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Abstract: In the context of increasingly necessary energy transition, the precise modeling of profiles
for low-voltage (LV) network consumers is crucial to enhance hosting capacity. Typically, load curves
for these consumers are estimated through measurement campaigns conducted by Distribution
System Operators (DSOs) for a representative subset of customers or through the aggregation of load
curves from household appliances within a residence. With the instrumentation of smart meters
becoming more common, a new approach to modeling profiles for residential customers is proposed
to make the most of the measurements from these meters. The disaggregation model estimates the
load profile of customers on a low-voltage network by disaggregating the load curve measured at
the secondary substation level. By utilizing only the maximum power measured by Linky smart
meters, along with the load curve of the secondary substation, this model can estimate the daily
profile of customers. For 48 secondary substations in our dataset, the model obtained an average
symmetric mean average percentage error (SMAPE) error of 4.91% in reconstructing the load curve of
the secondary substation from the curves disaggregated by the model. This methodology can allow
for an estimation of the daily consumption behaviors of the low-voltage customers. In this way, we
can safely envision solutions that enhance the grid hosting capacity.

Keywords: load models; low-voltage grid; load curve; disaggregation model; optimization; curve
fitting; K-means; PCA

1. Introduction

The international negotiations on climate policies reveal that we are grappling with
the impacts we have on the environment. One way to mitigate these impacts directly
involves reducing the use of fossil fuels and increasing electrification. This leads to changes
in the level that the distribution electrical network is used. These changes extend from
the generation and distribution of energy to the way customers use it. They are part of a
phenomenon called energy transition. Its effects can be immediately seen when we look at
the new directive of the European Union, “Fit for 55”, which aims to reduce greenhouse
gas emissions by 55% by 2030. To achieve this goal, one of the proposals is to increase the
renewable energy target from 32% to at least 40% by 2030 [1].

We can also take a closer look at the energy transition by examining the French
scenario in more detail. According to data from the DSO Enedis, responsible for energy
distribution in 95% of metropolitan France, the number of production sites connected to
the grid increased by 178% between the years 2012 and 2023. The same data show us
that the total number of electric vehicle charging infrastructures connected to the grid
grew by 2000% between 2015 and 2023 [2]. The French Ministry of Ecological Transition
estimates the distribution of residential energy use in France by type. The heating system
represents approximately 70% of the country’s residential energy consumption. Among
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the various energy sources used for residential heating, electric sources have been growing
proportionally year after year, as indicated by these data [3]. We can therefore observe that
the fight against environmental impacts is reflected by a significant change in the habits of
electricity production and consumption, centered in the distribution grid.

In this scenario of the strong integration of DERs into the distribution network, being
able to better estimate the hosting capacity of the network becomes vital for DSOs to better
guide and manage network investments. This topic has been explored in numerous publi-
cations that investigate methodologies for assessing the network’s hosting capacity [4–6].
Looking at them in detail, we can observe that consumer load models of the network are
one of the key elements impacting the hosting capacity assessment. Therefore, we can
understand that the development of more accurate models using smart meter data can
provide us with a better estimate of this factor, allowing us to better integrate DERs into
the distribution network.

As the uses of the grid evolve, the distribution grid also evolves to keep pace with
these changes. The electrical grids are becoming more digital, transforming our networks
into smart grids. According to the International Energy Agency, “smart grids are electrical
networks that use digital technologies, sensors, and software to better match the supply and
demand for electricity in real-time while minimizing costs and maintaining the stability and
reliability of the network”. The major enabler of this digitization lies in the replacement of
electricity meters, transitioning from analog/digital meters to smart meters. Smart meters
are electronic devices that record information, such as electrical energy consumption, and
communicate this information to the consumer, electricity providers, and DSOs.

We can look at some examples of this evolution in the metering landscape around
the world. The Italian DSO ENEL initiated the deployment of its first generation of smart
meters in 2001 for your 32 million customers [7]. In 2016, the Italian regulatory body
defined the minimum functions for the new generation of meters. This new generation of
meters began to be distributed in 2017, with the aim of making energy consumption more
sustainable and becoming a key element in the construction of smarter and more circular
cities [8]. The U.S. DSO PG&E launched the SmartMeter™ program for the installation
of smart meters in 2006, and the majority of its customers were equipped with them by
2012 [9]. The Canadian DSO BC Hydro is the primary electricity distributor in the British
Columbia region, serving over 4 million customers in most areas of the province. The
deployment of smart meters began in 2011 and was completed in 2012 [10]. The Korean
Electric Power Corporation, KEPCO, is one of the largest energy companies in South Korea.
Since 2012, the KEPCO has installed approximately 120,000 smart meters to promote the
smart grid infrastructure. Until 2018, 6.8 million households in South Korea were equipped
with smart meters. The goal was to reach 22.5 million households by the early 2020s [11].
TEPCO, the largest Japanese DSO, completed the installation of approximately 29 million
smart meters by the end of 2020 [12]. The French DSO Enedis began rolling out its meters
in 2015 and, from 2023 last figures, has over 37 million smart meters deployed [13]. It is
possible to observe that the change in the metering landscape is a global phenomenon,
occurring in parallel with changes in grid usage.

