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Abstract: Wound care professionals provide proper diagnosis and treatment with heavy reliance on
images and image documentation. Segmentation of wound boundaries in images is a key component
of the care and diagnosis protocol since it is important to estimate the area of the wound and provide
quantitative measurement for the treatment. Unfortunately, this process is very time-consuming
and requires a high level of expertise, hence the need for automatic wound measurement methods.
Recently, automatic wound segmentation methods based on deep learning have shown promising
performance; yet, they heavily rely on large training datasets. A few wound image datasets were
published including the Diabetic Foot Ulcer Challenge dataset, the Medetec wound dataset, and
WoundDB. Existing public wound image datasets suffer from small size and a lack of annotation.
There is a need to build a fully annotated dataset to benchmark wound segmentation methods. To
address these issues, we propose the Foot Ulcer Segmentation Challenge (FUSeg), organized in
conjunction with the 2021 International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI). It contains 1210 pixel-wise annotated foot ulcer images collected
over 2 years from 889 patients. The submitted algorithms are reviewed in this paper and the dataset
can be accessed through the Foot Ulcer Segmentation Challenge website.

Keywords: semantic segmentation; chronic wounds; foot ulcers; wound segmentation; challenge;
benchmark

1. Introduction

Chronic non-healing and acute wounds represent a difficult challenge for healthcare
systems, affecting millions of patients globally [1]. In the United States, the cost prediction
for wound care treatment is estimated to be between USD 28.1 and USD 96.8 billion [2].
In contrast to acute wounds, chronic wounds fail to predictably proceed through the com-
mon phases of healing in an orderly and timely fashion; thus, hospitalization and additional
care are necessary but increase the costs of the health services by billions annually [3]. The
outpatient costs (USD 9.9–USD 35.8 billion) of wound care are reported to be significantly
higher than inpatient costs (USD 5.0–USD 24.3 billion) [4]. However, the access and quality
of care to chronic wound patients are often limited in primary and rural healthcare settings.
A vast majority of chronic wound patients usually have other health conditions such as
diabetes, obesity, and circulation problems. The shortage of well-trained wound care clin-
icians also worsens the situation. Accurate and fast measurement of the wound area is
critical to the management and evaluation of chronic wounds to monitor the wound healing

Information 2024, 15, 140. https://doi.org/10.3390/info15030140 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15030140
https://doi.org/10.3390/info15030140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-5042-1442
https://orcid.org/0000-0001-6335-076X
https://doi.org/10.3390/info15030140
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15030140?type=check_update&version=1


Information 2024, 15, 140 2 of 12

process and to determine future interventions. Clinicians typically measure wounds by
their length, width, and depth in clinical practices. Wound length and width are measured
with a ruler guide and the depth is measured with Q-tips. However, manual measurement
is time-consuming and often inaccurate, which can cause a negative impact on patients.
Reliable automatic wound segmentation from images would enable the automation of
measurement of the wound area as well as efficient data entry into the electronic medical
record to enhance patient care. With the recent advances in deep learning, image-based
semantic segmentation of wounds offers a comprehensive characterization of the wound.
However, deep-learning methods impose an even larger burden of manual effort than most
manual measurements, since they need to be trained on large datasets with pixel-wise
labeled images. A few wound datasets are publicly available. The Diabetic Foot Ulcer
(DFU) Challenge dataset [5] contains 15,683 DFU image patches. Unfortunately, the images
are not labeled with segmentation masks. The Medetec wound dataset [6] consists of free
stock images of all types of open wounds such as venous leg ulcers, arterial leg ulcers,
pressure ulcers (pressure sores), and diabetic ulcers. Despite covering almost all wound
types, the dataset only contains 341 images, with manual segmentation masks provided for
152 images. However, the size of the dataset is far from sufficient for training deep learning
models. WoundDB [7] contains 188 sets of wound photographs where each set includes
four modalities: RGB image, thermal image, stereo image, and depth map. The wounds are
fully labeled with outlined boundaries. Like Medetec, the number of images in WoundDB
is not sufficient for training deep segmentation models.

