01010

01010

Y] information

Article

SUCCEED: Sharing Upcycling Cases with Context and
Evaluation for Efficient Software Development *

Takuya Nakata L*@®, Sinan Chen 2(2, Sachio Saiki ® and Masahide Nakamura 2*

check for
updates

Citation: Nakata, T.; Chen, S.; Saiki,
S.; Nakamura, M. SUCCEED: Sharing
Upcycling Cases with Context and
Evaluation for Efficient Software
Development. Information 2023, 14,
518. https://doi.org/10.3390/
info14090518

Academic Editors: Sanjay Misra,
Robertas Damasevicius and

Bharti Suri

Received: 9 August 2023
Revised: 19 September 2023
Accepted: 20 September 2023
Published: 21 September 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan

2 The Center of Mathematical and Data Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku,

Kobe 657-8501, Japan; chensinan@gold.kobe-u.ac.jp (S.C.); masa-n@cmds.kobe-u.ac.jp (M.N.)

Department of Data & Innovation, Kochi University of Technology, 185 Miyanokuchi, Tosayamada-cho,
Kami 782-8502, Japan; saiki.sachio@kochi-tech.ac.jp

4 RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan

* Correspondence: tnakata@es4.eedept.kobe-u.ac.jp; Tel.: +81-78-803-6295

This paper is an extended version of our paper published in Takuya, N.; Sinan, C.; Sachio, S.; Masahide, N.
A Study of Case Sharing System for Efficient and Innovative Software Upcycling. In Proceedings of the
ICoDSE 2022, Denpasar, Indonesia, 2-3 November 2022.

Abstract: Software upcycling, a form of software reuse, is a concept that efficiently generates novel,
innovative, and value-added development projects by utilizing knowledge extracted from past
projects. However, how to integrate the materials derived from these projects for upcycling remains
uncertain. This study defines a systematic model for upcycling cases and develops the Sharing
Upcycling Cases with Context and Evaluation for Efficient Software Development (SUCCEED)
system to support the implementation of new upcycling initiatives by effectively sharing cases
within the organization. To ascertain the efficacy of upcycling within our proposed model and
system, we formulated three research questions and conducted two distinct experiments. Through
surveys, we identified motivations and characteristics of shared upcycling-relevant development
cases. Development tasks were divided into groups, those that employed the SUCCEED system and
those that did not, in order to discern the enhancements brought about by upcycling. As a result
of this research, we accomplished a comprehensive structuring of both technical and experiential
knowledge beneficial for development, a feat previously unrealizable through conventional software
reuse, and successfully realized reuse in a proactive and closed environment through construction
of the wisdom of crowds for upcycling cases. Consequently, it becomes possible to systematically
perform software upcycling by leveraging knowledge from existing projects for streamlining of
software development.

Keywords: software upcycling; software reuse; wisdom of crowds; collective intelligence; knowledge-
based system

1. Introduction

Software reuse has been a topic of discussion since the first international conference
on software engineering. For instance, during this conference, a study by Mcllroy and
colleagues proposed developing software routines in standardized reusable formats to
allow for the recycling of software components across various projects [1]. Today, soft-
ware reuse is realized and made available in various forms, such as software libraries,
design patterns, and software frameworks, embodying typical software functionalities,
practices, and architectures [2—-4]. Moreover, research is advancing on the partial and
small-scale reuse of existing software in other software developments through the reuse
of code snippets [5,6]. Building on these achievements, as surveyed by Barros-Justo and
others, modern software practices are increasingly leveraging reuse in various forms based
on past assets [7]. Generally, development organizations possess developmental cultures

Information 2023, 14, 518. https://doi.org/10.3390/info14090518

https:/ /www.mdpi.com/journal/information

https://doi.org/10.3390/info14090518
https://doi.org/10.3390/info14090518
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-5379-1625
https://orcid.org/0000-0002-9898-7370
https://doi.org/10.3390/info14090518
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14090518?type=check_update&version=1

Information 2023, 14, 518

2 of 25

and practices that their members should adhere to, and reusing past projects can potentially
streamline developments that align with these backgrounds [8,9]. Here, our reference to
“organizations” encompasses a broad spectrum of groups, not limited to commercial appli-
cation development sites or research institutions, which undertake various developments
in the medium to long term and can cultivate a developmental culture and accumulate
knowledge. However, there are cases where the background is not shared outside the orga-
nization and is not explicitly documented, existing only within the developed product [10].
The traditional open environment for software reuse is challenging in such situations, as
no existing components are present, publicizing developmental assets is difficult, reusing
specific small-scale elements such as libraries cannot extract context, and creating design
patterns or frameworks in a closed environment is not cost-effective [11]. Traditional soft-
ware reuse, whether in large-scale endeavors supported by many developers becoming
frameworks or small-scale ones where developers search repositories for code snippets as
needed, can be characterized as passive from the provider’s standpoint. However, to reuse
the development backgrounds that exist in a dispersed fashion within an organization,
akin to a cloud, individual developers must actively suggest and share potentially reusable
code snippets, architectures, and designs.

Software upcycling, which is a type of software reuse, is a concept involving the effi-
cient production of innovative and high-value-added development projects using technical
knowledge extracted from past projects as material [12]. Due to the inherent nature of up-
cycling, which involves extracting the core properties of development knowledge without
decomposition, the knowledge available for reuse is not limited to code snippets. Depend-
ing on the upcycling method, materials that encompass rich developmental backgrounds,
such as comments written in the code, architecture, design documents, development logs,
and issues, can be targeted as well [13-16]. In upcycling, detailed analysis and materializa-
tion of specific development knowledge are conducted for reuse, enabling the utilization of
open knowledge on the web as well as the incorporation of closed insights that are challeng-
ing to share outside an organization [17,18]. Furthermore, it encompasses a seeds-oriented
approach aimed at maximizing the utility of existing technologies, making it suitable for
active dissemination of valuable reuse materials by developers. Thus, software upcycling
offers the potential for developers to actively communicate in a closed environment while
targeting a wide range of materials and facilitating the reuse of organizational backgrounds,
which is a challenge in traditional research but essential in the realm of software develop-
ment. However, it remains unclear how to combine the material obtained from the project
to perform upcycling.

In this study, the Sharing Upcycling Cases with Context and Evaluation for Efficient Software
Development (SUCCEED) system is proposed as a method to streamline software develop-
ment by utilizing the wisdom of crowds to aggregate upcycling cases performed by various
developers. The “wisdom of crowds” refers to the phenomenon in which aggregating the
opinions of a group of diverse individuals on a particular task can lead to better answers
than those provided by individual experts [19,20]. For instance, in response to the question
“what is the temperature in this room?”, the average of guesses made by a group of indi-
viduals can be very close to the actual temperature measured by a thermometer. The key
idea of the proposed method is to accumulate upcycling cases from various developers in
a database as answers to the task of “how to upcycle by combining materials obtained from
the project” and obtain the upcycling method that the searcher seeks through aggregation
via searching and browsing cases. We conducted two experiments, one regarding upcycling
cases and the other involving upcycling development using the SUCCEED system. By
addressing three research questions (RQs), we aim to validate the effectiveness of software
upcycling based on the wisdom of crowds.

A digest version of this paper has already been published at an international confer-
ence [21]. The most significant changes include the system implementation (Section 6) and
the experiments and discussions (Section 7). We believe that these additions constitute
a suitable contribution to a journal paper. The contributions of this study include the com-

Information 2023, 14, 518

30f25

prehensive structuring of technical and experiential knowledge beneficial for development,
which was unachievable through conventional knowledge retrieval methods. Furthermore,
we successfully actualized an innovative wisdom of crowds-based approach that allows
for the reuse of intrinsic development contexts previously unattainable through traditional
reuse methods. Additionally, we have verified the effects of collective intelligence on
software upcycling. This enables software development to be streamlined by systematically
utilizing existing project knowledge for software upcycling.

The remainder of this paper is organized as follows: Section 2 explains related research;
Section 3 explains software upcycling and the wisdom of crowds as research backgrounds;
Section 4 explains the goal of this study and the three research questions; Section 5 describes
the architecture of the SUCCEED system; Section 6 explains the implementation of the
system; Section 7 discusses the research questions and the proposed method based on two
types of experiments; finally, in Section 8 we summarize the study and discuss future work.

2. Related Research

In the domain of software reuse, there is extensive research concerning the reuse of
source code snippets. In research related to the reuse of source code snippets, Husasin et al.
focused on a technique for searching related code using natural language queries [22]. They
constructed a code search system by applying deep learning to open-source repository data.
Their research focused solely on open-source code data, neglecting closed data and software
materials other than source code snippets. In our study, we address the construction of
a system that accumulates and searches for a broader range of software development
knowledge. Abid et al. proposed a system for recommending code snippets tailored to
specific development objectives, confirming that these recommendations can facilitate code
reuse [6]. Their research targeted only the passive recommendation of source code snippets.
In contrast, our research is devoted to the development of a system where various software
materials can be actively recommended by developers. In a study by Papamichail et al.,
the authors proposed a method to objectively and statically assess the reusability of source
code components in online resources, eliminating the subjective perspectives of experts [23].
They achieved objective evaluations by statically analyzing the source code. However, their
method did not incorporate the subjective opinions of developers, which provide crucial
perspectives on reusability. In our research, we integrate subjective opinions by aggregating
collective intelligence, aiming to provide users with reusable software components.

In research concerning knowledge management in software development, there exist
number of studies focusing on databasing and ontologizing of knowledge. Widyasari et al.
constructed debugging tools by databasing bugs found in Python [24]. While their research
was successful in leveraging insights from bugs rather than source code, the application of
this knowledge remains confined to debugging. In our study, we do not merely consider
bugs for reuse, instead aiming for their further application in various contexts beyond
debugging. Martinez-Garcia et al. proposed a process to ontologize knowledge related to
architectures, and illustrated methods for knowledge reuse to prevent knowledge evapora-
tion in software development [25]. While their research addressed the reuse of background
knowledge, comprehensive software materials such as source code or domain models were
not covered and their methods for leveraging knowledge remain vague. In our study, we
are committed to building a model that targets a broader range of insights from software
development and methods for its reuse.