The exploitation of smart meter data makes it possible to explore new solutions that
helps the grid to receive this new usage in the energy transition context. However, the
exploration of this data requires some attention and care. In the European Union, consumer
load profile data from smart meters are considered personal data by the General Data
Protection Regulation. In this way, the use of this personal data requires the explicit
consent of each consumer for its use. Furthermore, even with consent for use, these data
have a duration limit for which they can be retained as stipulated by the GDPR. Another
possible impediment is related to the fact that classic smart metering infrastructures have
limitations to obtain all the low-voltage consumers’ load profiles due to the communication
protocols employed, such as the power carrier line G3 used in France. Challenges related
to Big Data in smart grids are increasingly being discussed, such as the data size that
can reach petabytes, as well as the costs and environmental impacts of developing data
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centers capable of storing this volume of data [14–16]. Therefore, the development of new
profiles in a scenario of evolving network usage becomes extremely important for DSOs.
The objective of this paper is to propose a novel methodology to estimate the load curves
of consumers on the low-voltage network using very few data from smart meters. This
modeling will be based on data provided by the French DSO Enedis, but the model had
been built to be compliant with data from most smart metering infrastructure. The possible
constraints that may be faced when using smart meter data for load curve estimation are
related to data privacy concerns and IT infrastructure limitations. The aim of this model
is to explore the use of smart meter data for profile or load curve estimation and be a
model that can be employed to assist in the integration of new usages. To achieve this,
the model starts with the load curve of the secondary substation and disaggregates it into
individual load curves of customers, as illustrated in Figure 1. The idea behind this model is
to perform daily disaggregation, allowing us to access the customer-level load curve every
day. The customer load curve is the input data for network calculation tools, enabling us to
compute voltage and power transits in the network. With this daily customer-generated
load curve data, it is possible to better estimate the hosting capacity of the network, as well
as the available flexibility of the demand.
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Figure 1. Example of obtaining profiles at the customer level from the disaggregation model. Where
“secondary substation” refers to a MV/LV transformer, while the “customer” refers to a LV consumer.

Looking at the literature, T. Barbier [17] conducted a classification of different types
of electrical consumption models. This classification is based on two factors. The first
factor is a framework with three levels of consumption, including the individual level
of the customer and their devices, the aggregated level by type of customer and type
of device, and the aggregated level of the customer by spatial zone and their devices.
The second factor is a framework of variables influencing consumption, including the
device inventory, the technology of these devices, usage behavior, socioeconomic level,
meteorology, variables related to the place of consumption, customer subscription, and the
electricity market. Thus, he lands at six categories of models.

The first category includes models based on aggregated consumptions in a zone. This
category includes models where the scale is the level of electrical consumption aggregated
by spatial zone. These models primarily focus on the temporal component of consumption
and are commonly referred to as “forecasting” models. In this category, refs. [18–21] stand
out in the analysis and evaluation of this type of forecasting model.

The second category consists of models based on consumptions by the type of customer.
This category includes models where the scale is the level of consumption per type of



Information 2024, 15, 142 4 of 17

customer. This type of modeling produces different load curves for each type of customer
(residential, industrial, etc.), and customers of the same type will have identical profiles,
adjusted in energy [22–24]. This category can be subdivided based on the model’s input
data.

According to the author [17], the third category consists of models based on consump-
tion by usage. This implies that these models based on usage types can be significantly
influenced by external factors other than consumers, such as temperature. This is il-
lustrated by an example of such a model that decomposes thermo-sensitive uses from
non-thermosensitive uses based on load curves from different zones [25]. It illustrates the
example of thermosensitivity in France, allowing for the Transmission System Operator
and Distribution System Operators to understand the influence of meteorological hazards
on network sizing. The work presented in [26] decomposes individual consumption loads
based on their thermal sensitivity. This allows for an estimation of the portion of the load
that comes from thermosensitive uses and the portion that comes from non-thermosensitive
uses. An analysis is conducted in [27] to correlate load profiles measured through smart
meters with local temperature variations to extract heating/cooling patterns as a function
of the outdoor temperature. In addition to temperature, we can cite external factors of
global magnitude, such as the COVID-19 pandemic. It has changed people’s daily lives due
to social distancing measures, which affected the way people consumed electricity. Studies
on how this external factor influenced consumption patterns are depicted in [28–30].

