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Abstract: Advancing digitalization is reaching the realm of lightweight construction and struc-
tural–mechanical components. Through the synergistic combination of distributed sensors and
intelligent evaluation algorithms, traditional structures evolve into smart sensing systems. In this
context, Structural Health Monitoring (SHM) plays a key role in managing potential risks to human
safety and environmental integrity due to structural failures by providing analysis, localization,
and records of the structure’s loading and damaging conditions. The establishment of networks
between sensors and data-processing units via Internet of Things (IoT) technologies is an elementary
prerequisite for the integration of SHM into smart sensing systems. However, this integrating of SHM
faces significant restrictions due to scalability challenges of smart sensing systems and IoT-specific
issues, including communication security and interoperability. To address the issue, this paper
presents a comprehensive methodological framework aimed at facilitating the scalable integration
of objects ranging from components via systems to clusters into SHM systems. Furthermore, we
detail a prototypical implementation of the conceptually developed framework, demonstrating a
structural component and its corresponding Digital Twin. Here, real-time capable deformation and
strain-based monitoring of the structure are achieved, showcasing the practical applicability of the
proposed framework.

Keywords: IoT; smart sensing systems; structural health monitoring; digital twins

1. Introduction

The primary function of lightweight structural components is to provide rigidity and
strength while minimizing weight. Recent approaches have furthered their functionality
by integrating distributed sensors and intelligent algorithms, evolving into smart sensing
systems. These systems transform previously passive structural components into active
components so that theycan digitally process data and exchange their state, for example,
operational status, with each other. Presently, smart sensing systems are applied in various
domains like water quality monitoring [1], generalized environmental monitoring [2],
healthcare monitoring [3], and human motion disorders [4], showing their innovation in
data collection and analysis. Back to the realm of lightweight structural components, typical
structures that can be retrofitted to smart sensing systems include bridges [5], aircraft [6], or
wind turbines [7]. Such integrated systems, comprised of structural components, sensors,
and data-processing systems, can potentially pose risks to human safety and environmental
integrity due to system failures [8]. In response, Structural Health Monitoring (SHM) has
emerged with the principal aim of analysis, localization, and recording of the loading and
damaging conditions, enabling the prediction of systems’ remaining useful life [9].

The implementation of SHM necessitates the establishment of networks that connect
sensors, digital models, evaluation algorithms, and users. Here, data acquisition, data
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processing, and data exchange are essential concerns. Traditional data acquisition systems
use wires to connect sensors to a centralized server (e.g., database), where data processing
and interpreting are carried out. Newer applications advocate so-called wireless sensing
networks (WSN) to reduce costs related to installation and maintenance [10]. Overall,
technological advancements and the widespread availability of wireless networks have
shifted SHM from wire-based methods to real-time WSNs using wireless communication
protocols [11]. Beyond WSNs, the Internet of Things (IoT) technologies are not limited
to localized data processing and energy-efficient communication. They leverage a more
complex and hierarchical architecture, integrating various devices, cloud-based services,
and users to enable a seamless information flow across the global network. The integration
of IoT paradigms drives more innovative solutions of communication in the field of SHM,
enabling remote and continuous monitoring, as reflected in recent research [12–15].

Nevertheless, based on the observation of the current IoT-based SHM systems, we
can generally identify the following issues. Using IoT technologies comes with significant
challenges regarding communication security (e.g., related to confidentiality, integrity, and
availability), data sovereignty (i.e., related to the control over the data), and exchange
interoperability (e.g., how can heterogeneous data and services be understood at the same
level?). These considerations are often only an afterthought, but they are crucial to apply
SHM in practice. Moreover, structures of smart sensing systems are becoming increasingly
complex, requiring multiple measurement points or sensors even when monitoring hot-
spot regions. Here, we identify the absence of a general approach to enable the monitoring
and management of individual components and scaling to systems or clusters in the IoT.

The center of the proposed scheme is Digital Twins (DTs)—virtual representations
of physical assets. Until now, the concept of DTs is loosely defined, as there are diverse
standards to interpret how a DT should look like and which functions it should have.
Precisely because of this loose definition, DTs are highly expandable. This leads to the
fact that the development of DTs is closely related to specific needs. In several current DT
paradigms, DTs are associated with different security threats. Literature like [16,17] intents
to classify these threats and shows the DT’s potential to ensure appropriate and trustworthy
data exchange in a secured way. Meanwhile, DTs have gained traction in the digital
transformation of various domains. This term is also relevant to structural engineering, as
digitalization transforms how structures are designed, managed, and maintained. SHM
applications, ranging from estimating component lifetime to maintenance scheduling,
benefit from the incorporation of DTs, enhancing interoperability across diverse scales
due to consistent and uniform modeling of DT’s structure and interface [18]. Studies
focusing on the use DTs in SHM systems can be classified based on their application focus,
like data analysis of the measured data [19–21], communication efficiency [22–24], and
formulation of the integrated process [25] or the formalized modeling of DTs [26]. We find
few publications that use DTs to address integration scalability in SHM.

Based on these observations, we propose an organizational scheme to describe struc-
tural–mechanical objects from individual components to clusters based on hierarchical DTs.
Additionally, we present the conceptual framework for integrating DTs into IoT-based SHM
systems, addressing data security and interoperability. The remaining parts of the paper are
structured as follows: Section 2 reviews published SHM applications with a focus on the
employed networking infrastructures, as well as existing organizational schemes in SHM
systems. In Section 3, we propose an organizational scheme of IoT-based SHM systems
and the respective conceptual framework. Finally, a proof-of-concept implementation will
be demonstrated in Section 4 to monitor the operational of an exemplary cantilever via
an app in near real time. Section 5 discusses the extension possibilities of the prototypical
application using our methodological approach. Section 6 concludes this paper.

2. Related Work

This section provides an overview of pivotal publications in the domains of Structural
Health Monitoring (SHM) and the IoT. First, we focus on general, higher-level organi-
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zational schemes that structurally describe SHM systems, considering their IoT-based
interconnections. The overall objective is to extract the SHM’s central requirements for
interconnections through IoT infrastructures. Based on that, we review and compare IoT
infrastructures concerning their suitability for SHM.

2.1. Organizational Schemes of SHM Systems

A review of current publications reveals that IoT-based SHM systems tend to adopt
layered architectures. Aguzzi et al. [27] subdivide their Web of Things platform for SHM
application into four distinct layers: A monitoring layer directly connected to physical
structures, an edge layer focusing on data acquisition and preprocessing, a data manage-
ment layer addressing storage, aggregation, and visualization of acquired data, and a data
analytics layer dedicated to interpreting the data for condition assessment and damage de-
tection, localization, and prediction. Similar to this layered approach, Lamonaca et al. [28]
present their SHM system as an aggregation of interconnected smart objects. They define
a dual-layered architecture: a physical layer encompassing all sensors and actuators that
comprise smart objects and a cyber part responsible for data processing and communica-
tion. The cyber part is further subdivided into functional layers targeting signal processing,
event detection, and real-time applications. Similar layered architectures can also be found
in other publications, e.g., [29,30].

The aforementioned organizational proposals focus on subdividing the data stream
linearly from data acquisition via (central) evaluation to end-user visualization. The
modeling granularity of physical objects remains unrefined. Physical objects—in this case,
structures—can be increasingly complex to cover use cases ranging from basic elements to
a complicated wind turbine. Hence, they demand a more detailed approach to represent
their hierarchical and structural complexity accurately. Additionally, current proposals
predominantly emphasize vertical communication along the data stream, i.e., traversing
from the physical object (data acquisition) through a cloud-based analysis service (data
preprocessing and aggregation) to the end user (data visualization). However, there is
an oversight in horizontal communication—the interconnection of objects, regardless of
the complexity. Enabling horizontal interconnections between objects is crucial, especially
in complex SHM systems consisting of different structures and sensors. Here, individual
objects should be able to autonomously manage their data and facilitate interfaces for
interconnections. The use of IoT paradigms can help in creating organizational schemes for
SHM applications in this respect.