Development based on past knowledge in software development is known as upcy-
cling. The latest research based on historical knowledge includes methods for search and
code generation using generative Al. As detailed in the work of Aljanabi et al., innovative
search through natural language using generative Al tools such as ChatGPT is currently
becoming feasible [26]. Yet, the reuse of past knowledge via ChatGPT is about passively
reusing existing knowledge, not selective reuse of software projects, making it challenging
to reuse insights that remain undocumented or potential development backgrounds that
may not be well articulated. In our research, we focus on methods for selectively reusing

Information 2023, 14, 518

4 of 25

any software project. Additionally, as seen in studies by Biswas and Yetistiren et al., code
generation can aid in the software development process itself [27,28]. In addition to the
issue of selective reuse with respect to past knowledge, as mentioned earlier, these studies
face challenges in effectively incorporating domain-specific knowledge from development
organizations. In our research, we endeavor to realize software reuse based on texts written
by developers within an organization, aiming to leverage domain knowledge for reuse.

3. Preliminaries
3.1. Software Upcycling

The concept of software upcycling refers to the application of the upcycling concept,
often discussed in the context of environmental issues, to software engineering. Figure 1
shows the flow of the software upcycling process. Upcycling is the concept of creating
completely new products by adding arrangements while utilizing the characteristics of the
original materials [29-31]. For example, considering the reuse of discarded mega-sized
solar panels, upcycling uses the characteristics of the solar panels in a different context
from their original purpose rather than reusing or recycling them. Upcycling is the idea
of creating new value by repurposing materials for innovative purposes, such as creating
a stylish table by attaching legs to a solar panel.

Software upcycling is the idea of converting parts of existing projects into new and
valuable software assets. As shown in Figure 1, valuable functions and designs are retained
and used in new projects while discarding implementation details. Materials used for
upcycling are not limited to open resources available on the web; they can be extracted from
software projects shared exclusively within development organizations as well. Existing
exploratory studies report that careless reuse of online assets from platforms such as
StackOverflow and GitHub can lead to issues such as bugs and increased development
costs [5,32,33]. Therefore, leveraging closed assets, which are easier to validate for reliability,
becomes crucial. The materials extracted from the original project need to be processed,
such as by selecting important parts and modifying materials according to their purpose
rather than directly integrating them into a new project. In addition, the implementation of
reused materials and implementation specific to a new project are both necessary. Therefore,
a process for creating upcycling recipes is required in order to consider how to process
and use the extracted materials in achieving the entire project. However, recipe creation is
a highly creative process, and is not easy.

Project A
Special
Implementation
Valuable New Project
Material A i
4 N @ New Special Implementation
Upcycling Materials| O ~ g
A @
B Part of A Modified A
. NG /"
Project B e -
Implementation Recipe
Valuable Extract &
u .
Material B Materials Upcycle

Figure 1. Software upcycling flow.

There are two approaches to software upcycling, namely, needs-oriented and seeds-
oriented. The needs-oriented approach aims to upcycle existing knowledge created in
existing projects to reduce redevelopment costs, while the seeds-oriented approach aims to
combine various project materials to create innovative products. Thus, software upcycling
is a useful technique for resolving technical debt as well as for finding value from projects
that have become technical debt [34,35].

Information 2023, 14, 518

50f 25

There are two challenges that should be addressed to improve the efficiency of software
upcycling. One is the assetization and discovery support of project materials. Related
research includes project corpus studies [12]. The other challenge is to discover how to
use project materials and create software upcycling recipes. This study focuses on the
latter challenge.

3.2. Wisdom of Crowds

The wisdom of crowds is a theory first proposed by Surowiecki; it suggests that the
collective conclusion of a group when independently solicited for answers to a task among
diverse individuals is better than the individual conclusions of the group [19]. For example,
if a group is asked the question “what is the temperature in this room?” and each person
predicts it without using a thermometer, there will likely be a range of predictions. In this
case, averaging the individual predictions may produce a more accurate result than any
individual prediction.

While an individual result may be considered random, it has been confirmed through
follow-up experiments that the wisdom of crowds phenomenon can occur when appropri-
ate conditions are met [36-38]. The four conditions that Surowiecki proposed are diversity
of opinion, independence, decentralization, and aggregation. Diversity of opinion refers to
the possession of unique personal information, including information that is not initially
trustworthy. Independence is the ability to form an opinion without being influenced
by others’ ideas. Decentralization is the ability of individuals to utilize their specialized
knowledge. Aggregation refers to the mechanism by which individual judgments are col-
lected and combined into a single group judgment. The wisdom of crowds is not limited to
numerical predictions of business performance, and can be applied to such varied fields as
fact-checking of articles and facial recognition [39-41]. Surowiecki suggests that knowledge
aggregation, such as that in Google searches, represents the wisdom of crowds, and research
has applied the theory to knowledge aggregation related to software upcycling [19].

4. Goal and Research Questions

The goal of this research is to construct a method to systematically realize software
upcycling and then verify whether the proposed method can enhance upcycled develop-
ment. As a specific approach, we define development cases conducted through upcycling
as upcycling case data models and propose the Sharing Upcycling Cases with Context and Eval-
uation for Efficient Software Development (SUCCEED) system as a repository for the wisdom
of crowds in upcycling cases. In this study, we set three RQs, then conduct experiments
using the proposed upcycling cases and the SUCCEED system to answer these RQs:

RQ1 What motivates developers to share upcycling cases?
RQ2 What characteristics are inherent in upcycled cases?
RQ3 How does collective intelligence enhance development in upcycling processes?

RQ1 concerns shared motivations, and addresses the challenge of externalizing knowl-
edge accrued from past development projects which exists within the organization as
software repositories, documents, notes, or undocumented individual and collective in-
sights. In this study, we define upcycling cases as a format for making this development
knowledge explicit. To address RQ2, we aim to investigate the characteristics of cases
externalized in accordance with the upcycling case model with the purpose of clarifying
whether a variety of insights useful for broad upcycling exists and whether the proposed
model is suitable for representing this valuable knowledge. In this study, we design and
implement the SUCCEED system as a platform for sharing upcycling cases. The objective
of RQ3 is to determine how development is enhanced by using the collective intelligence
formed by the externalized cases from various perspectives, such as development time and
software quality. Considering that collective intelligence varies considerably depending on
the people, cultural background, and knowledge accumulated within the forming organi-
zation, discussing the generality of collective intelligence in the context of RQ3 would be
inappropriate. In this study, we conduct experiments on subjects in a case study environ-

Information 2023, 14, 518

6 of 25

ment at the Nakamura Research Lab at Kobe University, where the number of subjects is
almost representative of the organization’s population. Based on the experimental results,
we address the RQs through contemplation from various quantitative perspectives, such as
system usability and development time based on standardized quality characteristics, as
well as based on in-depth consideration of software quality through analysis of recorded
video and source code. Furthermore, we discuss whether the results can be generalized to
a typical organization.

5. Methodology
5.1. Key Idea

We propose the SUCCEED system as a knowledge base for easily recording and sharing
upcycling cases. The knowledge collected by the system consists of the personal opinions
of the developers regarding the the question of “how to upcycle by combining materials
obtained from the project”, which is expressed as an upcycling case. The three items to be
recorded and shared as upcycling cases are:

¢ Context, i.e., the purpose of the upcycling.
e Upcycling, i.e., the materials used and how they were upcycled.
e Evaluation, i.e., the positive and negative results of the upcycling process.

The SUCCEED system that accumulates the cases realizes the wisdom of crowds of
upcycling knowledge and makes upcycling more efficient. Specific proposals include:

* Architectural design of the SUCCEED system.

* Definition of the upcycling material to be accumulated.
* Design of the upcycling case data model.

* Design of the SUCCEED system usage flow.

5.2. Architectural Design of the SUCCEED System

The architecture of the SUCCEED system is shown in Figure 2. The contribution side of
upcycling cases registers the context, materials, recipe, and results of the upcycling through
the web user interface (UI) operation screen. The system registers and manages the cases
in the case database using the data model defined in Section 5.4. The receiving side can
search for upcycling cases by keyword or contributor name through the web Ul operation
screen and obtain a list of cases. The contribution and receiving sides of the system are not
limited to those who are familiar with upcycling, and are intended to include all developers.
The system’s architecture can function within a closed environment, allowing case sharing
exclusively within an organization without any external publication.

SUCCEED System

-\ L ,_ \
e ' Registration
‘m‘ System
Contribution context/upcycling Backend
Slde / evaluation
Web
Q 204 GUI
’ Search context
Z \ upcycling
e.va.ll'lation
Receiving VW Iowor Case DB
Side

\ J

Figure 2. The SUCCEED system architecture.

Information 2023, 14, 518

7 of 25

5.3. Definition of Upcycling Material to be Accumulated

Upcycling materials are project materials used as materials for upcycling. As Figure 3
shows, a wide variety of project materials can be used, including the entire project, source
code files, functions, application programming interfaces (APIs), test cases, and project
design documents (e.g., Unified Modeling Language (UML) diagrams and data model
designs) [42-44]. Limiting the types of upcyclable materials that can be accumulated
in the knowledge base risks narrowing the possibilities for upcycling. Hence, the sys-
tem aims to accumulate all kinds of project materials regardless of type or format. As
a type-independent accumulation method, the system does not accumulates the upcycling
materials themselves, only an overview of and access methods to these materials.

Overall Project

e
=&

|Use Casel | Domain Model '

Figure 3. Different potential project materials.

