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Abstract: Background: Degenerative spinal pathologies are highly prevalent among the elderly
population. Timely diagnosis of osteoporotic fractures and other degenerative deformities enables
proactive measures to mitigate the risk of severe back pain and disability. Methods: We explore the
use of shape auto-encoders for vertebrae, advancing the state of the art through robust automatic
segmentation models trained without fracture labels and recent geometric deep learning techniques.
Our shape auto-encoders are pre-trained on a large set of vertebrae surface patches. This pre-training
step addresses the label scarcity problem faced when learning the shape information of vertebrae
for fracture detection from image intensities directly. We further propose a novel shape decoder
architecture: the point-based shape decoder. Results: Employing segmentation masks that were
generated using the TotalSegmentator, our proposed method achieves an AUC of 0.901 on the VerSe19
testset. This outperforms image-based and surface-based end-to-end trained models. Our results
demonstrate that pre-training the models in an unsupervised manner enhances geometric methods
like PointNet and DGCNN. Conclusion: Our findings emphasize the advantages of explicitly learning
shape features for diagnosing osteoporotic vertebrae fractures. This approach improves the reliability
of classification results and reduces the need for annotated labels.

Keywords: computer-aided diagnosis; deep learning; shape analysis; auto-encoder; spine; vertebral
body fractures

1. Introduction

Degenerative pathology of the spine such as osteoporotic fractures of vertebral bodies,
spinal canal stenosis, spondylolisthesis, and other degenerative deformations of vertebrae
are a common healthcare risk in the elderly population [1]. Early detection of degenerative
diseases may enable preventative measures to reduce the risk of chronic severe back pain
and disability [2]. In recent years, deep learning has emerged as a powerful tool for many
medical applications. Advances in deep learning in computer-aided diagnosis have paved
the way for more timely interventions and improved patient outcomes. In this study,
we specifically focus on the intersection of deep learning and the diagnosis of vertebral
body fractures.

So far, most deep learning-based approaches for classification of vertebral body frac-
tures are trained on intensity images in an end-to-end manner. Even after the VerSe dataset/
benchmark for segmentation and localization of vertebrae was introduced in 2019 and
2020 [3–5], most introduced methods only rely on the localization of vertebrae instead
of leveraging the available segmentation masks [6–8]. The amount of available ground
truth segmentation masks of vertebrae was further increased by the TotalSegmentator
dataset [9,10]. To date, only few recently proposed methods [11,12] employ the information
provided by spinal segmentation masks in diagnostic downstream tasks.

We identified three relevant challenges that are not sufficiently addressed by existing
methods and have so far prevented a wider clinical adoption of vertebral fracture detection.
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(a) Image-based classifiers are prone to deterioration under domain shifts; i.e., they are lim-
ited in their adaptability for variations of the image intensity, scanner acquisition settings,
and other shifts in the data distribution. Furthermore, 3D convolutional neural networks
(CNN) trained in a fully-supervised setting tend to overfit and require a larger amount
of labeled data of sufficient quality. (b) Surface-based geometric learning models [13,14]
have so far been less expressive than 3D CNNs and so far do not achieve the required
accuracy on limited labeled data. (c) Shape encoder–decoder architectures [11,12] may
help to overcome the label scarcity by shifting a larger proportion of the training to an
unsupervised setting for which even healthy spines can be employed, but they may still
fail to learn representative latent space representations, due to an over-pronounced weight
of the decoder (that is later discarded for the classification task).

We suggest making the following improvements: (a) Instead of training image-based
classifiers, we propose to leverage information from a preceding segmentation model and
directly operate on shape information of vertebrae (surface contour) for the classification
task. This allows trained deep learning models to be independent of shifts in image
intensities and moves the demand for labeled data away from the classification task.
(b) Leveraging the vast amount of available segmentation masks, unsupervised learning
can help geometric learning models overcome problems related to limited labeled data.
(c) To ensure a more representative latent space representation, we introduce a novel
decoder architecture that ensures that most learned parameters are located in the encoder
model and thus relevant for the classification task.