2.2. The Role of DTs

Aspects and concepts that shape the definition of DTs are diverse. In general, the
summary of characteristics published by Jones et al. [31] is widely accepted. We perceive
DTs as virtual representations of physical entities and are realized by aggregation of com-
putation and communication technologies. In the digital world, DTs utilize their metadata
to describe the basic physical structure, operational state, provided service functions, as
well as access properties and interfaces. They are assigned a globally unique identity and
equipped with communication endpoints so that peer-to-peer communication is possible.
When it comes to IoT, we consider both the interconnection of DTs themselves as well
as the interconnection of DTs with other IoT objects and end users. Hence, DTs are also
regarded as communication nodes with a unique addressable and available identity in
this decentralized landscape. In this context, the focus of DTs shifts to interconnection and
holistic modeling [32], rather than other popular aspects like 3D modeling, product life
cycle management, and so on. Interconnection seeks a seamless connection to collaborate
on shared targets, which requires uniform interfaces and an identical understanding of the
communication protocols used. Holistic modeling intends to formally and semantically
describe DTs’ physical structure, functional composition, and other features using a stan-
dardized data model [33]. In this context, a specific example is the integration of a structure
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into a building information model [21]. In the domain of structure mechanics, a general
framework for implementing DTs has not been established yet, as stated in [32].

2.3. Dimensions of IoT-Based SHM Systems
2.3.1. Interoperability

Interoperability in the IoT, as defined by Konduru et al. [34], refers to the ability of
diverse connected objects to communicate at the same technical and semantic level. It is a
crucial foundation for scalable and flexible IoT systems, enabling the integration of new
objects and technologies without disrupting existing communication paradigms. Achieving
interoperability requires semantics in both object structures and communication languages.

In the context of SHM, Aguzzi et al. [27] utilize the Thing Description format of the
W3C’s WoT specification to structurally describe SHM systems. Based on Thing Description,
a semantic layer can be directly added to the meta model to realize interoperable data
exchange. Similar ideas can be found in the publication from Gigli et al. [35], which
proposes the semantic formalization of exchanged data.

2.3.2. Offline Capability

The capability to continuously provide intended functions (e.g., data processing) is
pivotal for long-term SHM systems [9]. This capability should be kept even in offline
scenarios [30]. However, offline capability in wireless SHM systems presents challenges
since it necessitates wireless transmission of entire structural response data sets, which
has been proven to negatively impact the autonomy of wireless sensor nodes [36]. In-
vestigating how IoT technologies and DTs are combined in SHM systems illustrates the
feasibility of maintaining offline capabilities even in offline scenarios or disrupted network
connections [30,37].

2.3.3. Decentralized Data Collection and Centralized Data Analysis

SHM processes, as interpreted by Farrar et al. [9], require a dynamic approach to data
acquisition. Due to the inherent variability in structural geometries, damage manifestation
can occur either locally within specific areas or more broadly across spatially distributed
locations. Decentralized data acquisition is essential to address this variability and allow
for precise monitoring of structural conditions. Moreover, it may be necessary to perform
some data preprocessing on-site (e.g., through edge computing) to ensure that the data
being collected is of high quality [38].

Centralized data analysis is required to consolidate data collected from decentralized
sources, especially when diverse sensor types from different vendors are being used.
Integrating data into a unified analytical framework facilitates a comprehensive view of
the structure’s condition and enhances the ability to identify issues [38].

Both decentralized data collection and centralized analysis underscore the need for
an IoT infrastructure that supports seamless connectivity across various entities, such as
smart sensors or cloud-based services. The combination of these two paradigms within an
IoT infrastructure not only enhances the accuracy and efficiency of SHM systems but also
ensures that data acquisition and processing are scalable and adaptable to the evolving
structural conditions.

2.3.4. Flexibility and Scalability

As stated in Section 2.3.3, SHM systems frequently employ various sensors to monitor
different aspects of structures. As structures and their monitoring needs may change over
time [9], these systems should be capable of expanding or contracting by adding or remov-
ing sensors, visualization units, and cloud-based services with ease. Additionally, SHM
systems must be established with the flexibility to integrate new technologies, including
novel communication standards and sensors, as they are introduced [39].
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2.3.5. Secure Communication

In the IoT, open sharing of information is crucial for enhancing collaboration between
different systems.

However, this openness requires trust, which can be established by strong security
properties of the underlying IoT infrastructure. Communication security is a crucial
concern in the field of IoT-based SHM [15], which can typically be evaluated using the
confidentiality, integrity, and availability (CIA) triad [40].

In general, a robust security concept that satisfies CIA depends on appropriate and
comprehensive authentication and authorization methods, such as OpenID Connect [41]
and access control [40]. They help systems to ensure that data are protected from unau-
thenticated and unauthorized access. To further strengthen the framework, an in-depth
exploration of data privacy approaches is necessary. Privacy-preserving techniques, such as
differential privacy and anonymization of sensor data, are dedicated to safeguarding user
data against misuse. This is particularly significant for machine manufacturers, who would
not allow measurement data from their potentially “damaged” components to be publicly
available. Meanwhile, it ensures that SHM systems associated with IoT technologies are
secure and resistant to manipulation or tampering.

2.4. Existing IoT Infrastructures for SHM Systems

In light of the dimensions illustrated in Section 2.3, we select and analyze both open-
source and commercial IoT infrastructures (for more, see [42]) which have been (or can be)
used in IoT-based SHM systems, see Table 1 for a comparative overview.

Bosch IoT Things [43] provides a versatile IoT infrastructure, facilitating the manage-
ment of DTs for their IoT devices (assets). This infrastructure allows DTs to be equipped
with various communication interfaces, enabling a bidirectional connection with their
physical counterparts to manage asset data, obtain notifications on all relevant changes,
and keep in a synchronous state with their assets. However, the modeling of DTs and the
message utilized for communication is not the focus of Bosch IoT Things. This leads to
interoperability issues when connected smart sensors are from different types or vendors.
Although data acquisition is conducted in a decentralized manner, DTs and their measure-
ments are forced to reside in the centralized cloud. However, data aggregation is still not
centralized but dispersed within each DT aggregated in the same cloud. Due to the partial
open-source nature, expanding the number of connected DTs involves the associated cost,
consistently hindering flexibility and scalability. Security is considered from the transport
layer to application-level access control, comprising device authentication via X.509 and
application access control via OpenID Connect.

Commercial IoT infrastructures like Siemens Mindsphere [44] and Microsoft Azure [45]
predominately offer centralized cloud-based databases for data storage and manage-
ment [46]. These infrastructures cater to a wide range of IoT applications, such as machine
learning. However, their primary focus is placed on enhancing cross-company or cross-
sector value chains. For example, the primary area of Siemens Mindsphere is providing
functionalities and technologies for digital services in industrial manufacturing controlled
by Siemens PLC. Hence, there remains the question of the general applicability of those
commercial IoT infrastructures in SHM systems. In the context of interoperability, there
are defined data models for DTs. The Digital Twin Definition Language (DTDL) [47] from
Microsoft Azure provides a concept to model DTs with self-defined vocabulary and aspects.
This language makes the hierarchical modeling of the SHM system more flexible. Towards
security, there are implementations observed in different layers by those infrastructures [46].

ThingsBoard IoT is an open-source IoT infrastructure consisting of infrastructure
components, databases, and gateways. This infrastructure can enable the out-of-the-box
IoT cloud (i.e., plug-and-play cloud-based applications) or on-premises solution with
different communication protocols [48]. It implies a flexible integration of, e.g., a cloud-
based centralized data aggregation to gain an insight into heterogeneous data [49]. As
for data acquisition, Ismail et al. [50] show the performance on the throughput of the
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platform, evaluated with REST and MQTT. Both results prove the data collection capability
in decentralized scenarios. Moreover, this infrastructure allows users to add individual
functionality as well as rules for diverse workflows. In the context of DTs’ integration, the
system interprets the general lack of communication interoperability since it is necessary to
define a conceptual data model for devices and communication protocol to interpret the
meaning of exchanged messages. This aims to make the communication between devices
understandable at the same technical and semantic level. From the perspective of IoT
security, the IoT platform provides the options associated with device authorization flow
by access token, x.509, and MQTT basic credentials.