One of the most important pieces of information in upcycling materials is the ver-
sion [45,46]. Because project materials are at risk of being updated frequently, it is essential
that the version of the material be noted and properly managed. Hence, upcycling materials
that references a project without version control are of low value. Another important piece
of information is how the upcycling material was discovered and acquired. There are two
types of material discovery methods: in the empirical method, the developers discover
upcycling materials from past projects they have been in charge of developing or know the
upcycling materials from their actual upcycling experience; alternatively, a material search
in accordance with the acquisition method can include the use of a project corpus [12] or
a search for project materials.

5.4. Design of Upcycling Case Data Model

The upcycling case data model defined in this study is shown in Figure 4. The core
elements of the upcycling case data model consist of the following three components:

e Context, i.e., the purpose and background of the upcycling activity.

¢ Upcycling, i.e., the materials used and the process employed for upcycling.

e Evaluation, i.e., the outcomes and assessment of the upcycling effort in terms of both
positive and negative aspects.

Context is a crucial element that explains the purpose and circumstances behind the
registered upcycling or the technical debts and challenges addressed through upcycling.
Software upcycling always serves a specific purpose, with needs-based orientation aiming
to reduce redevelopment costs and seeds-based orientation seeking to leverage buried
technologies. Describing the context of each case enables users of the SUCCEED system
to search for ideas in a way that is efficiently focused upon their specific objectives. The
context component corresponds to the relevant aspect in the case data model. The context
component comprises natural language summaries by registering the objectives, back-
ground, and challenges addressed by upcycling. The context component is deliberately

Information 2023, 14, 518

8 of 25

unstructured, allowing the registrants to articulate the development background through
an intellectual process. This approach aims to manifest knowledge that has previously
remained tacit while imposing minimal constraints and allowing for maximal expression.

Context — [context

" |materials (array)
detail

each access
material yversion
discovery

Upcycling —

recipe
resultScore
resultbDetail
Object | |Creator
Information createdDate

—

Evaluation —

Figure 4. Upcycling case data model.

Upcycling elaborates on the specific techniques employed in the process, and comprises
the materials and recipe components. The materials component lists the upcycling
materials used, while the recipe component describes how these materials were processed
and upcycled in detail. The materials are represented as an array that lists the upcycling
materials. As mentioned in Section 5.3, each material’s elements, namely, the detailed
description, access method, version, and discovery approach, are essential. Therefore,
the following four elements are defined as sub-elements of each materials entry:

* detail provides a narrative describing the content of the upcycling material, clarifying
whether each material constitutes source code, design documents, or other resources,
followed by a comprehensive explanation of its specifics.

* access pertains to the storage location or URL for accessing the upcycling material.

* version provides the version information of the upcycling material.

* discovery provides details about the circumstances under which the upcycling mate-
rial was discovered.

Evaluation comprises a subjective assessment report made by the registrant regarding
the upcycling. The resultScore component rates the upcycling on a five-point scale,
while the resultDetail component elaborates extensively on the successes and areas for
improvement in the upcycling process. In principle, the resultScore ranges from 1 to
5 points, though cases involving unimplemented upcycling ideas are assigned 0 points.

The recipe component details the specific process by which developers convert and
utilize the materials component to develop a desired outcome. It is compiled by the
developer in natural language and includes specific development methods and innovative
ideas for processing materials. This knowledge can be reused from both purpose-driven
and material-based perspectives. As in the context component, it is essential for the
developer to articulate this in text, which is why it is defined as an unstructured natural
language element.

Information 2023, 14, 518

9 of 25

Additionally, the upcycling case data model contains object information apart from its
three core elements. The creator component represents the registrant of the case and the
createdDate component denotes the registration date and time. This object information
serves primarily as search information for the cases, and provides added information about
when and by whom a case was registered, contributing to the case’s credibility.

Examples of upcycling cases are shown in Figures 5 and 6. Figure 5 shows a single-
material upcycling that reduces the cost of redevelopment of user password authentication.
Figure 6 shows an upcycling with multiple materials, finding useful test cases from seem-
ingly unrelated projects.

"context": "Implement user password authentication for Project B using Java.",
"materials": [{

"detail": "Auth.java file in Web Application Project A",

"access": "htttps://aaa/v3/security/Auth.java”,

"version": "3.2.4",

"discovery": "Taught by XX, Project A developer.”

.

“recipe”: "User password authentication for web pages similar to Project A can be implemented

by simply rewriting the file dependencies”,

"resultScore": 4,

“resultDetail": "User password authentication has been successfully implemented, however,
there is a possibility to change the password encryption method to a more
secure one in the future.",

"creator": "Project B Development Manager XX",

"createdDate": "2023-02-02T15:00:00"

}
Figure 5. Authentication function upcycle example.

{

"context": "More test cases for user profile update
functionality in User Management Project E",

"materials": [{

"detail": "UserUpdateTest.java file in user management project C",
"access": "htttps://ccc/vl/test/UserUpdateTest.java",
"version": "1.4.3",
"discovery": "Taught by Project C developer XX."
I
"detail": "Lines 210-240 of the ProductUpdateTest.java file in Product Management Project D",
access htttps://ddd/v2/test/ProductUpdateTest.java",
version "2.1.2",
"discovery": "Found using the project corpus.”
3,
"recipe": "Add test cases that can be applied to users from Material 2, with Material 1

as the main axis",
"resultScore": 5,

"resultDetail”: "Material 2 test cases related to product updates were also extensive and
helpful in finding bugs, although the target data model was different.",
"creator": "Project E Development Manager XX",

"createdDate": "2023-02-02T716:00:00"
}

Figure 6. Multiple types of test cases upcycling example.

5.5. Design of the SUCCEED System Usage Flow

The execution flow of upcycling using the SUCCEED system consists of four stages:
search, inspiration, implementation, and sharing, as shown in Figure 7. In the search
flow, developers search for cases that can assist their development tasks from the cases
registered in the system. The envisioned search methods involve using technical keywords
related to the development and contextual keywords about the development purpose.
As a result of the search, users receive case data detailing how materials were utilized
in past upcycling and under what circumstances. Searching with technical keywords is
expected to yield cases relevant to the materials and recipe components, while contextual
keywords might return cases pertinent to the context and resultDetail components. In
the inspiration flow, while browsing the search result, developers can consider how to use
existing materials and other helpful materials to improve development efficiency along
with design methods to optimize development. In the implementation flow, developers
work on actual upcycling development based on the efficiency improvement methods
obtained in the inspiration flow. They can then record the materials and utilization methods
used in the development. In the sharing flow, they summarize the results of the practice
flow in an article and register it in the SUCCEED system. Even upcycling cases based on
personal insights that do not relate to utilizing the system can be registered. The decision
around which cases to register lies with the developers, thereby ensuring active knowledge

Information 2023, 14, 518

10 of 25

sharing. The proposed system aims for efficient upcycling, and operates by cycling through
these four steps.

D Sharing Search "T'@J

~ SUCCEED
© system -

4

plementation '"Spiration“ﬁ

3 Qe

Figure 7. Upcycling flow.

6. Implementation
6.1. Technologies

The system implementation architecture is shown in Figure 8. Three servers were
used for system construction. The first web server, Web Server 1, is a frontend server that
implements the web user interface (Web Ul) for user operations. It was implemented using
JavaScript-based environments such as TypeScript, Next.js, and Material Ul The second
web server, Web Server 2, serves as the backend server, facilitating internal system processes
such as case registration. It was implemented using Java-based environments such as Kotlin,
Spring Boot, and Tomcat. The Database Server is a server that realizes the databases of
cases, materials, and comments in a relational database. The database management system
employed for implementation is MySQL. We elaborate on the implementation details of
the data models within the database. The case data model encompasses context, upcycling,
evaluation, and object information. However, due to the nature of relational databases
(RDBs), it cannot contain entities represented as arrays. Entities of each element in the
materials component are stored in the material data model, and are linked to the case
data model. The comment data model contains feedback comments from users to case
registrants, and is associated with the case data model.

Presentation Layer Web Ul g

Web Server 1

Case Comment
API Layer e e g

Service Layer Case Service Comment Service Web Server 2

Database Layer Case Material | Comment %

Database Server

Figure 8. System implementation architecture.

Information 2023, 14, 518

11 of 25

The major characteristic of this architecture is the separation of the frontend and
backend. Web Server 2 provides an Application Programming Interface (API) for case
registration processing, while Web Server 1 operates by calling the API through the Web
UL The objective of providing the API is not to offer the backend functionality as a web
service; rather, it is to segregate the frontend and backend. While the core of the SUCCEED
system is the web service offered by the backend, the frontend is equally essential from
a user experience (UX) perspective. Due to the different roles and responsibilities that the
frontend and backend each hold within the SUCCEED system, it was deemed crucial to
separate them clearly during implementation. Specifically, the servers for implementation
and deployment were separated. Although it is feasible to further split the backend project
into different microservices architectures, such as case services and comment services,
the variety of backend functionalities is not very extensive; therefore, separating these roles
and responsibilities does not provide very much advantage. For this reason, the backend
internals were not segregated in this instance. The advantages gained from separating
the frontend and backend are discussed in detail later. The server implementation, which
includes the database server, can be hosted either on-premise or in the cloud. Even under
constraints where there is not a suitable hosting environment within the organization or
when internal knowledge cannot be placed in an external environment, it is possible to
construct the SUCCEED system. Due to this separation, it becomes feasible, for instance,
to operate the frontend solely using serverless cloud infrastructure. Moreover, the backend
server’s responsibility becomes clear regarding response time performance and scalability
as the number of cases increases. On the other hand, the frontend server’s responsibility
lies in maintaining its function as the number of users and accesses grows. This can easily
be managed by installing load balancers and scaling the frontend.

6.2. Web Ul

The PC and smartphone versions of the Web Ul screens are shown in Figures 9 and 10,
respectively. The PC version of the Ul design features a three-column layout for search,
case display, and registration. The smartphone version prioritizes simplicity by initially
displaying only cases for improved readability. Users can access the search and registration
functions through a drawer menu, which can be invoked from the bottom right-hand
button. In addition, the Good button function has been added for each case and comment
function, enabling feedback from users to registrants. To assist with search and registration
inputs, the help text explaining the concept of upcycling cases has been enriched.

