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Abstract: Image inpainting aims to synthesize missing regions in images that are coherent with
the existing visual content. Generative adversarial networks have made significant strides in the
development of image inpainting. However, existing approaches heavily rely on the surrounding
pixels while ignoring that the boundaries might be uninformative or noisy, leading to blurred images.
As complementary, global visual features from the remote image contexts depict the overall structure
and texture of the vanilla images, contributing to generating pixels that blend seamlessly with the
existing visual elements. In this paper, we propose a novel model, PA-DeepFill, to repair high-
resolution images. The generator network follows a novel progressive learning paradigm, starting
with low-resolution images and gradually improving the resolutions by stacking more layers. A novel
attention-based module, the gathered attention block, is further integrated into the generator to learn
the importance of different distant visual components adaptively. In addition, we have designed a
local discriminator that is more suitable for image inpainting tasks, multi-task guided mask-level
local discriminator based PatchGAN, which can guide the model to distinguish between regions from
the original image and regions completed by the model at a finer granularity. This local discriminator
can capture more detailed local information, thereby enhancing the model’s discriminative ability
and resulting in more realistic and natural inpainted images. Our proposal is extensively evaluated
over popular datasets, and the experimental results demonstrate the superiority of our proposal.

Keywords: image inpainting; deep learning; generative adversarial networks

1. Introduction

Image inpainting refers to the process of synthesizing missing regions in images in
a manner that is consistent with existing visual content. This field plays a crucial role in
facilitating a variety of real-life applications such as image recovery [1], image editing [2],
image relocation [3], and image registration [4]. The focus of image inpainting is to generate
visually plausible regions with high resolutions while ensuring global semantic consistency.
The key objective of image inpainting is to generate visually plausible regions with high
resolution while ensuring global semantic consistency [5].

Traditional approaches to image inpainting often rely on infilling images with similar
pattern blocks or manually-crafted shallow features. These methods include diffusion-
based approaches [6–8] and patch-based approaches [9–12]. However, these heuristic
methods tend to introduce bias when the remaining content is not closely related to the
missing area. As a result, they often fail to maintain consistency between the generated
visual features and the overall image semantics [13,14]. Recently, deep convolutional neural
networks (CNN) [15,16] and generative adversarial networks (GAN) [17] exhibit great
potential in image inpainting [18–20].

These techniques are capable of generating realistic new content in highly struc-
tured images.
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Deep learning based approaches contribute to bridging the semantic gap between
the low-level features and the high level semantics [21] to some extent. Unfortunately,
existing methods often generate distorted structures with obvious boundary artifacts
or even blurred textures when repairing images. As shown in Figure 1, the content
repaired by several SOTA methods (CA [19], PConv [22], and Deepfillv2 [20]) are ob-
viously distorted and blurred. The underlying reason of such undesirable performance
is that existing methods heavily rely on the boundary information or the local visual
features to make predictions. First, these methods tend to propagate boundaries to in-
fill the blanks, but boundary signals are usually useless or even noisy, leading to the
blurred images [18]. Second, existing works cannot effectively incorporate the global vi-
sual features from the remote image contexts to infer reasonable contents, resulting in the
distorted structures [23,24].

(a) Original Image (b) Masked Image (c) CA (d) PConv (e) Deepfillv2

Figure 1. An illustration of different inpainting models. Given an image (a) and its masked
version (b), CA [19] (c), PConv [22] (d), and Deepfillv2 [20] (e) generate distorted visual features.

To address the mentioned challenges, in this paper we propose a novel image infilling
model, dubbed Progressive-Augmented-based DeepFill (PA-DeepFill). Different from
existing approaches, we have integrated the progressive and two-stage image inpainting
strategies. Considering it is intractable and challenging to predict the missing pixels
directly, we propose to first resolve the missing content in the coarse-grained granularity, a
much easier task while preserving the uncertainty over more difficult generations. After
that, the fine-grained visual pixels are further generated to ensure high resolution and
coherence. Meanwhile, to capture the global informative contexts and long-distance interest
patterns, a novel gathered attention block is integrated into the generator to learn the global
attention mechanism weight for each pixel and each channel on the feature maps. By
using Gaussian filtering operations, we can guide the model to segment the real pixels and
synthesized pixels in the image in a soft manner. The multi-task guided model assigns
corresponding weights to each synthesized region. Our proposal is thoroughly evaluated
over several datasets, including CelebA [25] and COCO [26], and PA-DeepFill achieves
SOTA performance. The major contributions are summarized as follows:

• We propose a novel progressive image inpainting paradigm, which is capable of
generating high-resolution content for the missing area under an end-to-end train-
ing framework.

• We design a novel gathered attention block, which learns the global importance of
different pixels and channels in the semantic feature maps of various scales.

• We have designed a discriminator for image inpainting tasks that effectively separates
real pixels and synthesized pixels in the completed image and learns different weights
for each synthesized region block based on the matching degree of the synthesis,
thereby improving the inpainting effect of the model.

• We conduct extensive experiments, and the results demonstrate the superiority of our
proposal in image reconstruction accuracy and visual authenticity.