The next category consists of models based on consumption by the type of customer
and usage. This category essentially includes models for the residential sector that are based
on consumption by the type of use of equipment in the sector. This category comprises
models [31–33] that involve disaggregating electrical consumption profiles with informa-
tion on the ownership rate of devices and possibly with socio-economic data. In it, we can
also find residential models based on the technological advancements of equipment and
new types of usage. In [34], a study of emerging technologies in residential load profiles is
proposed. The work conducted in [35] analyzes the impacts of low-carbon technologies,
such as electric vehicles and photovoltaics, on the network.

The fifth category consists of models based on consumption per customer. According
to the author [17], models belonging to this category use data from smart meters to make
short-term predictions of electrical consumption for individual customers [36–38].

The last category consists of models based on consumption per device. This category
aims to estimate consumption at different levels through the aggregation of device con-
sumption. An example of this is Non-Intrusive Load Monitoring models [39–41]. The idea
is to have a sufficiently fine temporal resolution of measurements to capture the energy
signatures of different devices.

Based on this analysis of the classification of different types of electricity consumption
models conducted in [17], we can conclude that “bottom-up” and “top-down” models are
the ones that come closest to the initial idea of disaggregation models. Focusing in these
types of residential consumption models, in [21], the author aims to provide a review of
various modeling techniques employed to construct residential consumption models. He
then divides these models into two categories, top-down and bottom-up models. Top-
down models are those that use the estimation of residential sector consumption and
other attributes to produce estimates of consumption at the individual level of residences.
On the other hand, bottom-up models start from the estimation of individual or group
consumption to arrive at consumption in larger networks, such as national or regional.
In [21], top-down models are subdivided into econometric models and technological mod-
els. Meanwhile, bottom-up models are subdivided into statistical models and engineering
models. The review [31] proposes an analysis of residential load curve models. The article
complements the characterization of bottom-up and top-down models, where one uses
microscopic data as input for the residential level and the other uses macroscopic level
data as input. In [31], the division of models is made into top-down models, bottom-up
models, and hybrid models. Knowing that one-third of final electricity consumption is
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residential in Europe, along with the evolution of network uses through new equipment
and the electrification of others, publication [42] presents a review of residential load profile
models. The article analyzes the models in four different ways. The first is by the type of
method used, the second is about the sampling rate of the profiles, the third is about the
type of application proposed by the model, and the fourth is about the statistical techniques
employed. Looking more closely at the methods used, we observe that the author in [42]
subdivides them into top-down, bottom-up, and hybrid approaches.

We can understand that our disaggregation methodology does not precisely fit into
these categories of residential models studied in the literature. The scale at which we intend
to build the disaggregation model is that of the secondary substation level to assess the
load curve or profile of each LV customer attached to it. This is not clearly represented in
the literature. The load curves of customers are the inputs for the DSO’s tools to carry out
network planning studies. Therefore, estimating them accurately becomes a necessary task
in this context of evolving network usage. The use of usage decomposition methodologies,
such as “bottom-up”, proves to be extremely dependent on measurements with a fine
temporal resolution. DSOs may not necessarily have this degree of precision in their
measurements. Our disaggregation model avoids this situation, making it more accessible.

This literature review confirms that we are seeking to undertake innovative research
that will contribute to expanding the horizons of the field. Therefore, the work presented
in this publication aims to contribute to the construction of a disaggregation model based
on data from the secondary substation and maximum power consumption customers’
data. This methodology, based on real data from the low-voltage distribution network,
can lead us to a more realistic representation of the different consumption profiles of
network consumers and their related technical constraints on the electrical infrastructure.
These low-voltage consumption profiles are swiftly evolving as new technologies appear,
such as electric vehicles, residential photovoltaics, and storage units. This makes the use
of historical profiles constructed by DSOs outdated. The proposed methodology, based
on data modeling, proposes a mathematical and dynamic approach that supports the
emergence of congestion or over voltages in LV networks. With profiles closer to the
reality of low-voltage consumption, we can make a better estimation of the network’s
hosting capacity, thus helping to best integrate new loads into the network or support
smart network reinforcement together with flexibility support from Distributed Energy
Resources.