Contributions: (1) We believe that the effectiveness of recently proposed auto-encoder
(AE) models is limited due to the sub-optimal design of encoder–decoder components.
Therefore, we perform an in-depth analysis of the effectiveness of various AE architectures
for the diagnosis of vertebral body fractures. (2) For this purpose, we develop a modular
encoder–decoder framework that allows arbitrary combinations of point- and image-based
encoder and decoder architectures. (3) To address the problem of over-pronounced weights
in the decoder, we designed a novel point-based shape decoder model that employs a
differentiable sampling step to bridge the gap between point- and voxel-based solutions.
(4) By performing extensive experiments to analyze various combinations of encoder
and decoder architectures, we verified that the detection of vertebral fractures, which by
definition is a geometric problem, is better solved using shape-based methods compared to
image-intensity-based ones. (5) The results of our experiments furthermore demonstrate
the particular advantages of employing our novel point-based shape decoder compared to
other models.

Outline: In the subsequent Section 2, we provide a comprehensive review of the
related literature, emphasizing the existing disparity between image- and point-based anal-
yses. Following this, our comprehensive shape-based classification framework (Section 3.1),
incorporating the proposed point-based shape decoder (Section 3.2), is meticulously de-
tailed in methods Section 3. The experiments and results Section 4 elaborates on our setup,
encompassing data particulars and implementation details (Section 4.1). Afterwards, the
results of our experiments are presented in Sections 4.2 and 4.3, followed by a thorough
discussion of the outcomes in Section 5 and a concise summary of our findings in Section 6.

2. Related Works

Radiologists commonly assess osteoporotic fractures using the Genant score [15]. The
Genant score is a semiquantitative measurement by which a fracture is defined by the
height reduction of the vertebral body (in lateral X-Ray) and categorized into 0—healthy,
1—mildly fractured, 2—moderately fractured, and 3—severely fractured. In 3D computed
tomography (CT) scans, this is more complicated as an optimal slice for measuring the
height difference needs to be determined.

Recent approaches: When categorizing recently proposed methods for computer-
aided detection of vertebral compression fractures, we can observe that most recently
proposed methods operate directly on the CT intensity data, e.g., [6,7,16]. The method
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proposed by Nicolaes et al. [6] suggests a two-step approach that detects vertebral fractures
in CT scans using a voxel-based CNN to perform voxel-level classification on patches
containing vertebrae. Yilmaz et al. [7] present a pipeline in which the vertebrae are firstly
detected using a hierarchical neural network and in which secondly a CNN is applied
on the identified patches that are extracted from the original CT scan. The grading loss
as proposed by Husseini et al. [16] addresses the problem of severe data imbalance and
minor differences in appearance between healthy and fractured vertebrae in CT scans by
exploring a representation learning-based approach that was inspired by Genant grades.
These methods do not exploit the shape information provided by the segmentation mask.
Consequently, the shape of the vertebrae and the associated fracture status need to be
learned implicitly, which leads to a complication of the learning process.

Recent approaches using self-supervised learning: As a remedy, two related previous
works aim to explicitly use the shape of vertebrae. Firstly, the Spine-VAE [11] employs
the masked image data of vertebrae as input to a conditioned VAE to capture the large
variations of healthy and fractured vertebra shapes. The conditioning is performed by
concatenating information about the labels of the shapes corresponding to the vertebra
(T1-L5 split into five groups) as one-hot-encoded vector. After training the VAE until the
reconstruction loss converges, the encoder model is further employed in conjunction with
a multilayer perceptron to classify vertebral body fractures. Secondly, the purely geometric
approach proposed by Sekuboyina et al. [12] employs a surface point-based probabilistic
AE to learn shape representations of vertebrae. The task of detecting vertebral fractures
is then treated as an out-of-distribution detection task by computing the reconstruction
error based on a model that was only trained on healthy vertebrae subjects. Both methods
rely on accurate segmentation masks of vertebrae during test time and do not involve
unsupervised pre-training on a larger separate dataset to learn shape features.