Software Upcycling Case Sharing System (* Required) %-si=

Py

search re

 Kotlin & Spring Boot User password authentication - I

Upeyeling cas

Largest D

nnnnnnn

Migration from Java to Kotin s easy. Tokuya Nakata 2073527103228

ReGiSTER

o
-

Figure 9. Web UI for PC.

Information 2023, 14, 518

12 of 25

search result: 37 cases
Case 53

Kotlin & Spring

Boot User

password

authentication

Context Upcycling case studyWhen
developing a shared DB, we
want to ease user password
authentication with the DB
in Kotlin & Spring Boot.

Material User password
N 1: authentication point for
knowledge box services.
Language is Java.

Recipe Port SecurityConfig,
UserDetalil,
UserDetailsen QA | +
PasswordEncoge. 0 @ New

Figure 10. Web UI for smartphone.

7. Evaluations
7.1. Experiment 1
7.1.1. Experimental Setup

As the first experiment, we collected and analyzed cases in survey format without
employing the SUCCEED system. The primary aim of this experiment was to obtain
answers to RQ1 (what motivates developers to share upcycling cases?) and RQ2 (what
characteristics are inherent in upcycled cases?). The cases collected in the experiment
adhered to the format defined in Section 5.4 of the study. The survey participants consisted
of seven students belonging to Nakamura Laboratory at Kobe University. The survey
method involved having the participants fill out development cases they deemed relevant
to upcycling in accordance with the case model structure. In the process of case submission,
optional items could be left unanswered.

7.1.2. Experimental Results

Eight cases were collected, containing a total of ten materials. An overview of the
cases is shown in Table 1. The types of materials were classified with duplication, and
are summarized as a graph in Figure 11. Three materials had an empty version field
due to the lack of version management. Furthermore, upon investigating the collected
development projects against the laboratory’s software repository, it was found that four
projects did not exist in the repository, five projects that existed had almost no README
documentation, and only two projects were present in the repository and had written
README documentation.

Information 2023, 14, 518

13 of 25

Project

Data Model
Algorithm
Architecture

Document

Uses of the material

Source Code

Number of materials

Figure 11. Classification of each material by type (allowing for duplication).

Table 1. Sample of cases from interviews.

Summary Result Score

The source code library dependency of the Pub/Sub service was used to

develop a timer application using WebSockets. 4
The design architecture and source code of the knowledge sharing service using 4
Spring Boot was used to develop the IoT infrastructure service.
To develop a scheduling service in GAS, algorithms from a Java service with 5
almost identical functionality were reused.

To perform clustering analysis in Python, other clustering analysis code was 5
reused and parameters were slightly modified.

To put a password on the diary service, the source code for the authentication 5

was used, which was found on the internet.

7.1.3. Discussion

Deliberating on RQ1, ten cases were obtained from the above experiment, as shown in
Table 1. Each case represents a development instance chosen by the respondent from among
their past projects that they deemed valuable to share with others due to its application of
existing knowledge in an upcycling context. When asked about the rationale behind their
case selection, responses included motivations such as the perceived need for upcycling
and the difficulty in selecting previous projects that were not well-documented, leading
them to opt for more recent projects that were fresh in memory. As displayed in Table 1,
most of the cases gathered in the experiment had high outcome scores. When inquiring
about the reason for sharing high-scoring cases, respondents mentioned not having detailed
records of projects with poorer outcomes and a preference for showcasing positive results
when sharing with others. While it remained unclear whether there were numerous high-
scoring case studies available, it can be surmised that cases with more favorable outcomes
were more likely to be shared. Based on these results, it can be inferred that when faced
with the daunting task of knowledge documentation, developers are inclined to select
cases that minimize psychological barriers and boost motivation by showcasing positive
outcomes, along with those that are easier to recall. Furthermore, alignment with the
overarching goal of collecting upcycling cases may serve as a crucial motivational factor.

Next, we turn our attention to RQ2. As illustrated in Figure 11, upcycling was not
limited to source code, and included essential components of software programs such as
algorithms and data models as well. Furthermore, upcycling was observed at the design
level, that is, involving the overall project structure and documentation. This suggests that
the process of collecting upcycled cases can contribute to the reuse of a broader range of
project elements, surpassing the conventional reuse of code snippets commonly seen in
previous studies. Our examination of the shared repository revealed that almost all of the
shared cases derived from development projects that were not documented. This implies
that the proposed model for collecting cases has the potential to capture a wide range of
undocumented knowledge. Considering that several of the shared cases lacked version
control, caution is necessary when considering the reliability of the included knowledge.
Moreover, it was evident that the cases were from projects within the respondents” areas of

Information 2023, 14, 518

14 of 25

expertise and proficiency. Therefore, a distributed array of specialties among developers
could lead to a richer diversity of registered cases. Summarizing these insights, the cases
upcycled and gathered using the case model may encompass a broad spectrum of software
materials, ranging from undocumented cases to those across diverse fields, all of which
can be beneficial to numerous new development projects. Furthermore, factors such as
version control and diversity among developers emerged as important considerations for
enhancing the quality of the collected knowledge.

7.2. Experiment 2
7.2.1. Experimental Setup

As a second experiment, an analysis and discussion was conducted regarding actual
development using the SUCCEED system. The primary objective of this experiment was to
address RQ3 (how does the collective intelligence of the system enhance development in
upcycling processes?).

The experimental outline involved assigning participants upcycling tasks and then
determining whether there were any differences in development progression and output
between the groups that uses the SUCCEED system and those that did not. The participants
of this experiment consisted of students and faculty members from Nakamura Laboratory
at Kobe University who were engaged in service development and data analysis. Excluding
three co-authors, nearly all (a total of 11 out of 13) participated. Considering the small
size of the overall population, it was believed that conducting discussions based on actual
numbers and surveys, rather than relying on statistical tests, would be more reflective and
pertinent to the entire laboratory population. This experiment did not use statistical tests,
instead focusing on obtaining data closely resembling the entire population. Detailed time
measurements, specific knowledge searches, development process records, and surveys
were all undertaken. Subsequently, a comprehensive discussion and examination regarding
RQ3 was conducted based on the results. For a comparison between those who used the
SUCCEED system and those who did not, participants were randomly divided into two
groups, Group 1 and Group 2, in nearly equal numbers. Each group switched between using
and not using the system across two tasks, allowing for data collection from all participants
during both usage and non-usage periods. This approach provides a foundation for
discussions regarding the entire population based on the collected data.

The experimental procedure began by first standardizing the knowledge pertaining
to the SUCCEED system. This was achieved through preliminary training on the system
as well as practicing the search and registration functions. After that, the participants
worked on two types of development tasks (Task 1 and Task 2) for 30 min each and the
development process was recorded. After each task was completed, the development cases
were registered in the SUCCEED system and the registration process was recorded. After
all tasks were completed, the participants answered a questionnaire. In this survey, we
established a set of questions to assess the effectiveness, efficiency, and trustworthiness
using the Software Product Quality Requirements and Evaluation (SQuaRE) quality of use
metrics [47,48]. Furthermore, the source code of the outcomes was submitted.

The difference between Group 1 and Group 2 was whether they used the SUCCEED
system when working on their tasks. In Task 1, Group 1 was an experimental group
that used the SUCCEED system at least once while freely using other search systems to
develop, while Group 2 was a control group that did not use the SUCCEED system and
only used other search systems to develop. In Task 2, the use of the system was reversed,
with Group 1 as the control group not using the system and Group 2 as the experimental
group using the system. To summarize the differences between the experimental and
control groups, both groups followed a similar procedure for each task, consisting of four
steps: search, inspiration, implementation, and sharing. The experimental group had the
advantage of directly acquiring knowledge from the SUCCEED system during the search
step. The control group could not directly obtain knowledge from the system; however, they
could acquire similar knowledge from the web or other search systems that resembled the

Information 2023, 14, 518

15 of 25

information within the system. It was anticipated that the knowledge gained in the search
step would influence the subsequent steps of inspiration, implementation, and sharing
differently between the two groups.

The SUCCEED system used in the experiment was implemented as described in
Section 6. The experiment was conducted with 24 upcycling cases already registered in the
system before the start of the experiment. These cases represented sophisticated research
activities in software development and data analysis input into the SUCCEED system by
members of the same laboratory or those who had previously belonged to it. Of these,
six cases were input by the experiment participants, with four people contributing one
case each and one person contributing two cases; however, these particular cases were
unrelated to the tasks. Although originating from the same organization as the participants,
the intricate details of the implementations carried out by the other members were not well
known to them. Due to the complexity of the case contents, most participants had little
understanding of the registered cases prior to the experiment. The experimental tasks in
this study were designed based on these preregistered cases. There was one case related to
domain knowledge for Task 1 and one case each associated with development knowledge
for Tasks 1 and 2. Moreover, several cases which were not directly related to any specific
task included content pertinent to the technologies or the languages necessary for the tasks.

The computer used by the participants to work on the task was a personal computer
that they were accustomed to using for software development on a regular basis. The
computer’s performance was adequate for development purposes, although not high-end.
Ten participants used PCs with the Windows operating system, either Windows 10 or
Windows 11, with a memory capacity of 8 GB or 16 GB, and the CPU was at most an Intel
10th generation. One individual carried out development on an iPad.

Task 1 involved the implementation of a mock input function for hand gestures in dia-
logue with a virtual agent [49]. The specified virtual agent was implemented in JavaScript.
Knowledge about the specified virtual agent is closed and held exclusively by the Naka-
mura Laboratory at Kobe University; thus, obtaining detailed knowledge through open
search tools such as Google was impossible. Methods for acquiring knowledge about the
virtual agent included a closed research laboratory wiki, software repositories, and search-
ing through the SUCCEED system. Two steps were required to implement the hand gesture
function: Step 1 involved detecting various positions of the hand using a webcam [50], and
Step 2 identifying the type of hand gesture from the hand position coordinates.

