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Abstract: This investigation underscores the paramount imperative of discerning network intrusions
as a pivotal measure to fortify digital systems and shield sensitive data from unauthorized access,
manipulation, and potential compromise. The principal aim of this study is to leverage a publicly
available dataset, employing a Genetic Programming Symbolic Classifier (GPSC) to derive symbolic
expressions (SEs) endowed with the capacity for exceedingly precise network intrusion detection.
In order to augment the classification precision of the SEs, a pioneering Random Hyperparameter
Value Search (RHVS) methodology was conceptualized and implemented to discern the optimal
combination of GPSC hyperparameter values. The GPSC underwent training via a robust five-fold
cross-validation regimen, mitigating class imbalances within the initial dataset through the application
of diverse oversampling techniques, thereby engendering balanced dataset iterations. Subsequent to
the acquisition of SEs, the identification of the optimal set ensued, predicated upon metrics inclusive
of accuracy, area under the receiver operating characteristics curve, precision, recall, and F1-score.
The selected SEs were subsequently subjected to rigorous testing on the original imbalanced dataset.
The empirical findings of this research underscore the efficacy of the proposed methodology, with
the derived symbolic expressions attaining an impressive classification accuracy of 0.9945. If the
accuracy achieved in this research is compared to the average state-of-the-art accuracy, the accuracy
obtained in this research represents the improvement of approximately 3.78%. In summation, this
investigation contributes salient insights into the efficacious deployment of GPSC and RHVS for the
meticulous detection of network intrusions, thereby accentuating the potential for the establishment
of resilient cybersecurity defenses.

Keywords: network intrusion detection; genetic programming symbolic classifier (GPSC); symbolic
expressions (SEs); random hyperparameter value search (RHVS); cybersecurity defenses

1. Introduction

Network intrusion detection assumes paramount significance in ensuring the security
and integrity of computer networks within our contemporary interconnected and digital
milieu [1]. It plays an integral role in the identification and prevention of malicious activities
that pose threats to the confidentiality, availability, and integrity of sensitive information
and digital resources.

Primarily, network intrusion detection is indispensable for the identification and miti-
gation of diverse cyber threats, encompassing malware, ransomware, and unauthorized
access attempts [2]. Through the meticulous analysis of network traffic patterns and the
vigilant monitoring of system logs, intrusion detection systems (IDSs) [3] can discern un-
usual or suspicious activities indicative of a potential security breach. Such early detection
empowers security teams to respond promptly, thereby minimizing the potential damage
inflicted by cyber attacks.

Secondarily, network intrusion detection plays a pivotal role in aiding organizations to
conform to stringent regulatory requirements and industry standards [4]. Various sectors,
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including finance, healthcare, and government, are subject to rigorous regulations govern-
ing the protection of sensitive data. The implementation of effective intrusion detection
systems serves to showcase organizational commitment to security and compliance, thereby
mitigating the risks of legal and financial repercussions associated with data breaches [5].

Moreover, network intrusion detection contributes substantively to the overarching
risk management strategy of an organization. By identifying vulnerabilities and potential
security weaknesses, intrusion detection systems facilitate proactive measures to fortify the
network’s defenses [6]. This includes addressing software vulnerabilities through timely
patching, updating security policies, and implementing additional security controls to
mitigate the risk of future cyber threats.

Additionally, the significance of network intrusion detection extends to the monitoring
of insider threats and employee activities within an organization. The manifestation of
malicious insider actions or unintentional security lapses by employees poses considerable
risks to an organization’s security [7]. Intrusion detection systems prove invaluable in
detecting abnormal user behavior or unauthorized access attempts, affording organizations
the ability to investigate and address potential insider threats.

In summary, network intrusion detection stands as a foundational component of a
comprehensive cybersecurity strategy, providing continuous monitoring and analysis of
network traffic for the real-time detection and response to cyber threats [8]. This proactive
approach is essential for safeguarding sensitive information, maintaining regulatory com-
pliance, and protecting the overall well-being of an organization amidst the ever-evolving
landscape of cyber threats.

The utilization of artificial intelligence (AI) in network intrusion detection becomes
imperative due to its efficacy in enhancing the efficiency and accuracy of threat detec-
tion within complex and dynamic cyber environments. AI-powered intrusion detection
systems harness machine learning algorithms to scrutinize extensive network data, identi-
fying patterns and anomalies indicative of potential security breaches. Unlike traditional
signature-based systems, AI-driven solutions exhibit adaptability and learning capabilities,
thereby offering a proactive defense against sophisticated and previously unknown cyber
attacks. This enables organizations to stay ahead of evolving threats, minimize false posi-
tives, and respond more effectively to emerging security challenges, ultimately fortifying
the resilience of their network infrastructure in the face of constantly evolving cyber risks.

Furthermore, various studies have explored the application of Artificial Neural Net-
works (ANNs) in the detection of malicious network traffic [9]. One such investigation
employed the 10-fold cross-validation technique for ANN training, achieving an accuracy
(ACC) of 0.98 and an area under the receiver operator characteristic curve (AUC) of 0.98 [9].
In another study, the UNSW-NB15 dataset and the original dataset were employed to train
a Convolutional Neural Network (CNN) for multiclass classification, achieving an accuracy
of 0.956 [10]. Support vector classifiers (SVCs) and extreme learning machines (ELMs)
were utilized for network intrusion detection in conjunction with a modified K-Means
method for feature extraction, yielding a highest estimation accuracy of 0.9575 [11]. An
ensemble method, comprising Naive Bayes, PART, and Adaptive Boost, was employed for
network intrusion detection, achieving the highest accuracy (ACC) of 0.9997 [12]. Similarly,
a multi-layer ensemble method utilizing SVC was applied for network intrusion detection
and classification, coupled with a Deep Belief Network for feature extraction, resulting
in the highest classification accuracy (ACC) of 0.9727 [13]. Principal component analysis
(PCA) and Auto-Encoder were employed for feature extraction, and a CNN was utilized
for the detection of network intrusion types in yet another study, achieving the highest
accuracy (ACC) of 0.94 [14].

The authors in [15] used recurrent neural networks (RNNs) for network intrusion type
detection and compared the classification performance to that achieved with J48, ANN,
random forest (RFC) and SVC. In this case, the RNN achieved the highest classification
accuracy of 0.9709. The ensemble method based on selection using the Bat algorithm
was used in [16] for the detection of the network intrusion type, and the highest accuracy
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achieved was 0.98944. A nonsymmetric deep auto encoder with random forest classifier
was used [17] for network intrusion detection on KDD Cup 99 and NSL-KDD benchmark
datasets. The highest classification accuracy achieved in this case was 0.979 on the KDD
Cup 99 dataset. Deep learning neural networks (DNNs) have been used in [18,19] for
network intrusion detection, and the highest classification accuracy results achieved in
both cases were 0.9995 and 0.9938, respectively.

The reinforcement learning methods have also been used for network intrusion de-
tection [20,21]. In [21], deep Q-learning was used for the detection of different types of
network intrusions. The highest accuracy achieved with this model was 0.78.

The results of the previously discussed research are summarized in Table 1.

Table 1. The results reported in other literature.