Geometric Learning: In many computer vision applications, geometric deep learning
methods play a crucial role in extracting meaningful features from 3D data by capturing
spatial relationships for shape analysis. Notably, two state-of-the-art techniques in this do-
main are PointNet [13] and DGCNN (Dynamic Graph Convolutional Neural Network) [17].
PointNet stands out for its ability to process unstructured point clouds directly, showcasing
robust performance in tasks like shape recognition and segmentation. DGCNN, on the
other hand, utilizes dynamic graph structures to capture both local and global geometric
relationships within point cloud data, enhancing the model’s capacity to discern intricate
patterns. These geometric deep learning approaches have significantly advanced the accu-
racy and efficiency of medical image analysis, particularly in scenarios where a nuanced
understanding of spatial relationships and complex structures within volumetric data is
essential. Geometric learning approaches are already being applied in medical imaging
tasks, e.g., assessment for spinal curvature in X-ray [18] and detection of pedicles for spinal
surgery in CT scans [19]. Furthermore, the required landmarks for the measurement of
vertebral height in 2D lie on the surface of the vertebral body in 3D, which is why we
believe that geometric learning approaches are beneficial for learning the important shape
features from the contour of vertebrae.

3. Methods

To investigate the potential of shape features for detecting vertebral fractures, we
explore several encoder–decoder architectures and deploy their latent space vector for
classification. In particular, we compare combinations of encoder and decoder trained to
reconstruct shape features of vertebrae based on the surface of their respective segmentation
mask. The training of our AE architecture comparison pipeline is split into two stages. In
the first stage, we train our AE models in an unsupervised manner on a large-scale dataset
without classification labels or a specific high occurrence of spine diseases to generate
meaningful shape features in the latent space. During the second stage, we employ the
generated shape features of the encoder (freezing the encoder layers) and train an MLP for
detection of fractures based on these shape features on a smaller labeled dataset.
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The problem setup can be defined as follows: Based on multi-label segmentation masks
of vertebrae performed on a CT scan, extract patches Sin ∈ RD×H×W of the segmentation
mask contour that is computed using an edge-filter. For geometric learning methods,
we extract a point cloud representation Pin ∈ R3×N of N 3D points by employing a
threshold on the grid. Firstly, train an AE model comprising a shape encoder f and a shape
decoder g on an unsupervised reconstruction task by minimizing the smooth L1-Loss of
the Chamfer distance between the input Sin or Pin and the prediction Sout or Pout. Secondly,
using the latent space vector z ∈ RM computed by the shape encoder f as input, train
an MLP as classifier h to predict the fracture status (healthy or fractured) by minimizing
the cross-entropy loss function between the target class ctarget and the predicted class
cpred. As encoders we employ 3 approaches, a simple convolutional encoder fconv, a point
encoder fpoint based on the PointNet architecture [13] and a graph encoder fgraph based on
the DGCNN [17]. As decoders, we employ 3 approaches, a convolutional decoder gconv,
our point decoder gpoint, and a novel point-based shape decoder gpbShape. The resulting
framework thus comprises 9 combinations of encoder–decoder architectures. The main
idea of the general framework for the employed image- or point-based vertebrae auto-
encoder (AE) framework is depicted in Figure 1 Section A. Our newly proposed decoder
architecture is visualized in Figure 2 Section B.
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Figure 1. To determine the most suitable architecture for our task, we employ combinations of
several encoder–decoder architectures including traditional convolutional methods and geometric
methods. The AEs are trained to reconstruct either a point cloud representation or a volumetric
surface representation of vertebrae, which are derived from the previously computed segmentation
mask. As Shape Encoder (A), we employ a convolutional method, as well as a point-based and a
graph-based method to predict the embedding z. As Shape Decoder (B), we employ a convolutional
method as well as a point-based method and propose a novel point-based shape decoder. The
Shape Classifier (C) is then trained separately on the embedding z for each encoder–decoder combi-
nation using the same multilayer perceptron (MLP) model. Note that only the weights of the MLP
are trained in a supervised manner, whereas the weights of the encoder are fixed.
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Figure 2. Point-based shape decoder: From the embedding vector z, a point representation of N
key points is computed using an MLP. The layers each consist of a 1D convolution with the channel
size denoted by white font within the blocks, InstanceNorm and ReLU. The number on top of the
blocks denotes the size of the dimensionality of the point cloud. Afterwards, a differentiable sampling
operation is applied on the key points to obtain a volumetric representation. This step requires N
additional parameters y.