2. Related Works

Image inpainting aims to restore image defects with reasonable content. In recent
years, this field has received significant attention from the research community, primarily
due to its valuable applications. Image inpainting algorithms can be broadly categorized
into two main categories. One category includes traditional methods that rely on similar
pattern blocks or other shallow features. These algorithms utilize the correlation between
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image pixels and the similarity of content to fill in the gaps. The second category consists
of deep learning-based methods, which leverage advanced techniques to learn meaningful
features from a knowledge base. These methods utilize deep neural networks to generate
high-quality inpainted images by understanding the underlying structure and context of
the image.

2.1. Traditional Image Inpainting Methods

Traditional image inpainting methods primarily rely on the correlation between image
pixels and the similarity of content. These methods can be further categorized into diffusion-
based methods and patch-based methods, based on different optimization criteria.

2.1.1. Diffusion-Based methods

Diffusion-based methods in the field of image inpainting aim to propagate information
from the surrounding areas of the damaged or missing regions to fill in the gaps [6–8].
The core idea behind these methods is to model the diffusion process, where the image
information is gradually spread from known regions to the unknown regions. Among these
methods, the most classic one is the Bertalmio–Sapiro–Caselles–Bellester (BSCB) model
proposed by Bertalmio et al. [6]. This model is based on partial differential equations
and uses pixels as the fundamental unit. It extends the isophote direction of the missing
boundary of the image by diffusing the Laplacian feature of the known image into the
missing area. It achieves image completion through continuous iterative repair. The above
partial differential equation and variational method can be derived equivalently through
the variational principle. This method is particularly effective for processing small-scale
damaged images. However, when dealing with larger missing areas or areas with complex
texture information, the resulting repair effect tends to be blurry. There are several main
reasons for this:

• The algorithm models the image in the variational space, and regards the image as
a piecewise smooth function, which can achieve continuous structure but does not
contain any texture information.

• The algorithm is essentially a process of diffusion from the edge of the missing area
to the interior. Once the area to be repaired is large or the texture is complex, it
will fail [27].

2.1.2. Patch-Based Methods

Patch-based methods in the field of image inpainting aim to fill in missing or damaged
regions by searching for and copying patches from the surrounding areas that are visually
similar to the missing region [9–12,28–30]. The core idea behind these methods is to exploit
the redundancy and self-similarity present in natural images. The most representative
method is the Criminisi algorithm, proposed by Criminisi et al. in 2003 [9]. It is the most
classical method for texture synthesis. However, patch-based algorithms do have certain
drawbacks. These methods require a large amount of computation during the search
process, and they rely on external databases or networks. When there are no similar and
reasonable image patches available in the external database or network, these methods can
lead to incorrect repairs.

Traditional image inpainting methods excel at repairing small missing areas with
simple structures and textures. However, they may fall short when it comes to semantically
repairing large missing areas in complex scenes. This is primarily due to the heavy reliance
of patch-based methods on matching patches based on low-level features. These techniques
do not effectively synthesize content that fits seamlessly within the known image context.

2.2. Deep Learning-Based Methods

Deep learning-based image inpainting models have shown significant improvements
over traditional techniques in synthesizing realistic content for complex scenes and large
damaged areas. By leveraging the power of deep neural networks, these models can
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effectively capture high-level features and semantic information to generate more visually
plausible inpainted results. This allows for more seamless integration of synthesized
content within the surrounding context of the image.

Pathak et al. [29] proposed that Context Encoder (CE) is a start-up for image inpainting
based on deep learning. The author used image impainting loss and anti-loss as constraints
to improve the image inpainting effect [31,32]. This work has provided inspiration and
a foundation for subsequent research. Iizuka et al. [30] preserves the discriminators in
the Context Encoder network as local discriminators and adds global discriminators for
the entire image area. The collaboration of two discriminators, each focusing on different
regions, allows the repair network to effectively handle images with arbitrary irregular
shapes and large defect areas. This approach addresses the issues of image boundary
distortion and local blurring commonly observed in CE repair images. Building upon this
foundation, Yu et al. [19] proposed a network architecture consisting of Coarse Network–
Refinement Network, along with the integration of the attention mechanism [33]. This
integration further enhanced the effectiveness of image inpainting. In a similar vein,
Zeng et al. [18] incorporated a non-local module named the attention transfer network to
inpaint missing regions in the feature pyramid.

To further improve image fidelity, many recent works employ generative adversarial
networks (GAN) [34–36]. In these models, the discriminator of the GAN is trained to dis-
tinguish between restored and real images, while the generator is optimized to synthesize
realistic images that can deceive the discriminator. By leveraging the adversarial game
theory between the generator and discriminator, GAN-based inpainting models can gener-
ate more realistic textures. Notably, one successful GAN-based image inpainting model,
called PatchGAN [37], has achieved remarkable success in image translation tasks. More
specifically, PatchGAN’s discriminator is specifically designed to differentiate between
patches extracted from real images and patches generated by the inpainted images. To
enhance the stability of GAN training, spectral normalization is applied to each layer of
the discriminator. This normalization technique helps to regularize the network’s weights,
leading to more stable and reliable training process for the GAN-based image inpainting
model. Isola et al. [37] utilized PatchGAN’s discriminator and conditional generation
adversarial network to accomplish the image-to-image translation task, which has pro-
vided inspiration for subsequent image inpainting tasks. Yu et al. [20] improved the mask
update process of partial convolutional network [22] under the discriminator structure
inherited from PatchGAN. Thus, they applied spectral-normalized discriminator on dense
image patches, which the image inpainting effect can be further improved. Zeng et al. [18]
proposed multi-path convolution to replace the common single convolution, different
dilation rate parameters are set for each convolution path, and then the features obtained
by convolution of each path are aggregated so that each pixel can obtain different scale
features. It effectively solves the problems of obtaining context reasoning from image
holes’ distant contexts and synthesis of fine-grained texture of large area missing region.
Guo et al. [38] introduced a Bi-directional Gated Feature Fusion (BGFF) module to facilitate
the exchange and fusion of structure and texture information. This module enables the
effective integration of structural and textural features, allowing the model to capture
and leverage complementary information from both domains. By incorporating the BGFF
module, the model can achieve enhanced performance through the effective combination
of structural and textural cues in the image.

