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Abstract: The main purpose of a detection system is to ascertain the state of an individual’s eyes,
whether they are open and alert or closed, and then alert them to their level of fatigue. As a result of
this, they will refrain from approaching an accident site. In addition, it would be advantageous for
people to be promptly alerted in real time before the occurrence of any calamitous events affecting
multiple people. The implementation of Internet-of-Things (IoT) technology in driver action recogni-
tion has become imperative due to the ongoing advancements in Artificial Intelligence (AI) and deep
learning (DL) within Advanced Driver Assistance Systems (ADAS), which are significantly trans-
forming the driving encounter. This work presents a deep learning model that utilizes a CNN–Long
Short-Term Memory network to detect driver sleepiness. We employ different algorithms on datasets
such as EM-CNN, VGG-16, GoogLeNet, AlexNet, ResNet50, and CNN-LSTM. The aforementioned
algorithms are used for classification, and it is evident that the CNN-LSTM algorithm exhibits supe-
rior accuracy compared to alternative deep learning algorithms. The model is provided with video
clips of a certain period, and it distinguishes the clip by analyzing the sequence of motions exhibited
by the driver in the video. The key objective of this work is to promote road safety by notifying
drivers when they exhibit signs of drowsiness, minimizing the probability of accidents caused by
fatigue-related disorders. It would help in developing an ADAS that is capable of detecting and
addressing driver tiredness proactively. This work intends to limit the potential dangers associated
with drowsy driving, hence promoting enhanced road safety and a decrease in accidents caused by
fatigue-related variables. This work aims to achieve high efficacy while maintaining a non-intrusive
nature. This work endeavors to offer a non-intrusive solution that may be seamlessly integrated
into current automobiles, hence enhancing accessibility to a broader spectrum of drivers through the
utilization of facial movement analysis employing CNN-LSTM and a U-Net-based architecture.

Keywords: artificial intelligence; advanced driver assistant systems; Internet of Things; U-Net;
automated vehicles; convolutional neural network–long short-term memory

1. Introduction

In recent years, the rapid advancement of technology has led to the convergence
of various fields, giving rise to innovative solutions that enhance safety, efficiency, and
convenience in everyday life. One such intersection is the realm of IoT and automotive
safety, where the application of IoT principles to automobiles has paved the way for
groundbreaking advancements in driver assistance systems [1]. Among these innovations,
the detection of driver drowsiness holds immense significance in preventing accidents
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and ensuring road safety. The IoT-assisted automatic driver drowsiness detection system
offers a multi-tiered approach to road safety. Firstly, it operates in real time, providing
instantaneous feedback to the driver and triggering alerts if drowsiness is detected. These
alerts can take various forms, such as auditory alarms, haptic feedback, or even in-vehicle
adjustments to lighting and climate control. Secondly, the system contributes to data-driven
insights by collecting and analyzing a wealth of information over time. These data can
be utilized for statistical analysis, identifying trends, and refining algorithms to enhance
detection accuracy.

A vehicle is the most powerful thing on the road. When used recklessly, it may be
dangerous, and occasionally, the lives of other road users may be at risk. Failure to realize
when we are too tired to drive is a type of carelessness. Many academics have authored
study papers on driver tiredness detection systems to monitor and prevent a disastrous
outcome from such recklessness. As a result, this work was carried out to provide a new
viewpoint on the current situation and optimize the solution. The most common cause of
accidents at night is driving when tired. Fatigue and drowsiness are regularly to blame for
serious accidents on roadways [2,3]. Only identifying tiredness and warning the driver will
solve this issue. Drivers are more prone to falling asleep on trips requiring long stretches
of driving on regular routes such as highways. High-risk trips are those made for work-
related purposes, particularly those involving truck drivers. Another category of high-risk
travel [4,5] involves corporate car drivers. As a result, there is a clear relationship between
the time of day and the likelihood of falling asleep behind the wheel. These observations
highlight the interplay between driving circumstances, specific driver profiles, and the
temporal aspect of the risk of drowsy driving. Recognizing these correlations is essential for
developing effective strategies to mitigate the dangers associated with driver drowsiness
and enhance overall road safety.

The public health issue of motor vehicle collisions (MVCs) and injuries is global [6].
Drivers’ sleepiness and weariness are major contributing factors to fatal crashes and MVC
risk factors. The research is well-referenced about the prevalence of driver fatigue, drowsi-
ness, and weariness, as well as its effects on the incidence of MVCs and injuries from traffic
accidents. The pattern of acute weariness, exhaustion, persistent sleepiness, sleep issues,
and high workload has been connected to poor performance in psychomotor tests and
driving simulators due to the rising incidence of MVCs, injuries, and deaths in specific
populations. A widely used instrument for gauging self-reported driving behavior and
finding a connection between it and accident involvement is the Driver Behaviour Ques-
tionnaire (DBQ) [7]. As human mistakes cause most traffic accidents, the DBQ is one of
the most often-used research instruments to explain erroneous driving behaviors in three
basic categories, including errors, infractions, and lapses. The authors then suggested
incorporating the study’s findings into micro-simulations to more precisely imitate drivers’
actions on urban street networks. Drowsy driving impacts everyone, regardless of age,
profession, economic situation, or level of driving expertise. Drivers frequently feel tired,
and there are occasions when people have to drive while being severely sleep-deprived.
Teenagers and new drivers have spent less time on the road. Thus, their driving skills have
not yet matured. Younger drivers are also more inclined to drive after hours for social or
professional reasons, which increases their risk of driving while fatigued. Shift and night
workers frequently put in long hours at the office and are usually worn out when it is time
to clock out. They do not have a long journey home, yet many still try to use their cars out
of habit and duty. The risk of sleepy driving is six times higher for people working nights,
rotating, or double shifts compared to other categories of workers. Doctors, nurses, pilots,
police officers, and firefighters are just a few occupations that frequently have long shifts.
Compared to the typical commuter, people who drive for a living log more kilometers on
the road. Because many commercial drivers work long hours and face strict deadlines, they
also have a considerably higher risk of driving while fatigued. Regular business travelers
are especially vulnerable to the dangers of drowsy driving because they frequently expe-
rience jet lag and switch time zones as frequently as they do ZIP codes. Getting enough
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sleep cannot be easy if people travel a lot for work, making it challenging to stay safe on
the road. For drivers with sleep disorders, drowsy driving can be a daily struggle. Some
drivers may experience daytime exhaustion and drowsiness due to narcolepsy or insomnia,
but those with untreated obstructive sleep apnea (OSA) are at a significantly higher risk of
experiencing these issues. Some drugs can also have the opposite effect, causing sleepiness
in drivers when they need to be focused behind the wheel.

Sleep-related crashes are more likely to result in catastrophic injuries, possibly due
to the higher speeds involved and the driver’s incapacity to avoid an accident or even
stop in time [8]. Drowsiness can be understood in many ways, like the tendency to yawn,
sleepiness, tiredness, and others. This causes a significant number of fatal accidents and
deaths. It is currently a hot topic for research. In summary, this paper seeks to advance road
safety by detecting driver drowsiness and issuing timely alerts, thereby reducing the risk of
accidents linked to fatigue. This research leverages the IoT and deep learning technologies
to create a system that is not only effective but also unobtrusive, making use of facial
movement analysis to improve driver safety on the road. Ultimately, the goal is to make this
solution easily accessible to a wider range of drivers, thereby contributing to safer roadways
and a reduction in accidents caused by drowsy driving. Section 1 presents an introduction
to this paper. Section 2 presents the contributions of the paper. Section 3 presents the related
works on various methods of drowsiness detection using different machine learning and
deep learning techniques. Section 4 designs the architecture and mathematical analysis of
the proposed model. Section 5 describes the analysis and discussion of the results. The
final section summarizes our research findings and future plans.

2. Contributions of this Paper

By addressing a critical safety concern on the road, this study can help reduce accidents
caused by drowsy driving. This study can substantially impact road safety by combining the
IoT, deep learning, and facial movement analysis to automatically detect driver drowsiness.
The contributions of this paper are as follows:

• This paper presents U-Net-based segmentation, which only takes information from
the physical regions of the driver’s body. After segmentation, we encode the image
information and combine data from multiple time steps. Then, we minimize the effect
of an external factor, and U-Net-based segmentation is carried out before passing the
frames to the model.

• After that, the segmented body region is fed to the CNN-LSTM model, which generates
a softmax output, indicating the probability of the driver being drowsy.

• The method combines segmentation, image feature extraction, and time-series analysis
algorithms to confidently make the classification decision.

• This paper leverages IoT principles to develop a real-time monitoring system. By
strategically placing sensors within the vehicle and utilizing interconnected data
transmission, we pioneer a practical application of IoT technology in the context of
driver safety.

• This paper identifies and addresses challenges associated with accurate drowsiness
detection, such as minimizing false positives and negatives and accommodating
various driving scenarios.