2. Materials and Methods
2.1. Dataset
2.1.1. Data Collection

We collaborated with the Advancing the Zenith of Healthcare (AZH) Wound and
Vascular Center to build a chronic wound dataset. Data were collected over 2 years from
October 2019 to April 2021 at the center and contain 1210 foot ulcer images taken from
889 patients during multiple clinical visits. The raw images were taken by Canon SX 620
HS digital camera and iPad Pro under uncontrolled illumination conditions, with various
backgrounds. The images (some examples shown in Figure 1) are randomly split into three
subsets: a training set with 810 images, a validation set with 200 images, and a test set
with 200 images. Of course, the annotations of the test set are kept private. We confirm
that the data collected were de-identified and in accordance with relevant guidelines and
regulations and the patient’s informed consent is waived by the institutional review board
of the University of Wisconsin-Milwaukee. An electronic laboratory notebook was not
used. All images were zero-padded and had a unique size of 512 × 512 pixels.

2.1.2. Annotation

Deep learning models learn the annotations of the training dataset during training.
Thus, the quality of annotations is essential. Automatic annotation generated with computer
vision algorithms is not ideal when deep learning models are trained to learn how human
experts recognize the wound region. For efficiency, initial annotation masks were firstly
manually proposed for the raw images by nonexpert annotators using photoshop, where
the masks are created as a new layers on top of the original images. Graphics tablets were
used as the hardware for drawing the boundary of wounds on the mask layer. These raw
proposals were sent to the AZH woundcare center as photoshop documents (.psd) files
to be further reviewed and modified by the annotation team, which consists of two MDs
with over 20 years of wound care experience and two medical assistants who followed
up on the patient visits. For tricky cases and disagreements, the annotation team would
discuss about the questionable areas of the wounds in a meeting and make final decisions
on whether these areas should be labeled as wound or non-wound. Tissues found in a
foot ulcers could be categorized as callous, eschar, fibrin, granulation, necrotic, neodermis,
tendon, muscle, bone, etc. During our annotation process, all non-epithelialized tissues
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(e.g., granulation, slough, eschar, subcutaneous, tendon, muscle, bone) were annotated as
wounds. The annotation masks in the finalized psd. files were exported as png. images,
where the wound areas were labeled with pixel intensities of 1 and the non-wound areas
were labeled with 0. The AZH Wound and Vascular Center, Milwaukee, WI, consented to
make our dataset publicly available.

Figure 1. The challenge dataset consists of 1210 foot ulcer images taken from 889 patients. The first row
contains some examples of the raw images collected. The second row consists of the corresponding
segmentation masks.

2.2. Challenge Design
2.2.1. Infrastructure and Timeline

The homepage of our challenge was hosted on the Grand Challenge platform and
the dataset is stored in our repository on GitHub. We created an individual webpage
to present the leaderboard. The challenge was announced on 24 February 2021, and the
training set was published on 9 March 2021. In early July we made the testing set available
for participants to perform sanity checks and the submission was closed on 15 July 2021.
The testing results and rankings for FUSeg2021 were published on 16 August 2021, 2 months
before our workshop in MICCAI 2021.

2.2.2. Submission and Evaluation

Each participating team was asked to submit a Docker container that contains their
algorithm and the prediction code. We generated segmentation predictions using the
code and re-produced the results to be evaluated on our GPU server and all results were
evaluated under the same software and hardware environment. The Dice coefficient [8]
was used to quantify the performances of submitted algorithms:

Dice =
2 × True positives

2 × True positives + False negatives + False positives
(1)

where true positives, false negatives, and false positives represent the corresponding
number of pixels. Over 100 researchers registered for the FUSeg2021 challenge and eight
teams successfully submitted their algorithms. It is also worth mentioning that using
external datasets for pre-training was allowed for participants, as long as they clearly
mentioned the used datasets in their approach.

In Section 3, we provide an in-depth description of the methods of the top three
ranked teams.