3.1. Architectural Building Blocks

■ Convolutional encoder: Given a 3D surface patch Sin ∈ RD×H×W of depth D, height
H, and width W , extracted from an automatic multi-label 3D CT segmentation [9,10] that is
separated into binary individual vertebrae contours, we aim to encode the vertebral shape
into a low-dimensional embedding z ∈ RM with M = 2048 using a fully convolutional
encoder network fconv(Sin) parameterized by trainable weights w fconv .

■ Point encoder: Based on the 3D surface patches Sin, we extract a 3D point cloud
Pin ∈ R3×N where N corresponds to the number of key points in the point cloud that
are sampled from voxel representation by applying a threshold on the values in the voxel
grid. Using a PointNet [13] model fpoint(Pin) with weights w fpoint

, we generate a low-
dimensional embedding z ∈ RM with M = 2048.

■ Graph encoder: As for the point encoder, the graph encoder utilizes an extracted 3D
surface point cloud Pin ∈ R3×N for each individual vertebra. We employ a DGCNN [17]
fgraph,k(Pin) with parameter k for the k-Nearest Neighbor (kNN) graphs and weights
w fgraph

to compute an embedding z ∈ RM with M = 2048.
■ Convolutional decoder: After generating the embedding z, a convolutional decoder

gconv(z) with weights wgconv is used to map z back into S≀⊓⊔ ∈ RD×H×W . During training,
Sout is used to minimize a smooth L1-Loss function LsmoothL1 to reconstruct Sin. The utilized
convolutional decoder model is based on PixelShuffle layers.

■ Point decoder: The aim of the point decoder gpoint(z) is to map z back to a 3D
point cloud representation Pout ∈ R3×N where N corresponds to the number of points in
Pout. Similar to the PixelShuffle layers, this is achieved by subsequently transferring from
network channels C into the spatial dimension N. In the last step, C is set to 3 to predict
P ′. During training, we minimize a loss function based on the Chamfer distance Lcham f er
between Pin and Pout

■ Point-based shape decoder (pbShape decoder): Our point-based shape decoder
gpb−shape(z) can be described as a combination of point decoder and convolutional decoder.
In a first step, z is mapped to an embedding in shape of key points ‡point ∈ R3×N using a a
3-layer MLP gpoint−mlp(z). In a second step, a differentiable extrapolation gsampler(z)point is
performed to map back into a volumetric representation SoutRD×H×W . This allows us to
then minimize a smooth L1-Loss function LsmoothL1 to reconstruct Sin from Sout. In contrast
to the convolutional decoder and the point decoder, our point-based shape decoder relies
on a considerably smaller amount of trainable parameters. A more detailed description of
our proposed method is provided in the next section.
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MLP: After training of the encoder–decoder models was performed in an unsupervised
manner on a large dataset, a small MLP h(z) is trained on a smaller dataset with fracture
labels to predict a binary fracture status from the embedding z. For this step, the parameters
of the previously trained encoder w f are fixed, and only the weights of the MLP wc are
optimized using a cross-entropy loss function LBCE.

Data augmentation: To improve the generalizability of our models, we introduce
affine augmentation on our input data. For encoder models that take a volumetric patch
as input, the augmentation is performed before the forward pass during training on each
newly drawn batch. For our geometric models, we also apply the affine augmentation on
the volumetric patch after drawing the batch and sample a random set of key points from
the augmented volumetric patch using a threshold.

We provide details about the capacity and computational complexity of our AE models
in Table 1. Our proposed pbShape decoder requires 600k fewer computations and has only
62k trainable parameters compared to its convolutional counterpart (155k). During the
AE-model training, the encoders and decoders are combined, whereas, during training of
the MLP classification, only the MLP parameters are adapted. During the test time of the
classification, the encoder and MLP parameters are used without further adaptation.

Table 1. Assessment of architectural building blocks employed within our framework includ-
ing the number of trainable parameters, total size of the model and computational demands in
Mult-Add operations.