3. Related Works

Driving while tired increases the likelihood of a collision or accident. Many individuals
are killed in automobile accidents yearly due to driving caused by a lack of sleep, drug
and alcohol abuse, or heat exposure. Accurate drowsiness detection based on eye state
has been achieved using a variety of indicators and parameters, as well as the expertise of
specialists. An essential component of sleepiness detection is predicting facial landmarks,
detecting eye states, and presenting the driver’s status on a screen. Major traffic accidents
frequently occur when the driver feels tired from long hours of driving, a physical sickness,
or even alcohol. Drowsiness can be defined as a natural state where an individual feels
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exhausted. The individual’s reflex is significantly reduced, which can cause the driver to
be unable to take quick actions when necessary. Also, studies have shown that driving
performance worsens with increased drowsiness. A human can quickly tell if someone
is tired by detecting specific actions or behaviors. Drowsy driving is a serious issue that
affects the driver, puts other people’s lives in danger, and harms the nation’s infrastructure.
There has been an enormous surge in the daily use of private transportation in modern
society. When traveling a long distance for an extended period, driving can become
monotonous. Traveling for a long time without any rest or sleep is one of the key reasons
drivers lose focus.

Detection methods follow eye movements and facial expressions to identify the drowsi-
ness state of the driver with the help of convolutional neural networks (CNN). Recently,
convolutional neural networks (CNN) have also been used in a method that helps in be-
havioral recognition by understanding upper body postures and producing the image’s
corresponding state as output. Using that proposed recognition model, some data were
collected related to driving. Another proposed model detects whether a person is busy
with phone calls and one hand is on the steering wheel. The method is based on the Faster-
RCNN mechanism. Another model is based on an attention mechanism and is different
from CNN-based methods. The attention mechanism-based model classifies fine-grained
images. However, these mechanisms do not help predict the driver’s drowsiness while
driving and do not focus on the distracting scenes inside the vehicle. Therefore, it is diffi-
cult to identify the driver’s actions while moving. Another proposed model identifies the
position of faces through various poses. Existing methods for detecting driver drowsiness
can be categorized into three kinds: physiological, vehicle-based, and behavioral.

The first type of method attaches a device to the driver’s skin. In [9], Awais et al.
exploited the use of ECG and EEG characteristics. First, EEG features are collected, such as
time-domain statistical descriptors, complexity metrics, and power spectrum measures, as
well as ECG features, including heart rate, HRV, LF/HF ratio, and other variables. Next,
all of these features are combined using SVM, and discrimination is achieved by utilizing
these hybrid features.

Another method by Warwick et al. [10] used the idea of a bio-harness. The system
works in two phases. The driver’s physiological data are gathered in the first phase using a
bio-harness. An algorithm analyzes the readings in the second phase. The problem with
the methods in this category is that a device has to be attached to the driver’s skin, which
may only be comfortable for some people. The second type of method analyzes the usage
pattern of the vehicle control system, like steering wheel movements, braking habits, and
lane departure measurements. These methods use these data to detect driver drowsiness.

Zhenha et al. [11] suggested steering wheel motions over time using a temporal
detection window as the primary detection feature. This window is used to evaluate the
steering wheel’s angular velocity in the time-series analysis by comparing it to the statistical
properties of the movement pattern below the fatigue threshold.

Li et al. [12] used data on Steering Wheel Angles (SWAs) to monitor driver drowsi-
ness under natural conditions. The problem with vehicle-based methods is that they are
unreliable, which may result in many false positives, thereby significantly affecting the
assessment of roads and drivers’ driving skills. The third type of method is more reliable
compared to the second type, as it only focuses on the driver.

The method proposed by Saradadev et al. [13] used the mouth and yawning as
detection features. First, it locates and tracks the mouth using a cascade of classifiers, and
then an SVM model is used to analyze and classify a drowsy driver.

Another method by Teyeb et al. [14] analyzed the closing of the eyes and head posture
for discrimination. First, the face is partitioned into three regions. Then the wavelet network
is used to determine the state of the eyes.

The authors of [15] proposed video-based driver sleepiness detection using real-time
techniques, achieving 91.7% accuracy and representing the Karolinska sleepiness scale.
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They compared their model to the PERCLOS-based baseline detection method. Figure 1
depicts the various drowsiness detection techniques.

Figure 1. Various drowsiness detection techniques.

Alam et al. [16] proposed a deep learning technique based on a convolutional neural
network for drowsy driver detection using a signal-channel EEG signal.

In [17], the authors proposed an EEG classification system for driver drowsiness based
on deep learning techniques, achieving 90.42% accuracy. They designed two procedures:
data acquisition and model analysis. Slow eye closure is often a reliable method for detect-
ing drowsiness, which can be captured by measuring the PERCLOS, i.e., the percentage of
eye closure. Issues like different lighting conditions or orientations can influence the system.
Upon occurrences of these conditions, the system is blind. The automatic detection of driver
fatigue using EEG signals and deep neural networks is a multidisciplinary effort, combining
expertise in neuroscience, signal processing, and machine learning. It has the potential to
significantly contribute to road safety by preventing accidents caused by drowsy drivers.
Sobhan et al. [18] presented a mechanism designed to identify driver fatigue, a critical
factor in mitigating traffic accidents. The approach involved collecting information from
11 individuals, resulting in a comprehensive dataset adhering to established standards. The
study’s findings indicate that the proposed deep CNN-LSTM network demonstrated the
ability to hierarchically learn features from the raw EEG data, surpassing the accuracy rates
achieved by previous comparison methods in the two-stage classification of driver fatigue.

In [19], Dua et al. proposed the use of different deep learning models, like Alexnet,
VGG-Facenet, FlowimageNet, and ResNet, with the softmax classifier, achieving 85% accu-
racy. In [20], Jamshidi et al. proposed hierarchical deep drowsiness detection, achieving
87.19% accuracy, and used an LSTM network for the temporal information between the frames.
The authors proposed a hybrid learning technique with NTHU-DDD and UTA-RLDD.

Liu et al. [21] highlighted the essential use of deep neural networks in such a model
within the machine learning field. It has high demand and great value. Hussein et al. [22]
presented a study that uses three deep learning-based algorithms—a deep neural network,
recurrent neural network, and CNN—to categorize captured driving data using a standard
identification procedure and choose the best one for a proposed detection mechanism.



Information 2024, 15, 30 6 of 30

Several approaches were employed to avoid overfitting. The CNN outperformed the other
two classification algorithms, with an accuracy of 96.1%, and was thus suggested for the
recognition system.

The algorithm proposed in [23] works in two stages. First, it locates and crops the
mouth region. Then, in the second stage, an SVM is used to classify whether the image
indicates driver fatigue and alerts the driver accordingly. The system uses a cascade of
classifiers to locate the mouth region. The SVM is trained on pictures of mouth regions
representing various styles of yawning. In contrast, our proposed method uses significantly
more information as the input, not just the mouth region. Based on the aforementioned
research study, the motive is to control the rate of accident cases due to fatigue or driver
drowsiness so that no mishaps occur and, most importantly, to enhance safety in terms of
traffic rules and regulations whenever reckless driving takes place due to an unconscious
state of mind, i.e., drowsiness. The neural network is trained using the PERCLOS and POM
drowsiness thresholds [24].

MT-CNN extracts the face and the feature points, which aid in obtaining the shape
of the eyes and mouth. EM-CNN takes action by assessing the conditions of the eyes
and mouth. When a threshold is met or surpassed, the degrees of eye and mouth closure
are determined by observing the unbroken picture frames; these segmented images of
the driver are then passed through blocks of convolutional layers followed by a 1 × 1
Conv. Coated for dimension reduction, the output is passed through an LSTM layer.
Zhang et al. [25] proposed the use of the AdaBoost, LBF, and PERCLOS algorithms, and
the accuracy of the model was 95.18%. The hardware and software required for this
method are relatively inexpensive, making it a feasible solution for mass deployment. In a
study by Ulrich, L et al. [26], 11 participants participated in an auditory and haptic ADAS
experiment while having their attention tracked while driving. The drivers’ faces were
captured using an RGB-D camera. These pictures were then examined through the use of a
deep learning technique, which involved training a convolutional neural network (CNN)
designed expressly for facial expression recognition (FER). Studies have been conducted to
evaluate potential connections between these findings and ADAS activations, as well as
event occurrences or accidents. Different algorithms for driver drowsiness detection are
given below in Table 1. Table 2 presents the research gaps in the existing algorithms for
drowsiness detection.

Table 1. Different algorithms for driver drowsiness detection

Paper Algorithms Accuracy Advantages Disadvantages

Li et al. [27] SVM (Support
Vector Machine) 91.92%

Can be integrated with
other driver

assistance systems

Requires training to interpret
EEG data and May be

affected by other factors,
such as stress or fatigue.

Pauly et al. [28]
Histogram of oriented
gradient and Support

Vector Machine
91.6%

This method can detect
drowsiness in real time, so

it can provide early
warning signs to the driver.

