNetV2
network. Multiple sets of experiments are set up in this section to verify the performance
improvement of the hybrid attention mechanism network in SAR image vehicle target
recognition tasks. To ensure fairness in the experiments, all detection model training is
conducted with the following settings:

1. The model parameters in the experiment are initialized using optical pre-trained
recognition model parameters.

2. The features extracted by the backbone network of the model are universal. Freezing
the training of the backbone network can speed up training efficiency and prevent
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weight destruction. Therefore, for the first 5% of epochs in all experiments, the
backbone network is frozen to adjust the parameters of the hybrid attention module
and fully connected layers. At this stage, the feature extraction network remains
unchanged, ensuring the stability of network training. The freezing is then lifted for
the remaining 95% of epochs to adjust the overall parameters of the network. The
batch size for the first 5% of epochs is set to 32, and the batch size for the remaining
95% of epochs is also set to 32.

3. The optimizer used for all models in the experiment is Stochastic Gradient Descent
(SGD) optimizer. The learning rate is adjusted using the cosine annealing function.
The initial learning rate is set to 0.01, and the minimum learning rate is set to 0.0001.

4. The computer configuration during the experiment is as follows: (1) CPU: AMD
Ryzen 7 5800H with Radeon Graphics 3.20 GHz. (2) RAM: 16 GB. (3) GPU: NVIDIA
Geforce RTX 3060 Laptop. (4) Operating System: Windows 11.

3.2. Performance Evaluation Metrics

To quantitatively compare the recognition performance of models, accuracy and recall
are used as performance evaluation metrics for recognition results. The formulas for
accuracy and recall calculation are as follows:

P =
TP

TP + FP
(12)

R =
TP
NP

(13)

where TP is the number of correctly predicted targets in the recognition results, FP repre-
sents the number of incorrectly predicted targets, NP represents the number of true targets,
P is the precision (accuracy) of the recognition, and R represents the recall rate.

3.3. Performance Comparison between the MA-MobileNetV2 Network and the
MobileNetV2 Network

The MA-MobileNetV2 network is an improved network that introduces the Mixed
Attention (MA) Module based on the MobileNetV2 network. The training losses of the
MA-MobileNetV2 network and the MobileNetV2 network on the MSTAR dataset as shown
in Figure 9. The first 20 epochs represent the training process when the backbone network
is frozen. During these epochs, the MA-MobileNetV2 network primarily adjusts the param-
eters of the Mixed Attention Module and the fully connected layer, while the MobileNetV2
network mainly adjusts the parameters of the fully connected layer.
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It can be observed that the MobileNetV2 network exhibits larger fluctuations in test
loss during the first 20 epochs of training, whereas the MA-MobileNetV2 network shows
a significant reduction in test loss fluctuations compared to the MobileNetV2 network.
Adding the Mixed Attention Module to the MobileNetV2 network allows it to automatically
suppress unimportant regions in the images and focus only on the relevant areas. This
reduces the complexity of the model and improves its performance and stability.

Tables 4 and 5 present the recognition confusion matrices for the MA-MobileNetV2
network and the MobileNetV2 network, respectively, on the MSTAR dataset. It can be
observed that compared to the MobileNetV2 network, the MA-MobileNetV2 network
exhibits a significant improvement in recognition accuracy.

Table 4. The confusion matrix of the MA-MobileNetV2 network.

2S1 BMP2 BRDM_2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU_23_4

2S1 274 0 0 0 0 0 0 0 0 0
BMP2 0 194 0 0 0 0 0 1 0 0

BRDM_2 0 0 274 0 0 0 0 0 0 0
BTR60 0 0 0 195 0 0 0 0 0 0
BTR70 0 0 0 2 194 0 0 0 0 0

D7 0 0 0 0 0 274 0 0 0 0
T62 0 0 0 0 0 0 273 0 0 0
T72 0 0 0 0 0 0 0 196 0 0

ZIL131 0 0 0 0 0 0 0 0 274 0
ZSU_23_4 0 0 0 0 0 0 0 0 0 274

Table 5. The confusion matrix of the MobileNetV2 network.