The Smart Systems Service Infrastructure (S3I, see [51,52]) is an open-source IoT infras-
tructure with a few centralized software services. This infrastructure allows the connected
objects to authenticate and authorize themselves via S3I IdentityProvider, store and re-
find their meta information, including properties and service functions via S3I Directory,
and communicate end-to-end compliantly with each other via S3I Broker. Basically, the
infrastructure is originally dedicated to forestry applications, enabling decentralized inter-
connection between Forestry 4.0 things (F4.0 things), consisting of physical assets and their
DTs, software services, and apps. However, S3I’s distribution-oriented design (i.e., retaining
as little central architecture as possible, allowing communication logic to be decentralized
for execution) makes it possible to use S3I in other domains as well. In the S3I, things are not
enforced to transmit and store their data to the centralized infrastructure; they only send
metadata information to the S3I Directory so that things can be searched and discovered.
As proposed by Chen et al. [53], the use of the S3I ensures security during communication
since a comprehensive method is provided towards confidentiality, integrity, and avail-
ability, from OAuth 2.0-based authentication, authorization up to end-to-end encrypted
communication via the S3I Broker. Moreover, the control over data is always kept since
decentralized connected things only expose an interface to the outside, protected with
fine-grained access control. Towards interoperability, the conceptual meta data model of
the S3I Directory is delivered to allow the structure and content of F4.0 things to be mapped
into the meta model. The S3I-B protocol specifies the predefined structure of S3I-B messages
(including user messages, service messages, attribute messages, etc.) exchanged between
different F4.0 Things [52]. Together with the forest modeling language 4.0 (ForestML 4.0,
see [54]), decentralized F4.0 things (thus, also DTs) are described structurally and formally.
Hence, technical interoperability during communication can be ensured.

Table 1. Comparison of IoT Infrastructures used for SHM systems.

Features Bosch IoT
Things [55]

Microsoft Azure
[56] ThingBoard [57–59] S3I [51–53]

Interoperability - + o ++

Offline
Capability + ++ + ++

Decentralized
Data Collection ++ ++ ++ ++

Centralized Data
Aggregation o ++ ++ o

Flexibility and
Scalability - - + ++

Communication
and Data
Security

+ + + +

Open Source o - - ++ ++
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3. Concept

Drawing upon the literature review in Section 2, we propose a decentralized SHM
system methodology with the term DT as the central abstraction. DTs serve as a bridge
connecting various stakeholders, services, and data, regardless of their technical implemen-
tations or locations, whether in edge devices, cloud environments, or a hybrid of both. This
interconnectedness is crucial as it transforms isolated technical components into a cohesive,
value-added network.

The proposed system establishes a one-to-one relationship between DTs and physical
objects, ranging from individual components to clusters. This granularity in representation
not only refines the system’s monitoring capabilities but also reduces implementation
redundancy, therefore enhancing the flexibility of the SHM system (Section 3.1).

Interoperability is vital for the system’s functionality, necessitating the capacity of
different DTs to coordinate with each other seamlessly. This cooperation is largely depen-
dent on the DTs’ ability to understand each other, facilitated by standardized description
structures and a common interaction language (Section 3.2).

Each DT is designed to support specific functionalities such as data preprocessing,
storage, and analysis. The system’s unified interface and interoperability protocols ensure
that these DTs can be integrated to address more complex monitoring tasks, meeting a
diverse range of SHM criteria (Section 3.3).

3.1. Hierarchical Structure of the Proposed SHM System

The proposed IoT-based SHM system is organized hierarchically and structured into
layers of increasing abstraction. Each layer provides unique functionalities and insights.
As illustrated through the example of wind power (see Figure 1), this system starts at the
component level, including rotor blades, towers, and nacelles. These elements form wind
turbines, which are then grouped into wind parks.
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Figure 1. Vision from physical objects: scales in IoT networks for SHM systems.

3.2. Data Model for IoT-Based SHM Systems

The proposed system is comprised of a component level, a plant level, and a cluster
level. At the component level, the system focuses on acquiring, processing, and inter-
preting sensor data. This level addresses specific questions, such as determining the next
maintenance time for the nacelle or detecting deformations in blades exceeding certain
thresholds. The plant level aggregates data from its components, offering a consolidated
view of overall health and service requirements. Furthermore, the clustering of plants,
e.g., clustering wind turbines into a wind park, represents an organizational level where
data are aggregated from multiple plants. As we move up the hierarchy, the number of
objects decreases, but the complexity increases. Although the number of clusters is smaller,
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they contain numerous systems, which in turn are made up of many components. Despite
this complexity at higher levels, it remains manageable at the component level due to the
separation of concerns into individual DTs.

Thus, the component level is critical for direct interaction with sensors and raw
structural data, forming the foundation of the SHM system. Higher levels, such as the plant
or cluster levels, leverage these data, offering broader insights and facilitating interactions
between components, plants, and the environment. The primary role of the cluster level is
data consolidation, while models and detailed investigations are most effectively carried
out at the plant level. This hierarchical structure ensures efficient data management and
analysis across different levels of SHM systems.

In decentralized IoT-based SHM systems, the necessity for a shared data model is
paramount, especially to ensure both technical and semantic interoperability among diverse
system components. A shared data model facilitates consistent communication, data
exchange, and understanding across various elements within the system, regardless of
their designs or functions. This is particularly crucial in systems where components from
different vendors or with varying technical specifications must work cohesively.

Our proposed data model is an augmentation of the established ML 4.0 data model
[54], tailored specifically for the structural–mechanical domain. This data model is used to
provide a comprehensive overview regarding the hierarchical physical structures, digital
functionality, interfaces, and associated properties, as well as aggregates this information
into a DT. We term this extension the mechanical modeling language 4.0 (mml40). Figure 2
illustrates this extension, highlighted in red, in juxtaposition with the original elements of
the ML 4.0 model, depicted in gray. The central element is the (ml40::Thing), which repre-
sent independent units in the IoT. Each thing encompasses roles (ml40::Role) and features
(ml40::Features), enabling a detailed and functional characterization, e.g., properties and ser-
vices of each unit. In the mml40 extension, things in the field of SHM are further specialized
into components (mml40::Component), plants (mml40::plant), and clusters (mml40::Cluster),
therefore aligning the data model with the hierarchical structure of the proposed SHM
system in Section 3.1. To add a dynamic aspect to this model, we introduce the concept of
events to the data model. This allows the modeling of events to be autonomously published
by things alongside the publishing conditions, event content, and meaning. Key features of
these events include the topic (serving as the event identifier), schema (providing a formal
event description), frequency, and a human-readable description. This aspect of the data
model ensures that the system is not only structurally sound but also capable of real-time
interaction and response to changing conditions within the SHM environment.

ml40::Thing
mml40::Plant

ml40::Thing
mml40::
Cluster

ml40::Thing
mml40::

Component

mml40::Features
mml40::

Functionality

mml40::
Property

mml40::Event ml40::Value
ml40::
Topic

ml40::Value
ml40::

Description

ml40::Value
ml40::

Frequency

ml40::Value
ml40::
Schema

ml40::Thing

- identifier: ID
- name: string

ml40::Role

- identifier: ID
- specialization: string

ml40::DTml40::HMI ml40::
Service

ml40::
Functionality

ml40::Value

- validFrom: dateTime
- validTo: dateTime

«primi...
ID

(from ml40)

ml40::
Property

ml40::
Association

ml40::
Composite

ml40::
Shared

ml40::Feature

- identifier: ID
- name: string

mml40::
Role

0..*

subFeatures

0..*

ml40::Composite

0..*
roles

0..*

ml40::Compiste

0..*
relatesToRoles

0..*

targets

0..* relatesToRoles

0..*

features

0..*

targets

Figure 2. The Proposed extension of ML 4.0 [54] (gray) for the structural–mechanical domain (red).
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3.3. Decentralized Communication and Security

In our IoT-based SHM system, despite its hierarchical structure, communication with
users and service invocation is streamlined through unified interfaces and message-based
protocols. This design approach ensures that technical heterogeneity within the system
is effectively addressed, making communication seamless and consistent across different
system levels.

Figure 3 depicts the proposed conceptual architecture of the IoT-based system. Interac-
tion with individual objects within the system is secured through robust authentication and
authorization mechanisms. Every interaction necessitates a valid authentication, authoriza-
tion, and data encryption and signing process, guaranteeing the security of communications
at the IoT level. To facilitate decentralized interactions within the system, we have selected
the S3I as the preferred IoT infrastructure. The S3I Identity Provider offers an authentica-
tion service using OAuth 2.0. The outcome of this process is an access token representing
the granted permissions, which can be used to access the S3I Services and decentralized
interconnected DTs, services, and apps. An authorization system consisting of a policy
engine and a policy model (e.g., Role-based Access Control) can be employed to perform
the authorization against requests and the associated access tokens.