References AI Methods Results

[9] ANN ACC = 0.98
AUC = 0.98

[10] CNN ACC = 0.956

[11] SVC, ELM ACC = 0.9575

[12] ensemble method (Naive Bayes, PART and
Adaptive Boost) ACC = 0.9997

[13] multi-layer ensemble method SVC ACC = 0.9727

[14] CNN ACC = 0.94

[15] RNN ACC = 0.9709

[16] Ensemble based on selection using Bat algorithm ACC = 0.98944

[17] Non symmetric deep
auto encoder with RFC

ACC = 0.979

[18] DNN ACC = 0.9995

[19] DNN ACC = 0.9938

[21] deep Q-learning ACC = 0.78

From the findings presented in Table 1, it becomes evident that a predominant number
of scholarly works have employed neural networks, specifically Artificial Neural Networks
(ANNs) and Convolutional Neural Networks (CNNs), for the purpose of network intrusion
detection. In certain investigations, sophisticated ensemble methods have been incorpo-
rated alongside ANN/CNN methodologies. Remarkably, all these methodologies have
exhibited exemplary levels of detection and classification performance. However, a critical
limitation of these approaches lies in their inherent complexity, rendering them resistant to
facile transformation into succinct symbolic expressions (SEs). Furthermore, the exigent
computational demands for training, storage, and reutilization pose an additional challenge
for these AI methods.

This paper endeavors to surmount these challenges by deploying the Genetic Pro-
gramming Symbolic Classifier (GPSC) method on a publicly available dataset. The aim is
to derive symbolic expressions (SEs) possessing the capacity for highly accurate network
intrusion detection. To optimize the classification performance of the resultant SEs, a novel
Random Hyperparameter Value Search (RHVS) methodology has been introduced. This
method randomly selects hyperparameter values for GPSC, acknowledging the extensive
range of parameters involved. The training of GPSC is conducted through a meticulous
five-fold cross-validation (5FCV) process, yielding a robust ensemble of SEs. The synergistic
integration of GPSC, RHVS, and 5FCV aims to procure a superlative and resilient set of SEs
conducive to high-accuracy network intrusion detection.

Given the imbalanced nature of the initial dataset, this paper advocates for the appli-
cation of diverse oversampling techniques. This strategic maneuver seeks to rectify the
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class imbalances and facilitate the utilization of balanced dataset variations within GPSC,
thereby optimizing the generation of an optimal set of SEs with enhanced discriminatory
capabilities. In essence, this paper propounds the integration of GPSC, RHVS, 5FCV, and
oversampling techniques as a holistic approach for the acquisition of a robust SE system
capable of efficacious network intrusion detection, particularly in the context of imbalanced
datasets. Drawing upon the extensive review of existing literature and the distinctive
contributions of this paper, the following inquiries emerge:

• Can SEs be derived effectively for the purpose of network intrusion detection through
the utilization of the GPSC?

• Can the attainment of balanced dataset variations through the strategic implementa-
tion of oversampling techniques be realized, and to what extent can these oversam-
pling techniques contribute to the enhancement of classification accuracy within the
Genetic Programming Symbolic Classifier (GPSC)?

• To what extent is it feasible to ascertain the optimal combination of hyperparameter
values within GPSC, thereby facilitating the generation of SEs characterized by height-
ened classification accuracies? This entails the formulation and implementation of a
method employing Random Hyperparameter Value Searches.

• Can an augmentation in classification accuracy be realized through the amalgamation
of the most adept SEs? This entails adjusting the minimum threshold for correct
classifications made by SEs, presenting an avenue for improving overall accuracy.

These sophisticated queries encapsulate the core investigatory elements of this study,
probing the efficacy and optimization potential of the proposed methodology in network
intrusion detection.

The structure of this manuscript encompasses four main sections: Materials and Meth-
ods, Results, Discussion, and Conclusions. The Materials and Methods section provides a
comprehensive overview of the dataset, incorporating elements such as statistical analy-
sis, correlation analysis, outlier detection, dataset scaling and normalization techniques,
oversampling methods, details of the Genetic Programming Symbolic Classifier (GPSC)
algorithm, evaluation metrics, and the intricacies of the training procedure.

Moving to the Results section, the presentation unfolds with the display of outcomes
derived from analyses conducted on scaled and normalized datasets, emphasizing balanced
variations. The final results are then delineated concerning the original, imbalanced dataset.
The ensuing Discussion section supplements the results by offering deeper insights into
the dataset and its implications.

The Conclusions section encapsulates a succinct summary of the proposed research
methodology. It provides a condensed overview, aligning the conclusions with the hy-
potheses posited in the introduction and substantiated in the discussion. Additionally, this
section offers a nuanced exploration of the advantages and disadvantages of the proposed
research methodology, concluding with a forward-looking perspective on potential future
research avenues.

An adjunct to the primary sections, an Appendix A is appended, furnishing supple-
mentary details pertaining to modified mathematical functions utilized in GPSC. Further-
more, a procedural guide on accessing and utilizing the obtained SEs in this research is
included. This meticulous arrangement ensures a comprehensive and organized presenta-
tion of the research endeavors and outcomes.

2. Materials and Methods

In this section, the research methodology, dataset description, scaling/normalizing
techniques, oversampling techniques, Genetic Programming Symbolic Classifier, evaluation
metrics, and training/testing procedure will be described.

2.1. Research Methodology

The graphical representation of the research methodology can be observed in Figure 1.



Information 2024, 15, 154 5 of 24

Figure 1. The graphical representation of the research methodology.

As depicted in Figure 1, the research methodology encompasses the following sequen-
tial steps:

1. The initial dataset undergoes data processing, involving the transformation of non-
numeric type variables into numeric types.

2. The preprocessed dataset is subjected to oversampling techniques, including ADASYN,
BorderlineSMOTE, KMeansSMOTE, SMOTE, and SVMSMOTE, thereby generating
balanced dataset variations.

3. Each of the balanced dataset variations is utilized in the Genetic Programming Sym-
bolic Classifier (GPSC) algorithm with the Random Hyperparameter Value Search
(RHVS) method during the five-fold cross-validation (5FCV) training process. The
RHVS method aims to identify the optimal combination of GPSC hyperparameters,
leading to the generation of symbolic expressions (SEs) with high classification accu-
racy in network intrusion detection.

4. The best SEs obtained are combined and assessed on the original imbalanced dataset.

2.2. Dataset Description

In this research, a publicly available dataset from Kaggle [22] has been used. The
provided dataset for auditing encompasses a diverse range of simulated intrusions within
a military network setting. The dataset was generated to capture raw TCP/IP dump
data in a manner simulating a typical US Air Force Local Area Network (LAN). This
LAN emulation was meticulously designed to mirror a realistic environment, subjected
to multiple simulated attacks. In the context of this simulation, a connection refers to a
sequence of TCP packets spanning a specific time duration, during which data traverse
between a source IP address and a target IP address following a well-defined protocol.
Each connection in the dataset is categorized as either “normal” or identified with a specific
attack type. Each connection record is composed of approximately 100 bytes.

For both normal and attack data, a total of 41 features, comprising a mix of quanti-
tative and qualitative attributes (3 qualitative and 38 quantitative features), are extracted
for each TCP/IP connection. These features provide a comprehensive representation
of the network behavior during these connections. The class variable assigned to each
connection holds two distinct categories: “Normal” for regular, non-anomalous connec-
tions, and “Anomalous” for those associated with specific attack types. This classification
scheme allows for the characterization and analysis of network activities, aiding in the
identification and understanding of potential security threats within the simulated military
network environment.
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The initial problem with the dataset is that some dataset variables are in a non-
numeric format, and if they want to be used in the dataset, they have to be transformed
into a numeric type. The non-numeric type dataset variables are “protocol-type”, “service”,
“flag”, and “class”. The process of transforming the aforementioned variables from a non-
numeric to numeric type will be conducted using scikit-learn LabelEncoder function [23].
The results of the LabelEcnoder function applied to non-numeric dataset variables are listed
in Table 2.

Table 2. The values of non-numeric variables and their corresponding numeric value after application
of the Label encoder. (Beside each variable value is the total number of samples that contain this
variable value).