2S1 BMP2 BRDM_2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU_23_4

2S1 252 6 0 3 3 0 0 8 2 0
BMP2 0 184 0 2 0 0 0 9 0 0

BRDM_2 0 0 265 0 0 3 0 1 4 1
BTR60 0 0 0 193 1 0 0 1 0 0
BTR70 0 2 0 6 187 0 0 1 0 0

D7 0 0 0 0 0 273 0 0 1 0
T62 0 0 0 0 0 1 267 2 0 3
T72 0 0 0 1 0 0 0 195 0 0

ZIL131 0 0 0 0 0 13 0 0 261 0
ZSU_23_4 0 0 0 0 0 1 0 0 0 273

The statistics of the class-wise recognition accuracy for the MA-MobileNetV2 network
and the MobileNetV2 network on the MSTAR dataset are shown in Table 6. It can be
observed that compared to the MobileNetV2 network, the MA-MobileNetV2 network
demonstrates a significant improvement in the recognition accuracy of SAR image vehicle
targets. The average recognition accuracy for the MA-MobileNetV2 network is 99.85%,
while for the MobileNetV2 network it is 96.75%. This represents a 3.1% increase in average
recognition accuracy for the MA-MobileNetV2 network over the MobileNetV2 network.

Table 6. The recognition and recall of MA-MobileNetV2 network and MobileNetV2 network.

MA-MobileNetV2 Network MobileNetV2 Network

Recognition accuracy 99.85% 96.75%
Recall 99.85% 96.92%

The statistics of the class-wise recall rate for the MA-MobileNetV2 network and the
MobileNetV2 network on the MSTAR dataset are else shown in Table 6. Similar to the
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recognition accuracy, the MA-MobileNetV2 network exhibits a notable improvement in
the recall rate for SAR image vehicle targets compared to the MobileNetV2 network. The
average recall rate for the MA-MobileNetV2 network is 99.85%, while for the MobileNetV2
network it is 96.92%. This represents a 2.93% increase in average recall rate for the MA-
MobileNetV2 network over the MobileNetV2 network.

3.4. Performance Comparison between the MA-MobileNetV2 Network and
State-of-the-Art Algorithms

The performance comparison of the MA-MobileNetV2 network with the latest attention-
related improved SAR image vehicle target recognition algorithms is shown in Table 7. It
can be concluded that the MA-MobileNetV2 network exhibits a significant improvement
in average recognition accuracy compared to the latest attention-related improved SAR
image vehicle target recognition algorithms. This demonstrates the superior performance
of the MA-MobileNetV2 network in target recognition.

Table 7. The performance comparison between MA-MobileNetV2 and the latest attention-related
improved recognition algorithms.

Accuracy The Proposed
Method

AM-CNN
[25]

FCAB-
CNN [28]

GoogleNet-
APNB-ISEB [29]

CA-MCN
[30]

2S1 100% 98.90% 100% 99.80% 99.27%
BMP2 100% 100% 98.46% 99.50% 100%

BRDM_2 100% 99.64% 99.27% 99.80% 99.64%
BTR60 98.98% 96.41% 98.98% 99.20% 99.49%
BTR70 100% 100% 100% 100% 100%

D7 100% 99.27% 100% 99.30% 99.27%
T62 100% 99.63% 99.27% 100% 99.63%
T72 99.49% 100% 100% 99.80% 100%

ZIL131 100% 99.64% 100% 99.80% 99.64%
ZSU_23_4 100% 100% 98.17 99.40% 100%

Average
accuracy 99.85% 99.35% 99.51% 99.72% 99.59%

4. Discussion

In order to demonstrate the roles of the CHA module, SPA module, and CA module in
the hybrid attention mechanism, this section conducts ablation experiments on the hybrid
attention mechanism network to prove the necessity of the CHA module, SPA module, and
CA module.