Task 2 involved the implementation of a simple algorithm for a shift automatic creation
tool, with Python specified as the development language. The shift automatic creation
problem is generally solved as an optimization problem. However, the closed knowledge
held by the Nakamura Laboratory includes a simple algorithm similar to a greedy algorithm,
which can only be accessed through the registered cases in the system. The simple algorithm
has a difficulty level that can be easily thought of with basic knowledge about algorithms.

There were two features of the task settings. First, by separating the development
languages of Task 1 and Task 2, the impact of changes in development speed due to short-
term language specification familiarity was minimized. Second, the tasks set were not mere
development tasks, as both involved upcycling as well. While the knowledge required for
the development of Task 1 and Task 2 was closed knowledge registered in the system, this
knowledge could be acquired without using the system. For Task 1, an understanding of the
existing coding of virtual agents was necessary. The traditional way of writing code is not
easily described as having a logical structure. However, changing the method would render
it incompatible with existing systems. Instead of one developer changing the coding style,
there is a need to upcycle the development without impacting the organizational culture.
Thus, Task 1 is an upcycling task that involves adding functionality without redeveloping
an entire system containing legacy code from scratch. For Task 2, ideas around modifying
a shift automation algorithm to suit the task are required. While basic implementation
is straightforward due to the availability of libraries for solutions easily found by web
search, adjusting them can be challenging without mathematical knowledge. On the other

Information 2023, 14, 518

16 of 25

hand, solutions conceived of in a closed environment are simpler and easier to adjust;
however, understanding them is challenging without strong code-reading skills. Task 2
involves reconstructing an algorithm suited to the task by referencing various existing
algorithms; this is another upcycling task.

7.2.2. Experimental Results

We conducted measurements of various work times based on recordings of the devel-
opment process and the registration of cases in the system for each task. The results are
shown in the bar graph of Figure 12. In order to facilitate understanding, the experimental
group and the control group are represented by white and gray bars, respectively, in both
Task 1 and Task 2, as the groups were reversed between the two tasks. However, as seen
with the data for Participant 1-C in Figure 12d, certain data were missing due to recording
failures; these are indicated with an “x” mark. Additionally, only one participant each
completed Task 1 and Task 2 within the stipulated 30 min time frame, making it impossible
to obtain comparable task completion time data. However, we were successful in obtaining
data on the completion time of Step 1, from the start of Task 1 to the successful detection
of fingers. Figure 12a shows the results of measuring the time required to complete the
finger detection subtask of Task 1. Figure 12b—d shows the results of measuring the time
required to search for knowledge. The experimental group’s time was measured using the
SUCCEED system, while the control group’s time was gauged using web searches. Usage
of ChatGPT was not considered as a search, and was excluded. This issue is discussed
in Section 7.2.3. However, for those who did not conduct each search, data could not be
obtained; these cases are marked with a “y”. Figure 12e,f shows the results of measuring
the time required to register cases in the system for Tasks 1 and 2, respectively.

In the post-task questionnaire, responses were obtained for both Task 1 and Task 2 on
the following items:

Q1 What knowledge do you already have that is required to solve the task (Task 1 options:
hand recognition, overview of designated virtual agents, JavaScript, HTML, other
free description; Task 2 options: shift creation algorithm, general understanding of
algorithms, Python, other free description)?

Q2 Were you able to search for the target case using the system (options: yes, no, not
used)?

Q3 Were you able to search for the target information using tools other than the system
(options: yes, no, not used)?

Q4 Could you trust the content of the cases obtained as search results from the system
(options: yes, no, not used)?

Q5 Could you trust the content obtained as search results from methods other than the
system (options: yes, no, not used)?

Q6 What method(s) did you use to search other than the system (free description)?

From the results of Q1, almost all participants had prior knowledge of programming
knowledge related to solving the task. Three participants were not familiar with JavaScript
as used in Task 1, while all except one participant were able to use Python in Task 2 without
any problems. The results of the questionnaire on the success or failure of the search
in Q2 and Q3 are shown in Table 2. However, for users who did not engage in a search
the determination of search success or failure remained elusive, necessitating their exclusion
from the computation of the search success rate. Regarding Q4 and Q5, one participant
answered that they could not trust the system’s search method in Task 1. For Task 2, all
participants expressed trust in the system’s search results. All participants answered that
they could trust the search results of the other search methods used in both tasks. From
the results of Q6, all participants mentioned using Google search and ChatGPT as other
search methods in addition to the SUCCEED system. Several participants used closed
wiki or software repositories within the laboratory for searching as well. Additionally,
one person indicated that they were able to perform the development solely using the
SUCCEED system.

Information 2023, 14, 518

17 of 25

[CJExperimental Group
25 I | @ Control Group
X Not Recorded

[| [Control Group

[|y Not Searched

[CJExperimental Group

X Not Recorded

))
£ £
=10 =20
5 - 10
: LUy v B By
1-A 1B 1-C 1D 1-E 1-F 2-A 2-B 2-C 2D 2E 1-A 1-B 1-C 1-D 1-E 1-F 2-A 2B 2-C 2D 2E
Subject (Group - ID) Subject (Group - ID)
(a)
14 50
12 | |CJExperimental Group 45 | |JExperimental Group
[l Control Group 40 [l Control Group
10 || X Not Recorded 35 | | X Not Recorded
Not Searched o Not Searched
s | y 8 30 y Not Searche

Time (min)

EHH x, x [1r— B x I Y

1-A 1-B 1-C 1D 1-E 1-F 2A 2B 2-C 2D 2E
Subject (Group - ID)

(0)

[JExperimental Group
10 I | g Gontrol Group
X Not Recorded

| il

1-A 1-B 1-C 1-D 1-E 1-F 2-A 2B 2C 2D 2E
Subject (Group - ID)

(d)

[| I Control Group
X Not Recorded

[CJExperimental Group

Time (min)
Time (min)

[

0

1-A 1B 1-C 1D 1-E 1-F 2A 2B 2C 2D 2E i-A 1-B 1-C 1D 1-E 1-F 2-A 2B 2C 2D 2E
Subject (Group - ID) Subject (Group - ID)

(e) ®
Figure 12. Results of time measurements: (a) time to detect fingers in Task 1; (b) time to search for
agent in Task 1; (c) time to search for finger detection in Task 1; (d) time to search for shift algorithm
in Task 2; (e) time to register the case of Task 1; (f) time to register the case of Task 2.

Table 2. Questionnaire results on success and failure in searching for task-related knowledge.

Task Search Tool Success Failure No Search Success Rate
(Person) (Person) (Person)
1 System 6 0 0 100%
1 Others 7 1 3 88%
2 System 4 1 0 80%
2 Others 8 2 1 80%
1&2 System 10 1 0 91%
1&2 Others 15 3 4 83%

The following findings emerge from our examination of the video recordings and
submitted source codes. For Task 1, Step 1, it was confirmed that all source codes func-
tioned correctly. Successful finger detection was evident in the video recordings. In both
tasks, source codes revealed snippets and structures referencing code from the web and
the SUCCEED system. In Task 1, there was one participant who implemented without
searching for the specifications of the virtual agent. As a result, they made an incorrect
choice of the programming language. For participants who acquired knowledge of the
virtual agent, the codes written for Task 1 adhered to the specified requirements and were
applicable to the designated virtual agent. Both the experimental and control groups in
Task 1 developed based on similar knowledge, resulting in functionally comparable source

Information 2023, 14, 518

18 of 25

codes. The primary differences lay in the process and time needed to acquire knowledge,
and in a few cases the choice of implementation language. In Task 2, the experimental
group aimed to implement a simple algorithm discovered through system searches, while
the control group attempted to solve it using mathematical optimization that required
mathematical knowledge which they found through Google searches on “shift automatic
generation” and other similar search terms, resulting in completely different approaches
to the task. The group that attempted to solve it using mathematical optimization failed
to improve the source code within the experimental time frame due to a lack of prior
knowledge. In Task 2, while the experimental group focused on essential coding related
to the task, the control group worked on a generic shift generation problem and did not
address the core issue of resolving the task. Concerning search functionalities, in terms of
the freedom of search terms, such as allowing differences in capitalization and displaying
similar results, other search services such as Google search are superior to the SUCCESS
system, and there appear to have been several failures in searches using the system. On
the other hand, there were many instances of people consuming a great deal of task time
by browsing unnecessary pages due to long viewing times when confirming whether the
discovered webpage was useful for the task, resulting in Google search failures. In addi-
tion to determining development guidelines, many people were observed using Google
searches to obtain basic information about programming languages. In the development
utilizing ChatGPT, there were instances where the exact content of the task was input
directly. However, because ChatGPT does not possess organization-specific information
such as details about virtual agents or greedy solutions, it produced irrelevant code. Two
intriguing usages of ChatGPT were observed. First, there was one individual who let
ChatGPT explain a case obtained from the SUCCEED system search, then input the task
details into ChatGPT. This approach reflected knowledge from the case in the generated
code. Furthermore, another participant developed in a different language and later used
ChatGPT to convert it to the language specified for the task.

From the newly registered cases in this experiment, the following was revealed. In
cases where knowledge from websites obtained through Google searches was used as
materials, many only included the website URL and what was obtained through Google
searches. However, a few cases included the search words used; the registration time for
such cases was longer than the average time for subjects. For cases utilizing ChatGPT,
the summaries of the materials simply mentioned “ChatGPT”. The essential details about
what kind of task was requested of ChatGPT were documented in the recipe section. When
using websites or ChatGPT as source materials, there were no instances that noted any
version-related details. Even in cases where tasks could not be completed, high scores were
assigned to cases that were useful in the development process. In particular, cases where it
was stated that the code was copied and used as-is tended to receive high scores.