Additionally, there have been efforts focused on generative facial inpainting.
Yeh et al. [31] searched for the closest encoding in the potential space of the damaged
image and decoded it to obtain a complete image. Li et al. [32] introduced additional
loss based on facial analysis to perform facial inpainting. However, these methods often
require post-processing steps, such as color blending, to enhance color consistency near the
boundaries of the inpainted regions.
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3. Methodology

As shown in Figure 2, PA-DeepFill consists of two generator networks and one dis-
criminator network. The first generator adopts a progressive learning paradigm, gradually
extracting different levels of contextual semantic features by reconstructing the correspond-
ing top layers to enhance the inpainting performance. Specifically, the first-stage generator
is composed of multiple gathered attention block, including pixel attention block and chan-
nel attention block, which learn global attention weights for different pixels and channels
in the feature map. These modules help capture informative contexts and distant interest
patterns, facilitating context reasoning. The results of the first-stage inpainting are further
enhanced by a designed image enhancement module. The second generator takes the
original input image with a mask and the output image processed by the image enhance-
ment module to synthesize fine-grained textures. The discriminator is responsible for
supervising the generator to generate textures that conform to contextual semantics. With
the well-designed mask prediction, the discriminator effectively improves the synthesized
textures, making them more realistic. Through the joint optimization of several carefully
designed loss functions, PA-DeepFill can synthesize images with contextual semantics and
clear textures in the large missing areas of high resolution.

Figure 2. The overview of the proposed PA-DeepFill model.

3.1. Gathered Attention Block

The gathered attention block is the fundamental component of the generator, which
learns attention weights for pixels and channels in semantic feature maps of various scales.
Specifically, the gathered attention block consists of two major modules: the pixel attention
block and the channel attention block.
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3.1.1. Pixel Attention Block

The generated content is expected to be conform to the context semantics consistency,
while directly incorporating the entire image features might introduce extra noise [39,40].
Thus, we propose the pixel attention block to adaptively focus on the most informative
global pixel-level patterns of interest.

As shown in Figure 3, a pixel attention block is composed of the global pooling layer,
the 1× 1 and the 3× 3 convolution layers. The major steps are as follows:

• Perform 1× 1 convolution on the input feature image;
• The 3× 3 convolutional layer reduces the dimension of the feature map channel, which

is equivalent to sparse coding of the feature map;
• Each pixel point of the input feature map is multiplied by the corresponding pixel

attention weight to obtain the final feature map.

Figure 3. The framework of pixel attention block.

Through the above three steps, the pixel attention block empowers the generator to
capture the pixel-level semantic features, improving the context reasoning ability.

3.1.2. Channel Attention Block

Different semantic features may play different roles in image inpainting process.
However, previous works [20] incorporate all the information equally, leading to the fuzzy
textures. To identify the informativeness of various semantic features, we further design a
channel attention block to learn the importance of different feature channels. As shown in
Figure 4, the channel attention block contains the following three steps:

• The input feature map is compressed into a one-dimensional vector after passing
through the global max-pooling layer;

• Employ 1× 1 convolution to learn an attention weight for each channel dimension of
the original feature map;

• Multiply each channel by the corresponding attention weight to obtain the final
feature map.

With the channel attention blocks, the generator network is capable of incorporating
helpful channel-level global features while avoiding the potential noise.

The outputs from these two attention-based modules are combined together by
element-wise addition as the final output. Gathered attention blocks capture the infor-
mative global visual semantics, which contribute to reducing the dependency on the
boundary information by precisely incorporating the distant features of different levels
as complementary.
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Figure 4. The framework of channel attention block.

3.2. Image Enhancement Module

The Image Enhancement Module is divided into two parts as shown in Figure 2: the
adaptive parameter control network and the multi-dimensional image enhancement network.

3.2.1. Adaptive Parameter Control Network

The adaptive parameter control network consists of five convolutional blocks and two
fully connected layers. Each convolutional block consists of a 3× 3 convolutional layer
with a stride of 2 and a Leaky ReLU activation function. The input to the model is a
256 × 256 resolution image. By using low-resolution images, the model can predict the pa-
rameter information required by the multi-dimensional image enhancement network while
significantly reducing computational cost [41]. The final output of this network consists of
the hyperparameters required by the multi-dimensional image enhancement network.

3.2.2. Multi-Dimensional Image Enhancement Network

The multi-dimensional image enhancement network consists of five differentiable
filters with adjustable hyperparameters, including white balance, gamma correction, con-
trast, tone, and sharpening. Following previous works [41,42], we represent white balance,
gamma correction, contrast, and tone operations as pixel-wise filters and represent the
sharpening operation as a sharpening filter.