Variable
Name Value Type Value

protocol type Original Value ‘tcp’: 20,526, ‘udp’: 3011, ‘icmp’: 1655
Numeric Value 1: 20,526, 2: 3011, 0: 1655

service

Original Value

‘http’: 8003, ‘private’: 4351, ‘domain_u’: 1820, ‘smtp’: 1449, ‘ftp_data’: 1396, ‘eco_i’: 909,
‘other’: 858, ‘ecr_i’: 613, ‘telnet’: 483, ‘finger’: 366, ‘ftp’: 345, ‘auth’: 189, ‘Z39_50’: 172, ‘courier’:
164, ‘uucp’: 157, ‘time’: 155, ‘bgp’: 146, ‘whois’: 145, ‘imap4’: 138, ‘uucp_path’: 133, ‘iso_tsap’:
131, ‘ctf’: 127, ‘urp_i’: 124, ‘nnsp’: 123, ‘supdup’: 114, ‘http_443’: 113, ‘csnet_ns’: 111, ‘efs’: 110,

‘domain’: 109, ‘gopher’: 109, ‘vmnet’: 107, ‘daytime’: 107, ‘discard’: 105, ‘hostnames’: 96,
‘name’: 92, ‘klogin’: 92, ‘exec’: 91, ‘mtp’: 90, ‘ldap’: 90, ‘systat’: 88, ‘netbios_dgm’: 85, ‘link’: 85,
‘login’: 79, ‘netstat’: 78, ‘netbios_ns’: 76, ‘sunrpc’: 67, ‘kshell’: 67, ‘netbios_ssn’: 67, ‘echo’: 65,

‘nntp’: 61, ‘ssh’: 58, ‘pop_3’: 53, ‘sql_net’: 46, ‘IRC’: 40, ‘ntp_u’: 32, ‘X11’: 22, ‘rje’: 20,
‘remote_job’: 17, ‘pop_2’: 17, ‘printer’: 12, ‘shell’: 11, ‘urh_i’: 4, ‘pm_dump’: 3, ‘red_i’: 3, ‘tim_i’:

2, ‘http_8001’: 1

Numeric Value

22: 8003, 46: 4351, 11: 1820, 51: 1449, 19: 1396, 13: 909, 41: 858, 14: 613, 57: 483, 17: 366, 18: 345,
3: 189, 2: 172, 5: 164, 62: 157, 59: 155, 4: 146, 65: 145, 25: 138, 63: 133, 26: 131, 7: 127, 61: 124, 38:
123, 55: 114, 23: 113, 6: 111, 15: 110, 10: 109, 20: 109, 64: 107, 8: 107, 9: 105, 21: 96, 33: 92, 27: 92,
16: 91, 32: 90, 29: 90, 56: 88, 34: 85, 30: 85, 31: 79, 37: 78, 35: 76, 54: 67, 28: 67, 36: 67, 12: 65, 39:
61, 53: 58, 44: 53, 52: 46, 0: 40, 40: 32, 1: 22, 49: 20, 48: 17, 43: 17, 45: 12, 50: 11, 60: 4, 42: 3, 47: 3,

58: 2, 24: 1

flag Original Value ‘SF’: 14,973, ‘S0’: 7009, ‘REJ’: 2216, ‘RSTR’: 497, ‘RSTO’: 304, ‘S1’: 88, ‘SH’: 43, ‘RSTOS0’: 21, ‘S2’:
21, ‘S3’: 15, ‘OTH’: 5

Numeric Value 9: 14,973, 5: 7009, 1: 2216, 4: 497, 2: 304, 6: 88, 10: 43, 3: 21, 7: 21, 8: 15, 0: 5

class Original Value ‘normal’: 13,449, ‘anomaly’: 11,743
Numeric Value 0: 13,449, 1: 11,743

Unfortunately, the LabelEncoder did not transform the class variable as planned,
i.e., to transform the “normal” class label to 0 and the “anomaly” class label to 1, so this
was performed manually. However, the result is listed in the Table 2. Additionally from
the protocol type variable that was transformed into a numeric type using the OneHo-
tEncoder function from scikit-learn library [23], three new variables were created, i.e.,
“protocol_type_tcp”, “protocol_type_udp”, and “protocol_type_icmp”. The initial variable
“protocol” was removed from the dataset. So the total number of dataset variables was
increased from an initial 41 to 44.

After all the non-numeric variables were transformed into numeric variables, the
initial statistical analysis was performed. In other words, the dataset was investigated for
missing values, and the mean, standard deviation, minimum, and the maximum values
were determined for each dataset variable. The results of the initial statistical analysis are
listed in Table 3.
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Table 3. The results of the dataset statistical analysis and GPSC variable representation of
dataset variables.

Variable Name Count Mean Std Min Max GPSC Variable
Representation

duration

25,192

305.05 2686.56

0

42,862 X0

service 29.04 15.56 65 X1

flag 6.98 2.68 10 X2

src_bytes 24,330.63 2,410,805.40 3.82× 10−8 X3

dst_bytes 3491.85 88,830.72 5,151,385 X4

land 0.00 0.01 1 X5

wrong_fragment 0.02 0.26 3 X6

urgent 0.00 0.01 1 X7

hot 0.20 2.15 77 X8

num_failed_logins 0.00 0.05 4 X9

logged_in 0.39 0.49 1 X10

num_compromised 0.23 10.42 884 X11

root_shell 0.00 0.04 1 X12

su_attempted 0.00 0.05 2 X13

num_root 0.25 11.50 975 X14

num_file_creations 0.01 0.53 40 X15

num_shells 0.00 0.02 1 X16

num_access_files 0.00 0.10 8 X17

num_outbound_cmds 0 0 0 X18

is_host_login 0 0 0 X19

is_guest_login 0.01 0.10 1 X20

count 84.59 114.67 1 511 X21

srv_count 27.70 72.47 1 511 X22

serror_rate 0.29 0.45

0

1 X23

srv_serror_rate 0.28 0.45 1 X24

rerror_rate 0.12 0.32 1 X25

srv_rerror_rate 0.12 0.32 1 X26

same_srv_rate 0.66 0.44 1 X27

diff_srv_rate 0.06 0.18 1 X28

srv_diff_host_rate 0.10 0.26 1 X29

dst_host_count 182.53 98.99 255 X30

dst_host_srv_count 115.06 110.65 255 X31

dst_host_same_srv_rate 0.52 0.45 1 X32

dst_host_diff_srv_rate 0.08 0.19 1 X33

dst_host_same_src_port_rate 0.15 0.31 1 X34

dst_host_srv_diff_host_rate 0.03 0.11 1 X35

dst_host_serror_rate 0.29 0.45 1 X36

dst_host_srv_serror_rate 0.28 0.45 1 X37

dst_host_rerror_rate 0.12 0.31 1 X38

dst_host_srv_rerror_rate 0.12 0.32 1 X39

protocol_type_icmp 0.07 0.25 1 X40

protocol_type_tcp 0.81 0.39 1 X41

protocol_type_udp 0.12 0.32 1 X42

class 0.47 0.50 1 y
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From Table 3, it can be noticed based on the “count” value that all dataset variables
have the same number of samples, i.e., there are no missing values. All dataset variables
have a minimum value equal to 0 with the exception of the “count” and “srv_count”
variables, which have a minimum value equal to 1. From the mean, standard deviation,
min, and max values, the outliers can be easily detected. Outliers are data points that
significantly deviate from the rest of the dataset, often indicating unusual or erroneous
observations. Outliers can adversely affect the performance of AI methods by distorting
models and leading to biased or inaccurate predictions, as these methods may overly rely
on or be disproportionately influenced by the presence of outliers in the training data. Based
on the mean, std, and min/max values, the duration, service, flag, src_bytes, dst_bytes, hot,
num_compromised, num_root, numf_file_creations, num_file_creations, num_access_files,
is_guest_login, count, srv_count, dst_host_count, and dst_host_srv_count. However, other
dataset variables have outliers, but their entire range is between 0 and 1, so it is extremely
small when compared to the value range of aforementioned variables. It should be noted
that two variables, i.e., num_outbound_cmds and is_host_login both are 0 (mean, std, min
and max are 0). However, further investigation will be conducted using all the dataset
variables and with the outliers intact. The idea is to see if using the initial set of variables
the SEs can be obtained for network intrusion detection.