7.2.3. Discussion

In deliberating on RQ3, the results obtained from the upcycling task in this experiment
can be classified into three major steps: search, implementation, and sharing. First, based
on the quality metrics during the use of SQuaRE, we assess the effectiveness, efficiency,
and trustworthiness of the system’s search functionality, which pertains to the search step.
Next, we evaluate the effectiveness and efficiency of the system’s registration feature, which
is relevant to the sharing step. Subsequently, delving into the content of the implementation,
which corresponds to the implementation step, we discuss the overall effectiveness and
efficiency of the system from the perspective of its objective of assisting in upcycling. Lastly,
synthesizing these viewpoints, we contemplate RQ3 more generally.

The effectiveness of the search function was evaluated based on the questionnaire
results on success or failure of the search, shown in Table 2. The purpose of the search
function in evaluating effectiveness is to enable users to obtain the knowledge that they
want. Using the search function of the system, only one search failed out of eleven, resulting
in a success rate of approximately 91%. In contrast, when using other search tools, three

Information 2023, 14, 518

19 of 25

searches failed out of eighteen, resulting in a success rate of approximately 83%. Therefore,
it can be considered that the effectiveness of the system’s search function is not significantly
inferior to that of conventional tools such as web searches, wikis, or even the latest tools
such as ChatGPT. However, this finding is predicated on the assumption that the system
has accumulated knowledge that is beneficial for enhancing upcycling efficiency.

The efficiency of the search function was evaluated using the average time required by
each group to reach knowledge through the search, with the results shown in Table 3. This
outcome serves as a comparative analysis between the SUCCEED system and conventional
web search. Although certain instances in the experiment utilized ChatGPT for develop-
mental support, these were considered as independent variables and excluded from this
assessment. From the results, it can be seen that the average search time decreased in all
searches when using the system, indicating a certain degree of efficiency on the part of the
system’s search function. It can be considered here that much of the knowledge obtained
through web search, which many subjects used, required time to confirm whether it was
necessary knowledge, as there may not have been a succinct summary of how to utilize
the knowledge.

Table 3. Average time required by group to obtain knowledge through search.

Search Search Tools Average Time of Averafg,e Time of Average Time
Knowledge Used by Control Group (s) Experimental Difference (s)
Control Group Group (s)
Agent Software 35 17 18
repository
Finger detection Google search 330 124 206
Automatic shift Google search 20 13 7

generation

The trustworthiness of the search function was evaluated by a questionnaire asking
whether the search results were trustworthy. All respondents answered that they trusted
the search results from outside than the system, while one respondent answered that they
did not trust the system’s search results. When interviewed, this respondent answered that
they felt the knowledge found through the search was unreliable because there was no
documentation on the material project referred to by the case found through the search.
Therefore, they considered that the quality of case data, such as the level of detail in the
description of each item of documentation and cases, affected its trustworthiness.

The effectiveness of the registration function was assessed by evaluating whether it
achieved its objective of clearly organizing and summarizing cases in a structured format
based on the content of the registered cases. Utilizing the SUCCEED system to register
cases ensured that the upcycle cases for this experiment were organized and summarized
in the model format. Even though there were variations in the amount of text for the
context, recipe, and resultDetail components, which were described using natural
language, no significant content was missing. However, regarding the versions part of
the materials component, many omissions were observed in unmanaged sources such
as websites, potentially leading to decreased reliability of the search function. Therefore,
despite the deficiency in version information, it is believed that the registration function is
effective in achieving its goal of clear organization and summarization.

By compiling the results from Figure 12e,f into the box-and-whisker plot in Figure 13,
it was found that the average time for case registration was 5 min and 35 s, with a standard
deviation of 1 min and 17 s. It was found that there was variation in registration time
among subjects. In particular, cases with detailed descriptions for each item took longer to
register, suggesting that efforts to improve the quality of the case may contribute to longer
registration times, in addition to difficulties with case registration.

Information 2023, 14, 518

20 of 25

Mr

10 F

Time (min)

o

Case

Figure 13. Box-and-whisker diagram of case registration times for all tasks.

To assess the overall effectiveness of the system, we discuss whether the SUCCEED
system achieves its goal of aiding upcycling based on recorded videos during tasks and the
source code of the outcomes. From the onset, observations from both the experimental and
control groups’ recordings and source codes confirm that upcycling took place during the
tasks. This is evident from participants being seen acquiring knowledge through searches
and ChatGPT and subsequently applying this knowledge with modifications in their
coding. As stated in Section 3.1, upcycling involves leveraging the inherent characteristics
of original materials while introducing alterations to produce an entirely new product.
The developmental activities during the task align with this definition. When comparing
the experimental group to the control group, both exhibited upcycling within the task
and demonstrated functionality up to the correctly implemented sections. For Task 1,
there were cases where the absence of domain knowledge concerning virtual agents led
to developments that did not meet the task requirements. In Task 2, the approaches of
the experimental group and the control group were entirely distinct; a more fundamental
engagement with the core questions of the task was evident in the experimental group.
The difference in knowledge acquired from the system’s search function and that obtained
from web searches or ChatGPT is believed to be the cause. As an effect of the system, not
only can development time be reduced, it can potentially alter their development approach
by conveying insights from upcycling as developers acquire necessary knowledge. From
a software quality perspective, increasing opportunities to acquire essential knowledge
through the system could make it easier for developers to accurately meet development
requirements. Thus, the system has the potential to enhance the outcomes of upcycling
through accumulated knowledge, rather than merely enabling upcycling.

We now discuss the system’s impact on the efficiency of upcycling. From Figure 12a,
the average completion time for the finger detection subtask in Task 1 was 10 min and
15 s for the experimental group and 18 min and 26 s for the control group. The average
completion time for the experimental group was reduced by 8 min and 11 s, a decrease of
44%. These results were obtained from experiments primarily involving most members of
the Nakamura Laboratory at Kobe University, the target organization for this study. In light
of the difficulties in assuming a normal distribution for the average task completion time,
which can vary significantly based on development skills and the developer’s personality,
a discussion based on actual measurements is more appropriate than a statistical discussion
using tests. Therefore, in the experimental organization, the 44% reduction in development

Information 2023, 14, 518

21 of 25

time using collective intelligence suggests that upcycling utilizing collective intelligence
effectively enhances development efficiency.

From the various analytical results presented here, we proceed to discuss RQ3. Initially,
while users can quickly obtain the desired knowledge during the search step, it became
evident that there was a need to register cases that were both comprehensive and reliable.
In the implementation step, we observed a reduction in implementation time by 44% as well
as the potential of improving product quality, such as meeting developmental requirements
more easily and addressing core issues, due to the knowledge acquired via the system. In
the sharing step, it was possible to consolidate cases in a format that other developers could
refer to, which wasachieved within approximately 5 min and 30 s. Hence, it can be inferred
that the SUCCEED system’s upcycling enhanced development in terms of knowledge
acquisition, efficiency, product quality, and knowledge sharing.

RQ3 was framed in order to investigate both the impact of the system and the influence
of collective intelligence on upcycling. While the experimental group and the control group
differed in terms of their use of the SUCCEED system for searching, this distinction does
not necessarily equate to the use or non-use of collective intelligence. This is because,
as Surowiecki has pointed out, commonly used search engines in modern development,
such as Google Search, can be considered a form of collective intelligence [19]. Furthermore,
because ChatGPT is a language model trained on various texts, it can be perceived as
another embodiment of collective intelligence. Precisely speaking, the experimental group
differed from the control group in its ability to utilize the SUCCEED system as a specific
form of collective intelligence among others. From our experimental results, the character-
istics of collective intelligence that enhance upcycled development become evident when
contrasting implicit collective intelligence, such as web searches and ChatGPT, with explicit
collective intelligence, as represented by the SUCCEED system. Implicit collective intelli-
gence is shaped by knowledge not primarily shared for the purpose of forming collective
intelligence, while explicit collective intelligence is formed by knowledge actively provided
for that very purpose. This means that development is enhanced by collective intelligence
characterized by its ability to actively disseminate structured knowledge and its selective
assimilation of ideas from contributors, ensuring the gathered information is beneficial
for upcycling.

This experiment was conducted in a specific environment, both organizationally and
in terms of accumulated knowledge, at the Nakamura Laboratory of Kobe University. From
the discussions to date, it is evident that in this environment the proposed system is benefi-
cial for enhancing development. There is a high likelihood that its utility can be extended
to a broader context. The insights accumulated within this experimental environment span
a range of development styles, from individual to group projects, and cover a wide field
including software development and data science. Thus, it can be assumed that the findings
can be generalized and discussed in the context of various organizations. Based on the
aforementioned discussions, we can conclude that the SUCCEED system, driven by collec-
tive intelligence, enhances development from the perspectives of knowledge acquisition,
implementation, and sharing.

7.3. Findings through Experiments

Through this empirical investigation, it has been discerned that the establishment of
an experimental methodology capable of configuring multiple subtasks and measuring
task completion rates along with the attainment time of each subtask is advantageous. Due
to the variability of task completion times arising from subjects’ programming skills and
knowledge, estimating task completion times proves challenging. Thus, the configuration of
multiple subtasks proves beneficial. Furthermore, in the context of upcycling experiments,
appropriate task configurations meeting the conditions of integrating previously unknown
existing knowledge, registered as instances in the system with the necessary pre-existing
knowledge for development, becomes imperative.

Information 2023, 14, 518

22 of 25

From the results in Table 3, it was found that the average search time varies greatly de-
pending on the type of knowledge sought, such as hand detection and shift auto-generation,
regardless of system usage. It is necessary to consider the differences in task achievement
and completion time depending on the type of knowledge being searched.

Based on the combination of system and web searches in the experimental group,
it is considered that the system is not a replacement for all functions of existing search
methods, and is instead represents a development support tool to be used in conjunction
with existing methods. In particular, due to the challenges in comprehensively covering the
intricate specifications of programming languages in the SUCCEED system, the combined
use with conventional online knowledge search systems via the web becomes essential.