Pixel-wise filters. In order to generate images that are more visually appealing to
human perception, we use pixel-wise filters to apply specific operations that map the
input pixel values Pi = (ri, gi, bi) to the output pixel values Po = (ro, go, bo), where (r, g, b)
represent the red, green, and blue color channels, respectively. Table 1 shows the mapping
function relationships for pixel-wise filters.

Table 1. Pixel-wise filter mapping function.

Filter Parameters Mapping Function

White Balance Wr, Wg, Wb Po = (Wrri, Wgrg, Wbrb)

Gamma G Po = PG
i

Contrast α Po = α · En(Pi) + (1− α) · Pi

Tone ti Po = (Ltr (ri), Ltg (gi), Ltb (bi))

The design of a contrast filter includes an input parameter to set linear interpolation
between the original image and the fully enhanced image. As shown in Table 1, the
definition of En(Pi) in the mapping function is as follows:

Lum(Pi) = 0.25ri + 0.65gi + 0.1bi (1)

EnLum(Pi) =
1
2
(1− cos(π × (Lum(Pi)))) (2)

En(Pi) = Pi ×
EnLum(Pi)

Lum(Pi)
(3)
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Based on previous work [41–43], we set the mapping function of the color tone filter as
a monotonic piecewise linear function. Let L be the number of parameters for the color tone
filter, then all the parameters can be represented as t0, t1, . . . , tL−1. The points on the color
tone curve are represented as (k/L, Tk/TL), where Tk = ∑k−1

i=0 tl . The mapping function of
the color tone filter can be expressed as:

Po =
1

TL

L−1

∑
j=0

clip(L · Pi − j, 0, 1)tk (4)

Sharpening filter. Image sharpening can better highlight the details of the inpainted
image [44], thereby improving the image inpainting performance of the model. The image
sharpening operation can be represented as:

F(x, λ) = I(x) + λ(I(x)− Gau(I(x))) (5)

where I(x) represents the input image, Gau(I(x)) represents the Gaussian filtering op-
eration applied to the input image, and λ is a positive scaling factor. By optimizing the
scaling factor λ, the degree of sharpening can be adjusted to obtain a restored image with
richer details.

3.3. Generator Network

PA-DeepFill consists of two generator networks: the first-stage generator adopts a
progressive generation strategy to generate rough restoration results; the second-stage
generator is responsible for receiving the rough restoration results enhanced by image
quality improvement, and further optimizing the restoration quality of the image to make
the generated image more refined and realistic.

3.3.1. The First-Stage Generator

The generator in the first stage of PA-DeepFill adopts a progressive generation strategy,
which avoids learning all features simultaneously like traditional GANs. Following the
general idea of “from coarse to fine”, this progressive paradigm subjectively allows us
to first learn the coarse structural features (low resolution) of the image distribution, and
then gradually learn the fine-grained details (high resolution) of the image after feature
learning, rather than learning all scale features at the same time. As shown in Figure 3,
the outputs from the last five layers of the generator are divided into y0, y1, y2, y3, and y4.
The size of the generated feature map is 32× 32, 64× 64, 128× 128, 256× 256, 512× 512,
and the original image size is downsampled to the corresponding feature map size. Then,
multi-level MSE loss can be calculated. Ideally, the generator will generate infilling content
of different resolutions following y0, y1, y2, y3 and y4, respectively. However, due to the
phased nature of network training, the current resolution is directly transferred to a higher-
resolution network architecture, and the network may collapse due to the weight mismatch
of newly added layers. To solve this problem, we further design the Smooth Transition (ST)
module. As shown in Figure 5, when the resolution is transferred from 32× 32 to 64× 64,
we control the ST module to achieve a gradual process to avoid sudden network collapse.
As shown in Figure 5b, after generator G generates an image with a resolution of 32× 32,
in order to generate an upsampled image with a resolution of 64× 64, it is divided into
three branch paths. The first branch passes through a convolution layer and a sigmoid
activation function to generate an attention weight α. The second branch uses a nearest
neighbor interpolation algorithm to upsample the image with a resolution of 32× 32 by 2×.
In the third branch, we introduce a transposed convolution layer. After the transposed
convolution, 32× 32 images are also upsampled twice. The final up-sampled images are
the weighted combination of the images from the three paths.



Information 2023, 14, 512 9 of 22

Figure 5. The frameworkof smooth transition (ST) module. Where (a) is 32× 32, (b) is the transition
layer from 32× 32 to 64× 64, and (c) is 64× 64.

3.3.2. The Second-Stage Generator

The goal of the second-stage generator is to further optimize the restoration quality
based on the rough restoration results, making the generated image more refined and
realistic. To enhance the effectiveness of image inpainting, we employ the gated convolution
proposed by Yu et al. [20] as a replacement for the conventional convolution operation in
the network. The expression of gated convolution is as follows:

Gatingy,x = ∑ ∑ Wg · I
Featurey,x = ∑ ∑ W f · I

Oy,x = φ(Featurey,x)� θ(Gatingy,x)

(6)

where θ represents the sigmoid function, so the output of the gated convolution is between 0
and 1, and φ represents the ReLU activation function in this paper. Compared to traditional
convolution operations, gated convolution introduces a gating mechanism that adaptively
controls the information flow in the network. This allows the network to better capture
long-range dependencies and reduce interference from irrelevant information. In the
task of image inpainting, using gated convolution can enhance the generator’s ability to
capture long-distance image features and synthesize more fine-grained textures, making the
restoration results appear more natural and continuous, further enhancing the effectiveness
of image inpainting. The fine restoration network also includes contextual attention blocks,
which is used to learn contextual information from the non-hole regions of the input image.
By minimizing the adversarial loss, pixel-level reconstruction loss and contextual loss, the
fine restoration network can generate preliminary restoration results.
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3.4. MT-PatchGAN