2. Materials and Methods

The general principle of the model is to disaggregate the load curve of the substation
into load curves for each downstream customer. To achieve this, we will carry out this
process in two steps:

• Customer Segmentation: The N customers of a substation share similar characteristics,
either because they belong to the same categories (residential, professional, etc.) or be-
cause they have similar consumption habits. From this perspective, the segmentation
(or the number of clusters) of these customers is performed to identify K groups of
similar customers among the N customers of the substation, where K < N.

• Secondary Substation Load Disaggregation: The load curve of the substation is then
disaggregated into K curves, representing the K groups of similar customers at the
substation. These K curves are then adjusted in energy to assign to each customer the
curve of the group to which they belong.

The data scope chosen for the development of this model included 48 secondary
substations, where load curve data were collected for the period from March 2022 to March
2023. Additionally, maximum power and energy data from Linky smart meters (a total of
5318 m) were collected downstream of these substations for each day of the period. It is
essential to specify that the Linky data of the customers used in this study are associated
with a customer panel, who have given their consent to Enedis for the use of their data in the
context of network studies, including the one integrated into this article, in accordance with
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the General Data Protection Regulation (GDPR). Therefore, these data are not accessible
beyond this perimeter. We have three types of information per secondary substation:

• The load curve of the substation.
• The maximum power value in watts measured by Linky for all customers connected

in the substation.
• The time of day (hours and minutes) when the maximum power occurred.

With all this information in mind, we can delve into the details of each step of the
model.

2.1. Customer Segmentation

The objective of this step is to identify K groups of similar customers at a substation
with N customers. The idea behind this is to simplify the subsequent disaggregation step,
as we will disaggregate the substation’s load curve into fewer curves (K < N). Additionally,
working at an individual customer level is extremely complex due to the significant vari-
ability in consumption. Therefore, working at a slightly higher level (K groups of similar
customers) is considered the optimal strategy. Various temporal scales could be used to
segment customers at a substation, such as daily, by days of the week, monthly, seasonal,
or yearly, among others.

Segmentation by season was chosen as it offers more advantages. It provides a
sufficient volume of data for customer segmentation and allows for visualization of the
evolution of the behavior of all customers over time. Customers who exhibit similar
behavior within a given season may not necessarily show similar behavior in other seasons.

The data selected for building this dataset are maximum power data. They include
the exact maximum power and related time stamp of it. The decision to use only these
data is to simplify the construction process by leveraging one of the pieces of information
collected by the Smart Metering Infrastructure. Moreover, the simpler the information used
in model construction, the easier it will be to reproduce it in other research. The maximum
power data enable construction of the dataset used in this segmentation step. This dataset
is represented in Table 1.

Table 1. Dataset constructed for the segmentation step.

Customer
Maximum
Power Day

in 1

Occurrence
in Day 1

Maximum
Power Day

in 2

Occurrence
in Day 2

Maximum
Power Day

in D

Occurrence
in Day D

1 Value (kW) (hh:mm) Value (kW) (hh:mm) Value (kW) (hh:mm)
2 Value (kW) (hh:mm) Value (kW) (hh:mm) Value (kW) (hh:mm)

. . . . . . . . . . . . . . . . . . . . .
N Value (kW) (hh:mm) Value (kW) (hh:mm) Value (kW) (hh:mm)

We can observe that for the N customers connected to a secondary substation, the
maximum power values and their occurrence time are represented for all D days of the
respective season.

To preprocess the data, the dimensionality reduction technique called Principal Com-
ponent Analysis (PCA) was employed [43]. PCA is a statistical technique used to reduce
the dimensionality of data while preserving, as much as possible, the essential information
contained in the data. Specifically, this method is beneficial for reducing the amount of
processed data, limiting data redundancy, and facilitating easier data visualization, leading
to a better understanding [43].

In the literature, various methods exist for performing segmentation. For the imple-
mentation of this disaggregation model step, we chose to work with partition methods,
specifically K-means [44], due to their simplicity in understanding the proposed results.
K-means clustering is one of the most well-known and widely used unsupervised learning
algorithms. Generally, unsupervised algorithms make inferences from datasets using only
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input vectors without reference to known or labeled outcomes [45]. The goal of K-means
clustering is to group similar data points and discover underlying clusters. To determine
the number of groups K that will be assigned in our dataset, the elbow method [46] is
employed. It aims to identify the number of clusters K that strikes a good balance be-
tween reducing the sum of squared errors (SSE) and the complexity of the model. It is an
easy-to-understand and easy-to-apply method, making it a practical tool for choosing K.
However, the drawback is the subjectivity of the method, as identifying the elbow can be
challenging. For this reason, we chose to use the Python library Kneed [47] to automatically
detect elbows and eliminate the subjective aspect. Figure 2 illustrates the step of customer
segmentation.
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2.2. Secondary Substation Load Disaggregation

The objective of this step is to formulate a method to disaggregate the load curve of a
secondary substation into K curves that represent the K groups among the N customers
identified in the segmentation step. To begin thinking about how to achieve this solution,
let us start by formulating the problem mathematically.