2.3. Top Three Submissions
2.3.1. First Place

This submission [9] was made by Amirreza Mahbod (Danube Private University,
Medical University of Vienna), Rupert Ecker (TissueGnostics GmbH), and Isabella Ellinger
(Medical University of Vienna). Two CNN models were used, namely U-Net [10] and
LinkNet [11]. Instead of using the models in their plain forms, pre-trained CNNs were used
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in the decoder parts of the models. For LinkNet, a pre-trained EfficientNetB1 model [12]
was used, and EfficientNetB2 model [12] was utilized for U-Net. LinkNet with Efficient-
NetB1 backbone comprised of around 8.6 million parameters (32.9 Mb), and U-Net with
EfficientNetB2 consisted of around 14.3 million parameters (54.5 Mb). As shown in Figure 2,
the entire Medetec dataset was also used for pre-training. To train the models, random
scaling, random rotations, vertical and horizontal flipping, and brightness and contrast
shifts were used as augmentation techniques, as suggested in [13]. Each model was trained
for 80 epochs with a learning rate (LR) scheduler that reduced the LR by 90% after ev-
ery 25 epochs. The initial LR was set to 0.001. The batch size was set to 4 and full-size
images were used to train the models. Adam optimizer [14] and a combination of Dice
loss and Focal loss [15] were also adopted for model training. For each dataset, five-fold
cross-validation was exploited and the best models based on the segmentation scores of the
validation sets were saved to be used in the inference phase. To boost the segmentation
performance, three distinct ensembling strategies were used, namely 5-fold cross-validation,
test time augmentation (TTA), and result fusion from the two exploited models. All these
techniques have shown promising results for medical image classification and segmen-
tation tasks in former studies [13,16–18]. Instead of using the entire training set to train
a single model, it was divided randomly into five subsets. Then, five sub-models were
trained based on the derived subsets (i.e., for each of the sub-models, four subsets were
used for training and the hold-out set was used for validation). In the inference phase,
the test images were sent to all five derived sub-models and then the segmentation results
were averaged. TTA was used in the inference phase for better segmentation performance.
Degree rotations of 0, 90, 180, and 270, as well as horizontal flipping, were applied in
TTA. Since two distinct models (LinkNet with EfficientNetB1 backbone and U-Net with
EfficientNetB2 backbone) were trained, their results were fused in the inference phase for a
given test image, as shown in Figure 2. To form the final segmentation masks for the test
images, first, the fused prediction probability vectors were binarized using a 0.5 threshold.
Two post-processing steps were also applied, namely filling the holes, and removing very
small detected objects, with identical settings as described in [19].

Figure 2. The architecture of Mahbod’s model. In the training phase, LinkNet and U-Net were used
to obtain two trained models whose predictions were ensembled in the testing phase.

2.3.2. Second Place

This submission was made by Yichen Zhang from Huazhong University of Science
and Technology. In this approach, the Harmonic Densely Connected Network (HarDNet-
MSEG) [20] was applied to the wound dataset. As shown in Figure 3, the architecture
consisted of an encoder backbone and a decoder. Specifically, HarDNet-68 was adopted
as the encoder. HarDNet-68 consisted of around 17.6 million parameters (67.1 Mb) and
the repeated application of HarDNet blocks, batch normalizations (BNs), and Max pooling
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layers. The arrangement of the layers followed the standard Conv-BN-ReLU order to enable
the folding of BN. For the layer distribution, instead of concentrating on stride-16, which
is adopted by most of the CNN models, stride-8 was used to have the most layers in
the HarDNet-68. This improved the local feature learning, benefiting small-scale object
awareness. The employed HardNet blocks were the more efficient version of dense blocks,
originally presented in [21]. In each HardNet block, layer k was connected to layer k – 2n
if 2n divides k, where n is a non-negative integer and k – 2n ≥ 0. Under this connection
scheme, once layer 2n was processed, layers 1 through 2n – 1 can be flushed from the
memory, reducing the concatenation cost significantly. The decoder was implemented as a
cascaded partial decoder [22]. It turned out that the shallow features with high resolution
occupied computing resources, and the deep information could also represent the spatial
details of the shallow information relatively well. Thus, in the cascaded partial decoder
architecture, the shallow features were discarded and allowed for more computing on the
features of the deeper layers. We also used receptive field blocks (RFBs) in the decoder
part of the model to enhance the deep feature learning process [23]. At the same time,
the aggregation of features maps at different scales were employed by adding appropriate
convolution and skip connections in the dense aggregation module. During training, multi-
scale training and standard image augmentations were applied. Further details about the
building blocks can be found in [20].