In order to further enhance the discriminator’s ability to discriminate information
from the inpainted regions, we propose an improved version of the mask-level local dis-
criminator based on the work of Zeng et al. [18]. We refer to this approach as the Multi-Task
guided mask-level local discriminator-based PatchGAN (MT-PatchGAN). Specifically, this
approach utilizes mask downsampling as the ground truth data for the image inpainting
prediction task. Furthermore, a finer-grained training of the discriminator is achieved
by employing a mask generated through Gaussian filtering. Instead of merely padding
the output matrix of the PatchGAN with binary values, the discriminator is trained us-
ing a mask obtained through Gaussian filtering. This approach effectively separates the
inpainted regions into real and inpainted parts, enabling the assessment of inpainting
quality in the inpainted regions. It enhances the network’s capacity to capture long-range
features. Consequently, the strengthened discriminator promotes the generation of clearer
and visually consistent textures. By introducing MT-PatchGAN, the network can better
discriminate the inpainted regions and provide more informative feedback to the generator,
leading to improved inpainting results.

3.5. End-to-End Optimization

We represent the corresponding binary completion mask as b, where 1 represents
the known pixels and 0 represents the missing pixels. The real image is denoted as x, the
generated image as z, the generator as G, and the discriminator as D. The � operator
denotes the element-wise multiplication operation. The result of image completion can be
represented as:

z = x� b + G(x� b, b)� (1− b) (7)

To further optimize the visual realism of the images, the model employs six loss
functions as optimization strategies, i.e., a multi-MSE loss, a style loss [45], a contextual
loss, a perceptual loss [46], a cross-entropy loss, and an adversarial loss based on MT-
PatchGAN. Specifically, the multi-MSE loss ensures the reconstruction area conform to the
visual context in different levels. A single Mean Squared Error (MSE) loss is defined as:
LMSE = ∑n

i=1(yi − ŷi)
2, in which n denotes the resolution of the feature map, yi represents

the pixel value distribution of the feature map, ŷi represents the pixel value distribution
of the real picture. After combining the MSE losses from various levels, the proposed
multi-MSE loss is formally defined as follows:

Lmulti−MSE =
k

∑
j=0

λi × Lj_MSE, (8)

where k denotes the number of hidden layers in the generator, λ0 = 0.0001, λ1 = 0.001,
λ2 = 0.01 , λ3 = 0.1, and λ4 = 1. Similarly, the contextual loss is measured by computing
the pixel-level differences between the generated and real images to capture their similarity.
The specific expression of the contextual loss is as follows:

Lcon =
1

W

W

∑
i=1

H

∑
j=1

(zi,j − xi,j)
2 (9)

where x and y represent the generated image and the real image, respectively; W and H
represent the width and height of the image; and i and j represent the indices of the pixels.
This loss function calculates the squared sum of the differences at each pixel position,
resulting in a scalar value that measures the similarity between the generated image and
the real image.

The perceptual loss and style loss, based on the pre-trained VGG-19 network [47,48],
are used to capture the high-level features and structural similarity between the generated
and real images. By extracting feature maps from the VGG-19 network, the differences
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between the feature maps of the generated and real images are computed. Specifically, the
expression for the perceptual loss is as follows:

Lper = ∑ |F(z)− F(x)|. (10)

The style loss is as follows:

Lsty = ∑ |Gram(F(z))− Gram(F(x))|, (11)

where F(·) is the output feature map of a specific layer in the VGG-19 network, and Gram(·)
is the Gram matrix of the feature map.

To further enhance the image inpainting capability, two loss functions are used to
optimize the discriminator: the cross-entropy loss function and the adversarial loss function
for MT-PatchGAN. The cross-entropy loss function is employed to evaluate the similar-
ity between the inpainted region and the original region, enabling the discriminator to
distinguish between real and generated images. The cross-entropy loss function for the
discriminator is expressed as:

Lce = −[(x log(z) + (1− x) log(1− z))] (12)

Introducing an adversarial loss function can enhance the discriminator’s focus on the
missing regions and disregard the influence of the inpainting boundaries. The adversarial
loss function for the discriminator can be expressed as:

LD
adv = Ez∼pz

[
(D(z)− δ(b))2

]
+ Ex∼pdata

[
(D(x)− 1)2

]
(13)

where δ represents the processing of the mask used for training, including downsampling
and Gaussian filtering. Correspondingly, the adversarial loss for the generator is denoted as:

LG
adv = EP∼pz

[
(D(x)− 1)2

]
. (14)

The overall loss function is the weighted combination of these six losses:

L = λMulti−MSELMulti−MSE + λconLcon + λperLper+

λstyLsty + λceLce + λadvLG
adv.

(15)

where λi represents the weights of different losses. For our experiments, we empirically
choose λMulti_MSE = 1, λcon = 0.1, λper = 0.1, λsty = 250, λcon = 0.1, λce = 0.01, and
λadv = 0.01 for training.