Load Curvesecondary
substation

=
K

∑
k=1

Cluster Curve (k) (1)

As shown in Equation (1), the disaggregation problem implies that the sum of K curves
(representing the groups of customers found in the segmentation process) is equal to the
curve of the secondary substation. Approaching the problem from this perspective, once
the equations describing the K curves are defined, this problem can be solved by applying
a curve-fitting method. Curve-fitting is a commonly used technique in data analysis to
estimate the parameters of a mathematical function that best describe a set of data [48]. Its
basic principle is to find the optimal parameters of a mathematical function that minimizes
the square of the difference between the observed data and the values predicted by the
function, as shown in Equation (2):

min

(
M

∑
i=1

(yi − f (xi, θ) )2

)
(2)

The goal is to find θoptimal values that minimize quadratic error, called the cost function.
In other words, curve fitting involves solving an optimization problem where the objective
is to identify the values of the parameters θ that make the cost function as small as possible.
To solve this curve-fitting problem, the Python library lmfit (version 1.2.2) [49] was chosen.
As explained by the developers, lmfit provides a user-friendly interface for defining models,
specifying parameters, fitting data, and retrieving results. It also allows for the choice of a
variety of optimization methods. In the case of this disaggregation problem, the chosen
method is L-BFGS-B (Limited-memory Broyden–Fletcher–Goldfarb–Shanno with Bound
constraints) [50]. With the definition of how the disaggregation problem will be approached,
it is now necessary to define which mathematical function best describes our data. The data
on which the curve-fitting will be performed are the daily load curves of the secondary
substations.
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2.2.1. Function One—Pure Mathematical Model

The option chosen to address the question of which equations best describe the sum
of K curves in Equation (2) is a sum of N Gaussians, as shown in Equation (3).

f (x, a, b, c) =
K

∑
k=1

(ak ∗ exp
−(x−bk)

2

2∗ck
2

) (3)

where formally θ in the function f(x, θ) now corresponds to the parameters ak, bk, and ck.
ak determines the height of the Gaussian, bk determines the position of the center of the
Gaussian, and ck determines the width of the Gaussian.

The reason that leads us to believe that this assumption is a good starting point is
as follows: if we examine the shape of customer load profiles [51,52], the consumption
peaks at different times of the day resemble Gaussian behavior. These profiles represent
the behavior of a group of customers belonging to the same class. Furthermore, a Gaussian
is a natural candidate because it is a classic function in statistics related to the central limit
theorem. This theorem plays a fundamental role in statistical theory by showing that the
mean of many independent and identically distributed random variables approximately
follows a Gaussian distribution, regardless of the initial distribution of these variables.
This demonstrates its ubiquity in modeling random phenomena, such as the electrical
consumption of low-voltage customers.

2.2.2. Function Two—Adding Electrical Properties to the Purely Mathematical Model

The idea behind this function is to use the information available thanks to Linky
meters to approximate the modeling of the real behavior of network customers. In order to
do this, we begin by analyzing the maximum power occurrence (see Table 1) data measured
by the Linky meters. If we look at this information for each individual customer throughout
an entire season, we can attempt to extract trends about these occurrences that can guide
us in the formulation of Function 2. Therefore, the occurrences of maximum power for five
customers during the days in the winter season are presented in Figure 3.
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It can be observed in Figure 3 that each customer exhibits different consumption
patterns, and they vary considerably throughout the season. This leads us to believe
that observing the occurrences of maximum power for a group of multiple customers
could reveal patterns that are easier to identify. In order to confirm this, all occurrences
of maximum power (time of day when the maximum power value was recorded by
Linky infrastructure) for two groups of customers are observed. Group 1 consists of
70 customers, and group 2 has 25 customers. This observation is presented in Figure 4
through a histogram, where each bar represents the total number of maximum power
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occurrences, of all customers in the group during the winter season, which occurred within
a specific time interval of the day. The intervals have a duration of 10 min, resulting in a
total of 144 intervals.
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Observing the occurrences by group makes the trends more apparent. For group 1,
four concentrations of maximum power occurrences can be noted: around noon, 8 pm,
8 am, and midnight. For group 2, there is a significant concentration at 7 am and less
pronounced concentrations around noon and 8 am. As the previous stage of disaggregation
segments the customers from the secondary substation, we will have formed the groups of
customers to analyze. Now, it is necessary to translate this information into an adjustment
of the parameters of our function.