#Parameter Total Size (MB) Mult-Adds

Shape encoder:

■ Conv 6.9M 69.36 5.56G

■ Point 2.8M 34.1 1.39G

■ Graph 4.5M 678.92 7.96G

Shape decoder:

■ Conv 155k 24.88 1.37G

■ Point 62k 0.59 0.9M

■ Pb- Shape 62k 0.66 0.68M

Shape Classifier:

MLP 541k 2.18 0.54M

3.2. Point-Based Shape Decoder

Normally, the decoder g(z) would follow an inverse architecture comprising trans-
posed 3D convolutions or up-sampling layers and introduce a similar number of additional
trainable weights wg as the encoder w f . This makes the latent space less constrained as
information about the shape can also be “encoded” in decoder layers. Consequently, we
propose a completely new strategy: As opposed to conventional AEs, we map the latent
space to represent geometric 3D point coordinates using a small MLP gpoint−mlp(z) to
compute a point embedding ‡point ∈ R3×N , which is then used as input to a differentiable
sampler gsampler(zpoint)to reconstruct the original input Sin. The trainable weights in wg
are limited to wgpoint−mlp as wgsampler → ∅ (parameters y are fixed after training).

The structure of our proposed decoder is displayed in Figure 2.
We define gsampler as a differentiable geometric operation that extrapolates a 3D volume

from a small number keypoint coordinate and value pairs. Recall that spatial transformer
networks [20] perform differentiable interpolation of regular 2D/3D feature maps (or
images) given a grid of coordinates that is predicted by a localizer network to obtain
sampled values. Each resampled value on an off-grid location depends on 4 (2D) or 8
(3D) neighboring integer locations that are used within bi-/trilinear interpolation. Here,
following [21] we employ the reverse operation in that spatial coordinates x ∈ R3 and
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values y ∈ R are used as input to extrapolate a 3D grid using their respective trilinear
extrapolation coefficients.

The sampling operation gsampler is implemented as a reverse grid sampling operation
in PyTorch, and we compute the derivative for both sampling values y and coordinates
‡point to make this step differentiable. To mitigate noise and ensure a smooth output, we
apply a cubic spline kernel to spatially filter the extrapolation results. Note that the values y
attached to each key point are treated as additional trainable parameters, which are shared
across all training samples and can be learned and restricted within a range of 0 to 1 with
a sigmoid. This enables our method to ”paint” a detailed surface, as a zero value placed
close to one effectively erases or overwrites parts of a thicker line.

Furthermore, we hypothesize that only N representative (key point) coordinates x
are required to reconstruct a detailed vertebral surface and that those key points can be
efficiently predicted from the input using f and gpoint−mlp. Hence, our latent space zpoint
now represents a geometric entity that reflects a compact representation of the vertebral
shape. This is useful for understanding the impact of osteoporotic fractures on vertebral
geometry and can hence lead to improved classification accuracy. By keeping the number
of trainable parameters wgpoint−mlp small, we ensure that these advantageous properties of
zpoint are mirrored in z.

4. Experiments and Results

To explore the efficacy of utilizing unsupervised pre-training of vertebral shapes for
detecting vertebral body fractures, we conducted two experiments. In the initial experi-
ment, we assessed and compared the classification outcomes of various AE architectures
and end-to-end trained models. We also scrutinized the adaptability of segmentation masks
generated through deep learning for subsequent diagnostic tasks. The second experiment
aimed to determine the robustness of the AE models by executing a data-hold-out ex-
periment on the labeled dataset, specifically during the supervised training phase of the
MLP. Subsequently, we outline the prerequisites for our experiments and delve into the
implementation details of both the unsupervised pre-training stage for our AE models
and the supervised training phase for the MLP. Additionally, we provide implementation
details concerning the models subjected to end-to-end training.

4.1. Datasets and Implementation Details

To conduct our experiments as outlined in Figure 1, we utilize the following two
public datasets:

TotalSegmentator dataset [9,10]: The dataset contains 1204 CT scans/patients of
different parts of the body and corresponding segmentation masks of 104 volumes of
interest including 24 vertebrae (C1-L5). From this dataset, we extracted patches of nearly
13k vertebrae surface masks, which are employed for unsupervised training of our AEs.
Using our best classifier model, we estimate that 2.9% are fractured.