Physical World Digital World

App

Digital Twin

Digital Twin

Digital Twin

Services

IoT
Infrastructure

represents

represents

represents

Interacts

Data Acquisition

Data Preprocessing Data Storage Data Analysis

Data Retrieval

Data Management

Data Security &
Interoperabiltiy

Technical
interaction

Semantic
interaction

legend

App

Interacts

Service

Cloud EdgeFog

Users

Figure 3. Conceptual architecture of the IoT-based SHM system with a communication infrastructure.

For communication within the SHM system, a message-based communication
protocol, the S3I-Broker (S3I-B) protocol, is employed. This protocol supports data encryp-
tion and signing using RFC 4880 [60]. This means that each message is encrypted (using
the private key of the sender) and signed (using the public key of the receiver) before
sending. Public keys are included in the information model, which is stored in the S3I
Directory. This protocol encompasses various message types, including user messages
for direct communications, attribute messages for querying data, and service messages for
invoking services within the system. For instance, at the component level, potential service
requests might include querying for overload events, load curves over a specified period



Information 2024, 15, 121 10 of 20

(F(t); t ∈ [t1, t2]), sensor evaluations in specific regions (εs1,s2(t, x); t ∈ [t1, t2]; x ∈ [x3, x4]),
or the number of experienced load changes. Moving beyond the component level, the plant
or cluster levels can also request services, such as temperature profiles over the system’s
runtime or retrieval of reference or simulation data from stored databases. These outputs,
along with user requests, are typically presented via a human–machine interface, such as
an app.

Event-Driven Communication in the SHM System

We further extend the S3I-B protocol by an event system capable of realizing user-
specified and event-driven communication. This system supports event exchange irrespec-
tive of the physical location of the things (in the cloud or on edge devices), underlining its
flexibility and scalability.

The S3I-B Event system is distinguished by its thing-centric design, granting each
thing the autonomy to define event content, frequency, and triggering conditions. This
level of customization enables things to tailor event management to their specific needs,
with the entire process efficiently managed by the DT. The protocol is thus augmented with
event messages, as depicted in Figure 4. We categorize events into two types: named events
and custom events. Named events are predefined by the DT and described in the data
model. Custom events are requested by subscribers and emitted based on user-specified
rules, such as an attribute crossing a threshold. Each event is associated with a specific
topic, forming the basis of networking and indicating the event’s focus.

S3I::B::Message

- identifier: ID
- receivers: ID [1..*]
- replyingToMessage: ID [0..1]
- replyToEndpoint: URI [0..1]
- sender: ID

S3I::B::
EncryptedMessage

- data: base64Binary
- signature: string [0..1]

Value
S3I::B::

KeyValue

S3I::B::
SubscribeCustomEventMessage

S3I::B::
SubscribeCustomEventRequest

- attributePaths: array
- filter: string

S3I::B::
SubscribeCustomEventReply

- ok: bool
- topic: string

S3I::B::
UnsubscribeCustomEventMessage

S3I::B::
UnsubscribeCustomEventReply

- ok: bool

S3I::B::
UnsubscribeCustomEventRequest

- topic: string

S3I::B::EventMessage

- content: KeyValue
- timestamp: long
- topic: string

Figure 4. The data model for S3I-B event messages in a UML class diagram.

4. The Digital Cantilever in the IoT-Based SHM System

This section presents a prototypical application for a structural–mechanical cantilever
beam connected with the IoT S3I infrastructure. We detail the technical implementation
process, classifying the cantilever beam at the component level within our developed
hierarchical infrastructure. Additionally, we provide a human–machine interface (HMI)
for intuitive interaction with the monitored component. The choice of a cantilever beam
as the base for our prototype is rooted in its fundamental nature. A cantilever beam is
one of the primary structures frequently employed in the construction of cantilever-type
components, including rotor blades, wings, and cranes. From a structural mechanics
perspective, employing the cantilever beam allows us to investigate and analyze the
foundational principles at its core. By isolating the beam as the smallest element, we gain a
comprehensive understanding of its behavior and mechanical characteristics. Moreover,
the proposed metadata model and unified communication interfaces not only facilitate
this in-depth examination but also present an exciting opportunity for the expansion of
these elemental structures. This expansion delivers possibilities for the development of
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more intricate and sophisticated structural configurations, demonstrating the versatility
and adaptability inherent in our approach.

4.1. Setup

The to-be-monitored component is a cantilever beam structure (see dimensions in
Figure 5) that can be described based on the assumptions of the Bernoulli hypothesis [61].
A strain gauge is installed on the beam to measure the strain value. Its resistance varies
with the beam’s deformation. We assume that the cantilever beam is a simple and homoge-
neous structural–mechanical component with a low complexity. Thus, we only consider
the deformation along the x-axis. Advanced sensor configurations and applications are
discussed further in Section 5.

z

x

y

Figure 5. Physical Structure, the cantilever beam with one strain gauge (left) and its dimensions
(right) with experimental parameters h = 2, b = 25, ds = 100, l = 220 in mm.

4.2. Structural Model and Computation

The initial prototype is built with only one sensor that can only determine one un-
known variable in the system. However, the load introduction point and the magnitude of
the applied force Freal are two independent effects that cannot be detected separately with
one sensor. Therefore, an assumed load introduction point at the end of the beam and an
equivalent force Feq are used for the calculation of the beam’s deformation in this case.

This simplification is permissible for a phenomenological representation of the struc-
tural behavior (demonstrator) but should be replaced by an unambiguous determination
of force and force application point for technical purposes, see Figure 5.

Based on the assumptions for uniaxial bending, we derive the relationship between a
strain value ε and the equivalent force Feq with Young’s modulus E, area moment of inertia

Iy = bh3

12 , cross-section geometry b, h, l and sensor position ds , see Equation (1).

E · ε(x) = σ(x) =
My(x)

Iy

h
2
=

Freal(l − ∆xF − x)
Iy

h
2
=

Feq(l − x)
Iy

h
2

(1)

The strain value εds measured by the sensor corresponds to the strain at the position
x = l − ds. Therefore, the following applies for εds = ε(l − ds), see Equation (2):

E · ε(x) =
Feqds

Iy

h
2

(2)

Rearranged and written for each time step t, it follows:

Feq(t) =
2EIy

hds
εds(t) (3)

Using the provided equivalent force Feq, further information for the cantilever beam,
for example, globally (approximated) deflection w(x, t) (see Equation (4)) and maximum
stress σmax (see Equation (5)) in the clamping, can be calculated.

w(x, t) =
Feq(t)
6EIy

(3lx2 − x3) (4)
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σmax(t) = σ(x = 0, t) =
Feq(t)lh

2Iy
(5)

In the chosen modeling approach, we tolerate inaccuracy in the calculated deflection
(see Equation (4)), which represents the deformation of a cantilever for the load introduction
point at the end of the beam. In reality, however, the beam does not have a cubic but a
linear deflection curve from the actual force application point. The error only occurs in
the range x > l − ds and increases with increasing distance of the actual force application
point from the end of the beam. The reduced complexity of the calculation approach makes
it possible to capture the global behavior of the structure with little computational and
sensing effort. In principle, the more detailed and local the modeling, the more complex
the modeling must be, and the more computing power is required for each time step.
An alternative method for real-time calculation of deformation of the cantilever beam
structures is presented in [62].

4.3. Communication Architecture

The overall communication architecture is illustrated in Figure 6. By means of the
S3I, the cantilever beam, its corresponding DT, a simulation service, and the visualization
app are connected to enable situation-specific choreography. In the following, we present
several hardware and software components involved in the architecture.

UsersPhysical World Digital World

Simulation Service

Digital Twin

Appaccesses

uses

Service
Functions

Data Model

Operational
Data

Interface

Broker

Directory

Identity
Provider

represents Interacts

deployedOn

Figure 6. The communication architecture to monitor the cantilever beam.

4.3.1. Physical Twin

In the IoT, a physical twin (PT) is an entity that exists in the physical world. Here, the
PT refers to the aluminum beam with one installed strain gauge, see Figure 5, measuring
the strain value εds(t) at the given position ds.