The concentrations of maximum power at a given period indicate whether it is a sig-
nificant time for the cluster, deserving high resolution to finely adjust the peaks. Therefore,
for each cluster, we can say that the most pronounced concentrations in the histograms
will indicate the maximum number of Gaussians, as well as the initial value of the “b”
parameter for each of these Gaussians. To identify these concentrations, the “find_peaks”
function from the Python SciPy library was used [53]. It allows for the identification and
localization of local maxima in a one-dimensional dataset through a simple comparison
of neighboring values. The points of maximum concentration of the histogram will be
denoted by the letter g. The time of the day at which these points appears will be denoted
as hg. This guides us towards another way of expressing our sum of the Gaussian function
f(x, a, b, c) and adjusting the parameter bounds. For each cluster k, we will have G numbers
of Gaussians found from the histogram of maximum power occurrences, as indicated by
Equation (4). Since the number G of Gaussians can be different for each cluster k, it will be
denoted as Gk.

f (x, a, b, c) =
K
∑

k=1

Gk
∑

g=1

at,k ∗ exp
−(x−bt,k)

2

2∗ct,k
2


0 ≤ ag,k < max(Secondary Substation Curve)

hg − 0.5 hours ≤ bg,k ≤ hg + 0.5 hours
1 hour < cg,k < 6 hours

(4)

Having the parameter at,k presenting a possible value of zero allows for the optimiza-
tion to discard the Gaussian (t,k) if it is not significant for curve-fitting, setting its height
to zero. This accounts for the variable behavior indicating that customers in this group
may not have their maximum power at that time every day. The parameter bt,k capable of
varying by about half an hour around the time ht allows for the center of the Gaussian to
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be moved, which aligns with the occurrences of maximum power around each maximum.
The parameter ct,k represents the width of the Gaussian, with the lower bound set to one
hour. This prevents the presence of peaks that appear and disappear very quickly, as we
assume that the consumption of the customer group has some inertia in its variations. The
upper bound for the ct,k parameter is limited to 6 h to avoid losing information about a
possible important peak.

2.3. Global Vision of the Model

To facilitate the overall view of the model, a schematic gathering all of its stages is
presented in Figure 5.

Information 2024, 15, x FOR PEER REVIEW 10 of 18 
 

 

𝑓ሺ𝑥, 𝑎, 𝑏, 𝑐ሻ ൌ ෍ ෍ ቌ𝑎௧,௞ ∗ 𝑒𝑥𝑝ି൫௫ି௕೟,ೖ൯మଶ∗௖೟,ೖమ ቍீೖ
௚ୀଵ

௄
௞ୀଵ   

0 ൑  𝑎௚,௞ ൏ 𝑚𝑎𝑥ሺ𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑆𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑢𝑟𝑣𝑒ሻ          ℎ௚ െ 0.5ℎ𝑜𝑢𝑟𝑠 ൑  𝑏௚,௞  ൑ ℎ௚ ൅ 0.5ℎ𝑜𝑢𝑟𝑠                        1ℎ𝑜𝑢𝑟 ൏  𝑐௚,௞ ൏ 6ℎ𝑜𝑢𝑟𝑠 

(4) 

Having the parameter 𝑎௧,௞ presenting a possible value of zero allows for the optimi-
zation to discard the Gaussian (t,k) if it is not significant for curve-fitting, setting its height 
to zero. This accounts for the variable behavior indicating that customers in this group 
may not have their maximum power at that time every day. The parameter 𝑏௧,௞ capable 
of varying by about half an hour around the time ℎ௧ allows for the center of the Gaussian 
to be moved, which aligns with the occurrences of maximum power around each maxi-
mum. The parameter 𝑐௧,௞ represents the width of the Gaussian, with the lower bound set 
to one hour. This prevents the presence of peaks that appear and disappear very quickly, 
as we assume that the consumption of the customer group has some inertia in its varia-
tions. The upper bound for the 𝑐௧,௞ parameter is limited to 6 h to avoid losing information 
about a possible important peak.  

2.3. Global Vision of the Model 
To facilitate the overall view of the model, a schematic gathering all of its stages is 

presented in Figure 5.  