4.1. Ablation Experiments on CHA Module

In this section, training was conducted on a modified version of the MobileNetV2
network with only the SPA module and CA module added. The network structure is
shown in Table 8. The recognition performance of the perturbed network was compared
and analyzed against the recognition performance of the hybrid attention network.

The training loss of the MA-MobileNetV2 network and the perturbed CHA module
network on the MSTAR dataset is shown in Figure 10. It can be observed that the testing loss
of the perturbed CHA module network exhibits more pronounced fluctuations compared
to the MA-MobileNetV2 network. This suggests that the CHA module plays a certain role
in improving the performance and stability of the model.

Tables 8 and 9 present the confusion matrices of the perturbed CHA module network
and the MA-MobileNetV2 network on the MSTAR dataset, respectively. It can be observed
that compared to the MA-MobileNetV2 network, the misclassification rate of the perturbed
CHA module network significantly increases.
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Table 8. Ablation network structure of the CHA module.

Input Operator Expansion Output
Channels

Operator Repeat
Times Stride

128 × 128 × 3 Conv2d - 32 1 2
64 × 64 × 32 Bottleneck 1 16 1 1
64 × 64 × 16 Bottleneck 6 24 2 2
32 × 32 × 24 Bottleneck 6 32 3 2
16 × 16 × 32 Bottleneck 6 64 4 2

8 × 8 × 64 Bottleneck 6 96 3 1
8 × 8 × 96 Bottleneck 6 160 3 2
4 × 4 × 160 Bottleneck 6 320 1 1
4 × 4 × 320 Conv2d - 1280 1 1

4 × 4 × 1280 SPA - 1280 1 -
4 × 4 × 1280 CA - 1280 1 -
4 × 4 × 1280 Avgpool - - 1 -
1 × 1 × 1280 Conv2d - k - -
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Table 9. The confusion matrix of the ablation CHA module network.

2S1 BMP2 BRDM_2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU_23_4

2S1 271 0 0 1 2 0 0 0 0 0
BMP2 0 191 0 1 2 0 0 1 0 0

BRDM_2 0 0 274 0 0 0 0 0 0 0
BTR60 0 0 0 195 0 0 0 0 0 0
BTR70 0 0 0 1 195 0 0 0 0 0

D7 0 0 0 0 0 273 0 0 1 0
T62 0 0 0 0 0 0 273 0 0 0
T72 0 0 0 0 0 0 0 196 0 0

ZIL131 0 0 0 0 0 0 0 0 274 0
ZSU_23_4 0 0 0 0 0 0 0 0 0 274

The statistical accuracies of various target classes in SAR vehicle recognition for the
MA-MobileNetV2 network and the perturbed CHA module network are shown in Table 10.
It can be observed that compared to the MA-MobileNetV2 network, the perturbed CHA
module network exhibits a noticeable decrease in recognition accuracy for SAR vehicle
targets. The average recognition accuracy of the MA-MobileNetV2 network is 99.85%,
while that of the perturbed CHA module network is 99.56%, indicating a decrease of 0.29
percentage points in average recognition accuracy for the perturbed CHA module network
compared to the MA-MobileNetV2 network.
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Table 10. The recognition and recall of MA-MobileNetV2 network and the ablation CHA module
network.

MA-MobileNetV2 Network CHA Module Network

Recognition accuracy 99.85% 99.56%
Recall 99.85% 99.60%

The recall rates of various target classes in SAR vehicle recognition for the MA-
MobileNetV2 network and the perturbed CHA module network are also shown in Table 10.
It can be observed that compared to the MA-MobileNetV2 network, the perturbed CHA
module network exhibits a noticeable decrease in recall rate for SAR vehicle targets.
The average recall rate of the MA-MobileNetV2 network is 99.85%, while that of the
perturbed CHA module network is 99.60%, indicating a decrease of 0.25 percentage
points in average recall rate for the perturbed CHA module network compared to the
MA-MobileNetV2 network.