To see the relation between the variables, the correlation analysis must be performed.
Here, Pearson’s correlation analysis is used, and the range of correlation value between
two variables can be from −1.0 up to 1.0 [24]. The lowest negative value indicates perfect
negative correlation, which means that if the value of one variable increases, the value of
the other variable will decrease, and vice versa. In the case of the perfect positive correlation
between two variables, if the value of one variable increases, the value of the other will also
increase. If the correlation value between two variables is 0, it means that both variables do
not affect each other. The result of the correlation analysis is shown in Figure 2.

Figure 2. The correlation analysis.
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As seen from Figure 2, 19 out of 43 input variables have a correlation of 0 with the
class variable, which means that the change in values of these variables will not have any
effect on the class variable. The 8 input variables have a correlation value of 0.25 with
the class variable. A total of 5 input variables have a positive correlation in the 0.50 to
0.75 range with the class variable, which indicates a strong correlation with the target
variable. For reference, the class variable with itself has a perfect correlation of 1. Regarding
the negative correlation, two variables (srv_diff_host_rate and protocol_type_udp) have
a negative correlation in the −0.12 to −0.25 range with the class variable. The 5 input
variables (flag, logged_in, same_srv_rate, dst_host_srv_count, dst_host_same_srv_rate)
have negative correlation values in the −0.5 to −0.75 range to the class variable.

Outlier detection plays a crucial role in the field of data analysis and statistical model-
ing due to its multifaceted impact on various aspects of data interpretation and decision-
making. An outlier, defined as a data point significantly differing from the majority, serves
as a valuable indicator of potential errors, irregularities, or exceptional cases within a
dataset [25]. Detecting outliers is fundamental for maintaining data quality, as they often
reveal issues in data collection, measurement processes, or data entry errors. By addressing
outliers, analysts can enhance the reliability of datasets, contributing to more accurate and
trustworthy analyses.

The influence of outliers on statistical inferences cannot be understated. Outliers
possess the ability to unduly impact measures like means and standard deviations, leading
to skewed and biased results. Proper outlier detection and management are essential for
ensuring that statistical analyses provide a more robust and unbiased representation of the
underlying data distribution. Additionally, outliers can negatively affect the performance of
predictive models. Machine learning algorithms trained on datasets containing outliers may
yield less accurate and skewed predictions. Therefore, the identification and appropriate
handling of outliers during data preprocessing is vital for optimizing model performance.

One of the widely employed tools for visualizing data distributions and identify-
ing outliers is the boxplot, also known as the box-and-whisker plot [26]. This graphical
representation provides a succinct summary of key statistical measures, including the
median, quartiles, and potential outliers. The box encompasses the interquartile range
(IQR), representing the span between the first and third quartiles, while the whiskers extend
to the minimum and maximum values within a specified range. Outliers, lying outside
the whiskers, are typically plotted individually. Boxplots are valuable in data exploration,
offering insights into the spread and central tendency of a dataset. Their ability to highlight
outliers aids analysts in making informed decisions about data integrity and in developing
more accurate and reliable models. The boxplot showing potential outliers is shown in
Figure 3.

The value range on the y-axis is limited to 600 since the majority of variables shown
in Figure 3 have a range below 600. However, the duration (max = 42, 862), src_bytes
(max = 3.82× 108), dst_bytes (max = 5, 151, 485), num_compromised (max = 884),
num_root (max = 975) have max values above 600. From Table 3 and Figure 3, it can
be concluded that the dataset contains a large number of dataset variables with outliers.
However, the investigation was conducted without handling outliers or applying the
dataset scaling and normalization techniques.

From Tables 2 and 3, it can be noticed that the class variable does not contain an equal
number of samples among class labels. The number of class samples is shown in the form
of the barplot in Figure 4.
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Figure 3. The boxplot shows the variable distribution and possible outliers.

Figure 4. The number of class samples.

As seen from Figure 4, the normal class has more samples than the anomaly class
(11,743). Although the difference between class samples indicates the class imbalance,
the difference between class samples is not so large. However, various oversampling
techniques will be applied to obtain the balanced dataset variations, which will be used in
GPSC to obtain SEs.

2.3. Dataset Oversampling Techniques

The dataset oversampling techniques were used in this research to achieve the balance
between class samples. The reason for choosing the oversampling instead of undersampling
techniques is because the oversampling techniques do not require any parameter tuning
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and they are usually faster in reaching the balance between class samples. In this research,
the ADASYN, BorderlineSMOTE, KMeansSMOTE, SMOTE, and SVMSMOTE were used.

Adaptive Synthetic Sampling (ADASYN) is an oversampling technique used in ML to
address the class imbalance problem [27]. It focuses on generating synthetic examples for
the minority class in a dataset by considering the density distribution of different classes.
ADASYN adapts its synthetic sample generation based on the density of instances in the
feature space, giving more emphasis to regions with fewer instances.

Borderline Synthetic Minority Over-sampling Technique (BorderlineSMOTE) [28] is a
variant of the Synthetic Minority Over-sampling Technique (SMOTE) specifically designed
to address the issue of class imbalance. It identifies the instances near the decision boundary
(borderline instances) between the minority and majority classes and focuses on generating
synthetic examples for these instances. This helps improve the classifier’s performance in
regions where the decision boundary is more challenging.

KMeansSMOTE is an extension of the SMOTE algorithm that incorporates k-means
clustering to generate synthetic samples [29]. It involves clustering the minority class
instances using k-means and then applying SMOTE independently within each cluster.
This approach aims to capture the underlying structure of the minority class more effectively
by generating synthetic samples based on local information.

The Synthetic Minority Over-sampling Technique (SMOTE) is a classic oversampling
technique used to address class imbalance in machine learning [30]. It works by generating
synthetic examples for the minority class by interpolating between existing instances.
Specifically, for each minority class instance, SMOTE selects its k-nearest neighbors and
creates synthetic instances along the line segments connecting them. This helps balance the
class distribution and improve the classifier’s performance in the minority class.

The Support Vector Machine Synthetic Minority Over-sampling Technique (SVMSMOTE)
is an oversampling technique that combines the principles of SMOTE with support vector
machines [31]. It aims to generate synthetic samples for the minority class by consider-
ing the support vectors obtained from a support vector machine classifier. SVMSMOTE
focuses on areas where the decision boundary is more complex and where the support
vectors are located, making it particularly useful in capturing the intricacies of the minority
class distribution.

The number of samples for each class after the application of the aforementioned
techniques is listed in Table 4.

Table 4. The number of samples for each class in each dataset oversampled variation.