 
Figure 5. Schematic of the disaggregation model. 

2.4. Error Evaluation 
The error produced by the model is calculated using the symmetric mean average 

percentage error (SMAPE). SMAPE is a commonly used metric to assess the accuracy of 
forecasts or prediction models. It calculates the accuracy of predictions by comparing ac-
tual and predicted values in a symmetric way, as shown in Equation (5): 

𝑆𝑀𝐴𝑃𝐸 ൌ  1𝑁 ൈ ෍ |𝑃௡ െ 𝑅௡|ሺ|𝑅௡| ൅ |𝑃௡|ሻ 2ൗே
௡ୀଵ  (5) 

where P is the predicted value and R is the real value. Therefore, for each data point, it 
takes the absolute difference between the actual value and the predicted value and then 
divides it by the sum of the actual and predicted values. SMAPE is robust to small values. 

Figure 5. Schematic of the disaggregation model.

2.4. Error Evaluation

The error produced by the model is calculated using the symmetric mean average
percentage error (SMAPE). SMAPE is a commonly used metric to assess the accuracy of
forecasts or prediction models. It calculates the accuracy of predictions by comparing actual
and predicted values in a symmetric way, as shown in Equation (5):

SMAPE =
1
N

×
N

∑
n=1

|Pn − Rn|
(|Rn |+ |Pn |)/2

(5)

where P is the predicted value and R is the real value. Therefore, for each data point, it
takes the absolute difference between the actual value and the predicted value and then
divides it by the sum of the actual and predicted values. SMAPE is robust to small values.
Due to its symmetry, SMAPE ensures that the penalty for error is not sensitive to large
differences between the prediction and the actual value.

With the help of SMAPE, we will evaluate the error between the reconstruction of
the load curve of the secondary substation based on the model’s result and the true load
curve of the secondary substation. Additionally, expressing the error as a percentage makes
the differences between the results obtained from the functions presented in Section 2.2
more understandable to the reader. In this way, we will be able to assess how well the
disaggregation model can reconstruct the load curves of the secondary substation.

3. Results

The results of the disaggregation model are presented for both functions described in
Section 2.2. The evaluation of the results for both models is conducted along two cases. In
the first case, a random secondary substation is selected, and the model is applied to the
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load curve for the winter season. In the second case, the error is computed for all secondary
substations on all days of the winter season.

3.1. Results for One Random Secondary Substation

A secondary substation was randomly chosen from the set of 48 in our dataset. This
secondary substation has 198 connected consumers. The result of consumer segmentation,
presented in Section 2.1, led us to the number K of similar customer groups equal to 6. The
maximum power data from these 198 customers are used to construct the input dataset for
our segmentation process, as presented in Section 2.1. By applying the segmentation steps
as described, we obtain a number K of similar customer groups equal to 6. This means
that these 198 customers can be segmented into six groups, where each group consists
of customers with similar maximum power values and similar occurrence times of these
powers throughout the winter season. The quantity of customers in each group can be
observed in Table 2.

Table 2. Number of customers per group after the segmentation step.

Group 0 1 2 3 4 5

Customers 72 74 5 3 24 20

For each day of the winter season, our disaggregation model is put into practice using
the two functions described in Section 2.2 and the six groups of customers. The results of
the errors calculated are presented in Table 3.

Table 3. SMAPE errors of the curve-fitting for the winter season.

SMAPE Function 1 Function 2

Minimal (%) 4.09 1.60
Mean (%) 6.36 2.64

Maximum (%) 10.81 3.99

In order to look at the load curves produced by the model with both functions, the
days with minimal SMAPE error are selected. These curves are illustrated by Figure 6.
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The individual load profiles of each cluster are presented below. The individual load
profiles produced by the model using function one and two are presented by Figures 7
and 8, respectively.
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3.2. Results for All Secondary Substations in the Dataset

For the 48 secondary substations, the total quantity of groups obtained in the segmen-
tation step is presented in Table 4.
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Table 4. Number of secondary substations per quantity of groups after the segmentation step.

Quantity of Groups 4 5 6 7

Number of Substations 4 23 16 5

For each day of the winter season, our disaggregation model is put into practice using
the two functions described in Section 2.2. The results of the errors calculated using SMAPE
are presented in Table 5.

Table 5. Mean SMAPE errors of the curve-fitting for all secondary substations in the winter season.