The SVM classifier needs to
be trained on a dataset of

images of drowsy and
non-drowsy drivers in order

to be effective.

Flores et al. [29]

Viola–Jones object
detection, Adaboost

algorithm, neural
networks, and Support

Vector Machine

-

This system only requires a
camera to detect

drowsiness, so it is
non-intrusive for the

driver.

This system may be affected
by other factors, such as

driver distraction or fatigue.

B.Manu et al. [30]
Viola–Jones algorithm,

K-means
algorithm, SVM

94.58%
This method is accurate in
detecting drowsiness, even
in challenging conditions.

This method may be affected
by other factors, such as

driver distraction or fatigue,
and environmental factors.
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Table 1. Cont.

Paper Algorithms Accuracy Advantages Disadvantages

Rahman et al. [31]
Viola–Jones algorithm,

Adaboost, Haar
classifier

94%

Eye-blink monitoring has
the potential to reduce the

number of accidents
caused by driver

drowsiness.

Eye-blink monitoring may be
affected by other factors,
such as driver distraction

or fatigue.

Anjali et al. [32]
Viola–Jones object

detection, Haar
cascaded classifier

-

This strategy has the
potential to minimize the

number of accidents
caused by driver tiredness.

The system needs to be
trained on a dataset of

eye-blink data from drowsy
and non-drowsy drivers in

order to be effective.

Coetzer et al. [33]

Artificial neural
networks, Support
Vector Machines,
adaptive boosting

(AdaBoost)

98.1%
Challenging conditions

such as low lighting and
different head poses.

Eye detection may be
affected by environmental

factors such as lighting
and occlusion.

Punitha et al. [34]

Viola–Jones, Face
Cascade of Classifiers,

Support
Vector Machine

93.5%
Eye-state analysis has been

shown to be accurate in
detecting drowsiness

Ambient elements such as
illumination and occlusion

may have an impact on
eye-state analyses.

Table 2. Research gaps in the different algorithms for driver drowsiness detection.

Paper Approach Key Contribution Research Gap

Mungra et al. (2020) [35] CNN-based
emotion recognition

High accuracy in detecting
fear, anger, and

sadness expressions.

Limited investigation on the impact
of different CNN architectures and

data augmentation techniques.

Weng et al. (2022) [36] Multimodal
emotion recognition

Improved accuracy through
the multimodal fusion of

facial expressions and signals.

Lack of focus on temporal analysis
and integration of deep learning

architectures like LSTM.

Lea et al. (2017) [37] Temporal convolutional
networks

Real-time emotion recognition
with accurate fear, anger, and

sadness detection.

Limited exploration of combining
CNN and LSTM for improved

emotion detection.

Li et al. (2019) [38] LSTM-based facial
expression recognition

Consideration of temporal
context for improved

emotion detection.

Absence of spatial analysis and
utilization of U-Net architecture for

accurate facial feature extraction.

Li et al. (2020) [39] Attention mechanism
and CNN

Enhanced discriminative
power through an

attention mechanism.

Insufficient exploration of
combining attention mechanisms

with LSTM.

Anand et al. (2019) [40] U-Net architecture for facial
analysis

Precise facial feature
extraction and localization.

Limited investigation on temporal
dynamics and utilization of LSTM
for improved emotion detection.

Wang et al. (2015) [41] Facial expression
recognition in vehicles

Robust emotion detection
addressing the challenges of
occlusions and partial views.

Lack of exploration of multimodal
fusion and comprehensive temporal

analysis for improved accuracy.

The proposed method’s segmentation algorithm, U-Net [42], is simply a collection
of convolution and ReLU blocks with some max-pooling layers between the first and
second halves, followed by some transpose convolution layers. U-Net is characterized by
its U-shaped architecture, which consists of a contracting path (encoder) followed by an
expanding path (decoder). This unique design enables it to capture both high-level contexts
and fine-grained details in an image. Drowsy face detection often requires analyzing facial
features at multiple scales, as signs of drowsiness can manifest differently in different
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parts of the face. U-Net’s encoder–decoder structure and skip connections enable the
network to extract features at various levels of granularity, allowing it to recognize drowsy
faces with diverse characteristics. U-Net’s ability to handle inputs of varying sizes and
adapt to different lighting conditions, poses, and backgrounds makes it robust to real-
world image variability. Drowsy face detection systems often need to work in diverse
environments, and U-Net’s flexibility can help maintain performance across these settings.
U-Net typically converges quickly during training, which is beneficial for training drowsy
face detection models. Rapid training can save time and computational resources, making
it easier to experiment with different model architectures and training data variations.
U-Net’s efficiency in terms of both training and inference makes it suitable for real-time
applications, such as drowsy driver detection systems. This ensures timely warnings or
interventions when drowsiness is detected. The ability of U-Net to capture subtle facial
cues and contexts can help reduce false positives in drowsy face detection. This ensures
that alarms are triggered only when genuine signs of drowsiness are present, enhancing
the user experience and avoiding unnecessary interruptions. U-Net is a powerful and
versatile architecture for drowsy face detection in image-to-image mapping tasks. Its ability
to capture spatial information, extract multi-scale features, and adapt to varying conditions
contributes to the accuracy and reliability of drowsy face detection systems, making them
valuable for driver safety and other applications where monitoring facial expressions is
critical. Finally, in terms of operation, the transposed convolution multiplies the filter value
by the encoded matrix to produce another padded matrix with a more excellent resolution.
This stage displays the output of the LSTM layer, which can be combined with another
system to create a functional end-to-end system. For example, if a buzzer is linked at the
end and the driver is identified as tired, the buzzer will sound, or in a self-driving car, the
car will safely stop on the side of the road and then do something to wake the user up. D
Gao et al. [43] described federated learning based on Connection Temporal Classification
(CTC) for the heterogeneous IoT. Federated learning involves training machine learning
models across decentralized devices while keeping data on the devices, addressing privacy
and communication challenges. The authors proposed FLCTC, a federated learning system
based on CTC for heterogeneous IoT applications, and tested the system in forest fire
predictions to illustrate its applicability. This integration enhanced the capabilities of both
the IoT and ML, enabling intelligent decision making, automation, and insights from the
the vast amounts of data generated by IoT devices.

Temporal analysis is crucial in various applications, and integrating deep learning
architectures like LSTM (Long Short-Term Memory) can indeed enhance the ability to
model temporal dependencies in data. LSTMs are particularly effective in handling se-
quences and time-series data due to their ability to capture long-range dependencies. The
combination of convolutional neural networks (CNNs) and Long Short-Term Memory
(LSTM) networks is a powerful approach, especially for tasks like emotion detection.
CNNs are excellent at extracting spatial features from data, whereas LSTMs excel at cap-
turing temporal dependencies. In the context of emotion detection, a common approach
is to use CNNs to extract relevant features from input data (such as images or sequences
of frames), and then feed these features into an LSTM for capturing temporal dynamics.
Combining attention mechanisms with LSTM is a fantastic avenue for improving the
performance of models dealing with sequential data. Attention mechanisms enable the
model to focus on specific parts of the input sequence, making it more adaptable and
effective in capturing relevant information. The “DistB-SDCloud” architecture, which
improves cloud security for intelligent IIoT applications, was presented in [44]. In order to
maintain flexibility and scalability while offering security, secrecy, privacy, and integrity,
the suggested architecture employs a distributed BC technique. Clients in the industrial
sector profit from BC’s efficient, decentralized, and distributed environment. The paper
also presented an SDN technique to enhance the cloud infrastructure’s resilience, stability,
and load balancing.
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The authors of [45] proposed a lightweight and robust authentication system for
WMSN, which integrates physically unclonable functions (PUFs) and state-of-the-art
blockchain technology, to address these two major concerns. Furthermore, a fuzzy extractor
approach was presented to handle biometric data. Two security evaluation techniques
were then employed to demonstrate the excellent reliability of the suggested approach.
Lastly, among the compared systems, the suggested mutual authentication protocol re-
quired the lowest computing and communication costs, as demonstrated in performance
evaluation trials.

Zhou et al. [46] presented the domains of two input vehicle images that were trans-
formed into other domains in the network structure using a generative adversarial network
(GAN)-based domain transformer. A four-branch Siamese network was then created to
learn the two distance metrics between the images in the two domains. In order to cal-
culate the ultimate similarity between the two input photos for vehicle Re-ID, the two
distances were finally merged. The outcomes of the experiments indicated that the sug-
gested GAN-Siamese network architecture attained cutting-edge results on four extensive
vehicle datasets: VehicleID, VERI-Wild, VERI-Wild 2.0, and VeRi776. Zhou, Z et al. [47]
identified boundary frames as possible accident frames based on the generated frame
clusters. Next, in order to verify whether these frames were indeed accident frames, the
authors recorded and encoded the spatial relationships of the items identified from these po-
tentially accident frames. Comprehensive tests showed that the suggested method satisfied
the real-time detection requirement in the VANET environment and provided promising
detection efficiency and accuracy for traffic accident detection. Zhou, Z et al. [48] intro-
duced a novel identity-based authentication system. The proposed method demonstrated
secure communication between various components of the green transport system through
the use of lightweight authentication mechanisms. Zhou, Z et al. proposed HAR [46], a
robust subspace-clustering (SOAC-RSC) scheme based on sequential order-aware coding.
Two expressive coding matrices are learned in a sequential order-aware manner from
unconstrained and restricted films, respectively, by feeding the motion properties of video
frames into multi-layer neural networks to generate the appropriate affinity graphs.