VerSe19 dataset [3–5]: The dataset contains 160 patients split into 80/40/40 for
training, validation, and test set and originally serves as a benchmark for the vertebrae
segmentation and localization task. Since fracture labels are also provided for the dataset,
we use them to train and test our vertebral fracture classification. The amounts of extracted
vertebrae are 770/385/380, respectively. We have also determined that when excluding
mild fractures (grade 1) [15], approximately 10% of vertebrae of each subset are fractured.

Unsupervised Pre-Training: The training of our AE models is performed using the
same training regime and hyper-parameters for all encoder–decoder combinations, to
ensure comparability. Each model is trained for 15,000 iterations using a batch size of
64. The models are optimized by deploying the Adam optimizer with an initial learning
rate of 0.005 and CosineAnnealing scheduler with two warm restarts. During training,
we augment our data by applying affine transformations. For geometric approaches, we
sampled the number of points to 3840, as we have found that the shape of vertebrae
depicted in our given patch size can be accurately represented with this amount of key
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points. For the DGCNN (graph-encoder) model, we have fixed the hyper-parameter for
graph neighbors to k = 20.

Supervised Training: For our MLP classifiers, the training is conducted for 6000 itera-
tions using a batch size of 16. We again use the Adam optimizer with an initial learning
rate of 0.0001 and CosineAnnealing learning rate scheduling with warm restarts. To en-
hance the diversity of our input data to the classification model, we augment the input
patch to the encoder using affine transformations and we also keep the parameters of the
encoder fixed. For geometric encoder models, we utilize the augmented input to construct
a randomly sampled point cloud of the vertebral surface. During test time, this point cloud
is sub-sampled by employing farthest point sampling to determine 3840 surface points
instead of drawing random points from an intensity threshold. While we use the ground
truth (GT) segmentation masks for training our classifier models, we employ automatically
generated segmentation masks using the TotalSegmentator model [9,10] at test time.

End-to-End Training: In addition to our AE architecture comparison, we train our
encoder models from scratch, namely the convolutional encoder, the PointNet, and the
DGCNN, in combination with the MLP classifier in an end-to-end fashion on the Verse19
dataset. Furthermore, the convolutional encoder is trained on image patches containing
the intensities values as information as well as on surface patches.

4.2. Automated Fracture Detection Pipeline

We evaluate the accuracy of our shape-based vertebral fracture detection through a
binary classification that distinguishes between healthy and fractured vertebrae. Since mild
fractures (Genant grade 1) [15] of the vertebral bodies are oftentimes indistinct and thus
harder to annotate consistently (higher inter-rater variability), vertebrae with label fracture
grade 1 are left out for this analysis.

In Table 2, we show the median area-under-curve (AUC) of fracture detection results
for 10 seeds of training the MLP for various encoder–decoder architectures and additional
end-to-end trained models on the test set. We report the results both for using ground
truth segmentation masks for preprocessing and for automatically generated segmentation
masks using the TotalSegmentator [9,10].

The results illustrate the benefits of pre-training on shape reconstruction for the de-
tection of vertebral fractures. Furthermore, the results convey that explicitly training on
the shape of vertebrae improves classification performance compared to training on image
intensities directly. The highest AUC score in the setup utilizing GT segmentation masks to
generate the model input is achieved with the point encoder and pbShape decoder architec-
ture, resulting in an AUC of 0.937. When employing TotalSegmentator (TS) segmentation
masks, the convolutional encoder in conjunction with the pbShape decoder attains an AUC
of 0.914. Notice that the pbShape decoder consistently achieves the highest AUC for each
encoder model, highlighting the benefits of the robustness of our proposed decoder.

When examining the outcomes between AE models and end-to-end trained models,
the AE models consistently produce more accurate and robust classification results, es-
pecially employing the same convolutional encoder architecture, which outperforms its
image-based end-to-end trained counterpart by more than 12.8% in AUC. Even when using
segmentation masks from TotalSegmentator, there is a 9.0% improvement.

When considering realistic segmentation errors by adapting TS-segmentation labels,
especially in models trained with graph-based encoding, a more severe drop in classification
performance can be observed in contrast to other encoder models.