7.4. Advantages and Limitations

The SUCCEED system proposed in this study achieves the wisdom of crowds by
accumulating technical and experiential knowledge on upcycling in a group, and efficiently
streamlines software development through upcycling. Furthermore, it has a great advan-
tage in that it can efficiently upcycle based on limited knowledge that can only be shared
within an organization, forming the wisdom of crowds. At the same time, upcycling is
not limited to within an organization. By establishing an upcycling environment using
the SUCCEED system across multiple organizations, there is potential for new upcycling
utilization methods to naturally emerge. Additionally, because the system is designed
for developers to proactively recommend their personal knowledge, there is potential to
gather a vast amount of distributed and latent knowledge. Among the four conditions of
the wisdom of crowds proposed by Surowiecki, diversity of opinions and decentralization
are established by introducing practical cases through the practice flow, while aggregation
is established by the aggregation mechanisms of the search flow and inspiration flow. As
a result, it is believed that upcycling development cases using various project materials
such as algorithms and architectures beyond just reusing conventional source code were
collected, as shown in the experimental results in Section 7.1.

One limitation of this proposed method is that the independence of the accumulated
knowledge in the system is not guaranteed, which may restrict the extent of efficiency
improvement in upcycling. For the wisdom of crowds to function, respondents must
answer independently; however, in the proposed method it is assumed that others will
browse through their cases, leading to a decrease in independence. The key is how to
encourage the registrant to register useful information that they themselves feel is helpful
without being influenced by other cases when registering cases in the system, which can be
addressed by enhancing the instructions. The knowledge aggregation mechanism, formed
by the search flow and inspiration flow, significantly relies on the individual skill of the
system user, which can influence the system’s effectiveness. The search flow consists of
two stages, namely, the search query and the result display. Both stages require refinement
to enhance the overall accuracy of the aggregation mechanism. In this proposal, search
queries are determined by matching keywords with words in the cases. To improve this, it
would be possible to integrate more advanced research techniques such as fuzzy search
in order to hit more candidates or recommendations based on development objectives
described in natural language, as has been explored in code snippet search research [6,51].
For displaying the results, we propose a system that sorts by user-selected criteria such
as registration date and highlights matching words. However, it is possible to consider
introducing algorithms such as the commonly used PageRank to increase search accuracy.
Moreover, the active sharing nature of the cases could set limitations on the system’s
knowledge collection capability [52], as developers need to be motivated to register and
share examples. For instance, integrating gamification features such as contribution scores
or rankings into the system might instill a sense of value and satisfaction in sharing, thereby
encouraging more participation [53].

Information 2023, 14, 518

23 of 25

References

8. Conclusions

In this study, we have proposed a software development efficiency improvement
method using software upcycling as a wisdom of crowds-based software upcycling case
sharing system, along with its implementation and evaluation. The primary contributions
of this research include: (1) The proposal of a case model that comprehensively structures
technical and experiential knowledge beneficial for development. (2) The introduction of
a system that systematically generates upcycling methods, marking the first endeavor to
optimize upcycling. (3) Realization of software reuse through active knowledge sharing in
a closed environment. (4) Elucidating how collective intelligence through the upcycling
process can enhance system development. Through this study, we found that the wisdom of
crowds in upcycling is achievable through aggregation mechanisms such as the search flow
and inspiration flow of cases, and is useful for improving upcycling efficiency. However,
the aggregation of development knowledge depends heavily on individual developer skills
and motivation. Therefore, in the future it is imperative to employ classical techniques such
as PageRank algorithms, gamification, and innovative search technologies based on natural
language such as ChatGPT. These technologies can encourage developers to actively share
knowledge and ensure smooth access to the accumulated knowledge. Future advanced
research could focus on building systems that recommend effective upcycling cases derived
from upstream development processes such as customer requirements and basic designs.
These systems could estimate potential development costs as well. By accumulating and
analyzing a vast amount of case data, we anticipate deriving new value-added informa-
tion, such as understanding the causal relationships between context and evaluation in
development and labeling materials based on context. While this study emphasized the
human aspects of software development in its exploration of reuse, the added data obtained
from case analysis may pave the way for further advancements in data-driven software
engineering research.

Author Contributions: Writing—original draft preparation, T.N.; writing—review and editing, T.N.;
supervision, M.N,, S.S. and S.C.; validation, T.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The upcycling case data used in this study are unavailable because
they contain information related to various products and studies.

Acknowledgments: This research was partially supported by JSPS KAKENHI Grant Numbers
JP19HO01138, JP20H05706, JP20H04014, JP20K11059, JP22H03699, JP19K02973, and Young Scientists
(No. 23K17006).

Conflicts of Interest: The authors declare no conflict of interest.

1. Mcllroy, M.D.; Buxton, J.; Naur, P; Randell, B. Mass-produced software components. In Proceedings of the 1st International
Conference on Software Engineering, Garmisch Pattenkirchen, Germany, 7-11 October 1968; pp. 88-98.

2. Gamma, E.; Helm, R; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley
Professional Computing Series; Pearson Education: London, UK, 1994.

3. Riehle, D. Framework Design: A Role Modeling Approach. Doctoral Thesis, ETH Ziirich: Ziirich, Switzerland, 2000.

4. Abdalkareem, R.; Oda, V.; Mujahid, S.; Shihab, E. On the impact of using trivial packages: An empirical case study on npm and
PyPI. Empir. Softw. Eng. 2020, 25, 1168-1204. [CrossRef]

5. Wu, Y;; Wang, S.; Bezemer, C.P,; Inoue, K. How do developers utilize source code from stack overflow? Empir. Softw. Eng. 2019,

24, 637-673. [CrossRef]

6. Abid, S.; Shamail, S.; Basit, H.A.; Nadi, S. FACER: An API usage-based code-example recommender for opportunistic reuse.
Empir. Softw. Eng. 2021, 26, 110. [CrossRef]

http://doi.org/10.1007/s10664-019-09792-9
http://dx.doi.org/10.1007/s10664-018-9634-5
http://dx.doi.org/10.1007/s10664-021-10000-w

Information 2023, 14, 518 24 of 25

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Barros-Justo, J.L.; Olivieri, D.N.; Pinciroli, F. An exploratory study of the standard reuse practice in a medium sized software
development firm. Comput. Stand. Interfaces 2019, 61, 137-146. [CrossRef]

Akbar, M.A.; Smolander, K.; Mahmood, S.; Alsanad, A. Toward successful DevSecOps in software development organizations:
A decision-making framework. Inf. Softw. Technol. 2022, 147, 106894. [CrossRef]

Venkatesh, V.; Thong, J.Y.L.; Chan, FK.Y.; Hoehle, H.; Spohrer, K. How agile software development methods reduce work
exhaustion: Insights on role perceptions and organizational skills. Inf. Syst. J. 2020, 30, 733-761. [CrossRef]

Saeed, S.; Jhanjhi, N.; Naqvi, M.; Humayun, M. Analysis of software development methodologies. Int. J. Comput. Digit. Syst.
2019, 8, 446-460.

Gao, X. Open Source or Closed Source? A Competitive Analysis with Software Security. Decis. Anal. 2020, 17, 56-73. [CrossRef]
Terakawa, K.; Chen, S.; Nakamura, M. Preliminary Study of Reasoning Existing Projects” Descriptions Based on Classname
Word Elements. In Proceedings of the 23rd ACIS International Summer Virtual Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD2022-Summer), Kyoto, Japan, 4-7 July 2022; pp. 30-35.
Hu, X,; Li, G.; Xia, X;; Lo, D.; Jin, Z. Deep code comment generation with hybrid lexical and syntactical information. Empir. Softw.
Eng. 2020, 25, 2179-2217. [CrossRef]

Lago, P. Architecture Design Decision Maps for Software Sustainability. In Proceedings of the 2019 IEEE/ ACM 41st International
Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS), Montreal, QC, Canada, 25-31 May 2019;
pp- 61-64.

Aghajani, E.; Nagy, C.; Vega-Mdrquez, O.L.; Linares-Vasquez, M.; Moreno, L.; Bavota, G.; Lanza, M. Software Documentation
Issues Unveiled. In Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal,
QC, Canada, 25-31 May 2019; pp. 1199-1210.

Izadi, M.; Akbari, K.; Heydarnoori, A. Predicting the objective and priority of issue reports in software repositories. Empir. Softw.
Eng. 2022, 27, 50. [CrossRef]

Nakasai, K.; Tsunoda, M.; Matsumoto, K. Analyzing Web Search Strategy of Software Developers to Modify Source Codes. IEICE
Trans. Inf. Syst. 2022, E105, 31-36. [CrossRef]

Xia, X.; Bao, L.; Lo, D.; Kochhar, PS.; Hassan, A.E.; Xing, Z. What do developers search for on the web? Empir. Softw. Eng. 2017,
22,3149-3185. [CrossRef]

Surowiecki, J. The Wisdom of Crowds; Anchor: New York, NY, USA, 2005.

Kameda, T.; Toyokawa, W.; Tindale, R.S. Information aggregation and collective intelligence beyond the wisdom of crowds. Nat.
Rev. Psychol. 2022, 1, 345-357.

Nakata, T.; Chen, S.; Saiki, S.; Nakamura, M. A Study of Case Sharing System for Efficient and Innovative Software Upcycling.
In Proceedings of the 2022 International Conference on Data and Software Engineering (ICoDSE), Denpasar, Indonesia, 2-3
November 2022; pp. 6-11.

Husain, H.; Wu, H.H.; Gazit, T.; Allamanis, M.; Brockschmidt, M. Codesearchnet challenge: Evaluating the state of semantic code
search. arXiv 2019, arXiv:1909.09436.

Papamichail, M.D.; Diamantopoulos, T.; Symeonidis, A.L. Measuring the reusability of software components using static analysis
metrics and reuse rate information. J. Syst. Softw. 2019, 158, 110423. [CrossRef]

Widyasari, R.; Sim, 5.Q.; Lok, C; Qi, H,; Phan, J.; Tay, Q.; Tan, C.; Wee, E; Tan,].E; Yieh, Y.; et al. BugsInPy: A Database of
Existing Bugs in Python Programs to Enable Controlled Testing and Debugging Studies. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020, New York, NY, USA, 8-13 November 2020; pp. 1556-1560.