Khajehali et al. [49] presented a complete systematic literature review focusing on
client selection difficulties in the context of federated learning. The goal of this SLR was to
support future CS research and development in FL. Deng et al. [50] presented an iterative
optimization approach for EE under conditions involving interference constraints and
minimal feasible rates for secondary users. In the first step, Dinkelbach method-based
fractional programming is used with a given UAV trajectory to determine the appropriate
gearbox power factors. In the second step, the successive convex optimization technique is
used to update the system parameters using the prior power allocation scheme. Finally,
to find the optimal UAV trajectory, reinforcement learning-based optimization is used.
Sarkar et al. [51] suggested that the Industrial Internet of Things (IIoT) has gained impor-
tance at a time when the medical industry’s potential is rapidly rising. To address this, the
authors presented the Intelligent Software-defined Fog Architecture (i-Health). Based on
each patient’s past data patterns, the controller decides whether to transport data to the
fog layer.

The fusion of IoT technology and facial movement analysis has led to the creation of
an innovative solution for enhancing driver safety. By harnessing real-time data acquisition
and advanced machine learning techniques, the IoT-assisted automatic driver drowsiness
detection system has the potential to significantly reduce accidents caused by driver fatigue.
As technology continues to evolve, this system is a testament to the power of interdisci-
plinary collaboration in creating impact solutions that can shape the future of road safety.
Here, our contribution extends to the novel data acquisition methodology by capturing
a range of facial movements and expressions, including eye-closure duration, blinking
patterns, and head orientation. In this way, we are able to acquire real-time data crucial for
accurate drowsiness detection.
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4. Proposed Model

Drowsiness is a big issue while driving; therefore, some drowsiness detection solutions
must be implemented in front of a driver while they are driving a vehicle. So, with the help
of the OpenCV and Dlib libraries, we developed a driver drowsiness detection system that
initiates whether the person’s eyes are closed or open, i.e., the eyes are in an active state
or a passive (lazy) state. Moreover, the main motive is to identify or detect whether the
person is yawning while holding the steering wheel. It becomes essential to implement
such a detection system to reduce accidents caused by fatigue resulting from tiredness or
sleepiness, which is more dangerous at night, with accident cases increasing by more than
50 percent. So, to reduce the number of road accidents, an advanced method of detection
must be able to be implemented in real-world scenarios. The motive of this study is to
control the rate of accidents due to fatigue or driver drowsiness so that no mishaps occur
and, most notably, to enhance safety in terms of traffic rules and regulations whenever
reckless driving takes place due to an unconscious state of mind, i.e., drowsiness. The
proposed detection method follows the physical nature, i.e., eye movement and facial
expression, to identify the drowsy state of the driver with the help of convolutional neural
networks (CNN). The proposed model uses a 15 s video clip as input. The video is sampled
at 1 s intervals, yielding 15 frames. These frames are then passed through a U-Net to
extract the region of interest (ROI), in this case, the driver’s body. Using 1 × 1 Conv layers
significantly reduces the dimension of the output we obtain from the convolution layers,
which plays a significant role in encoding the features extracted from the input frames.

U-Net has been a very successful model when it comes to image-to-image mapping.
Detecting faces is a very intensive task that can be challenging in real-world situations due
to variations in driver posture and environmental factors such as radiance or occlusions.
Using the depth-cascading multitasking framework, we can more easily align and detect
faces, improving internal relations through facial features like the positions and locations of
the right and left eyes, corners of the mouth, and nose. From the architecture of multitask
cascaded convolutional networks, we can understand the comparisons between the P
(Proposal)-, R (Refined)-, and O (Output)-Nets. These three sub-networks detect the face
and feature points. In the P-Net, different-sized image pyramids are assembled in a
sequence as input. A convolutional network determines whether a 12 × 12 face exists
at each position. Then, a boundary box is calibrated with a regression vector to remove
overlapping face regions. Figure 2 represents the architecture of the P-Net, whereas Figure 3
shows a 24 × 24 reshaped R-Net image. Boundary box regression and non-maximum value
suppression shield the face window. A connection layer is added to the network structure
to acquire an accurate face position. The O-Net image is reshaped to 48 × 48 to output the
final position of the face along with the facial feature points. To unify all real-world images
of different sizes, a convolution layer resizes them to 175 × 175, and pooling also acquires a
44 × 44 × 56-sized feature map.

Figure 2. P-Net architecture.
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Figure 3. R-Net architecture.

The convolution layer utilizes a 3 × 3 convolution kernel with a step size of 1, whereas
the pooling layer adopts a 3 × 3 configuration with a step size of 2. A pixel layer is
used to prevent size reduction, which causes a loss of details at the borders. Now, three
pooling layers increase adaptability through 3 × 3 pooling with sizes of 1 × 1, 3 × 3,
and 5 × 5. Another resulting pooling map is a 44 × 44 × 256 feature map. Then, an
11 × 11 × 72 feature map is generated by channeling through three layers of the residual
block. A one-dimensional vector is created from the feature map and linked layer to reduce
the parameters through random inactivation, minimizing overfitting. Using softmax,
we can now define the eyes and mouth as open or closed. Although there is a similar
network for time-series data (GRU), Long Short-Term Memory (LSTM) is better at retaining
information longer, which helps associate specific patterns when embedding the frames
from the video clip. Lastly, the final block is composed of fully connected layers followed
by softmax activation. Figure 4 depicts our proposed U-Net-based architecture.

Figure 4. Proposed U-Net-based architecture.
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The frames from the images are mapped to a segmentation map, as shown in Figure 4,
where the driver’s body is mapped as one entity, and everything else visible in the image
is marked as another entity. Then, the segmentation map is used as a mask to extract the
driver’s body from each frame. U-Net’s name is justified by the shape of its architecture,
which resembles that of an autoencoder.

The first half of U-Net captures the context with a compact feature map. The second
symmetric half is there for precise localization to retain spatial information, compensating
for the downsampling and max-pooling performed in the first stage. The convolution
layers in our model (Conv. Nets) embed the information from the frames to connect the last
LSTM layers to make a meaningful classification. Sometimes, the output from the Conv.
traps becomes vast in the channel dimension, which creates the requirement for relatively
more computation in the later stages. This can be solved by using 1 × 1 Conv. filters. As
shown in Figure 5, the 32 × 32 × 512 output can be combined with a 1 × 1 × 512 filter to
reduce the output dimensions to 33 × 32 × 1. The reduced output from the 1 × 1 convolution
layer is fed into an LSTM layer.

Figure 5. Application of 1 × 1 filters.

The overall effectiveness of the segmentation results directly contributes to the accu-
racy and reliability of the entire driver drowsiness detection system. Regular testing and
evaluation on diverse datasets and under various conditions are essential to ensure that
the segmentation process meets the desired performance standards.

4.1. Dataset and Data Preprocessing

We collected the database developed by I. Nasri et al. from Kaggle. The dataset’s
size was around 5.3 GB, and the total dataset time was approximately 7.3 h. The system
obtained frontal pictures of the driver, corresponding to the preceding 55 s captured at
12 frames per second by a camera mounted on the car. The videos featured a frame rate
ranging from 12 to 27 frames per second with a resolution of 640 × 480. We constructed
the experimental environment consisting of more than 3144 photos. We intended to train
and test across four different scenarios. For open eyes, we trained using 489 images and
tested using 243 images. For closed eyes, we trained using 384 images and tested using
266 images. For open mouths, we trained using 496 images and tested using 320 images.
The feature data in this paper vary significantly in scale. In this work, the dataset was
normalized to remove the impact of the hierarchy between the features. The normalization
procedure aids in increasing computational accuracy, preventing gradient explosion during
network training, and hastening the loss function’s convergence.

4.2. Feature Extraction

Both CNNs and LSTM are well-known deep learning models. A CNN can extract data
features in the spatial dimension through layer-by-layer learning of the local features of the
data using hidden layers. LSTM can extract features in the temporal dimension and retain
contextual historical knowledge over long periods. The activation function, optimization
function, and learning rate of the CNN-LSTM model were set to ReLU, RMSprop, and
0.0001, respectively. The samples were first fed into the CNN in the CNN-LSTM model,
and then two sampling operations and four one-dimensional convolution operations were
performed. The input sample’s tensor was (None, 41, 64), where None stands for the input
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sample’s size. The resulting tensor (None, 10, 128) was fed into the LSTM following the
CNN process. The number of output features was adjusted by altering the number of nodes
in the first dense layer, which served as the middle layer for extracting features. Finally,
the last fully connected dense layer produced the tensor (None, (5–40)). By modifying the
epoch value, learning rate, and number of nodes in the dense layer during model training,
the ideal model parameters were determined.