Figure 3. The architecture of HarDNet-MSEG [20]. Conv.: convolutional layer. RBF: receptive
field block.

2.3.3. Third Place

This submission [24] was made by Adrian Galdran of the University of Bournemouth.
In this work, a framework for semantic segmentation was proposed based on the sequential
use of two encoder–decoder networks. The architecture consists of two segmentation
networks stacking in a sequential manner, where the second network receives as input
the concatenation of the prediction from the first one with the original frame, as shown
in Figure 4. This way, the output of the first network acts as an attention mechanism that
provides the second network with a map of interesting locations on which the second
network should focus. Double encoder–decoders are a direct extension of encoder–decoder
architectures in which two encoder–decoder networks are sequentially combined. In this
approach, the input RGB image, the first network, and the second network are denoted
with x, E(1), and E(2), respectively. In a double encoder–decoder, the output E(1)(x) of the
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first network is provided to the second network together with x so that it can act as an
attention map that allows E(2) to focus on the most interesting areas of the image:

E(x) = E(2)
(

x, E(1)(x)
)

, (2)

where x and E(1)(x) are stacked so that the input to E(2) has four channels instead of the
three channels corresponding to the RGB components of x. There are some choices to
be made in this framework, specifically about the structure of the encoder and decoder
sub-networks within E(1) and E(2). Note that E(1) and E(2) do not need to share the
same architecture, although in this work, feature pyramid network with ResNeXt-50
backbone [25,26] was selected for both sub-networks with around 26.4 million parameters
(100.8 Mb) for each sub-network.

Figure 4. Pre-trained double encoder–decoder network [24]. The second network receives input as
the original raw image concatenated with the prediction of the first network. This allows the second
network to better focus on the region of interest in the image, improving its segmentation accuracy.

3. Results

In this section, we report the performances of the top three submitted algorithms.
Besides the Dice coefficient, we also calculate the precision and recall to demonstrate the
performances in detail. As shown in Table 1, the ensemble network (Rank 1), consisting
of a U-Net and a LinkNet, achieves the highest precision of 91.55% and the highest Dice
coefficient of 88.8%. The Dice coefficient of HarDNet-MSEG (Rank 2) was evaluated to be
87.57% on the testing set of the wound dataset. Rank 2’s entry was rated with the highest
recall of 86.31%, but the lowest precision of 88.87%, which resulted in its overall Dice score
being relegated to second place. The lowest Recall and Dice scores were determined for the
double encoder–decoder model of Rank 3. In detail, the precision, recall, and Dice scores
were 90.03%, 86.91%, and 84% respectively.

In total, 103 registered users from 27 different countries downloaded our dataset, and
eight teams successfully submitted their algorithms to us.

Table 1. Performance evaluation of the top three submitted algorithms (Dice score was used for the
ranking in the challenge).

Rank Precision (%) Recall (%) Dice (%)

First Rank 91.55 86.22 88.80
Second Rank 88.87 86.31 87.57
Third Rank 90.03 84.00 86.91



Information 2024, 15, 140 7 of 12

4. Discussion
4.1. Overall Segmentation Performance

In the annotation process, one of the medical assistants in the annotation team reported
that the wound segmentation was difficult for even human experts. One of the challenges
is that boundaries between epithelial tissue and granulation tissue are often ambiguous
due to their similar color and the fact that epithelial tissue forms on top of granulation
tissue. Figure 5 shows some of these cases where deep learning models failed to predict
accurate segmentation masks.

Figure 5. Cases where boundaries between epithelial tissue and granulation tissue are ambiguous.
The left column shows the original images. The middle column shows the ground truth label and the
right column shows the segmentation predictions.