Marinez-Garcia, J.R.; Castillo-Barrera, FE.; Palacio, R.R.; Borrego, G.; Cuevas-Tello,].C. Ontology for knowledge condensation to
support expertise location in the code phase during software development process. IET Softw. 2020, 14, 234-241. [CrossRef]
Aljanabi, M.; Yaseen, M.; Ali, A.; Abed, S.; Chatgpt. ChatGpt: Open Possibilities. Iragi |. Comput. Sci. Math. 2023, 4, 62-64.
Biswas, S. Role of ChatGPT in Computer Programming. Mesopotamian J. Comput. Sci. 2023, 2023, 8-16. [CrossRef]

Yetistiren, B.; Ozsoy, I.; Tuzun, E. Assessing the Quality of GitHub Copilot’s Code Generation. In Proceedings of the 18th
International Conference on Predictive Models and Data Analytics in Software Engineering. Association for Computing
Machinery, Singapore, 17 November 2022; pp. 62-71.

Kwan, J.S. Based on the perspective of sustainability, the characteristics of upcycle fashion design. Fash. Text. Res.]. 2012,
14,13-23. [CrossRef]

Ellis, L.D.; Rorrer, N.A.; Sullivan, K.P.; Otto, M.; McGeehan, J.E.; Roman-Leshkov, Y.; Wierckx, N.; Beckham, G.T. Chemical and
biological catalysis for plastics recycling and upcycling. Nat. Catal. 2021, 4, 539-556.

Singh, J.; Sung, K.; Cooper, T.; West, K.; Mont, O. Challenges and opportunities for scaling up upcycling businesses - The case of
textile and wood upcycling businesses in the UK. Resour. Conserv. Recycl. 2019, 150, 104439. [CrossRef]

Abdalkareem, R.; Shihab, E.; Rilling, J. On code reuse from StackOverflow: An exploratory study on Android apps. Inf. Softw.
Technol. 2017, 88, 148-158. [CrossRef]

Mékitalo, N.; Taivalsaari, A.; Kiviluoto, A.; Mikkonen, T.; Capilla, R. On opportunistic software reuse. Computing 2020,
102, 2385-2408. [CrossRef]

Verdecchia, R.; Kruchten, P.; Lago, P.; Malavolta, I. Building and evaluating a theory of architectural technical debt in software-
intensive systems. J. Syst. Softw. 2021, 176, 110925. [CrossRef]

http://dx.doi.org/10.1016/j.csi.2018.06.005
http://dx.doi.org/10.1016/j.infsof.2022.106894
http://dx.doi.org/10.1111/isj.12282
http://dx.doi.org/10.1287/deca.2019.0390
http://dx.doi.org/10.1007/s10664-019-09730-9
http://dx.doi.org/10.1007/s10664-021-10085-3
http://dx.doi.org/10.1587/transinf.2021MPL0004
http://dx.doi.org/10.1007/s10664-017-9514-4
http://dx.doi.org/10.1016/j.jss.2019.110423
http://dx.doi.org/10.1049/iet-sen.2019.0272
http://dx.doi.org/10.58496/MJCSC/2023/002
http://dx.doi.org/10.5805/KSCI.2012.14.1.013
http://dx.doi.org/10.1016/j.resconrec.2019.104439
http://dx.doi.org/10.1016/j.infsof.2017.04.005
http://dx.doi.org/10.1007/s00607-020-00833-6
http://dx.doi.org/10.1016/j.jss.2021.110925

Information 2023, 14, 518 25 of 25

35.

36.

37.

38.

39.

40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Lenarduzzi, V.; Besker, T.; Taibi, D.; Martini, A.; Arcelli Fontana, F. A systematic literature review on Technical Debt prioritization:
Strategies, processes, factors, and tools. J. Syst. Softw. 2021, 171, 110827. [CrossRef]

Simoiu, C.; Sumanth, C.; Mysore, A.; Goel, S. Studying the “Wisdom of Crowds” at Scale. In Proceedings of the AAAI Conference
on Human Computation and Crowdsourcing, Stevenson, WA, USA, 28-30 October 2019; Volume 7, pp. 171-179.

Brown, A.; Reade,].J. The wisdom of amateur crowds: Evidence from an online community of sports tipsters. Eur. J. Oper. Res.
2019, 272, 1073-1081. [CrossRef]

Frey, V.; Rijt, A. Social Influence Undermines the Wisdom of the Crowd in Sequential Decision Making. Manag. Sci. 2020,
67,4273-4286. [CrossRef]

Allen, J.; Arechar, A.A.; Pennycook, G.; Rand, D.G. Scaling up fact-checking using the wisdom of crowds. Sci. Adv. 2021,
7, eabf4393. [CrossRef]

Da, Z.; Huang, X. Harnessing the Wisdom of Crowds. Manag. Sci. 2019, 66, 1847-1867. [CrossRef]

Davis,].P.; Maigut, A.; Forrest, C. The wisdom of the crowd: A case of post- to ante-mortem face matching by police super-
recognisers. Forensic Sci. Int. 2019, 302, 109910. [CrossRef]

Nguyen, P.T.; Di Rocco, J.; Di Sipio, C.; Di Ruscio, D.; Di Penta, M. Recommending API Function Calls and Code Snippets to
Support Software Development. IEEE Trans. Softw. Eng. 2022, 48, 2417-2438. [CrossRef]

Strandberg, P.E.; Enoiu, E.P.; Afzal, W.; Sundmark, D.; Feldt, R. Information Flow in Software Testing—An Interview Study with
Embedded Software Engineering Practitioners. IEEE Access 2019, 7, 46434-46453. [CrossRef]

Kog, H.; Erdogan, A.M.; Barjakly, Y.; Peker, S. UML Diagrams in Software Engineering Research: A Systematic Literature Review.
Proceedings 2021, 74, 13.

Singh, V.; Singh, A.; Aggarwal, A.; Aggarwal, S. DevOps based migration aspects from Legacy Version Control System
to Advanced Distributed VCS for deploying Micro-services. In Proceedings of the 2021 IEEE International Conference on
Computation System and Information Technology for Sustainable Solutions (CSITSS), Bangalore, India, 16-18 December 2021;
pp- 1-5.

Guerrero-Higueras, A.M.; Ferndndez Llamas, C.; Sanchez Gonzdlez, L.; Gutierrez Ferndndez, A.; Esteban Costales, G;
Conde Gonzélez, M.A. Academic Success Assessment through Version Control Systems. Appl. Sci. 2020, 10, 1492. [CrossRef]
Standard ISO/IEC 25000:2014; Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation
(SQuaRE)—Guide to SQuaRE. International Organization for Standardization: Geneva, Switzerland, 2014.

Kuwajima, H.; Ishikawa, F. Adapting SQuaRE for Quality Assessment of Artificial Intelligence Systems. In Proceedings of the
2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Berlin, Germany, 27-30 October
2019; pp. 13-18.

Ozono, H.; Chen, S.; Nakamura, M. Encouraging Elderly Self-care by Integrating Speech Dialogue Agent and Wearable Device.
In Proceedings of the 8th International Conference, ITAP 2022, Held as Part of the 24th HCI International Conference, HCII 2022,
Virtual, 26 June-1 July 2022; Volume LNCS 13331, pp. 52-70.

Pauzi, A.S.B.; Mohd Nazri, EB.; Sani, S.; Bataineh, A.M.; Hisyam, M.N.; Jaafar, M.H.; Ab Wahab, M.N.; Mohamed, A.S.A.
Movement Estimation Using Mediapipe BlazePose. In Proceedings of the Advances in Visual Informatics, Kajang, Malaysia,
23-25 November 2021; Badioze Zaman, H., Smeaton, A.E, Shih, TK,, Velastin, S., Terutoshi, T., Jergensen, B.N., Aris, H., Ibrahim,
N., Eds.; Springer: Cham, Switzerland, 2021; pp. 562-571.

Liu, Q.; Peng, Y.; Wu, J.; Wang, T.; Wang, G. Secure Multi-keyword Fuzzy Searches With Enhanced Service Quality in Cloud
Computing. IEEE Trans. Netw. Serv. Manag. 2021, 18, 2046-2062. [CrossRef]

Sharma, D.; Shukla, R.; Giri, AK,; Kumar, S. A Brief Review on Search Engine Optimization. In Proceedings of the 2019 9th
International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 10-11 January 2019;
pp. 687-692.

Krath, J.; Schiirmann, L.; von Korflesch, H.F. Revealing the theoretical basis of gamification: A systematic review and analysis of
theory in research on gamification, serious games and game-based learning. Comput. Hum. Behav. 2021, 125, 106963.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jss.2020.110827
http://dx.doi.org/10.1016/j.ejor.2018.07.015
http://dx.doi.org/10.1287/mnsc.2020.3713
http://dx.doi.org/10.1126/sciadv.abf4393
http://dx.doi.org/10.1287/mnsc.2019.3294
http://dx.doi.org/10.1016/j.forsciint.2019.109910
http://dx.doi.org/10.1109/TSE.2021.3059907
http://dx.doi.org/10.1109/ACCESS.2019.2909093
http://dx.doi.org/10.3390/app10041492
http://dx.doi.org/10.1109/TNSM.2020.3045467

	Introduction
	Related Research
	Preliminaries
	Software Upcycling
	Wisdom of Crowds

	Goal and Research Questions
	Methodology
	Key Idea
	Architectural Design of the SUCCEED System
	Definition of Upcycling Material to be Accumulated
	Design of Upcycling Case Data Model
	Design of the SUCCEED System Usage Flow

	Implementation
	Technologies
	Web UI

	Evaluations
	Experiment 1
	Experimental Setup
	Experimental Results
	Discussion

	Experiment 2
	Experimental Setup
	Experimental Results
	Discussion

	Findings through Experiments
	Advantages and Limitations

	Conclusions
	References