In conclusion, it can be inferred that the CHA module plays a significant role in
improving the recognition accuracy, recall rate, and stability of the model.

4.2. Ablation Experiments on SPA Module

In this section, training was conducted on the MobileNetV2 network with only the
CHA module and CA module added. The network structure is shown in Table 11. A
comparative analysis was performed between the recognition performance of the ablation
networks and the recognition performance of the hybrid attention network.

Table 11. Ablation network structure of the SPA module.

Input Operator Expansion Output
Channels

Operator Repeat
Times Stride

128 × 128 × 3 Conv2d - 32 1 2
64 × 64 × 32 Bottleneck 1 16 1 1
64 × 64 × 16 Bottleneck 6 24 2 2
32 × 32 × 24 Bottleneck 6 32 3 2
16 × 16 × 32 Bottleneck 6 64 4 2

8 × 8 × 64 Bottleneck 6 96 3 1
8 × 8 × 96 Bottleneck 6 160 3 2

4 × 4 × 160 Bottleneck 6 320 1 1
4 × 4 × 320 Conv2d - 1280 1 1

4 × 4 × 1280 CHA - 1280 1 -
4 × 4 × 1280 CA - 1280 1 -
4 × 4 × 1280 Avgpool - - 1 -
1 × 1 × 1280 Conv2d - k - -

The training losses of the MA-MobileNetV2 network and SPA module network on the
MSTAR dataset are shown in Figure 11. The test loss of the SPA module network fluctuates
slightly more than the MA-MobileNetV2 network, indicating that the SPA module has a
certain effect on improving model stability.

Tables 5 and 12 present the recognition confusion matrices of the MA-MobileNetV2
network and the SPA module network on the MSTAR dataset. It can be observed that
compared to the MA-MobileNetV2 network, the misclassification rate of the SPA module
network significantly increases. The class-wise recognition accuracy statistics for the MA-
MobileNetV2 network and SPA module network on the MSTAR dataset are shown in
Table 13. It can be seen that the SPA module network exhibits a noticeable decrease in
recognition accuracy for SAR image vehicle targets compared to the MA-MobileNetV2
network. The average recognition accuracy is 99.85% for the MA-MobileNetV2 network
and 99.49% for the SPA module network, indicating a 0.36% decrease in average recognition
accuracy for the SPA module network compared to the MA-MobileNetV2 network.



Information 2024, 15, 159 14 of 18

Information 2024, 15, x FOR PEER REVIEW 14 of 18 
 

 

Table 11. Ablation network structure of the SPA module. 

Input Operator Expansion Output 
Channels 

Operator Repeat 
Times 

Stride 

128 × 128 × 3 Conv2d - 32 1 2 
64 × 64 × 32 Bottleneck 1 16 1 1 
64 × 64 × 16 Bottleneck 6 24 2 2 
32 × 32 × 24 Bottleneck 6 32 3 2 
16 × 16 × 32 Bottleneck 6 64 4 2 
8 × 8 × 64 Bottleneck 6 96 3 1 
8 × 8 × 96 Bottleneck 6 160 3 2 

4 × 4 × 160 Bottleneck 6 320 1 1 
4 × 4 × 320 Conv2d - 1280 1 1 
4 × 4 × 1280 CHA - 1280 1 - 
4 × 4 × 1280 CA - 1280 1 - 
4 × 4 × 1280 Avgpool - - 1 - 
1 × 1 × 1280 Conv2d - k - - 

The training losses of the MA-MobileNetV2 network and SPA module network on 
the MSTAR dataset are shown in Figure 11. The test loss of the SPA module network fluc-
tuates slightly more than the MA-MobileNetV2 network, indicating that the SPA module 
has a certain effect on improving model stability. 