4.3. Detection of Drowsiness State

Monitoring the PERCLOS can be part of a system for detecting when a driver may
be becoming drowsy, which is crucial for preventing accidents on the road. Drowsiness
detection is a complex task, and combining multiple indicators often leads to more accurate
results. The PERCLOS, when used in conjunction with other measures, contributes to a
more comprehensive and reliable drowsiness detection system. The human body reflects
its states automatically. EM-CNN uses these kinds of human physiological reactions to
evaluate the PERCLOS and POM. The equation of the PERCLOS, using a percentage, is
given below in Equation (1) [52].

PERCLOS = (
N

∑
i

fi/N f )× 100% (1)

N
∑
i

fi represents the frames of a closed eye per unit of time. N f is the total number of

frames per unit, and fi represents the frame of the closed eye. To calculate the threshold
of drowsiness, a collection of 13 video frames was used to test and evaluate the value of
the perceptron learning rule with output scaling (PERCLOS). According to Equation (2), a
value of 0.25 or greater means that the eye is in a closed state for a continuous period, which
indicates drowsiness. The neural network is trained based on the drowsiness thresholds
of the PERCLOS and POM [12]. Recurrent Input Output (RIO) refers to a neural network
architecture or a specific type of layer that utilizes recurrent connections. The PERCLOS,
in the context of neural networks, is not a commonly used acronym. However, it refers
to a neural network architecture or algorithm that combines the perceptron learning rule
with output scaling. The perceptron learning rule is a fundamental concept in neural
networks, and output scaling refers to adjusting the output of neural network layers to
match a desired range or format. The POM, in the context of neural networks, is the
“Probabilistic Output Model”. This refers to a type of neural network or model designed to
provide probabilistic predictions or estimates as outputs. For example, probabilistic neural
networks or certain types of Bayesian neural networks can produce probabilistic outputs,
which are valuable in tasks like uncertainty estimation or probabilistic classification. MT-
CNN extracts the facial features along with the feature points, which helps obtain the
ROI of the eyes and mouth. Then, EM-CNN evaluates the states of the eyes and mouth.
By observing the uninterrupted image frames, the degrees of eye and mouth closure are
calculated when a threshold is matched or exceeded. The segmentation algorithm used in
the proposed method (U-Net, [13]), is essentially a series of convolution and ReLU blocks
with some max-pooling layers between the first and second half of the convolution and
ReLU blocks, followed by some transpose convolution layers. The two halves are also
connected with multiple skip connections between them. The convolution, ReLU, and
max-pooling layers are also used in the primary model, specifically in the CNN part of the
CNN-LSTM architecture [53]. The convolution operation is described by Equation (2) [53].

∑ ∑ I(ip + p, j + r).Kr(p, r) (2)
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Here, I is the input matrix, and K is the 2D kernel with a size of p × r. In Equation (3),
the convolution blocks also use the ReLU activation function to add non-linearity to the
output. The operation of the ReLU can be described as f being a function of x.

f (x) = maximum(0, x) (3)

Max-pooling is the most commonly used method among all the pooling layers. It
reduces the number of parameters by sampling the maximum activation value from a patch
of the image or the matrix. Max-pooling can be described by Equation (4),

Pi,j = maximum( f (x) : x = Ai+m,j+n ) (4)

where A is the activation output from the ReLU, and P is the output from the max-pooling
layer. The U-Net also uses the transposed convolution operation, which is similar to max-
pooling but upsamples the encoding instead. In Equation (5), transposed convolution
processes an image with a size of i × i using a kernel with a size of k × k and outputs an
upsampled matrix with dimensions given by the following formula:

(i − 1)× s − (2 × p) + (k − 1) + 1 (5)

where s is the stride of the padding. The operation of the transposed convolution involves
multiplying the value of the filter with the encoded matrix to obtain another padded and
higher-resolution matrix. This stage presents the output from the LSTM layer, which can
be used with another system to create an end-to-end helpful system. For instance, a buzzer
may be connected at the end, which is triggered when a driver is detected as drowsy, or in
the case of a self-driving car, it could safely park on the side of the road and take measures
to wake the driver up. Figure 6 presents the architecture of the CNN-LSTM model.

Figure 6. CNN-LSTM architecture.
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The CNN-LSTM model uses LSTM layers to fuse information from past time steps.
For retaining data activation effects for much longer in the recursion, LSTM layers have
proven to be more effective compared to GRU layers. The main reason for this difference is
that LSTM uses three gates to update the memory cell. One is the update gate, also present
in GRU, and the others are the forget and output gates. More formally, the three gates can
be described by the following equation [54]:

τupdate = σ(Wu[at−1, xt] + bu) (6)

In the above equation and subsequent equations, at−1 denotes the activation from the
previous time step, and xt denotes the input in the current time step. Wu and bu represent
the parameter matrix and the bias, respectively, and τupdate is the value of the update
gate. Then,

τf orget = σ(W f [at−1, xt] + b f ) (7)

where W f and b f are the parameter matrix and the bias, respectively, and Γ f orget is the value
of the update gate.

τoutput = σ(Wo[at−1, xt] + bo) (8)

In (8), Wo and bo are the parameter matrix and the bias, respectively, and Γoutput is the
value of the update gate.

The memory cell of the LSTM is calculated using the following equation:

c<t> = τupdate ∗ c1<t> + τf orget ∗ c<t−1> (9)

where c<t> and c<t−1> are the values of the memory cell. c1t is the candidate for the mem-
ory cell that is supposed to replace the current one. Here, ∗ means vector multiplication.
The value for c1t can be written in terms of the following equation:

c1<t> = tanh(Wc[at−1, xt] + bc) (10)

In Equation (11), finally, the current activation is calculated by combining the output
gate and c<t>. Here, ∗ means vector multiplication.

a<t> = τupdate ∗ c<t> (11)

Detecting drowsiness in drivers is a challenging task that demands a sophisticated
approach. One promising solution is the fusion of CNN and LSTM networks, two powerful
deep learning architectures. This fusion capitalizes on the strengths of both CNNs, known
for their image analysis prowess, and LSTMs, renowned for modeling sequential patterns.
The CNN-LSTM architecture holds the potential to revolutionize drowsiness detection
systems, making roads safer and saving lives. By analyzing real-time video streams of
a driver’s face, this hybrid model can not only capture intricate facial features but also
track temporal patterns in driver behavior. This innovative approach has the capability to
accurately determine when a driver is becoming drowsy, thus enabling timely interventions
and preventive measures.

In this system, CNNs are employed as the first line of defense, extracting meaningful
features from images of a driver’s face. These features are then passed to the LSTM network,
which specializes in understanding the sequence of these features over time. By learning
from historical patterns, the LSTM can distinguish between normal behavior and signs of
drowsiness, such as drooping eyelids, yawning, or erratic facial movements. The strength
of this combined architecture lies in its ability to consider not only the current frame but
also the context provided by preceding frames. This context-aware capability allows the
model to identify subtle changes that might escape a single-frame analysis. As a result, the
CNN-LSTM model can adapt to the dynamic nature of drowsiness, which often manifests
gradually rather than abruptly. Through rigorous training on diverse datasets encompass-
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ing various lighting conditions, driver characteristics, and scenarios, the CNN-LSTM model
refines its ability to accurately recognize drowsiness. The model’s high accuracy, sensitivity,
and specificity make it an indispensable tool for modern driver assistance systems. Its
potential applications extend beyond drowsiness detection—it can be integrated into smart
vehicles, fleet management systems, and transportation infrastructures, contributing to a
safer and more secure transportation ecosystem. The steps of the proposed algorithm are
as follows:

Step 1: Preprocess the image (M) datasets.
Step 2: Combine the images with the inputs from the trained models.
Step 3: Retrieve the results of the final convolution layer of the model that was provided.
Step 4: Flatten the n dimensions, decreasing their number to n − 1.
Step 5: Apply the different layers of CNN-LSTM.