Dataset Name Class_0 (Normal) Class_1 (Anomaly)

Initial Dataset 13,449 11,743
ADASYN 13,449 13,424

BorderlineSMOTE 13,449 13,449
KMeansSMOTE 13,449 13,450

SMOTE 13,449 13,449
SVMSMOTE 13,449 13,449

As seen from Table 4, it can be noticed that all the techniques have been successful
in balancing the initial dataset. In the case of ADASYN, the minority class (class_1) has
25 fewer samples than the (class_0). In the case of KMeansSMOTE, the minority class
(class_1) has 1 more sample than the majority class (class_0). However, these two cases
can be considered balanced since in the initial dataset, the minority class (class_1) has
1706 fewer samples than the majority class. In the case of BorderlineSMOTE, SMOTE, and
SVMSMOTE, the perfect balance is reached. It should be noted that after the application of
these oversampling techniques, balanced dataset variations were created, and a Genetic
Programming Symbolic Classifier will be applied to these datasets to obtain SEs.
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2.4. Genetic Programming Symbolic Classifier

The Genetic Programming Symbolic Classifier (GPSC) is an evolutionary algorithm
that initiates its iterative process by generating random SEs, providing rudimentary es-
timations of the target variable. Through successive generations, facilitated by genetic
operations such as crossover and mutation, GPSC refines these expressions to accurately
estimate the target variable. Unlike genetic algorithms, GPSC necessitates a dataset with
well-defined input and output variables.

To attain elevated classification accuracy, the meticulous tuning of GPSC hyperpa-
rameters is imperative. The optimal combination of hyperparameter values, essential
for the derivation of SEs with superior classification accuracy, is achieved through the
application of the Random Hyperparameter Value Search (RHVS) method. RHVS, in each
invocation, randomly selects hyperparameter values from predefined ranges. The critical
GPSC hyperparameters subjected to this search process encompass the following:

• Population size: the size of the SE population undergoing evolution.
• Number of generations: The maximum evolutionary generations and termination

criterion. If the minimum fitness function value (stopping criteria value) is not reached
during the GPSC execution, the execution will be terminated after a predefined value
of the number of generations is reached.

• Tournament size: the size of randomly selected population members competing for
parent status.

• Initial tree depth: the depth range of population members represented as tree structures.
• Stopping criteria: The predefined minimum value of the fitness function, a termination

criterion. If the value is reached by one of the population members during the GPSC
execution, the GPSC execution will be terminated and usually will produce the SEs
with good classification accuracy.

• Crossover probability: the likelihood of the crossover genetic operation.
• Subtree mutation probability: the probability of the subtree mutation genetic operation.
• Hoist mutation probability: the probability of the hoist mutation genetic operation.
• Point mutation probability: the probability of the point mutation genetic operation.
• Range of constant values: the predefined range for generating constant values.
• Maximum number of samples: The maximum number of training set samples used for

the evaluation of population members. If the value is lower than 1.0, the out-of-bag
(OOB) fitness value is calculated. The OOB fitness value is the value obtained when
unseen training samples are used in population members in each generation. This
is a good metric to see how well population members perform on unseen training
data. It is good practice to calculate the OOB to see if the fitness value is near the
fitness value of the best population member in each generation. If the value drastically
differs from the best fitness value, it could indicate that the obtained SEs, in particular,
GPSC, execution will have low classification performance on new data, i.e., overfitting
occurs. The best practice is to set this value in the 0.99 to 0.9999 range to ensure that
the maximum amount of training data is used for training the population members
but also to obtain an OOB fitness value in each generation on a small portion of unseen
data samples.

• Range of constant values: This is a hyperparameter that defines the range of constant
values that will be used to develop the initial population from a random selection of
constant values and also during the mutation operations. The choice of the constant
values range is arbitrary.

• Parsimony coefficient: A coefficient mitigating the bloat phenomenon, controlling
population growth.

Furthermore, GPSC incorporates mathematical functions, such as addition, subtrac-
tion, multiplication, division, natural logarithm, logarithms with bases 2 and 10, square
root, cube root, absolute value, sine, cosine, and tangent. Modifications were necessary for
certain functions, namely square root, division, natural logarithm, and logarithms with
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bases two and ten, to avert computational errors. These adjustments are detailed in the
Appendix A.1.

To determine the optimal range for each GPSC hyperparameter during RHVS, pre-
liminary testing was conducted, resulting in the delineation of upper and lower bound-
aries. The comprehensive analysis of these boundary values is presented in Table 5. This
meticulous approach ensures the judicious selection of hyperparameter values, thereby
enhancing the efficacy of GPSC in achieving heightened classification accuracy on diverse
dataset variations.

Table 5. The boundaries of each hyperparameter using in the RHVS method.

Hyperparameter Name Lower Boundary Upper Boundary

population size 1000 2000
number of generations 100 300

tournament size 100 800
initial tree depth 3 18
stopping criteria 1× 10−6 1× 10−3

crossover probability 0.001 1
subtree mutation probability 0.001 1

hoist mutation probability 0.001 1
point mutation probability 0.001 1

range of constant values −1000 1000
max samples 0.99 1

parsimony coefficient 1× 10−4 1× 10−3

2.5. Evaluation Metrics

The evaluation metrics used in this research are accuracy (ACC), area under receiver
operating characteristics curve (AUC), precision, recall, F1-score, and confusion matrix. The
accuracy is a measure of the overall correctness of a classification model [32]. It represents
the ratio of correctly predicted instances to the total number of instances. The ACC is
calculated using the expression:

ACC =
TP + TN

TP + TN + FP + FN
, (1)

where TP, TN, FP, and FN are true positives (correctly predicted positive instances),
true negatives (correctly predicted negative instances), false positives (actual negatives
incorrectly predicted as positives), and false negatives (actual positives incorrectly predicted
as negatives).

The AUC represents the area under the receiver operating characteristic curve [33].
The ROC curve is a graphical representation of the trade-off between sensitivity (true
positive rate) and specificity (true negative rate) for different threshold values. The AUC
value is between 0 and 1, with a higher value indicating a better-performing model. It is
often calculated using integral calculus on the ROC curve.

The precision is the ratio of correctly predicted positive instances to the total predicted
positive instances [34]. It assesses the accuracy of positive predictions. The precision is
calculated using the expression, which can be written as:

Precision =
TP

TP + FP
. (2)

The recall measures the ratio of correctly predicted positive instances to the total actual
positive instances [34]. It assesses the ability of the model to capture all positive instances.
Recall is calculated using the expression:

Recall =
TP

TP + FN
. (3)
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The F1-score is the harmonic mean of precision and recall [34]. In other words,
it provides a balance between precision and recall. The F1-score is calculated using
the expression:

F1-score =
2 · Precision · Recall
Precision + Recall

(4)

A confusion matrix is a fundamental tool in the evaluation of the performance of a
classification model. It is a table that summarizes the predictions made by a model on a
set of data for a binary or multiclass classification problem. The matrix provides a clear
and detailed breakdown of the model’s performance, categorizing predictions into four
possible outcomes: true positives (TPs), true negatives (TNs), false positives (FPs), and
false negatives (FNs). The confusion matrix form is shown in Table 6.

Table 6. The form of the confusion matrix.

Actual Positive TP FN

Actual Negative FP TN

Predicted Positive Predicted Negative

By examining the values in the confusion matrix, one can derive various performance
metrics such as accuracy, precision, recall, and the F1-score. These metrics provide insights
into different aspects of the model’s effectiveness, such as its ability to correctly classify
positive and negative instances, its precision in positive predictions, and its recall or
sensitivity in capturing positive instances.

The confusion matrix is an invaluable tool for assessing the strengths and weaknesses
of a classification model, helping practitioners make informed decisions about model
adjustments and improvements based on specific business or application requirements.

2.6. Training/Testing Procedure

The training and testing procedure is graphically shown in Figure 5.

Figure 5. The graphical representation of training–testing procedure.

As illustrated in Figure 5, the training–testing procedure unfolds through a sequence
of meticulously orchestrated steps:

1. Initial Dataset Division: The balanced dataset variation is initially partitioned into
training and testing sets at a ratio of 70:30.
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2. Training Phase: The training dataset serves as input to the GPSC algorithm within a
5-fold cross-validation framework. Prior to the execution of GPSC, its hyperparameter
values undergo a random selection process from predefined ranges facilitated by the
RHVS method.