4. Experiments
4.1. Experimental Settings
4.1.1. Datasets

We conduct experiments on three large public datasets, namely COCO [26], CelebA [25],
and QMUL-OpenLogo [49]. Following previous works [26], we randomly select 10,000 images
from each dataset as the validation and testing sets.

4.1.2. Baselines

Our proposal is extensively compared with popular SOTA baselines, including CA [19],
PConv [22], Deepfillv2 [20], AOT-GAN [18], and CTSDG [38].

4.1.3. Parameter Settings

We implement the first-stage generator network of PA-DeepFill using an encoder
network composed of three convolutional layers, which performs four times downsampling
on the input image. Correspondingly, we use a three-layer deconvolutional generator to
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upsample the feature map generated by the encoder network. For the discriminator
network, we build it by using four convolutional layers with a stride of two, stacked on a
70× 70 PatchGAN network. We then construct the discriminator network. We perform
Gaussian filtering on the discriminator network using a 70× 70 Gaussian kernel.

4.2. Quantitative Analysis

To ensure a fair comparison, for each test image, we randomly select a mask from a set
of freely-formed masks provided by Liu et al. [22] to serve as the testing mask. This random
selection of masks ensures that the comparison is conducted under the same conditions.

From Tables 2 and 3, it can be observed that our proposed model outperforms other
state-of-the-art inpainting models in terms of image inpainting with larger missing ar-
eas (i.e., the mask area is greater than 30%). We believe this is due to the adoption of a
progressive strategy, which reduces the inpainting span and thus lowers the difficulty of
the inpainting task. Additionally, our designed image enhancement module effectively
improves the results of rough inpainting, further enhancing the subsequent inpainting
performance. MT-PatchGAN forces the discriminator to focus on the inpainted regions, and
the enhanced discriminative ability encourages the generator to synthesize finer texture de-
tails. Comparing Tables 2 and 3, it can be observed that all models exhibit worse inpainting
results on the COCO dataset compared to the CelebA dataset. This is because the COCO
dataset contains more complex image scenes with a higher amount of detailed textures.

Table 2. Quantitative comparison on CelebA. The best and the second best results are bolded
and underlined.

Mask(%) CA Deepfillv2 PConv CTSDG AOT–GAN PA–DeepFill

L 1
(1

0−
−

2 )↓

0–10 1.57 1.31 1.43 0.55 1.14 1.23

10–20 2.19 2.01 2.09 1.29 1.89 1.81

20–30 3.69 3.31 3.47 2.31 2.76 2.33

30–40 4.56 4.11 4.17 3.44 3.91 3.23

40–50 5.33 5.14 5.30 4.84 5.01 4.84

50–60 8.33 7.97 8.03 7.65 7.88 7.57

PS
N

R
↑

0–10 28.61 29.94 29.37 34.15 32.99 33.78

10–20 25.92 26.77 26.13 28.77 28.47 28.49

20–30 20.43 21.10 20.99 25.32 25.19 25.49

30–40 18.96 19.73 19.30 23.03 22.94 23.47

40–50 16.47 18.02 16.45 21.17 21.07 21.14

50–60 14.33 14.57 13.69 18.43 18.51 18.44

SS
IM

(1
0−
−

1 )↑

0–10 9.33 9.55 9.20 9.75 9.44 9.33

10–20 8.94 9.08 8.94 9.33 9.19 9.11

20–30 8.33 8.77 8.43 8.79 8.60 8.96

30–40 7.99 8.15 7.94 8.22 8.11 8.24

40–50 7.45 7.20 7.46 7.59 7.30 7.61

50–60 6.00 6.25 6.33 6.70 6.37 7.01
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Table 2. Cont.

Mask(%) CA Deepfillv2 PConv CTSDG AOT–GAN PA–DeepFill

FI
D
↓

0–10 4.25 3.89 3.91 3.01 3.14 3.11

10–20 13.79 13.20 15.37 8.89 9.01 8.94

20–30 22.38 22.05 27.37 17.09 15.79 15.44

30–40 34.33 35.97 38.44 26.97 25.14 24.75

40–50 53.66 50.19 58.47 40.46 44.37 43.74

50–60 84.94 81.46 91.37 68.31 70.59 64.58

Table 3. Quantitative comparison on COCO.