Padding (Conv2d): The formula below is used to determine the padding width, where
pd stands for padding, and f d stands for the filter dimension, f d ∈ Odd,

pd =
f d − 1

2
(12)

Forward propagation: This is separated into two phases. After computing the in-
termediate value K that is produced through the convolution of the input data from the
preceding layer with the M tensor, it then adds bias b and applies a nonlinear activation
function on the intermediate values:

Kl = Ml · AFl + bi, AFl = gl(kl) (13)

Max-pooling: The output matrix’s proportions can be calculated using (14) while accounting
for padding and stride:

noutput =
noutput + 2pd − f t

s
+ 1 (14)

The cost function’s partial derivative is expressed as

∂AFl =
∂l

∂AFl , ∂Kl =
∂l

∂Kl , ∂Ml =
∂l

∂Ml , ∂bl =
∂l
∂bl (15)

After applying the chain rule in (15),

∂Kl = ∂AFl × g(Kl) (16)

The sigmoid activation function, linear transformation, and leaky ReLU are expressed
as follows:

f (r) =
1

1 + e−r
, K = Mt · R + b, f (r) = (0.01 × r, r) (17)

It returns r if the input is positive and 0.01 times r if the input is negative. As a result,
it also produces an output for negative values. This minor modification causes the gradient
on the graph’s left side to become nonzero.

Applying the softmax function: A neural network typically does not create one final
figure. To represent the likelihood of each class, these numbers must be reduced to integers
from zero to one.
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σ(m)j =
em j

∑
p
p−1 em j

f orj = 1..p (18)

Applying the CNN-LSTM: LSTM is used after the CNN has been applied, i.e., CNN-LSTM:

inputt = σ(wi[ht−1, rt] + bi)

f orgetgatet = σ(w f unction[ht−1, rt] + b f orgetgate)

outputt = σ(woutput[ht−1, rt] + boutput)

(19)

where xt is the input at the current timestamp, and ht−1 is the previous LSTM block. σ
represents the sigmoid function. f orgetgatet is the forget gate. b is the bias for the respective
gates. ct is the cell state at timestamp (t). c̃t represents a candidate for the cell state at
timestamp (t):

c̃t = tanh tanh(wc[ht−1, rt] + bc),

ct = ft ∗ ct−1 + it ∗ c̃t, ht = ot ∗ tanh tanh(ct)
(20)

In the context of driver drowsiness, this hybrid CNN-LSTM architecture represents a
formidable tool. By analyzing real-time video feeds of a driver’s face, the CNN component
is capable of discerning crucial facial features, such as eye movement, blink rate, and facial
expressions. These features, extracted through the convolutional layers of the CNN, serve
as a rich foundation of visual cues. Figure 7 presents the architecture of the proposed model.
However, what sets this architecture apart is its LSTM component. This network structure
possesses the ability to understand sequences and patterns within the extracted features.
In the realm of drowsiness detection, this implies that the system can not only assess the
current state of the driver’s face but also track how that state evolves over time. Subtle
cues that might signify drowsiness, such as prolonged eye closure or micro-expressions,
can be identified by the LSTM as part of a sequence, enabling more accurate and reliable
detection. The predictive power of the CNN-LSTM architecture extends beyond mere
real-time analysis. By leveraging the LSTM’s memory capabilities, the model can recognize
trends and tendencies that indicate an increasing likelihood of drowsiness. This forward-
looking approach allows for timely intervention, such as alerts to the driver or automated
adjustments to vehicle settings, preventing potential accidents before they occur.

A CNN-LSTM network is a popular architecture used in deep learning for tasks that
involve both spatial and temporal data, such as video analysis or sequential image data.
The input data for a CNN-LSTM network typically consist of a sequence of images or
tensors, where each element in the sequence represents a frame in a video or a timestamp in
a time series. The input data are first passed through a CNN to extract spatial features. The
CNN layers consist of convolutional layers followed by pooling layers, which help capture
important spatial patterns in the data. These layers are responsible for feature extraction
from individual frames. After the CNN layers, the features can either be flattened into a
1D vector or global average pooling can be used to reduce the spatial dimensions. This
step depends on the specific problem and the architecture used. The output of the CNN is
then fed into an LSTM network, which is responsible for capturing temporal dependencies
and patterns across the sequence of frames. The LSTM network consists of multiple LSTM
layers. Each LSTM cell maintains an internal state that can capture information from
previous time steps. This internal state helps model long-term dependencies in the data.
The LSTM layers process the sequence of features generated by the CNN, one time step
at a time, and update their internal states accordingly. The final LSTM layer is often
connected to one or more fully connected (dense) layers, which can be used for making
predictions or classifications. The output layer’s architecture depends on the specific task.
For example, video classification might consist of a softmax layer for class probabilities. In
our approach, the MSE (mean-squared error) function was utilized as the loss function. To
update the settings of each network layer, the common Adam optimization technique was
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employed as the optimizer. The dropout layer we used contributed to the model’s enhanced
generalizability, decreased the training time, and prevented overfitting. In our research,
the constructed model’s prediction performance was compared with that of the EM-CNN,
VGG-16. GoogLeNet, AlexNet, and ResNet50 models in order to confirm the model’s
efficacy. These methods were chosen for comparison because of their specific characteristics.
EM-CNN is a semi-supervised learning algorithm that uses only weakly annotated data
and performs very efficiently in face detection. VGG-16 is a 16-layer deep neural network,
a relatively extensive network with a total of 138 million parameters, that can achieve a
test accuracy of 92.7% on ImageNet, a dataset containing more than 14 million training
images across 1000 object classes. GoogLeNet is a type of CNN based on the Inception
architecture. It utilizes Inception modules, which allow the network to choose between
multiple convolutional filter sizes in each block. AlexNet uses an 8-layer CNN, showing,
for the first time, that the features obtained through learning can transcend manually
designed features, thereby breaking the previous paradigm in computer vision. ResNet-50
is a 50-layer CNN (48 convolutional layers, 1 max-pooling layer, and 1 average-pooling
layer) that forms networks by stacking residual blocks.

Figure 7. Proposed model architecture.

5. Experimental Results

We aimed to identify drowsiness and awaken users to prevent accidents by producing
an alarm sound and app notification. The proposed approach yielded results that were
greater than 98% in terms of accuracy. For this project, we needed real-world images of
drivers while driving. This real-world environment helps in building the architecture,
resulting in an accurate model. Figure 8 represents the training and validation accuracy of
the training dataset.

Last but not least, the mouth in the closed state was represented by 640 images for
training and 475 for testing. Some sample images depicting routine and drowsy states in
both daylight and nighttime are shown in Figures 9 and 10.
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Figure 8. Training and validation accuracy.

Figure 9. Sample normal and drowsy states (daylight).
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Figure 10. Sample normal and drowsy states (nighttime).

5.1. Implementation Process and Results Discussion

Emotion-CNN (EM-CNN) represents a cutting-edge approach to emotion recognition,
leveraging the power of convolutional neural networks (CNNs) to decode and understand
the nuanced expressions of human emotions within visual data. In a world where artificial
intelligence continues to bridge the gap between human experiences and computational
capabilities, EM-CNN has emerged as a specialized architecture designed to decipher the
complex language of emotions embedded in images and videos. The VGG-16 architecture
has emerged as a pivotal milestone in the evolution of convolutional neural networks
(CNNs) for image classification and computer vision. Conceived by the Visual Geometry
Group at the University of Oxford, VGG-16, which stands for Visual Geometry Group with
16 layers, represents a breakthrough in the pursuit of deep learning excellence. VGG-16
contains 16 weight layers, including 13 convolutional layers and 3 fully connected layers. It
is known for its simplicity, having small 3 × 3 convolutional filters and a deep architecture,
which aids in feature learning.
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In the dynamic landscape of deep learning, GoogLeNet, or Inception v1, represents a
groundbreaking convolutional neural network architecture developed by researchers at
Google. Introduced in 2014, it was designed to address challenges associated with compu-
tational efficiency, parameter reduction, and the ability to capture diverse features across
multiple scales. GoogLeNet is deeper than VGG-16 but uses a more efficient architecture
with 1 × 1 convolutions for dimension reduction and parallel filter operations. This reduces
the number of parameters and computational cost. AlexNet is a deep convolutional neural
network (CNN) featuring eight layers. The architecture’s depth was a departure from
previous shallower networks, allowing it to learn intricate hierarchical features from raw
image data. AlexNet consists of five convolutional layers followed by max-pooling layers
and three fully connected layers. It helped establish the effectiveness of deep learning in
computer vision tasks. ResNet50, a variant of the ResNet (Residual Network) architecture,
stands as a monumental advancement in deep neural networks, particularly in address-
ing the challenges associated with training very deep networks. The defining feature
of ResNet50 lies in its introduction of residual learning. In traditional deep networks,
the optimization process can be hindered by the vanishing gradient problem, making it
challenging for information to flow through the network. Residual learning addresses this
by introducing shortcut connections, or skip connections, allowing the network to learn
residual functions. ResNet50’s skip connections mitigate the vanishing gradient problem,
allowing the training of very deep networks. This architecture is widely used in image
classification and other computer vision tasks.