SMAPE Function 1 Function 2

Minimal (%) 8.43 2.93
Mean (%) 17.86 4.91

Maximum (%) 60.15 7.08

In order to look at the load curves produced by the model with both functions, the
days for the secondary substations with minimal SMAPE error are selected. These curves
are illustrated by the following Figure 9.
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4. Discussion

The results show us that the disaggregation model using function 2 presents better
outcomes, even though function 2 has fewer degrees of freedom than function 1. If we
look closely at the results with both functions for one random secondary substation, we
can observe that function 1, purely mathematical, manages to capture the large peaks and
valleys of the load curve, as shown in Figure 6a. However, it fails to capture the secondary
peaks, thus leaving the curve-fitting result unsatisfactory. On the other hand, function
2 incorporates characteristics of customer consumption into the modeling, thanks to the
data from Linky meters. The interest in considering the behavior of customers from the
segmentation step is to ensure consistency with reality, thus bringing the model closer
to what happens in the network. It can be observed in Figure 6b that the fitted curve
has successfully captured the various consumption peaks represented by the secondary
substation load curve. This result is reflected in the shapes of individual profiles, as shown
in Figure 8. This highlights the consistency between the distribution of maximum power
occurrences per group of customers and the consumption measurements of all customers
observed based on the secondary substation load curve. This is reflected when comparing
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the errors of the functions. The error produced by function 2 is lower than that of function
1 as shown in Table 3.

The result obtained for a random secondary substation holds when we look at all
the substations in our dataset. As presented in Table 5, function 2 produces results with
lower errors than function 1. This assures us of the importance of the maximum power
information measured by the Linky meter. Additionally, it underscores the significance of
data measured by smart meters for network load modeling.

5. Conclusions and Perspectives

We have decided to reverse the natural process, which involves starting from the
development of aggregated customer curves to obtain an estimate of the secondary sub-
station load curve. By leveraging the richness of Linky meter data, we have created a
way to disaggregate the substation curve from this measurement into customer profiles.
Developing an estimation methodology based on data measured by smart meters allows
us to better estimate a customer’s consumption behavior and its changes. This is crucial
in the context of integrating new uses of the grid, such as renewable energy sources and
electric vehicles. Unlike classical “bottom-up” methodologies that are highly dependent
on measurements with a fine temporal resolution, our developed methodology is based
on the occurrence time of the maximum daily power. Additionally, our approach involves
a disaggregation at a higher grid level, specifically the secondary substation level. This
modeling idea is not discussed in the scientific literature, making this model innovative
and potentially opening doors to considering how smart meter data can assist in network
sizing, integrating new uses, and adapting to changes in consumer behavior in general.

The next stage in the study and improvement of the model involve two factors. The
first is an evolution of the segmentation stage by adding climatic and geographical data to
the process. The second is the use of energy measured by Linky meters in the disaggregation
process. The evolution of the model can be added to the schematic seen in Section 2.3. This
is presented in Figure 10.
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Figure 10. Schematic of the disaggregation model with the perspectives.

The addition of this new information to the segmentation step should further enrich
the distinction between different types of customers, bringing to light trends that may have
been masked previously. This change may be reflected in the disaggregation step using
Function (2), as a different number of Gaussians G for each cluster may be found. This
could potentially help us better represent the secondary peaks of the load curve of the
secondary substation.
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Imposing an energy constraint ensures that our result, when viewed from the ag-
gregate of customers, can be distributed to the entire customer base of each group while
respecting their consumption. This will further bring the results closer to the reality of
consumption in the network. This will allow us to transition from curves aggregated by
consumer segments to curves of individual consumers, properly accounting for the energy
consumed by them and measured by the Linky meter.

A long-term perspective is the comparison of results produced by the disaggregation
methodology with the load curve measurements of low-voltage consumers. However, at
the moment, we do not have a secondary substation where all customers have given their
consent for the use of this information.

Author Contributions: Conceptualization, G.R.M.; methodology, G.R.M.; validation, G.R.M., C.G.,
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36. Gajowniczek, K.; Ząbkowski, T. Short term electricity forecasting using individual smart meter data. Procedia Comput. Sci. 2014,

35, 589–597. [CrossRef]
37. Estebsari, A.; Rajabi, R. Single residential load forecasting using deep learning and image encoding techniques. Electronics 2020, 9,

68. [CrossRef]
38. Sevlian, R.A.; Rajagopal, R. A model for the effect of aggregation on short term load forecasting. In Proceedings of the 2014 IEEE

PES General Meeting|Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [CrossRef]
39. Zoha, A.; Gluhak, A.; Imran, M.A.; Rajasegarar, S. Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing:

A survey. Sensors 2012, 12, 16838–16866. [CrossRef]
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