Tables 5 and 12 present the recognition confusion matrices of the MA-MobileNetV2 
network and the SPA module network on the MSTAR dataset. It can be observed that 
compared to the MA-MobileNetV2 network, the misclassification rate of the SPA module 
network significantly increases. The class-wise recognition accuracy statistics for the MA-
MobileNetV2 network and SPA module network on the MSTAR dataset are shown in Ta-
ble 13. It can be seen that the SPA module network exhibits a noticeable decrease in recog-
nition accuracy for SAR image vehicle targets compared to the MA-MobileNetV2 net-
work. The average recognition accuracy is 99.85% for the MA-MobileNetV2 network and 
99.49% for the SPA module network, indicating a 0.36% decrease in average recognition 
accuracy for the SPA module network compared to the MA-MobileNetV2 network. 

  
(a) (b) 

Figure 11. The training loss curves of the (a) MA-MobileNetV2 network and (b) SPA module net-
work. 

The class-wise recognition recall statistics for the MA-MobileNetV2 network and SPA 
module network on the MSTAR dataset are also depicted in Table 13. It can be observed 
that the SPA module network shows a significant decrease in recall rate for SAR image 
vehicle targets compared to the MA-MobileNetV2 network. The average recognition recall 
rate is 99.85% for the MA-MobileNetV2 network and 99.54% for the SPA module network, 

Figure 11. The training loss curves of the (a) MA-MobileNetV2 network and (b) SPA module network.

Table 12. The confusion matrix of the ablation SPA module network.

2S1 BMP2 BRDM_2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU_23_4

2S1 268 0 0 5 0 0 0 0 1 0
BMP2 0 194 0 1 0 0 0 0 0 0

BRDM_2 0 0 273 0 0 1 0 0 0 0
BTR60 0 0 0 195 0 0 0 0 0 0
BTR70 0 0 0 3 193 0 0 0 0 0

D7 0 0 0 0 0 274 0 0 0 0
T62 0 0 0 0 0 0 273 0 0 0
T72 0 0 0 0 0 0 0 196 0 0
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Table 13. The recognition and recall of the MA-MobileNetV2 network and the ablation SPA module
network.

MA-MobileNetV2 Network SPA Module Network

Recognition accuracy 99.85% 99.49%
Recall 99.85% 99.54%

The class-wise recognition recall statistics for the MA-MobileNetV2 network and SPA
module network on the MSTAR dataset are also depicted in Table 13. It can be observed
that the SPA module network shows a significant decrease in recall rate for SAR image
vehicle targets compared to the MA-MobileNetV2 network. The average recognition recall
rate is 99.85% for the MA-MobileNetV2 network and 99.54% for the SPA module network,
indicating a 0.31% decrease in average recognition recall rate for the SPA module network
compared to the MA-MobileNetV2 network.

In conclusion, it can be inferred that the SPA module has a significant impact on
improving the recognition accuracy and recall rate of the model, as well as some effect on
enhancing model stability.

4.3. Ablation Experiments on CA Module

In this section, training was conducted on the MobileNetV2 network with only the
CHA module and SPA module added. The network structure is shown in Table 14. The
recognition performance of the ablation networks was compared and analyzed with that of
the hybrid attention network.
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Table 14. Ablation network structure of the CA module.

Input Operator Expansion Output
Channels

Operator Repeat
Times Stride

128 × 128 ×
3 Conv2d - 32 1 2

64 × 64 × 32 Bottleneck 1 16 1 1
64 × 64 × 16 Bottleneck 6 24 2 2
32 × 32 × 24 Bottleneck 6 32 3 2
16 × 16 × 32 Bottleneck 6 64 4 2

8 × 8 × 64 Bottleneck 6 96 3 1
8 × 8 × 96 Bottleneck 6 160 3 2
4 × 4 × 160 Bottleneck 6 320 1 1
4 × 4 × 320 Conv2d - 1280 1 1

4 × 4 × 1280 CHA - 1280 1 -
4 × 4 × 1280 SPA - 1280 1 -
4 × 4 × 1280 Avgpool - - 1 -
1 × 1 × 1280 Conv2d - k - -

The training losses of the MA-MobileNetV2 network and CA module network on the
MSTAR dataset are shown in Figure 12. The test loss of the CA module network fluctuates
slightly more than the MA-MobileNetV2 network, indicating that the CA module plays a
certain role in improving model stability.
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Table 15 presents the recognition confusion matrices of the CA module network and
the MA-MobileNetV2 network on the MSTAR dataset. It can be observed that compared
to the MA-MobileNetV2 network, the misclassification rate of the CA module network
significantly increases.