CNN-LSTM, a hybrid neural network architecture, represents a sophisticated inte-
gration of convolutional neural networks (CNNs) and Long Short-Term Memory (LSTM)
networks. This fusion is designed to harness the strengths of both convolutional and
recurrent architectures, making it particularly well suited for tasks that involve both spatial
and temporal dependencies. In many real-world applications, data are not only spatially
rich but also exhibit temporal dependencies. For instance, in video analysis, understanding
the content requires capturing both the spatial features (such as objects and patterns within
frames) and temporal dynamics. CNN-LSTM has emerged as a solution to address this
dual challenge. The CNN part is used for spatial feature extraction, capturing patterns
in different spatial regions, whereas the LSTM part handles temporal dependencies by
processing sequences of features. One thing that is easy to identify is that when a person
is driving and maintaining an average amplitude, there is less variation in the mouth
state. But on the other hand, it is harder to define an eye-blinking state, as machine vision
calculates the closure state. To simplify this process, a detailed flowchart is provided to
help clarify the idea. By applying Erosion and Expansion binaries, the ROI is smoothed,
which helps define the state of the eye. Black pixels allow for representing the binocular
image area. The count of black pixels is also essential. The threshold value was set to 0.15,
which defines the eye-closure state. A value exceeding 0.15 is considered an eye in an open
state. A batch size of 32 was used for our training. Selecting the number of epochs and the
batch size for drowsiness detection using a neural network involves considering various
factors related to the dataset, model architecture, and computational resources. Drowsiness
detection often involves intricate patterns and temporal dependencies. The number of
epochs should be sufficient to allow the model to learn and capture these complex patterns
in the data. We experimented with different epoch values and observed the model’s behav-
ior on both the training and validation sets. Drowsiness detection often involves analyzing
sequences of data over time, such as video frames or time-series data from sensors. Smaller
batch sizes might allow the model to capture temporal dependencies more effectively.
If the drowsiness detection system is intended for real-time applications, the batch size
must balance model accuracy and inference speed. Smaller batch sizes can lead to faster
predictions, which is crucial in real-time scenarios. The selection of the number of epochs
and the batch size for drowsiness detection involves a balance between capturing temporal
dependencies, computational efficiency, and preventing overfitting. Experimentation and
close monitoring of model performance are essential for making informed decisions. It
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takes special consideration to implement a neural network on hardware. Both training and
testing can be carried out with a large amount of RAM and a powerful processor. During
our training, we trained our model with 100 epochs. The number of epochs and the batch
size were chosen empirically, as shown in Figure 8, as the best trade-off between the accu-
racy level and the computational complexity required by the investigated algorithm. The
system configuration comprised a computer with six-core processors, 16 GB of RAM, and
an Nvidia GTX 1650Ti GPU running on a 64-bit Windows 10 system. This processing power
was adequate for the operation of our application. The suggested approach used Google’s
“Colab Pro Plus version” as the execution platform. Conversely, MT-CNN, EM-CNN, and
CNN-LSTM were implemented using Python 3.10 and Keras 2.4.0, with Tensorflow 2.70 as
the environment.

We can see that the training accuracy values achieved by EM-CNN, VGG-16, GoogLeNet,
AlexNet, ResNet50, and our proposed model were 86.54%, 92.46%, 66.19%, 46.12%, 56.09%,
and 98.70% and the testing accuracy values achieved were 89.54%, 92.4%, 66.19%, 48.50%,
56.09%, and 98.80%. Table 3 presents the training accuracy and testing accuracy values of
the different networks.

Table 3. Experimental training and testing results.

Network Training Accuracy (%) Testing Accuracy (%)

EM-CNN 86.54 86.54
VGG-16 92.46 92.46

GoogLeNet 66.19 66.19
AlexNet 46.12 48.5

ResNet50 56.09 56.09
Proposed Model

(CNN-LSTM) 98.7 98.8

Table 4 presents the precision, recall, F1 score, and accuracy values of GoogLeNet,
ResNet50, AlexNet, VGG-16, EM-CNN, and CNN-LSTM. CNN-LSTM yielded better results
compared to the other learning algorithms. TensorFlow was then used to translate the 10.5 h
of video data in the dataset into frames. The research employed various metrics to evaluate
how well deep learning models could detect driver sleepiness. These metrics encompassed
accuracy, loss, precision, recall, and F1 score. To elucidate a model’s performance, a
confusion matrix is frequently used, as depicted in Figure 11. This matrix serves as
a table to gauge the accuracy of a deep learning model across different dataset types
using a test dataset. In the pursuit of training robust and accurate models for drowsiness
detection, the optimization of loss functions serves as a crucial compass, guiding the neural
network toward learning the intricate patterns indicative of drowsiness. The selection of
an appropriate loss function is akin to fine-tuning the model’s compass, aligning it with the
landscape of the drowsiness detection task. Here, we explore the essence of this journey,
understanding the key considerations and pathways in loss function optimization. In
the grand expedition of drowsiness detection, the optimization of loss functions becomes
a precision compass, guiding the neural network through the diverse and challenging
terrains of imbalanced data, temporal dependencies, and nuanced pattern recognition.
With each epoch, the model refines its navigation skills, inching closer to the destination of
heightened accuracy and vigilance in drowsiness detection. The loss function defines the
objective that the model aims to minimize during training. The experiment’s loss function
is categorical cross-entropy, which is expressed as:

loss = −
N

∑
i=1

xa,b Inpa, b (21)

where N is the number of classes; x is a binary indication indicating whether or not c
is the accurate prediction for observation a; and p is the anticipated probability that the
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observation belongs to class b. Each deep learning model completes roughly 35 epochs
throughout the fitting process, with a batch size of 32.

Table 4. Results of deep learning models in terms of precision, recall, F1 score, and accuracy

Network Precision Recall F1 Score Accuracy (%)

EM-CNN [55] 0.721 0.685 0.602 96.62
VGG-16 [56] 0.113 0.218 0.117 82.98

GoogLeNet [19] 0.708 0.611 0.594 94.01
AlexNet [57] 0.461 0.485 0.312 91.48

ResNet50 [58] 0.677 0.536 0.514 93.85
Proposed Model

(CNN-LSTM) 0.819 0.652 0.732 98.46

Figure 11. Confusion matrix.

The confusion matrix for driver drowsiness detection using a CNN-LSTM model is a
table that shows the performance of the model in terms of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). It helps evaluate the accuracy of the
model in classifying instances of driver drowsiness.

A true positive (TP) correctly predicts a drowsy driver. A true negative (TN) correctly
predicts a non-drowsy driver. A false positive (FP) incorrectly predicts a driver as drowsy
when they are not. A false negative (FN) incorrectly predicts a non-drowsy driver as
drowsy. In Equation (22), precision measures the accuracy of positive predictions. It is the
ratio of true positives to the total number of instances predicted as positive.

Precision =
TP

TP + FP
(22)

In Equation (23), recall represents the ability of the model to capture all relevant instances.
It is the ratio of true positives to the total number of actual positive instances.

Recall =
TP

TP + FN
(23)

In Equation (24), the F1 score represents the harmonic mean of precision and recall. It
provides a balanced measure that considers both false positives and false negatives. It is
particularly useful when there is an imbalance between classes.
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F1 Score =
2 × Precision × Recall

Precision + Recall
(24)

In Equation (25), accuracy represents the overall correctness of a model. It is the ratio of
correctly predicted instances (both true positives and true negatives) to the total number
of instances.

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

Accuracy is the percentage of samples correctly categorized by the classifier among all
samples within a given test dataset, or the test dataset’s accuracy when the loss function is
0–1. The loss function is used to gauge how well a model predicts, and the lower it is, the
better. The class in question is typically regarded as the positive class, whereas other classes
are regarded as the negative class. Sensitivity measures the ability of a classification model
to correctly identify true positive instances among all actual positive instances. Specificity
gauges the ability of a classification model to correctly identify true negative instances
among all actual negative instances.

Sensitivity =
TP

TP + FN
= Recall (26)

Specificity (%) =
TN

TN + FP
(27)

When we compare a model with others, we can appreciate its efficiency. We compared our
CNN-LSTM models with other methods like GoogLeNet, ResNet50, AlexNet, VGG-16, and
EM-CNN. After comparing the entire procedure, the EM-CNN model proved its efficiency
by outperforming the other models with 97.46% accuracy, 97.67% sensitivity, and 78.21%
specificity. We can see the specificity (%) of all techniques in Figure 12.

Figure 12. Specificity (%) of the different deep learning models

Figure 13 depicts the loss values of a single scenario after numerous training steps
(epochs) with learning rates of 1 × 10−4 and 1 × 10−5. The loss value is shown on the
y-axis, and the epochs are represented on the x-axis. The accuracy steadily improved as
the time lengthened and the loss value dropped. We finished training and continued to
the testing phase when the epochs approached 35. The loss values of the different deep
learning models are presented in Table 4.

After thorough testing and comparison, we can conclude that CNN-LSTM is more
accurate and sensitive to the state of the mouth compared to the state of the eyes. Also, the
mouth displays more precise indications for drowsiness, which is a good sign. In [59], the
AUC for CNN-LSTM classifications was as follows. Using a temporal correction system
enables the detection of eye-blink frequency from video frames. In this system, when an eye
is open it is represented by 1, and when closed, it is represented by 0, creating a sequence
of 1s and 0s for blinking frequency. Now, it is time to apply the threshold trigger, as we
cannot rely solely on the current results.
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Figure 13. Loss value.