To investigate the performance of our models in greater detail, we present the receiver-
operator curves (ROC curves) in Figure 3. The depicted results are computed using
TS-generated segmentation masks for preprocessing. From left to right the ROC curves are
provided for convolutional-encoder, point-encoder and graph-encoder models.
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Table 2. Vertebral body fracture detection results based on auto-encoder and end-to-end models.
The median and quartiles of the AUC on the VerSe19 test set over 10 seeds evaluated on ground-
truth (GT) segmentation mask patches and automatically generated segmentation masks using the
TotalSegmentator (TS) are reported. The highest median AUC is highlighted in bold.

GT-Masks TS-Masks
Model AUC Median (0.25, 0.75) AUC Median (0.25, 0.75)

End-to-end
Conv-encoder (img) ■ 0.756 (0.746, 0.769) -
Conv-encoder (surf) ■ 0.883 (0.861, 0.896) 0.847 (0.840, 0.860)
Point-encoder ■ 0.842 (0.821, 0.861) 0.803 (0.778, 0.822)
Graph-encoder ■ 0.616 (0.613, 0.617) 0.628 (0.621, 0.635)

Conv-encoder
Conv-decoder ■-■ 0.890 (0.883, 0.892) 0.814 (0.809, 0.814)
Point-decoder ■-■ 0.704 (0.689, 0.716) 0.712 (0.697, 0.716)
pbShape decoder ■-■ 0.924 (0.919, 0.926) 0.914 (0.909, 0.917)

Point-encoder
Conv-decoder ■-■ 0.930 (0.027, 0.031) 0.882 (0.879, 0.886)
Point-decoder ■-■ 0.911 (0.910, 0.913) 0.859 (0.857, 0.862)
pbShape decoder ■-■ 0.937 (0.935, 9.943) 0.902 (0.898, 0.904)

Graph-encoder
Conv-decoder ■-■ 0.871 (0.868, 0.874) 0.825 (0.823, 0.828)
Point-decoder ■-■ 0.843 (0.838, 0.844) 0.761 (0.759, 0.764)
pbShape decoder ■-■ 0.920 (0.918, 0.921) 0.856 (0.852, 0.865)

Figure 3. ROC curve and corresponding AUC for encoder–decoder combinations of the median AUC
of 10 seeds. The encoders are grouped by color and line style, whereas the decoders are grouped by
color and marker. The corresponding area under curve (AUC) is listed inside the legend.
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When interpreting the plot for the convolutional encoder, identifying the threshold
with the highest possible sensitivity and specificity would be in favor of the ConvEnc-pbDec
model, which also reaches the highest overall AUC in this setup (AUC = 0.914).

For ROC curves obtained for both point-encoder and graph-encoder models, we
observe that by choosing an optimal threshold either the convolutional decoder model or
the pbShape decoder produces the most accurate classification outcome.

4.3. Data-Hold-Out Experiment

In our data-hold-out experiment, we explore the required amount of supervised
training data for achieving robust classification outcomes. AUC values, calculated across
10 random seeds for each data split (2%, 5%, 10%, 50%, 75%, and 100%), are presented
as both scatter plots and box plots over the 10 seeds (see Figure 4). The experiment
demonstrates that the robustness is increased by adding more training data. Notably,
employing just 25% of training data already yields as accurate and robust classification
results as models trained on the complete training dataset. The increased number of
outliers in experiments involving training data below 25% indicates that specific data splits
offer more advantageous conditions for the classification task, while others present less
favorable circumstances.

Figure 4. Results of our data-hold-out experiment as boxplots and scatterplots of the AUC obtained
for 10 random seeds each. The plots are separated by the employed encoder architecture, and provide
the classification results obtained with the respective decoder. Top-Left: Convolutional encoder
Top-Right: Point-encoder models, Bottom-Left: Graph-encoder models Bottom-Right: End-to-End
trained models including the traditional CNN trained on image intensities instead and trained on
vertebra surface (denoted as Conv-encoder img and surf).
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5. Discussion

In this work, we examined the benefits of directly utilizing shape information in the
diagnosis of vertebral body fractures. We introduced a shape encoding approach that takes
a volumetric surface representation of a vertebra as input, encoding it into a latent vector,
which is decoded by transforming the latent vector into point representations (using an
MLP) and then applied a novel differentiable point sampling method: the point-based
shape decoder (pbShape decoder).