3. Evaluation Metrics Calculation: Following the completion of 5-fold cross validation,
the mean and standard deviation values for evaluation metrics (ACC, AUC, precision,
recall, and F1-score) are computed based on the outcomes from the five trained models
(SEs). If the mean values for all evaluation metrics surpass 0.95, the process advances
to the testing phase. Otherwise, the algorithm iterates, initiating a new cycle by
randomly selecting hyperparameter values.

4. Testing Phase: In this phase, the SEs derived from the training process are evaluated
on the designated testing dataset. Subsequently, the mean values for the evaluation
metrics are computed. If these values exceed 0.95 across all metrics, signifying a high
level of performance, the process concludes. If not, the iteration resumes, commencing
afresh with the random selection of hyperparameter values. This cyclic procedure
ensures a rigorous and iterative approach, striving for optimal SEs that meet the
defined performance criteria.

3. Results

Within this section, the outcomes showcase the optimal SEs derived from the balanced
dataset variations. Subsequently, these premier SEs were amalgamated into an ensemble
and subjected to testing on the initial imbalanced dataset. The ensuing examination
delves into the classification performance of the ensemble, considering the tally of accurate
predictions as a pivotal metric.

3.1. The Best Symbolic Expressions

The premier SEs acquired from each balanced dataset variation were derived through
the selection of optimal GPSC hyperparameter values, determined randomly via the RHVS
method. The particulars of the optimal GPSC hyperparameter values, instrumental in
obtaining the most effective SEs for each balanced dataset variation, are enumerated in
Table 7.

Table 7. The optimal GPSC hyperparameters obtained using the RHVS method on balanced
dataset variations.

Dataset Name

GPSC Hyperparameter Values (Population Size, Number of Generations, Tourna-
ment Size, Initial Tree Depth, Crossover p., Subtree Mutation p., Hoist Mutation
p., Point Mutation p., Stopping Criteria, Max Samples, Range of Constant Values,
Parsimony Coefficient)

ADASYN 1307, 231, 133, (6, 12), 0.002, 0.98, 0.012, 0.00179, 0.000123, 0.9959, (−420.95, 745.17),
5.62× 10−5

BorderlineSMOTE 1285, 293, 333, (6, 18), 0.0082, 0.9652, 0.01568, 0.0102, 0.000784, 0.9983, (−155.23, 315.19),
7.04× 10−5

KMeansSMOTE 1134, 202, 280, (6, 17), 0.00558, 0.9569, 0.0074, 0.029, 0.000677, 0.9951, (−735.91, 492.48),
1.79× 10−5

SMOTE 1004, 248, 261, (3, 16), 0.017, 0.95, 0.0078, 0.016, 6.6× 10−5, 0.9936, (−811.02, 176.51),
6.51× 10−5

SVMSMOTE 1492, 291, 204, (3, 13), 0.0078, 0.9553, 0.024, 0.0118, 0.000989, 0.9978, (−545.85, 580.26),
2.93× 10−5

Examining Table 7 reveals distinctive trends in the selection of optimal GPSC hyper-
parameter values across various balanced dataset variations. Notably, the SVMSMOTE
dataset application necessitated the utilization of the highest population size, followed
closely by the ADASYN dataset. In contrast, the remaining datasets saw GPSC employ
lower population size values, strategically aligned near the lower boundary of the Random
Hyperparameter Value Search (RHVS) method as delineated in Table 5. The adoption
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of a larger population size assumes significance in fostering heightened diversity within
the population.

Crucially, an additional pivotal hyperparameter influencing population diversity is
the initial tree depth. The SMOTE dataset witnessed the implementation of the most
substantial initial tree depth, whereas the ADASYN dataset observed the application of
the smallest depth. The predominant termination criterion for GPSC in this investigation
was the number of generations. Given the dual termination criteria within GPSC—number
of generations and stopping criteria—the latter remained unmet throughout, as its prede-
termined value (minimum fitness function value) proved exceptionally low, preventing
attainment by any population member. The stopping criteria ranged from 6.6× 10−5 for
the SMOTE dataset to 0.000989 for the SVMSMOTE dataset.

A prevailing genetic operation in this study was the subtree mutation, consistently
featuring values of 0.95 or higher. The max samples parameter consistently exceeded 0.99
across all GPSC executions. Notably, the KMeansSMOTE dataset exhibited the broadest
range of constant values (−735.19, 492.48), signifying a distinctive range of evolutionary
operations. Examining the parsimony coefficient values from Table 7, it is evident that
the coefficients are uniformly diminutive, with the KMeansSMOTE dataset registering the
lowest (1.79× 10−5) and the BorderlineSMOTE dataset recording the highest (7.04× 10−5)
coefficient. Despite their modest values, these parsimony coefficients effectively mitigated
the bloat phenomenon, ensuring the stability and efficiency of GPSC executions in this
investigation.

In Figure 6, the change of loss value (fitness function value) over number of generations
for one split in 5FCV is shown in case of GPSC and MLP Classifier applied on the SMOTE
dataset. The MLP Classifier configuration consisted of three hidden layers with relu
activation function. The first hidden layer consisted of 50 neurons; the second, 20 neurons;
and third, 10 neurons. The MLP Classifier was just used for comparison and is labeled
ANN in Figure 6.

Figure 6. The change of log-los values versus number of generations in the case of GPSC applied to
the SMOTE dataset.

As seen from Figure 6, the log-loss value in the first 50 generations drops from 0.5
to 0.08 value and continuously decreases up to the 248th generation. However, the drop
from the 50th to 248th generation is much lower when compared to the drop in the first
50 generations. On the other hand, ANN (MLP classifier) showed a high drop in value in
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the first 20 iterations, and up to the 248th iteration, the decrease in the loss function was
low. When these loss values are compared, it can be noticed that the GPSC outperformed
the ANN.

The evaluation metric values of the best SEs obtained on the train and test datasets are
graphically shown in Figure 7.

Figure 7. The classification performance of the best sets of SEs obtained on balanced dataset
variations.

Examining Figure 7 reveals notable disparities in the classification performance of
the best SEs derived from diverse balanced dataset variations. Particularly, the highest
classification performance is discerned in SEs obtained from the SVMSMOTE dataset.
A descending order of classification performance follows for SEs derived from SMOTE,
KMeansSMOTE, BorderlineSMOTE, and ADASYN datasets. It is noteworthy that even
the SEs obtained from the ADASYN dataset exhibit commendable classification accuracy,
albeit the lowest in this comparative analysis, standing at 0.968.

Across all balanced dataset variations, the standard deviation for the best SEs is re-
markably small, underscoring the consistency of performance. The set of SEs derived from
the BorderlineSMOTE dataset, specifically in terms of mean precision, yields the lowest
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standard deviation. Notably, when comparing the standard deviation among the best
SEs obtained from diverse dataset variations for all evaluation metrics, a slightly elevated
standard deviation is observed in the case of SEs derived from the ADASYN dataset.

As elucidated in the GPSC description, the size of obtained SEs can be assessed
through two dimensions: depth and length. Depth is measured along the tree structure
representation during GPSC execution, spanning from the root node (the first element in
text representation) to the deepest leaf. Length, on the other hand, quantifies the entirety
of elements within a symbolic expression, encompassing mathematical functions, input
variables, and constants.

For a comprehensive understanding, Table 8 enumerates the depth and length mea-
surements for the best SEs acquired from diverse balanced dataset variations.

Table 8. The depth and length of the best SEs obtained on each balanced dataset variation.