Mask(%) CA Deepfillv2 PConv CTSDG AOT-GAN PA-DeepFill

L 1
(1

0−
−

2 )↓

0–10 1.05 0.92 0.98 0.54 0.78 0.73

10–20 1.35 1.29 1.30 0.89 1.14 0.91

20–30 2.04 1.88 1.94 1.59 1.73 1.43

30–40 2.99 2.71 2.85 2.37 2.35 2.27

40–50 4.01 3.72 3.70 3.47 3.55 3.36

50–60 6.58 6.35 6.44 6.13 6.07 6.19

PS
N

R
↑

0–10 34.12 37.51 35.09 39.48 38.39 38.91

10–20 31.32 33.05 32.74 34.15 33.60 34.33

20–30 27.45 29.34 28.37 30.18 29.78 30.43

30–40 24.27 26.35 25.91 27.04 26.73 27.11

40–50 22.00 24.05 24.13 24.67 24.37 24.51

50–60 18.97 20.12 19.87 20.68 20.50 20.44

SS
IM

(1
0−
−

1 )↑

0–10 9.59 9.76 9.65 9.84 9.78 9.71

10–20 9.40 9.54 9.55 9.67 9.57 9.57

20–30 8.91 9.23 9.21 9.31 9.16 9.27

30–40 8.51 8.84 8.80 8.92 8.88 8.94

40–50 8.13 8.40 8.40 8.49 8.44 8.64

50–60 7.31 7.60 7.41 7.65 7.55 7.65

FI
D
↓

0–10 2.01 1.75 1.83 1.21 1.34 1.33

10–20 4.16 3.87 4.01 3.13 3.37 3.13

20–30 7.90 7.31 7.51 6.29 6.84 6.22

30–40 13.96 11.37 13.37 10.01 10.75 9.74

40–50 19.39 15.35 18.05 13.66 14.64 13.43

50–60 31.33 24.25 29.54 20.77 22.67 20.74

Quality Analysis

To ensure a fair qualitative comparison, we randomly selected repaired images gen-
erated by different models and displayed them. In Figure 6, we present the results for
various scenes, such as airplanes, fruits, and bridges, along with enlarged patches for
closer examination. As depicted in these examples, our model demonstrates the ability to
reconstruct more realistic structures and produce clearer textures for a variety of scenes.
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(a) Mask Image

(b) The repair results of CA

(c) The repair results of Deepfillv2

(d) The repair results of PConv

(e) The repair results of CTSDG

(f) The repair results of AOT-GAN

(g) The repair results of PA-DeepFill

Figure 6. Qualitative comparisons of PA-DeepFill with CA [19], PConv [22], Deepfillv2 [20],
CTSDG [38], and AOT-GAN [18] on COCO [26]. Each column shows the overall repair effect
and local repair details. All the images are center-cropped and resized to 512× 512.
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4.3. Ablation Study

In this section, we conducted lots of ablation experiments to verify the effectiveness of
the core components. We randomly select masks with different mask area ratios for each
ablation experiment. As shown in Table 4, model performance presents significant decline
after removing the pixel attention block (PAB) or the channel attention block (CAB).

Table 4. Ablation experiments on gathered attention block. Pixel attention block is denoted as PAB,
and channel attention block is represented as CAB.

Model PAB CAB L1(10−2)↓ PSNR↑ SSIM↑ FID↓

1 × × 4.01 21.97 7.33 19.97

2 X × 3.59 22.74 7.93 21.78

3 × X 3.57 22.75 7.99 21.32

4(PA-DeepFill) X X 3.23 23.47 8.24 24.75

This is reasonable as these two types of attentions contribute to capturing different
types of semantic correlations, and combining them together would provide comprehensive
global information as complementary. In the qualitative analysis of Figures 7 and 8, it can
be observed that the models incorporating attention blocks successfully synthesized higher-
resolution textures in the missing regions of the images. This provides strong evidence for
the effectiveness of the proposed attention blocks in image inpainting tasks.

(a) Mask Image (b) Repair Result without PAB (c) Repair Result with PAB

Figure 7. The qualitative analysis of Pixel Attention Block.

(a) Mask Image (b) Repair Result without CAB (c) Repair Result with CAB

Figure 8. The qualitative analysis of Channel Attention Block.

To evaluate the effectiveness of the proposed image enhancement (IE) module for
image inpainting tasks, we conducted an ablation study on the module. Table 5 presents
the quantitative comparison results of the image enhancement module. It can be observed
that adding the image enhancement module between the rough inpainting network and
the fine inpainting network significantly improves the performance of image inpainting.
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Table 5. Quantitative analysis of the image enhancement module. Image enhancement module is
denoted as IE module.

IE Module L1(10−2)↓ PSNR↑ SSIM↑ FID↓

× 3.74 22.44 8.11 27.74

X 3.23 23.47 8.24 24.75

In Table 5, it can be seen that adding the image enhancement module between the
first-stage generator and the second-stage generator effectively enhances the image inpaint-
ing results.

(a) Mask Image (b) Repair Result without IE module (c) Repair Result with IE module

Figure 9. The qualitative analysis of image enhancement module.

In the qualitative analysis of Figure 9 , it can be observed that the models incorporating
image enhancement module successfully synthesized higher-resolution textures in the
missing regions of the images. We believe that the image enhancement module utilizes the
structural priors of convolutional neural networks to capture structural information from
images, effectively restoring images with complex textures and structures. It optimizes the
output of the rough inpainting network and further utilizes this enhanced output as input
for the fine inpainting network. This promotes the generation of inpainted images that are
semantically consistent with the context, thereby enhancing the overall inpainting effect of
the model.

To evaluate the effectiveness of the proposed improved discriminator for image in-
painting tasks, we compared it with PatchGAN, SN-PatchGAN applied in Deepfillv2 [20],
and MT-PatchGAN. The quantitative analysis results of the discriminator for the model are
shown in Table 6.

Table 6. Quantitative analysis of different discriminators.