4.3.2. Digital Twin

The DT in this application represents the cantilever beam, formally described using
the extended ML 4.0. The formalization is considered to be a basis for interoperability. The
DT is modeled in an object diagram, as interpreted in Figure 7.
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:Cantilever

:StrainGauge

:Force

+ value: double = 0

:Composite

:Thing

:GetConfiguration:SetConfiguration

:Component

:Strain

+ value: double = 0

:Event

+ description = a named event t...
+ frequency = 1
+ schema: json
+ topic = newStrainGaugeValue

:Deformation

+ value: double = 0

:ProvidesStrainData :ProvidesDeformationData :Dimensions

+ height: int = 2
+ length: int = 220
+ width: int = 25

:MaterialType

+ value: char = alu

roles

features

roles

targets

features

Figure 7. A ML 4.0-based data model of the cantilever beam.

As assigned to the role mml40::Cantilever, this DT is associated with various value
properties such as the strain value (mml40::Strain) measured by the strain gauge. The
property (mml40::MaterialType) states the type of material used to construct the cantilever
beam. The beam’s geometry is described by ml40::Dimensions.

The numerical equations introduced in Section 4.2 are the base for the implemented
software services that provide strain values (mml40::providesStrainData) and calculated
deformation (providesDeformationData). Both services are integrated into the beam’s DT
and, thus, can be called through the unified interfaces via the IoT, realizing a so-called
passive DT. The composition object (ml40::Composite) implies a compositional relationship
between the cantilever and the strain gauge that directly manages the strain value, which
is represented using mml40::Strain.

In addition to storing and representing the current status, the developed DT also hosts
a calculation service dedicated to converting the measured strain values into the equivalent
force and at the beam end and the deflection, using the introduced equations in Section
4.2. The use of the event system (introduced in Section 3.3) enables the realization of an
active DT. Here, DT can "recognize” each measurement of new strain value and notices all
subscribers in the form of an S3I-B event message. The overall technical implementation is
performed using the ML 4.0-based python framework [63], which provides the DT with a
software runtime environment to ensure IoT connectivity.

4.3.3. Edge Device

The DT is developed as an edge DT. This means that the DT “lives” in an edge device
localized near the beam. This device provides the hardware runtime environment for the DT.
The edge approach empowers SHM systems to maintain functionality even in an internet
connection failure. Thanks to the DT’s modularization, reliable operation of sensors and
data processing are separated from the Internet module, ensuring uninterrupted monitoring
and analysis capabilities offline. In our application, we integrate all the needed hardware
components into a compact box entitled DT Box, see Figure 6.

The corn component of the DT Box is a Raspberry Pi 4, which acts as a computing unit.
It is powered by a power supply module, which consists of a 4-pin interface and a DC/DC
converter. This converter ensures that the box can be supplied with a stable, suitable voltage
from a variety of input voltages from 24 V to 220 V. To measure the strain value, a voltage
must be applied across the strain gauge. Here, a variable current (i.e., an analog value) is
generated. With an A/D converter, the current is converted to a digital value, which can
subsequently be transferred directly to the Raspberry Pi for further processing via a serial
communication protocol, I2C. We also installed an antenna connector in the DT Box for
better Wi-Fi connectivity.



Information 2024, 15, 121 14 of 20

4.3.4. Simulation Services

Simulation services often serve as a tool for the development, validation, and verifica-
tion of algorithms. In SHMs, simulations aid in predicting the future behavior of physical
structures and identifying potential issues before they become critical while considering
cost-effectiveness. In this prototypical application, we introduce and deploy two simulation
services. The first one refers to uniaxial load estimation. In the image, a downward force
is applied at the end of the cantilever beam, resulting in deformation. In the first load
estimation service, we specify the x-coordinate. Based on that, the simulation service
estimates the load received at that point. The second service is concerned with maintenance
estimation. Here, we simplify the whole process of estimation and give only the load
applied to a specific x-coordinate. From this, the service estimates the remaining useful
life of the cantilever beam under these conditions. Analogous to DTs, both services are
so-called passive communications participants in the IoT-based SHM system, providing
interfaces for interoperable service retrieval.

4.3.5. IoT Infrastructure (S3I)

The use of the S3I necessitates the registration of identities. Concretely, the cantilever
and the app are assigned a client ID and secret as credentials. Each user must register an
S3I account to perform Single-Sign-On at the app. The result of the authentication and
authorization process is an access token. The token must be provided for each interaction
to ensure communication security.

In ML 4.0, there are two mappings of the data model to JSON: (1) mapping on a
metadata directory (stored in the S3I Directory) and (2) mapping on a runtime environment
(stored in the edge device, i.e., DT Box). The use of the provided mappings delivers an
overview of the thing both at a meta-level as well as a human- and machine-understandable
level. In addition, we apply the event system, which allows the DT of the cantilever
beam to perform near real-time conditional monitoring. For instance, the DT of the beam
generates and proactively emits event messages (see Listing 1)—that incorporate the critical
information about states—with a pre-configured time frequency.

Listing 1. An example of an event message in json format that denotes the current operational values
of the cantilever beam

1 {
2 " sender " : " s 3 i : cant i lever_beam : 4711 " ,
3 " i d e n t i f i e r " : " s 3 i : event_message : 4711_a " ,
4 " messageType " : " eventMessage " ,
5 " t o p i c " : " s 3 i : cant i lever_beam : 4711 . newStrainGaugeValue " ,
6 " timestamp " : 1632174117394 ,
7 " content " : {
8 " s t r a i n " : −4 . 161e−06 ,
9 " f o r c e " : −0 . 029774266666667 ,

10 " deformation " : [ −3 . 462876668e−06 , −1 . 38330135e−05 , . . . ]
11 }
12 }

4.3.6. User and App

To provide a user-friendly interface to configure and monitor the cantilever beam, we
built a Flutter-based app that also acts as a decentralized thing connected to the S3I, see
Figure 8.
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Figure 8. An app for the intuitive interaction with the cantilever beam.

Like the DT of the cantilever beam, the first step to use the app is authenticating
and authorizing before a user needs to start data exchange with the cantilever beam. The
interaction via S3I requires an S3I-compliant interface, which is directly integrated into the
app. In our use case, the configuration parameters (e.g., geometry, sensor position, and
material) can be transferred from the app to the cantilever using an S3I-B service request
(typed as mml40::SetConfiguration). Accordingly, those parameters can also be retrieved with
mml40::GetConfiguration as both are available services provided by the DT. To monitor the
state change, the app subscribes to the events that are triggered by the DT of the cantilever
beam if new measurements are available. After receiving these events, the app intends to
visualize them in various diagrams.

5. Discussion

Building on the established example, different variations are conceivable to extend the
functionality and applicability of the proposed IoT-based SHM system. These variations
include changes in sensor configuration, the type and the number of components, and the
execution platforms.

5.1. Variations of Sensors

An immediate enhancement involves adding additional strain gauges to the beam. For
example, with an extra strain gauge along the y-axis of the beam, force and force application
points can be determined simultaneously. In this context, the extension can be made from
load monitoring to damage monitoring. Utilizing sensitive structural damage indicators,
such as zero-strain trajectories [64], can significantly enhance monitoring capabilities,
particularly for detecting cracks or other forms of structural damage. Here, a sensor setup
as presented in [65] can be referenced.

5.2. Variations of Components

In addition to the aforementioned cantilever example, an extension of the proposed
IoT-based SHM system for other structural components is possible. This adaptability allows
for monitoring larger structures like a construction crane or a wind turbine rotor blade. To
effectively monitor large structures using a strain-based SHM approach, several distributed
measuring points become essential, as damage typically affects the strain field locally. This
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requires a comprehensive network of sensors to capture these localized variations. In
response to this, large structures integrate distributed sensors to form structurally and
hierarchically more complex models, establishing systems at the plant layer. These systems
operate as individual entities in the IoT, facilitating the centralized processing of distributed
strain signals. An illustrative example is depicted in Figure 9, showcasing an emulated
crane. The crane is a compositional aggregation of cantilever beams. Here, various virtual
sensors are installed on the crane, delivering strain values during the operation of the
crane. The crane’s DT centralized processes strain values, and thus, operational data such
as deformation and force at the crane’s end are calculated. The access to the DT via the
IoT infrastructure enables near real-time monitoring of the emulated crane with an app
depicted in Figure 9. Similar ideas can be applied to retrofit more complex cantilever-
typed systems, in which the basic element is always the cantilever beam. Overall, using
the proposed approach not only enhances the overall availability of the health status of
structures but also provides potential for efficient management of diverse components
within a larger structural framework.

Figure 9. An emulated crane (right) built in a 3D simulation software app (left), visualizing the
simulated crane’s operational data.