Dataset Name SE1 SE2 SE3 SE4 SE5 Average

ADASYN
Depth 14 18 19 26 17 18.8

Length 99 103 104 157 160 124.6

BorderlineSMOTE
Depth 16 16 21 14 15 16.4

Length 92 114 59 124 104 98.6

KMeansSMOTE
Depth 18 21 25 16 17 19.4

Length 136 188 137 129 177 153.4

SMOTE
Depth 23 11 27 15 10 17.2

Length 155 83 158 106 73 115

SVMSMOTE
Depth 15 17 18 21 24 19

Length 104 123 171 199 170 153.4

Analyzing Table 8 reveals distinctive characteristics in the depth and length metrics
of SEs obtained from various balanced dataset variations. Notably, SEs acquired from
the BorderlineSMOTE dataset exhibit the lowest average depth and length, while those
derived from the KMeansSMOTE dataset showcase the highest average values for both
depth and length. The SEs obtained from the SVMSMOTE dataset, conversely, demonstrate
the highest average length.

Further scrutiny of Table 8 underscores that SEs sharing identical depth values may
exhibit dissimilar lengths. For instance, SE1 and SE2 obtained from the BorderlineSMOTE
dataset both possess a depth of 16, yet SE1 has a length of 92, while SE2 spans 114 elements.
A similar trend is observed for SE4 obtained from the KMeansSMOTE dataset, where
despite an equal depth of 17, the length registers as 129.

This decoupling of depth and length is further exemplified by SE5 from the ADASYN
and KMeansSMOTE datasets, as well as SE2 from the SVMSMOTE dataset, all featuring a
shared depth of 17, yet showcasing distinct length values: 160, 177, and 123, respectively.
These instances illustrate that identical depth values do not imply uniform length values
for SEs.

Subsequent analysis of the best SEs illuminates the requisite input variables for their
utilization. With the exception of X1, X2, X3, X4, and X8, the majority of input variables are
essential for incorporating all the best SEs. Distinct sets of non-essential variables emerge for
SEs obtained from different dataset variations. For instance, the best SEs from the ADASYN
dataset do not necessitate X21, X25, X28, X33, X34, X36, and X40. In comparison, the best
SEs from the BorderlineSMOTE dataset, in addition to the aforementioned variables, also
exclude X21, X33, and X40. Analogously, the best SEs from the KMeansSMOTE dataset
exclude X11, X34, and X35, while those from the SMOTE dataset omit X6, X26, X33, X37, X38,
and X40. Finally, the best SEs from the SVMSMOTE dataset, apart from X1, X2, X3, X4, and
X8, do not require X40.
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For a detailed guide on downloading and utilizing the obtained SEs, refer to
Appendix A.2.

3.2. Evaluation on the Original Dataset

In the previous subsection, we presented the results of the 25 best SEs, which are
obtained on three balanced dataset variations. To final evaluation will be performed by
applying the 25 best SEs on the original imbalanced dataset. The evaluation process of each
symbolic expression consists of the following steps:

1. Uses input variables from the original dataset in symbolic expression to compute
the output;

2. Uses this output in the sigmoid function to determine the class (0 or 1).

The highest classification performance was achieved if at least 15 SEs had an accurate
prediction per dataset sample. The classification performance of the 25 best SEs is shown in
Table 9 and Figure 8.

Table 9. The classification performance of the best set of all SEs in this research applied to the original
imbalanced dataset.

Evaluation Metric Value

ACC 0.9945
AUC 0.9944

Precision 0.9953
Recall 0.9929

F1− Score 0.9941

The evaluation metric values obtained by application of the best set of all SEs on the
initial imbalanced dataset showed high classification performance.

Figure 8. The confusion matrix of network intrusion detection.

The confusion matrix shown in Figure 8 confirms the accuracy shown in Table 9. If
the TP, TN, FP, and FN values are used from the confusion matrix and used in the ACC
equation, the value of 0.9938 would be obtained. The confusion matrix indicates that only
41 normal samples were misclassified out of 13,449 in total, which is 0.3%. In the case of
anomaly, only 115 samples were misclassified out of 11,743 in total, which is 0.9%.
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4. Discussion

In this investigation, the utilization of a publicly available dataset was instrumental in
the derivation of SEs employing the GPSC for the purpose of network intrusion detection,
with a specific focus on achieving elevated classification performance. The initial dataset,
characterized by its imbalanced nature, necessitated meticulous data preprocessing, partic-
ularly in transforming variables from a string to numeric format. The outcomes of these
transformations are meticulously detailed in Table 2.

Subsequent to the application of the LabelEncoder for dataset transformation, an
initial statistical analysis was conducted to ascertain crucial parameters, such as minimum,
maximum, mean, and standard deviation. This analysis revealed a dataset void of missing
values, comprising 25,192 samples across all 44 variables, including the output (target)
variable. However, two variables, namely num_outbound_cmds and is_host_login, exhib-
ited constant values of 0. Despite this, these values were retained within the dataset. The
statistical summary exposed a uniform minimum value of 0 across all dataset variables.
The class variable demonstrated a mean value of 0.53 and a standard deviation of 0.49,
indicative of a marginal class imbalance, necessitating potential oversampling.

Given the substantial number of variables, the exploration of a correlation matrix
proved inelegant for this study. Consequently, Pearson’s correlation analysis focused solely
on the class variable, revealing noteworthy insights portrayed in Figure 2. This analysis
unveiled that merely five input variables exhibited a positive correlation with the class
variable, while another five displayed a robust negative correlation. Notably, a majority of
variables exhibited correlations below 0.5 or above −0.5, suggesting proximity to zero.

Efforts were directed towards balancing the initially imbalanced dataset through the
application of the BorderlineSMOTE, SMOTE, and SVMSMOTE oversampling techniques.
However, perfect balance was not universally achieved as evidenced by ADASYN and
KMeansSMOTE. Despite a marginal discrepancy in the sample counts, the dataset varia-
tions obtained using ADASYN and KMeansSMOTE were considered well balanced and
were consequently employed in this investigation.

The implementation of GPSC, coupled with a Random Hyperparameter Value Search
method on each dataset variation, demanded time investments to ascertain the optimal
hyperparameter values conducive to the derivation of SEs boasting optimal classification
performance. The examination of optimal hyperparameter combinations revealed nu-
anced patterns, such as varying population sizes and termination criteria across different
oversampled datasets.

The culmination of this research is embodied in the performance evaluation of the
best SEs on balanced dataset variations (Figure 7). The achieved classification performance
exhibited a remarkable range of accuracy, consistently surpassing 0.96 and falling below
0.985. The subsequent application of the amalgamated best SEs to the initial imbalanced
dataset yielded exceptional evaluation metric values, each exceeding 0.99 (Table 8). The
confusion matrix (Figure 8) attested to the superb performance of the best SEs, with minimal
misclassifications observed.

A comparative analysis of the proposed approach and results vis à vis prior research is
elucidated in Table 10, underscoring the noteworthy contributions of the
presented methodology.

Upon scrutinizing the results comparison delineated in Table 9, it becomes evident
that the research proposed in this paper exhibits superior performance in contrast to a
majority of outcomes reported in other research papers. While acknowledging that the
results in [12] marginally surpass those presented herein, it is noteworthy that the proposed
methodology outperforms a significant array of alternative investigations.

The distinctive advantage conferred by the presented methodology in this paper lies in
the acquisition of SEs capable of network intrusion detection with exceptional classification
accuracy. The SEs, once obtained, offer the distinct benefit of efficient storage and obviate
the need for substantial computational resources when calculating outputs for new samples.
This attribute further underscores the practicality and efficiency of the proposed approach.
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Table 10. The comparison of the results obtained in this research with results from previous research.