For this project, the threshold values of the PERCLOS as POM must be extracted. For
frame-by-frame recognition, we extracted images from 15 video frame sequences. The
accuracy in terms of the AUC achieved by the CNN-LSTM model in classifying different
states, such as eye open, eye closed, mouth closed, and mouth open, is presented in Table 5.
Table 5 presents the accuracy and AUC of the CNN-LSTM model on different datasets.
AlexNet models were utilized for comparison. The model size of the proposed CNN-LSTM
was 21.77 MB, making it 25% smaller compared to the EM-CNN and other algorithms.
Compared to previous approaches, the proposed CNN-LSTM model is significantly smaller,
simpler, and requires less storage.

Table 5. Accuracy (%) and AUC (%) of the proposed CNN-LSTM model in classifying various states
on different datasets.

Dataset
(Images) Accuracy Eye Closed Eye Open Mouth

Closed Mouth Open

5 98.32 99.22 99.11 99.65 99.34
15 97.34 95.72 94.28 96.95 99.56
35 98.43 97.32 99.21 99.35 99.34
65 98.12 97.37 94.29 96.95 98.94
95 98.33 98.32 99.29 99.45 99.24

115 98.44 94.89 96.91 97.69 92.38
135 98.34 98.32 99.21 99.45 99.34
165 98.22 98.61 96.67 98.91 98.76
195 98.22 97.39 94.73 96.74 96.14
235 97.11 98.32 99.24 99.45 99.24
265 97.18 94.89 96.56 97.69 92.38
285 97.22 98.32 99.67 99.45 99.34
345 97.26 98.62 99.21 99.68 99.14
365 98.43 98.32 99.21 99.45 99.34
385 98.12 98.61 96.67 98.91 98.76
400 98.33 97.39 94.73 96.74 96.14
415 97.35 97.31 94.35 96.47 98.34
425 98.11 98.32 99.21 99.45 99.34
445 97.35 98.32 99.20 99.45 99.34
455 98.43 98.34 99.27 99.45 99.35
465 98.12 98.34 99.21 99.56 99.39

Table 6 shows the overall speed, drowsiness detection time, and compression of
different deep learning models for driver drowsiness. This study focused on estimating
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driver tiredness using videos recorded while the driver was on the road. We tested the
proposed prediction models on an established dataset.

Table 6. The overall speed, drowsiness detection time, and compression of different deep learn-
ing models.

Parameters Workstation
Environment EM-CNN VGG-16 GoogLe-Net Alex-Net ResNet-50 Proposed

CNN-LSTM

Compression
(MB)

Lenovo
workstation 33.6 2134 1265 1998 984 21.77

Drowsiness
detection time

(seconds)

Lenovo
workstation 66.7 88.34 96.65 56.87 89.90 26.88

Overall speed
(fps)

Lenovo
workstation 12.4 12.1 14.67 28 15.67 11.6

Table 6 shows that the model’s accuracy under these circumstances was highly accurate.
The videos with “No Glasses”, which depict ideal road conditions, were the most accurate.
Sunglasses blocked the driver’s vision and lowered the quality of the characteristics the
model could detect; hence, the classification accuracy was the lowest. There are other
features, such as the shape of the lips, the axis of the head, and so on, in addition to the eyes
that can be considered. Analytical analysis of the main characteristics that the CNN and
LSTM models automatically transform into dynamic actions allows for a conclusion. All of
the evaluation parameters were significantly improved using the proposed CNN-LSTM
model. Therefore, the overall performance enhancements resulting from fusing the CNN
model with LSTM encourage its implementation in real-time applications. The proposed
method achieved an accuracy of 98.46%. The optimization objectives for the loss functions
in “Driver Drowsiness using CNN-LSTM and U-Net” involve setting up appropriate loss
functions for binary classification (CNN-LSTM) and pixel-wise semantic segmentation
(U-Net) and possibly combining these losses in a balanced manner when integrating the
two models. The effective choice and tuning of these loss functions are critical for training
a model that can accurately detect driver drowsiness based on visual cues. When working
on the task of driver drowsiness detection using a combination of CNN-LSTM and U-Net,
setting the appropriate loss functions is a crucial step in optimizing the neural network
models. Loss functions quantify the error between the predicted outputs and ground-
truth labels, and their choice impacts the training and performance of the models. This
paper’s contribution extends to the novel data acquisition methodology it employs. By
capturing a range of facial movements and expressions, including eye closure duration,
blinking patterns, and head orientation, the system acquires real-time data that are crucial
for accurate drowsiness detection.

5.2. Limitations and Constraints

Binarization does not function well for those with dark skin. Binarization methods
often rely on contrast between foreground and background. Darker skin tones may have
lower contrast under certain lighting conditions, making it challenging for standard bina-
rization techniques to accurately separate features. Traditional binarization methods may
not be sensitive to color variations in different skin tones. Grayscale-based methods may
not capture the diversity of skin colors effectively. If the binarization model is trained on a
dataset that lacks diversity in skin tones, it may not generalize well to individuals with dark
skin. Addressing the issue of binarization not functioning well for individuals with dark
skin requires a holistic approach involving technical improvements, data diversity, ethical
considerations, and community engagement. It is essential to strive for fairness, inclusivity,
and accuracy in image processing algorithms to avoid perpetuating biases and limitations.
There cannot be any reflective materials behind the driver, which is another restriction. The
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system becomes more reliable as the background becomes more homogeneous. A black
sheet was placed behind the test participant to solve this issue for testing purposes. Rapid
head movement was not permitted throughout testing. This can be compared to emulating
a weary driver, which was acceptable in this context. Head motions were rarely missed
by the system. The videos that included “No Glasses”, which depicted perfect driving
circumstances, were the most accurate. The classification accuracy was the lowest with
sunglasses on, which blocked the driver’s eyesight and reduced the quality of the traits
the model could identify. In addition to the eyes, there are additional characteristics that
could be considered, such as the form of the lips and the axis of the head. So, by analyzing
the significant properties that the CNN and LSTM models automatically convert into dy-
namic actions, conclusions can be drawn. This is obvious since the system’s algorithm is
fundamentally dependent on binarization.

Anomaly detection techniques could be implemented to identify instances where the
model might struggle due to unusual conditions, such as extremely low light. Different
hyperparameter settings could be experimented with to optimize performance, including
the learning rate, batch size, and model architecture. Furthermore, we must ensure that our
model can handle challenging situations like glare, reflections, or unusual headlight shapes
in real scenes.

CNN-LSTM with U-Net is designed to analyze both the spatial and temporal aspects
of sequential data, as well as perform image segmentation tasks, whereas sequential order
aware coding based robust subspace clustering focuses on clustering and coding techniques
for human action recognition in untrimmed videos; GAN siamese network for cross domain
vehicle re identification focuses on domain adaptation and similarity learning for vehicle
recognition in intelligent transport systems; and Spatio temporal feature encoding for
traffic accident detection in VANET environment focuses on encoding and analyzing spatio-
temporal patterns for traffic accident detection in vehicular communication networks. The
proposed work relates to neural network architectures and their applications in computer
vision and deep learning, whereas ann efficient and secure identity based signature system
for underwater green transport system pertains to cryptography and secure communication
within the context of underwater transportation systems. These concepts are distinct in
terms of their nature, purpose, and application domains.

6. Conclusions

Current advancements in road safety measures have been considerably propelled
by the integration of Internet of Things (IoT) technology with facial movement analysis
for the purpose of autonomous driver sleepiness detection. Recently, the discipline of
deep learning has resolved many key issues. This study discusses a methodology for the
detection of driver drowsiness through the utilization of real-time monitoring. In order to
detect driver tiredness, the present study has devised a deep learning model utilizing a
CNN–Long Short-Term Memory architecture. Various methods, including EM-CNN, VGG-
16, GoogLeNet, AlexNet, and ResNet50, were utilized for comparison, and it is evident
that the CNN-LSTM approach demonstrates superior performance compared to the other
deep learning techniques. More testing will be required to produce accurate results on
its performance with the portability feature, enabling further use with hardware supplies.
In the near future, it will be advantageous to mitigate the potential hazards associated
with accidents resulting from driver drowsiness. Regarding future research, our model
could potentially benefit from the incorporation of an attention module. Improving the
model’s performance in drowsiness detection would involve a combination of optimizing
the model architecture, fine-tuning hyperparameters, addressing data-related challenges,
and incorporating advanced techniques. Attention modules play an important role in
the human vision perceptron; they can allocate available resources to selectively focus on
processing the salient part instead of the whole scene, capturing long-range feature interac-
tions, and boosting the representation capability for the CNN. This addition would enhance
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the model’s performance by allowing it to consider more nuanced features throughout the
categorization process.
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