Within our vertebrae AE framework, we analyze the performance of our proposed
decoder and other AE building blocks that are pre-trained on a large-scale dataset to recon-
struct the shape of an input vertebra surface patch and additionally employ end-to-end
trained models for comparison. Whereas the vast majority of weights in our AE models
(the whole encoder part) are trained in an unsupervised fashion, only a light-weight MLP
classifier using the compact shape representation from the latent space requires training
with fracture labels. The findings of our end-to-end trained models indicate that, with
supervised training on surface data, good classification results (AUC above 0.9) can already
be obtained using a 3D CNN model, and our results demonstrate that using automati-
cally generated segmentation data yields preferable results in comparison to training on
image-intensity data directly. This shows the advantage of explicitly employing shape
information from large-scale multi-label segmentation models over implicitly learning
shape information in intensity-based CNNs. Furthermore, employing surface information
that was previously already learned, for instance by the nnUNet in the TotalSegmentator
model [9,10], enhances the robustness of the classification task against domain shifts. The
results confirm that the quality and robustness of the generated TotalSegmentator [9,10]
masks are adequate for this task. Furthermore, our findings highlight that the choice of
architecture influences the model’s robustness in the face of inaccuracies in segmentation
masks. In a clinical setting, obtaining ground truth segmentation masks can be challenging.
The fact that our model achieves an AUC of 0.914 holds significant potential for automated
diagnosis of osteoporotic fractures in the spine with limited availability of labeled data.

Our findings further suggest that, when trained in an end-to-end fashion, geometric
learning approaches such as PointNet [13] and DGCNN [17] do not perform as well
as 3D convolutional approaches. However, when integrated as an encoder into an AE
architecture and pre-trained on a large-scale dataset, we demonstrate their ability to achieve
more accurate results. Moreover, our findings indicate that models employing a PointNet
as an encoder produce accurate and robust results with only a small deviation between the
different decoder models (AUC pbShape: 0.902 conv: −2.0% and point: −4.3%) with fewer
trainable parameters being incorporated. This underscores the effectiveness and efficacy of
the PointNet architecture. Contrarily, the graph-based encoder appears to under-perform
on this specific task. This could be attributed to the nature of the task of detecting vertebral
fractures, which involves a more global geometric relationship based on height differences,
rendering local graph structures less relevant. Consequently, capturing finer geometric
features may not contribute significantly to this task but might be of interest when detecting
other degenerative deformations of vertebrae.

By performing a data-hold-out experiment, we highlight the effectiveness and robust-
ness of our models and find that an AUC above 0.9 can be obtained even when training on
5% of data (51 healthy and 5 fractured vertebrae), but robustness increases when training
on a larger dataset. The results of this experiment furthermore show the importance and
impact of data distributions and that the prevalence of vertebral fractures for this task
increases the difficulty to compare methods between multiple datasets. We thus consider
that our point-encoder, point-decoder model us similar to the approach proposed as pAE by
Sekuboyina et al. [12], who also utilize a point cloud generated from ground truth segmenta-
tion masks as input into their point-based AE architecture. However, they treat the detection
of vertebral body fractures as an anomaly detection task by training the reconstruction of the
point cloud on healthy samples and only achieving an AUC of 0.759 with the best model on
their dataset using accurate segmentation masks. In comparison, our purely point-based AE
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model reaches an AUC of 0.895 (0.911 on ground truth segmentation masks), setting a new
state of the art.

6. Conclusions

In summary, our study explores AE architectures for effective shape encoding of
vertebrae to diagnose osteoporotic fractures of vertebrae. We introduce a novel approach,
utilizing a differentiable geometrical decoder for unsupervised pre-training on the TotalSeg-
mentator dataset. By combining convolutional or point-based encoders with our proposed
shape decoder, we achieve a meaningful and robust shape representation in the latent space,
facilitating the detection of osteoporotic fractures. Our approach demonstrates robustness
through comparisons with ground truth segmentation masks, showcasing commendable
classification results even when applying automatically generated segmentation masks.
Moreover, this approach can be extended to other shape-related tasks, e.g., diagnosing
degenerative deformations, spinal canal stenosis, or lymph nodes.
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