The overall performance of the submitted algorithms is promising.
In general, all submitted algorithms were capable of segmenting the wound region

quite well (Figure 6), with Dice scores of over 80%. According to the literature [27–29],
Dice scores over 70% are considered acceptable for medical image segmentation, and all
three winning approaches delivered significantly better performances. The best Dice score
of 88.8% and a surprising precision of 91.55% were reached by the top team. For the top
team, the same approach was applied to the Chronic Wound dataset (a subset of the FuSeg
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challenge dataset). As reported in [9], the performance is slightly worse in the FuSeg
dataset (precision of 91.55%, recall of 86.22%, and dice of 88.80%) compared to the Chronic
Wound dataset (precision of 92.68%, recall of 91.80%, and dice of 92.07%), implying a slight
overfitting for the top-ranked approach.

Figure 6. Demonstration of the predicted segmentation masks from the top three submissions. Each
row in the top–down order are the original images, ground truth masks, and the model predictions
submitted by Mahbod, Zhang, and Galdran, respectively.

In general, segmenting the relatively bigger wounds with clear boundaries worked
well when the wound beds are properly cleansed and the dead tissue are removed,
and reasonably well for cases where infection, slough, or other impediments were present.
As shown in Figure 7, segmenting small isolated areas of the wound with ambiguous
boundaries was the most difficult task.

4.2. U-Net Architecture

U-Net is still a popular option for the participants as a subnetwork in ensemble
networks or the encoder part of their architecture. For example, U-Net is used as one of
the subnetworks pre-trained with carefully selected models in the submission by Mahbod.
Galdran also makes use of U-Net by stacking two sequential models where the input of
the second network is the concatenation of the original input and the prediction from the
first network. Among the submissions, we also find other variants of U-Net such as U-Net
with atrous spatial pyramid pooling layers [30] and U-Net with the addition of residual
connections [31]. As mentioned in Section 2.3, all three winning solutions were based on
CNNs. Transformer-based models have been recently applied to various computer vision
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tasks such as classification and segmentation [32,33]; models such as vision transformers
(ViTs) [34] or data-efficient image transformers (DeITs) [35] have also been applied to foot
ulcer segmentation, but their performance compared to the CNN-based solutions proposed
in the FuSeg challenge could be analyzed in future studies. Similarly, previously untested
models such as the Segmentation Transformer (SETR) [36] could be adapted and applied
for foot ulcer segmentation.

Figure 7. Cases with small isolated wound areas. The left column shows the original images. The mid-
dle column shows the ground truth label and the right column shows the segmentation predictions.

4.3. Ensembling

When comparing the two groups of models (ensemble networks vs. single networks),
we observed that fusing predictions from different networks always outperforms the single
networks in our dataset. This observation agrees with the theory of ensemble learning,
ensembles that combine multiple networks tend to yield more generalized and robust
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results when there is significant diversity among the networks. In this challenge, we see
two of the main ensemble learning methods, stacking and boosting. Both algorithms
perform better than the individual networks, namely U-Net and LinkNet, when applied
to solve the same problem. However, it should be noted that using techniques such as
ensembling or TTA could increase the inference time drastically, as shown in previous
studies [37,38]. Therefore, both computational resources and intended applications should
be considered carefully when employing such techniques.

5. Conclusions and Future Works

In this paper, we presented the Foot Ulcer Segmentation challenge. We built a large
pixel-wise annotated wound image dataset that is manually labeled by experts. Currently,
only foot ulcer images were annotated and included in the challenge dataset as these
wounds tend to be smaller than other types of chronic wounds, which makes it easier
and less time-consuming to manually annotate the pixel-wise segmentation masks. In the
future, we plan to create larger image libraries to include all types of chronic wounds,
such as venous leg ulcers, pressure ulcers, and surgery wounds as well as non-wound
reference images.

Wu used our dataset to create the FuSeg challenge and evaluated the submitted
wound segmentation methods. Although wound segmentation is a difficult task, our
results suggest a few takeaways:

• Current state-of-the-art algorithms can accurately segment the wound area, with Dice
scores reaching 88.8% and precision reaching 91.55%.

• There is still room for improvement for newer deep learning models to be applied on
wound segmentation. For example, transformer-based methods and semi-supervised
methods.

• From the predictions generated by the submitted algorithms, we observed the chal-
lenges in distinguishing between epithelial tissue and granulation tissue and segment-
ing small isolated wound regions.

• We also observed the superiority of ensemble networks over individual networks
applied to our dataset.
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