Model L1(10−2)↓ PSNR↑ SSIM↑ FID↓

PatchGAN 3.67 22.13 8.07 41.44

SN-PatchGAN 3.34 23.07 8.26 33.47

MT-PatchGAN 3.23 23.47 8.24 24.75

From the data in Table 6, it can be observed that both our proposed improvement
and SN-PatchGAN achieve better performance in image inpainting tasks compared to
PatchGAN. This is because PatchGAN cannot perceive the real regions in the inpainted
image and tends to classify all output image patches as fake. On the other hand, the other
two improved discriminators have higher granularity and can effectively distinguish the
real parts inherited from the original image from the inpainted parts generated by the
model. Meanwhile, it can be concluded that MT-PatchGAN is more suitable for image
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inpainting tasks compared to other approaches. We believe that this is because the Gaussian
filtering used in this approach allows for the soft extraction of the masked regions, enabling
pixel-level segmentation between the real and synthesized regions. This greatly reduces the
obvious artifacts at the boundaries of the missing regions, caused by the presence of both
real and synthesized pixels. Additionally, through multi-task guidance, the model can more
accurately reconstruct the missing parts of the image, thus improving the overall image
inpainting performance. Figure 10 presents a set of qualitative experiments comparing
different discriminator approaches. It can be observed that the MT-PatchGAN is particularly
suitable for image inpainting tasks. For example, PatchGAN can only use the surrounding
pixels to fill in the gaps between the tiles. SN-PatchGAN produces some distortion when
synthesizing the tile gaps, while MT-PatchGAN utilizes contextual information to complete
the gaps between the tiles, generating a visually more appealing image.

(a) Mask Image (b) PatchGAN (c) SN-PatchGAN (d) MT-PatchGAN

Figure 10. The qualitative analysis of image enhancement module.

To further improve the quality of image inpainting, we conducted comparative ex-
periments on the Multi-Task Guided Mask-Level Local Discriminator with different sizes
of receptive fields (default size is 70× 70). The experimental results are shown in Table 7.
From the experimental results, it can be observed that using the default size of 70× 70 for
the receptive field yields the best performance in image inpainting tasks.

Table 7. Comparative experiment on the size of receptive field.

Size L1(10−2)↓ PSNR↑ SSIM↑ FID↓

16× 16 3.39 23.00 8.23 27.71

30× 30 3.39 23.01 8.24 27.52

70× 70 3.23 23.47 8.24 24.75

128× 128 3.41 22.64 8.21 29.69

Figure 11 presents a qualitative analysis of different receptive field sizes. As shown
in Figure 11d, using a receptive field size of 70× 70 effectively synthesizes the missing
pixels in the airplane tire and demonstrates better performance in preserving the obscured
airplane body label compared to other sizes of receptive fields. The size of the receptive
field has a significant impact on the performance of image inpainting tasks. If the receptive
field is too large, the discriminator will focus more on global structure and overall image
consistency. In image inpainting tasks, an excessively large receptive field may cause the
discriminator to overlook the consistency of local textures, details, and edges. Consequently,
the generated image may exhibit blurred details and textures, resulting in a lower quality
restoration. On the other hand, if the receptive field is too small, the discriminator will
primarily focus on the local textures and details of the input image. This weakens the
emphasis on global structure and consistency, which in turn affects the generation of
restoration results with correct global structure. In such cases, although the restoration
results may have high-quality textures and details in local regions, there may be issues with
the overall structure, such as object deformation or unclear edges. Therefore, finding an
optimal receptive field size is crucial to balance the preservation of details and the overall
structure in image inpainting tasks.



Information 2023, 14, 512 18 of 22

(a) Mask Image (b) 16 × 16 (c) 32 × 32 (d) 70 × 70 (e) 128 × 128

Figure 11. Qualitative analysis of receptive field size.

4.4. Application

In this section, we will evaluate the performance of our model, PA-DeepFill, on
three real-world scenarios: face editing, logo removal, and object removal. Through
these experiments, we aim to demonstrate the effectiveness of PA-DeepFill in practical
applications.

4.4.1. Logo Removal

The automatic removal of logos is highly beneficial in logo design, media content
creation, and other relevant fields. To evaluate the effectiveness of PA-DeepFill in logo
removal, we employ the QMUL-OpenLogo dataset for both training and testing [49].
Figure 12 showcases the visual outcomes of logo removal achieved using our proposed
PA-DeepFill. The results effectively demonstrate that PA-DeepFill is capable of removing
logos from images and seamlessly filling the resulting gaps with realistic content.

(a) Original Images (b) Masked Images (c) Repaired Images

Figure 12. Visual results of PA-DeepFill in logo removal.

4.4.2. Object Removal

Object removal is a widely used technique for image anonymization, with the aim
of removing specific objects from an image and filling the resulting gaps with plausible
content. To assess the performance of PA-DeepFill in object removal, we train the model on
the COCO dataset [26] using user-defined masks.
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Figure 13 displays the results of object removal achieved by our proposed PA-DeepFill.
The visual outcomes demonstrate that PA-DeepFill is capable of effectively removing
specific objects from diverse and complex scenes using user-provided masks.

(a) Original Images (b) Masked Images (c) Repaired Images

Figure 13. Visual results of PA-DeepFill in object editing.

4.4.3. Face Editing

We test the effect of face editing on CelebA [25]. The visual results of the proposed
PA-DeepFill face editing are shown in Figure 14.

The results show that our model can complete the consistent structure and generate
clear facial texture.

(a) Original Images (b) Masked Images (c) Repaired Images

Figure 14. Visual results of PA-DeepFill in face editing.
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5. Conclusions

In this paper, we introduce an image inpainting model that leverages the concept
of progressive inpainting and incorporates a gathered attention block for high-resolution
image inpainting. Our proposal is capable of adaptively incorporating the distant visual
features as complementary to boost the infilling performance, and progressively generating
visual content with different resolutions to avoid the distorted visual features. Our proposal
demonstrates superior performance on different datasets and tasks.
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