5.3. Variations of Execution Platforms

The implementation of DTs can be realized through different technical approaches.
This flexibility allows for realizing DTs either (1) directly at an edge device that is near
the assets (Edge DT), (2) to execute within a cloud service (Cloud DT), or (3) as a hybrid
model in between, known as Fog DT. The diversity in execution platforms is intentionally
unrestricted. Assets, which represent physical objects with limited computation and
communication resources, always reside in their DTs in an edge device. Conversely, assets
in the form of virtual objects, encompassing data sets and algorithms, deploy their DTs in
the cloud.

In addition to the presented application in Section 4, we also have the option to
relocate the DT of the cantilever beam to a cloud service. In this case, we only need to
integrate the interface on the cantilever’s side, ensuring the synchronization between both
the physical cantilever and its cloud DT. This variation becomes particularly meaningful
for applications requiring robust computing performance. Furthermore, we introduce the
possibility of splitting the DT into two distinct parts. The first part resides at the edge
device, which is responsible for collecting and preprocessing strain values. Meanwhile, the
second part, encompassing the data model and services to calculate corresponding forces
and displacements, is hosted in a cloud service. This dual-partitioning of the DT allows
for a distributed approach, leveraging the strengths of both edge and cloud computing.
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Overall, Fog DTs serve as solutions for applications demanding a balance between real-time
processing and computational complexity.

6. Conclusions

This paper introduced a novel organizational scheme for IoT-based SHM systems,
leveraging the capabilities of DTs. Grounded in the comprehensive literature review,
our proposed framework integrates structural components into systematically organized
clusters, enhancing the SHM process through IoT infrastructures.

The cornerstones of the presented infrastructure are its flexibility and extensibility,
enabling the adaptation of objects with varying scopes and scales. A basic element of
our approach is decentralized networking via the S3I communication infrastructure. The
S3I provides all communication participants with a globally unique identity and services
for authentication and authorization, ensuring secure and interoperable data exchange as
well as service calls. Moreover, the existing ML 4.0 modeling language is extended to en-
compass special properties and service functions required for SHM applications, therefore
establishing a comprehensive data model that delineates the structure and content among
physical assets and their DTs. This shared formal data model increases interoperability
among participants and allows the addition of semantic information to further ease the
integration of new components into SHM systems.

To validate our framework, we implement a prototype using a mechanical system
built with a simple cantilever beam. This demonstrator shows its capability to deliver
live strain, force, and deformation data to an app in real time via its DT. This data access
is only possible after users have successfully authenticated themselves and granted the
appropriate authorization. The actual data exchange is mediated by the S3I Broker. This
demonstration further illustrates the hierarchical concept, as the DT of the cantilever
includes the information and algorithms to process raw sensor data and outputs meaningful
monitoring and analysis data. Finally, the demonstrator shows the flexibility with which
different software components can be deployed. In this example, the cantilever’s DT is
being deployed on an edge device, while simulation services are deployed on a server,
and the user interface is running locally on the user’s smartphone. This infrastructure
can be extended to other structures or sensor configurations. With this, the functional test
is completed.

However, to validate the framework’s versatility and applicability in various contexts,
additional case studies in various domains, such as bridges, high-rise buildings, and
industrial equipment, are necessary. These case studies will help in establishing the system’s
adaptability to different structural complexities and environmental conditions.

In conclusion, our research indicates that SHM systems can effectively be transferred
into IoT solutions using our organizational scheme.
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Abbreviations

The following abbreviations are used in this manuscript:
AD Analog Digital
CIA Confidentiality, Integrity, and Availability
DC Direct Current
DT Digital Twin
F4.0 Forestry 4.0
ForestML 4.0 Forest Modeling Language 4.0
JSON JavaScript Object Notation
HMI Human–Machine Interface
I2C Inter-Integrated Circuit
IoT Internet of Things
MQTT Message Queuing Telemetry Transport
PT Physical Twin
REST Representational State Transfer
S3I Smart Systems Service Infrastructure
SHM Structural Health Monitoring
UML Unified Modeling Language
WSN Wireless Sensor Network

References
1. Charef, A.; Ghauch, A.; Baussand, P.; Martin-Bouyer, M. Water quality monitoring using a smart sensing system. Measurement

2000, 28, 219–224. [CrossRef]
2. Ullo, S.L.; Sinha, G.R. Advances in smart environment monitoring systems using IoT and sensors. Sensors 2020, 20, 3113.

[CrossRef]
3. An, B.W.; Shin, J.H.; Kim, S.Y.; Kim, J.; Ji, S.; Park, J.; Lee, Y.; Jang, J.; Park, Y.G.; Cho, E.; et al. Smart sensor systems for wearable

electronic devices. Polymers 2017, 9, 303. [CrossRef]
4. Lorenzi, P.; Rao, R.; Romano, G.; Kita, A.; Serpa, M.; Filesi, F.; Parisi, R.; Suppa, A.; Bologna, M.; Berardelli, A.; et al. Smart sensing

systems for the detection of human motion disorders. Procedia Eng. 2015, 120, 324–327. [CrossRef]
5. Chen, Z.; Zhou, X.; Wang, X.; Dong, L.; Qian, Y. Deployment of a Smart Structural Health Monitoring System for Long-Span Arch

Bridges: A Review and a Case Study. Sensors 2017, 17, 2151. [CrossRef] [PubMed]
6. Güemes, A. SHM technologies and applications in aircraft structures. In Proceedings of the 5th International Symposium on

NDT in Aerospace, Singapore, 13–15 November 2013; Volume 1315.
7. Malekimoghadam, R.; Krause, S.; Czichon, S. A Critical Review on the Structural Health Monitoring Methods of the Composite

Wind Turbine Blades. In Proceedings of the 1st International Conference on Structural Damage Modelling and Assessment,
Ghent, Belgium, 4–5 August 2020; Springer: Singapore, 2021; pp. 409–438. [CrossRef]

8. Balageas, D.; Fritzen, C.P.; Güemes, A. Structural Health Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 90.
9. Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Philos. Trans. Ser. Math. Phys. Eng. Sci. 2007,

365, 303–315. [CrossRef] [PubMed]
10. Noel, A.B.; Abdaoui, A.; Elfouly, T.; Ahmed, M.H.; Badawy, A.; Shehata, M.S. Structural Health Monitoring Using Wireless Sensor

Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2017, 19, 1403–1423. [CrossRef]
11. Mishra, M.; Lourenço, P.B.; Ramana, G.V. Structural health monitoring of civil engineering structures by using the internet of

things: A review. J. Build. Eng. 2022, 48, 103954. [CrossRef]
12. Mahmud, M.A.; Bates, K.; Wood, T.; Abdelgawad, A.; Yelamarthi, K. A complete internet of things (IoT) platform for structural

health monitoring (shm). In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore,
5–8 February 2018; pp. 275–279.

13. Abdelgawad, A.; Yelamarthi, K. Internet of things (IoT) platform for structure health monitoring. Wirel. Commun. Mob. Comput.
2017, 2017, 6560797. [CrossRef]

14. Scuro, C.; Lamonaca, F.; Porzio, S.; Milani, G.; Olivito, R. Internet of Things (IoT) for masonry structural health monitoring (SHM):
Overview and examples of innovative systems. Constr. Build. Mater. 2021, 290, 123092. [CrossRef]

15. Kamal, M.; Mansoor, A. Structural Health Monitoring and IoT: Opportunities and Challenges. In Proceedings of the International
Conference on Intelligence of Things, Hanoi, Vietnam, 17-19 August 2022; pp. 3–15.