References AI Methods Results

[9] ANN ACC = 0.98
AUC = 0.98

[10] CNN ACC = 0.956

[11] SVC, ELM ACC = 0.9575

[12] ensemble method (Naive Bayes, PART and Adaptive Boost) ACC = 0.9997

[13] multi-layer ensemble method SVC ACC = 0.9727

[14] CNN ACC = 0.94

[15] RNN ACC = 0.9709

[16] Ensemble based on selection using Bat algorithm ACC = 0.98944

[17] Non symmetric deep auto encoder with RFC ACC = 0.979

[18] DNN ACC = 0.9995

[19] DNN ACC = 0.9938

[21] deep Q-learning ACC = 0.78

This research GPSC + RHVS + 5FCV ACC = 0.9945

5. Conclusions

In this study, the utilization of a publicly available dataset within the GPSC frame-
work aimed at obtaining SEs for network intrusion detection demonstrated remarkable
outcomes in terms of high classification performance. The initial challenge posed by class
imbalance in the dataset was addressed through meticulous preprocessing, including
the application of a Label Encoder to transform string values into numeric representa-
tions. Subsequently, oversampling techniques, namely, ADASYN, BorderlineSMOTE,
KMeansSMOTE, SMOTE, and SVMSMOTE, were employed to generate balanced dataset
variations. These balanced datasets served as the basis for GPSC training via a five-fold
cross-validation (5FCV) procedure, facilitated by the development and application of the
Random Hyperparameter Value Search (RHVS) method. The RHVS method effectively
identified optimal GPSC hyperparameter values crucial for achieving SEs with the highest
classification accuracy. The aggregation of the best SEs from each balanced dataset vari-
ation, when applied to the initial preprocessed imbalanced dataset, aimed to ascertain if
comparable estimation accuracy levels could be sustained. The key conclusions drawn
from this investigation include the following:

• The investigation showed that by using GPSC, SEs with high classification perfor-
mance can be obtained. Using the five-fold cross-validation process proved to be
useful since GPSC on each split generated a symbolic expression which added to the
robustness of the trained model.

• The application of oversampling techniques was successful, and using them, the
balanced dataset variations were created. On these datasets, the GPSC generated
the SEs with very high classification performance. So, it can be concluded that the
oversampling techniques had a great influence on classification performance, and,
using different balancing techniques, multiple SEs were obtained, adding to the
robustness of the final SE ensemble.

• The application of the RHVS method proved to be very useful in searching for the
optimal combination of hyperparameters. On each balanced dataset variation, the
method found the optimal combination of GPSC hyperparameters, with which the
highest classification performance of the obtained SEs was achieved.

• Combining the best SEs into an ensemble added to the robustness in the network intru-
sion detection. The investigation showed that at least 60% (15 out of 25 SEs) of SEs have
to have correct prediction in order to achieve the highest classification performance.

Advantages of the proposed methodologies encompass the following:
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• The capacity of GPSC to yield SEs with elevated classification accuracy: these SEs,
distinctively simplistic in comparison to Artificial Neural Networks (ANNs) or Con-
volutional Neural Networks (CNNs), lend themselves to facile storage and processing,
demanding minimal computational resources.

• The efficacy of the RHVS method in identifying optimal GPSC hyperparameter values,
contributing to the efficiency of the entire process.

• The reliability of the 5FCV procedure in producing a resilient ensemble of highly
accurate SEs.

However, certain limitations are acknowledged:

• The combination of number of generations and stopping criteria greatly prolonged
the execution of the GPSC. Since the stopping criteria value (predefined minimum
fitness function value) was so low, it was not reached by any population member in all
GPSC executions conducted in this research, so each GPSC execution was determined
after a predefined maximum number of generations was reached.

• Although the combination of GPSC with RHVS and trained using five-fold cross
validation is a good procedure to find the optimal combination of hyperparameter
values, with which GPSC will generate five SEs with high classification accuracy,
the process can take a long time since for each combination of randomly selected
hyperparameter values, the GPSC has to be repeated five times (due to the 5FCV
training procedure) and finally evaluated to obtain the classification performance
metric values. If these values are above 0.95, then the process is terminated.

The future work will be focused on multiple network intrusion datasets to see if the
same SEs with highest classification performance obtained on one dataset can be applied
to other datasets as well. The ranges used in the RHVS method will be investigated in
future work to see if the same or even better classification performance can be achieved
using a smaller population and number of generations. In future work, the response time
in the network intrusion detection of obtained SEs and other ML algorithms will be com-
pared. Although the RHVS method proved useful in finding the optimal combination of
GPSC hyperparameters, in future work, the other optimization algorithms, such as genetic
algorithm, particle swarm optimization, and others, will be investigated to determine if
they can find the optimal combination of hyperparameters faster.These future research
directions aim to refine and extend the proposed methodology, providing valuable in-
sights into the intricacies of network intrusion detection and the optimization of symbolic
expression generation.

Author Contributions: Conceptualization, N.A. and S.B.Š.; methodology, N.A. and S.B.Š.; software,
N.A. and S.B.Š.; validation, N.A. and S.B.Š.; formal analysis, N.A. and S.B.Š.; investigation, N.A. and
S.B.Š.; resources, N.A. and S.B.Š.; data curation, N.A. and S.B.Š.; writing—original draft preparation,
N.A. and S.B.Š.; writing—review and editing, N.A. and S.B.Š.; visualization, N.A. and S.B.Š.; supervi-
sion, N.A.; project administration, N.A.; funding acquisition, N.A. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was (partly) supported by the CEEPUS network CIII-HR-0108, the European
Regional Development Fund under Grant KK.01.1.1.01.0009 (DATACROSS), the Erasmus+ project
WICT under Grant 2021-1-HR01-KA220-HED-000031177, and the University of Rijeka Scientific
Grants uniri-mladi-technic-22-61 and uniri-tehnic-18-275-1447.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Dataset is available at https://www.kaggle.com/datasets/sampadab1
7/network-intrusion-detection accessed on 10 December 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.kaggle.com/datasets/sampadab17/network-intrusion-detection
https://www.kaggle.com/datasets/sampadab17/network-intrusion-detection


Information 2024, 15, 154 23 of 24

Appendix A

Appendix A.1. Modification of Mathematical Functions Used in GPSC

As stated in the description of GPSC, some mathematical functions, i.e., division,
square root, natural log, and log with bases 2 and 10, had to be modified to avoid ill GPSC
execution. The division function:

yDIV(x1, x2) =

{
x1
x2
|x2| > 0.001

1 |x2| < 0.001
(A1)

where x1 and x2 are arbitrary variables and do not have any connection with dataset input
variables. The square root function was defined as:

ySQRT(x) =
√
|x|. (A2)

The natural log and log with bases 2 and 10 were defined as:

yLOG(x) =

{
logi(|x|) |x| > 0.001
0 |x| < 0.001

(A3)

Appendix A.2. Procedure of Using the Obtained SEs

The obtained symbolic expression in this research using GPSC are available at GITHUB
repository (https://github.com/nandelic2022/Network-Intrusion-Detection-Initial), ac-
cessed on 15 January 2024. After downloading the symbolic expression, download the
dataset from Kaggle or use your own. However, when using your own dataset, be sure to
check the Materials and Methods section of this paper to see the number of input variables
and what these input variables are. When the dataset is prepared and the SEs are ready, the
procedure for obtaining results can be summarized as follows:

1. Use input dataset variables in each symbolic expression to compute the output;
2. Use each output of the symbolic expression as input to the sigmoid function, defined in

the description of GPSC algorithm to determine the class (network intrusion detection
or not);

3. Use the obtained output and real dataset output to compute the evaluation metrics,
i.e., determine the classification performance of the SEs.
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