Table 15. The confusion matrix of the ablation CA module network.

2S1 BMP2 BRDM_2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU_23_4

2S1 272 0 0 1 0 0 0 1 0 0
BMP2 0 195 0 0 0 0 0 0 0 0

BRDM_2 0 0 274 0 0 0 0 0 0 0
BTR60 0 1 0 194 0 0 0 0 0 0
BTR70 0 0 0 1 195 0 0 0 0 0

D7 0 0 0 0 0 271 0 0 3 0
T62 0 0 0 0 0 0 269 0 0 4
T72 0 2 0 0 0 0 0 194 0 0

ZIL131 0 0 0 0 0 0 0 0 274 0
ZSU_23_4 0 0 0 0 0 0 0 0 0 274
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The class-wise recognition accuracy statistics for the MA-MobileNetV2 network and
CA module network on the MSTAR dataset are shown in Table 16. It can be observed that
compared to the MA-MobileNetV2 network, the CA module network exhibits a noticeable
decrease in recognition accuracy for SAR image vehicle targets. The average recognition
accuracy is 99.85% for the MA-MobileNetV2 network and 99.44% for the CA module
network, indicating a decrease of 0.41 percentage points in average recognition accuracy
for the CA module network compared to the MA-MobileNetV2 network.

Table 16. The recognition and recall of MA-MobileNetV2 network and CA module network.

MA-MobileNetV2 Network CA Module Network

Recognition accuracy 99.85% 99.44%
Recall 99.85% 99.47%

The class-wise recognition recall statistics for the MA-MobileNetV2 network and CA
module network on the MSTAR dataset are depicted in Table 16. It can be observed that
the CA module network shows a significant decrease in recall rate for SAR image vehicle
targets compared to the MA-MobileNetV2 network. The average recognition recall rate
is 99.85% for the MA-MobileNetV2 network and 99.47% for the CA module network,
indicating a decrease of 0.38 percentage points in average recognition recall rate for the CA
module network compared to the MA-MobileNetV2 network.

In conclusion, it can be inferred that the CA module has a significant impact on
improving the recognition accuracy and recall rate of the model, as well as some effect on
enhancing model stability.

5. Conclusions

This paper proposes a Hybrid Attention Mechanism Module and applies it to improve
the MobileNetV2 network. The hybrid attention mechanism comprehensively considers
spatial attention, channel attention, and coordinated attention between spatial and channel
dimensions. It can effectively and complementarily weight the input feature maps to
enhance the representation of features in the regions of interest, thus improving the accuracy
of vehicle target recognition in SAR images by the MobileNetV2 network.

Experiments are conducted on the MSTAR dataset to validate the superiority of the pro-
posed algorithm. The results show that the recognition accuracy of the MA-MobileNetV2
algorithm is significantly improved compared to the original MobileNetV2 network and
the latest attention-based SAR image vehicle target recognition algorithms. Additionally,
ablation experiments are conducted to verify the necessity of applying spatial attention,
channel attention, and coordinated attention between spatial and channel dimensions in
the proposed module.

At present, the deep learning-based vehicle target detection algorithm in SAR im-
age has great advantages in the case of sufficient computing resources, but it is still
difficult to deploy it on some devices that need edge computing. The next step is to
study the lightweight implementation of the network while ensuring recognition accu-
racy, reducing hardware dependencies, and improving algorithm efficiency to achieve
engineering applications.
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