16. Alcaraz, C.; Lopez, J. Digital twin: A comprehensive survey of security threats. IEEE Commun. Surv. Tutor. 2022, 24, 1475–1503.
[CrossRef]

17. Xu, H.; Wu, J.; Pan, Q.; Guan, X.; Guizani, M. A survey on digital twin for industrial internet of things: Applications, technologies
and tools. IEEE Commun. Surv. Tutor. 2023, 25, 2569–2598. [CrossRef]

http://doi.org/10.1016/S0263-2241(00)00015-4
http://dx.doi.org/10.3390/s20113113
http://dx.doi.org/10.3390/polym9080303
http://dx.doi.org/10.1016/j.proeng.2015.08.626
http://dx.doi.org/10.3390/s17092151
http://www.ncbi.nlm.nih.gov/pubmed/28925943
http://dx.doi.org/10.1007/978-981-15-9121-1_29
http://dx.doi.org/10.1098/rsta.2006.1928
http://www.ncbi.nlm.nih.gov/pubmed/17255041
http://dx.doi.org/10.1109/COMST.2017.2691551
http://dx.doi.org/10.1016/j.jobe.2021.103954
http://dx.doi.org/10.1155/2017/6560797
http://dx.doi.org/10.1016/j.conbuildmat.2021.123092
http://dx.doi.org/10.1109/COMST.2022.3171465
http://dx.doi.org/10.1109/COMST.2023.3297395


Information 2024, 15, 121 19 of 20

18. Bado, M.F.; Tonelli, D.; Poli, F.; Zonta, D.; Casas, J.R. Digital twin for civil engineering systems: An exploratory review for
distributed sensing updating. Sensors 2022, 22, 3168. [CrossRef] [PubMed]

19. Ye, C.; Butler, L.; Calka, B.; Iangurazov, M.; Lu, Q.; Gregory, A.; Girolami, M.; Middleton, C. A digital twin of bridges for structural
health monitoring. In Proceedings of the 12th International Workshop on Structural Health Monitoring 2019, Standford, CA,
USA, 10–12 September 2019.

20. Pillai, S.; Iyengar, V.; Pathak, P. Monitoring Structural Health Using Digital Twin. In Digital Twin Technology: Fundamentals and
Applications; Scrivener Publishing: Beverly, MA, USA, 2022; pp. 125–139.

21. Rainieri, C.; Rosati, I.; Cieri, L.; Fabbrocino, G. Development of the digital twin of a historical structure for SHM purposes. In
Proceedings of the European Workshop on Structural Health Monitoring, Palermo, Italy, 4–7 July 2022; pp. 639–646.

22. Gao, Y.; Li, H.; Xiong, G.; Song, H. AIoT-informed digital twin communication for bridge maintenance. Autom. Constr. 2023,
150, 104835. [CrossRef]

23. Zhu, Y.C.; Wagg, D.; Cross, E.; Barthorpe, R. Real-time digital twin updating strategy based on structural health monitoring
systems. In Model Validation and Uncertainty Quantification, Volume 3, Proceedings of the 38th IMAC, A Conference and Exposition on
Structural Dynamics 2020, Austin, TX, USA, 13–16 February 2023; Springer: Berline/Heidelberg, Germany, 2020; pp. 55–64.

24. Dang, H.V.; Tatipamula, M.; Nguyen, H.X. Cloud-based digital twinning for structural health monitoring using deep learning.
IEEE Trans. Ind. Inform. 2021, 18, 3820–3830. [CrossRef]

25. Wenner, M.; Meyer-Westphal, M.; Herbrand, M.; Ullerich, C. The concept of digital twin to revolutionise infrastructure
maintenance: The pilot project smartBRIDGE Hamburg. In Proceedings of the 27th ITS World Congress, Hamburg, Germany,
11–15 October 2021; pp. 11–15.

26. Chiachío, M.; Megía, M.; Chiachío, J.; Fernandez, J.; Jalón, M.L. Structural digital twin framework: Formulation and technology
integration. Autom. Constr. 2022, 140, 104333. [CrossRef]

27. Aguzzi, C.; Gigli, L.; Sciullo, L.; Trotta, A.; Zonzini, F.; De Marchi, L.; Di Felice, M.; Marzani, A.; Cinotti, T.S. MODRON: A
Scalable and Interoperable Web of Things Platform for Structural Health Monitoring. In Proceedings of the 2021 IEEE 18th
Annual Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2021; pp. 1–7.
[CrossRef]

28. Lamonaca, F.; Scuro, C.; Grimaldi, D.; Sante Olivito, R.; Sciammarella, P.F.; Carnì, D.L. A layered IoT-based architecture for a
distributed structural health monitoring system System. Acta Imeko 2019, 8, 45. [CrossRef]

29. Zonzini, F.; Aguzzi, C.; Gigli, L.; Sciullo, L.; Testoni, N.; de Marchi, L.; Di Felice, M.; Cinotti, T.S.; Mennuti, C.; Marzani, A.
Structural Health Monitoring and Prognostic of Industrial Plants and Civil Structures: A Sensor to Cloud Architecture. IEEE
Instrum. Meas. Mag. 2020, 23, 21–27. [CrossRef]

30. Tokognon, C.A.; Gao, B.; Tian, G.Y.; Yan, Y. Structural health monitoring framework based on Internet of Things: A survey. IEEE
Internet Things J. 2017, 4, 619–635. [CrossRef]

31. Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf.
Sci. Technol. 2020, 29, 36–52. [CrossRef]

32. Richstein, R.; Schröder, K.U. Characterizing the Digital Twin in Structural Mechanics. Designs 2024, 8, 8. [CrossRef]
33. Tao, F.; Xiao, B.; Qi, Q.; Cheng, J.; Ji, P. Digital twin modeling. J. Manuf. Syst. 2022, 64, 372–389. [CrossRef]
34. Konduru, V.R.; Bharamagoudra, M.R. Challenges and solutions of interoperability on IoT: How far have we come in resolving

the IoT interoperability issues. In Proceedings of the 2017 International Conference On Smart Technologies For Smart Nation
(SmartTechCon), Bengaluru, India, 17–19 August 2017; pp. 572–576.

35. Gigli, L.; Sciullo, L.; Montori, F.; Marzani, A.; Di Felice, M. Blockchain and Web of Things for Structural Health Monitoring
Applications: A Proof of Concept. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications and Networking
Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2022; pp. 699–702. [CrossRef]

36. Dragos, K.; Theiler, M.; Magalhães, F.; Moutinho, C.; Smarsly, K. On-board data synchronization in wireless structural health
monitoring systems based on phase locking. Struct. Control. Health Monit. 2018, 25, e2248. [CrossRef]

37. Sakr, M.; Sadhu, A. Visualization of structural health monitoring information using Internet-of-Things integrated with building
information modeling. J. Infrastruct. Intell. Resil. 2023, 2, 100053. [CrossRef]

38. Swartz, R.A. Decentralized algorithms for SHM over wireless and distributed smart sensor networks. In Earthquakes and Health
Monitoring of Civil Structures; Springer: Dordrecht, The Netherlands, 2013; pp. 109–131.

39. Chang, F.K.; Markmiller, J.F.; Yang, J.; Kim, Y. Structural health monitoring. In System Health Management: With Aerospace
Applications; John Wiley & Sons: Haboken, NJ, USA, 2011; pp. 419–428.

40. Reshan, A.; Saleh, M. IoT-based Application of Information Security Triad. Int. J. Interact. Mob. Technol. 2021, 15, 61–76. [CrossRef]
41. Chiranjeevi, S.; Manimegalai, R.; Saravanan, U. Program Architecture for Structural Health Monitoring of Pamban Bridge.

In Computational Intelligence, Cyber Security, and Computational Models, Preceedings of the 5th International Conference, ICC3 2021,
Coimbatore, India, 16–18 December 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 18–30.

42. Toutsop, O.; Kornegay, K.; Smith, E. A comparative analyses of current IoT middleware platforms. In Proceedings of the 2021 8th
International Conference on Future Internet of Things and Cloud (FiCloud), Virtual, 23–25 August 2021; pp. 413–420.

43. Jung, S.; Ferber, S.; Cramer, I.; Bronner, W.; Wortmann, F. Bosch IoT Suite: Exploiting the Potential of Smart Connected Products.
In Connected Business; Springer: Berlin/Heidelberg, Germany, 2021; pp. 267–282.

http://dx.doi.org/10.3390/s22093168
http://www.ncbi.nlm.nih.gov/pubmed/35590858
http://dx.doi.org/10.1016/j.autcon.2023.104835
http://dx.doi.org/10.1109/TII.2021.3115119
http://dx.doi.org/10.1016/j.autcon.2022.104333
http://dx.doi.org/10.1109/CCNC49032.2021.9369492
http://dx.doi.org/10.21014/acta_imeko.v8i2.640
http://dx.doi.org/10.1109/MIM.2020.9289069
http://dx.doi.org/10.1109/JIOT.2017.2664072
http://dx.doi.org/10.1016/j.cirpj.2020.02.002
http://dx.doi.org/10.3390/designs8010008
http://dx.doi.org/10.1016/j.jmsy.2022.06.015
http://dx.doi.org/10.1109/CCNC49033.2022.9700679
http://dx.doi.org/10.1002/stc.2248
http://dx.doi.org/10.1016/j.iintel.2023.100053
http://dx.doi.org/10.3991/ijim.v15i24.27333


Information 2024, 15, 121 20 of 20

44. Petrik, D.; Herzwurm, G. iIoT ecosystem development through boundary resources: A Siemens MindSphere case study. In
Proceedings of the 2nd ACM SIGSOFT International Workshop on Software-Intensive Business: Start-Ups, Platforms, and
Ecosystems, Tallinn, Estonia, 26 August 2019; pp. 1–6.

45. Copeland, M.; Soh, J.; Puca, A.; Manning, M.; Gollob, D. Microsoft Azure; Apress: New York, NY, USA, 2015; pp. 3–26.
46. Malik, S.; Rouf, R.; Mazur, K.; Kontsos, A. The industry Internet of Things (IIoT) as a methodology for autonomous diagnostics in

aerospace structural health monitoring. Aerospace 2020, 7, 64. [CrossRef]
47. Nath, S.V.; Van Schalkwyk, P.; Isaacs, D. Building Industrial Digital Twins: Design, Develop, and Deploy Digital Twin Solutions for

Real-World Industries Using Azure Digital Twins; Packt Publishing Ltd.: Birmingham, UK, 2021.
48. De Paolis, L.T.; De Luca, V.; Paiano, R. Sensor data collection and analytics with thingsboard and spark streaming. In Proceedings

of the 2018 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Taranto, Italy, 21–22 June
2018; pp. 1–6.

49. Tyagi, H.; Kumar, R. Cloud computing for iot. In Internet of Things (IoT) Concepts and Applications; Springer: Cham, Switzerland,
2020; pp. 25–41.

50. Ismail, A.A.; Hamza, H.S.; Kotb, A.M. Performance evaluation of open source IoT platforms. In Proceedings of the 2018 IEEE
Global Conference on Internet of Things (GCIoT), Alexandria, Eqypt, 5–7 December 2018; pp. 1–5.

51. Chen, J.; Schluse, M.; Roßmann, J. Enabling a Secured Communication in Distributed IoT Using the Smart Systems Service
Infrastructure. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and Communications
Workshops and other Affiliated Events (PerCom Workshops), Kassel, Germany, 22–26 March 2021; pp. 674–679.

52. Hoppen, M. Smart Systems Service Infrastructure (S3I)—Design and Deployment of the Smart Systems Service Infrastructure
(S3I) for Decentralized Networking in Forestry 4.0, A KWH4.0 Position Paper. 2022. Available online: https://www.kwh40.de/
wp-content/uploads/2022/02/KWH40-Standpunkt-S3I-EN.pdf (accessed on 26 December 2022).

53. Chen, J.; Hoppen, M.; Böken, D.; Reitz, J.; Schluse, M.; Roßmann, J. Identity, Authentication and Authorization in Forestry 4.0
Using OAuth 2.0. In Proceedings of the 2022 3rd International Informatics and Software Engineering Conference (IISEC), Ankara,
Turkey, 15–16 December 2022; pp. 1–6.

54. Hoppen, M. Forest Modeling Language 4.0—Konzeption und Einsatz der Forest Modeling Language (fml40) zur Modellierung
von Wald und Holz 4.0-Dingen. 2020. Available online: https://www.kwh40.de/wp-content/uploads/2020/03/KWH40-
Standpunkt-fml40-Version-1.0.pdf (accessed on 26 December 2022).

55. Thiele, C.D.; Brötzmann, J.; Huyeng, T.J.; Rüppel, U.; Lorenzen, S.; Berthold, H.; Schneider, J. A Digital Twin as a framework for
a machine learning based predictive maintenance system. In ECPPM 2021-eWork and eBusiness in Architecture, Engineering and
Construction; CRC Press: Boca Raton, FL, USA, 2021; pp. 313–319.

56. Peplinski, J.; Singh, P.; Sadhu, A. Real-Time Structural Inspection Using Augmented Reality. In Proceedings of the Canadian
Society of Civil Engineering Annual Conference, Whistler, BC, Canada, 25–28 May 2022; pp. 1045–1057.

57. Lorusso, A.; Guida, D. IoT system for structural monitoring. In Proceedings of the International Conference “New Technologies,
Development and Applications”, Sarajevo, Bosnia and Herzegovina, 22–24 June 2022; pp. 599–606.

58. Colace, F.; Elia, C.; Guida, C.G.; Lorusso, A.; Marongiu, F.; Santaniello, D. An IoT-based framework to protect cultural heritage
buildings. In Proceedings of the 2021 IEEE International Conference on Smart Computing (SMARTCOMP), Irvine, CA, USA,
23–27 August 2021; pp. 377–382.

59. de Alteriis, G.; Caputo, E.; Moriello, R.S.L. On the suitability of redundant accelerometers for the implementation of smart
oscillation monitoring system: Preliminary assessment. Acta IMEKO 2023, 12, 1–9. [CrossRef]

60. Callas, J.; Donnerhacke, L.; Finney, H.; Shaw, D.; Thayer, R. RFC 4880: OpenPGP Message Format. 2007. Available online:
https://www.rfc-editor.org/rfc/rfc4880 (accessed on 26 December 2022).

61. Spura, C. Herleitung der E uler-B ernoulli-Balkentheorie. In Einführung in die Balkentheorie nach Timoshenko und Euler-Bernoulli;
Springer: Wiesbaden, Germany, 2019.

62. Krause, M.; Schröder, K.U.; Kaufmann, D.; Osterloh, T.; Roßmann, H.J. Coupling of rigid body dynamics with structural
mechanics to include elastic deformations in a real-time capable holistic simulation for digital twins. In Proceedings of the 2018
European Simulation and Modelling Conference, ESM, Ghent, Belgium, 24–26 October 2018; pp. 77–81.

63. Chen, J.; Roßmann, J. Enabling Digitalization in Forestry 4.0 Using ForestML 4.0-based Digital Twins. In Proceedings of the 2022
International Conference on Artificial Intelligence of Things (ICAIoT), Istanbul, Turkey, 29–30 December 2022; pp. 1–6.

64. Schagerl, M.; Viechtbauer, C.; Schaberger, M. Optimal Placement of Fiber Optical Sensors along Zero-strain Trajectories to Detect
Damages in Thin-walled Structures with Highest Sensitivity. In Proceedings of the Structural Health Monitoring 2015, Stanford, CA,
USA, 1–3 September 2015; Chang, F.K., Kopsaftopoulos, F., Eds.; Destech Publications: Lancaster, PA, USA, 2015. [CrossRef]

65. Richstein, R.; Schmid, S.; Schröder, K.U. Using SHM for the representation of structural components over their service life
within digital twins. In European Workshop on Structural Health Monitoring; Rizzo, P., Milazzo, A., Eds.; Springer eBook Collection,
Springer International Publishing and Imprint Springer: Cham, Switzerland, 2023; pp. 433–442.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/aerospace7050064
https://www.kwh40.de/wp-content/uploads/2022/02/KWH40-Standpunkt-S3I-EN.pdf
https://www.kwh40.de/wp-content/uploads/2022/02/KWH40-Standpunkt-S3I-EN.pdf
https://www.kwh40.de/wp-content/uploads/2020/03/KWH40-Standpunkt-fml40-Version-1.0.pdf
https://www.kwh40.de/wp-content/uploads/2020/03/KWH40-Standpunkt-fml40-Version-1.0.pdf
http://dx.doi.org/10.21014/actaimeko.v12i2.1532
https://www.rfc-editor.org/rfc/rfc4880
http://dx.doi.org/10.12783/SHM2015/138

	Introduction
	Related Work
	Organizational Schemes of SHM Systems
	The Role of DTs
	Dimensions of IoT-Based SHM Systems
	Interoperability
	Offline Capability
	Decentralized Data Collection and Centralized Data Analysis
	Flexibility and Scalability
	Secure Communication

	Existing IoT Infrastructures for SHM Systems

	Concept
	Hierarchical Structure of the Proposed SHM System
	Data Model for IoT-Based SHM Systems
	Decentralized Communication and Security

	The Digital Cantilever in the IoT-Based SHM System
	Setup
	Structural Model and Computation
	Communication Architecture
	Physical Twin
	Digital Twin
	Edge Device
	Simulation Services
	IoT Infrastructure (S3I)
	User and App


	Discussion
	Variations of Sensors
	Variations of Components
	Variations of Execution Platforms

	Conclusions
	References

