
Citation: Zhang, L.; Wang, R.; Li, Z.;

Li, J.; Ge, Y.; Wa, S.; Huang, S.; Lv, C.

Time-Series Neural Network: A

High-Accuracy Time-Series

Forecasting Method Based on Kernel

Filter and Time Attention.

Information 2023, 14, 500. https://

doi.org/10.3390/info14090500

Academic Editors: Binbin Yong and

Francesco Camastra

Received: 1 August 2023

Revised: 3 September 2023

Accepted: 7 September 2023

Published: 13 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Time-Series Neural Network: A High-Accuracy Time-Series
Forecasting Method Based on Kernel Filter and Time Attention
Lexin Zhang 1, Ruihan Wang 1, Zhuoyuan Li 1, Jiaxun Li 1, Yichen Ge 1, Shiyun Wa 2, Sirui Huang 1

and Chunli Lv 1,*

1 China Agricultural University, Beijing 100083, China; zhanglx0801@cau.edu.cn (L.Z.);
wangrn@cau.edu.cn (R.W.); lzy1213@cau.edu.cn (Z.L.); ljxun@cau.edu.cn (J.L.); geyc2021@cau.edu.cn (Y.G.);
huangsirui@cau.edu.cn (S.H.)

2 Applied Computational Science and Engineering, Imperial College London, South Kensington Campus,
London SW7 2AZ, UK; shiyun.wa23@imperial.ac.uk

* Correspondence: lvcl@cau.edu.cn

Abstract: This research introduces a novel high-accuracy time-series forecasting method, namely the
Time Neural Network (TNN), which is based on a kernel filter and time attention mechanism. Taking
into account the complex characteristics of time-series data, such as non-linearity, high dimensionality,
and long-term dependence, the TNN model is designed and implemented. The key innovations of
the TNN model lie in the incorporation of the time attention mechanism and kernel filter, allowing
the model to allocate different weights to features at each time point, and extract high-level features
from the time-series data, thereby improving the model’s predictive accuracy. Additionally, an
adaptive weight generator is integrated into the model, enabling the model to automatically adjust
weights based on input features. Mainstream time-series forecasting models such as Recurrent Neural
Networks (RNNs) and Long Short-Term Memory Networks (LSTM) are employed as baseline models
and comprehensive comparative experiments are conducted. The results indicate that the TNN
model significantly outperforms the baseline models in both long-term and short-term prediction
tasks. Specifically, the RMSE, MAE, and R2 reach 0.05, 0.23, and 0.95, respectively. Remarkably, even
for complex time-series data that contain a large amount of noise, the TNN model still maintains a
high prediction accuracy.

Keywords: time-series forecasting; deep learning; time-series neural network; time attention

1. Introduction

With the rapid development of global financial markets, the stock market has increas-
ingly become a significant choice for investors. In the stock market, the accuracy of stock
price prediction directly influences investors’ decisions and is crucial for the health and sta-
bility of economic activities. However, stock price prediction poses a formidable challenge.
Stock prices are influenced by numerous factors, including but not limited to macroe-
conomic conditions, company performance reports, market sentiment, and even global
political dynamics. The interweaving of these factors causes stock prices to exhibit a high
degree of uncertainty and non-linearity, which adds significant difficulty to forecasting.

In recent years, deep learning has made considerable contributions in fields such as
agriculture [1,2], healthcare [3,4], energy usage [5], and finance [6]. This development
provides a new solution for the time series prediction problem. Neural network models
have gradually been widely used in stock price prediction due to their advantages in
processing non-linear data and capturing long-distance dependencies. Nevertheless, most
existing prediction models based on neural networks often overlook a critical issue, the
temporal attributes of stock prices and their importance. In reality, the impact of past price
trends on future prices is not equal; recent price changes often have a more significant effect
on future price predictions.
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In recent decades, many researchers and practitioners have tried to predict stock prices us-
ing various methods, including time-series-based prediction methods [7,8], machine learning-
based prediction methods [9,10], deep learning-based prediction methods [11–14], and so on.
However, due to the characteristics of stock prices, such as non-linearity, high noise, and vari-
ability, it is often difficult to achieve the desired prediction results with these methods [15–21].

To address this problem, a time-series neural network method based on Kernel Fil-
ter and Time Attention is proposed in this paper, both of which are novel applications
developed by the authors for achieving higher accuracy in stock price prediction. Firstly,
the Kernel Filter is incorporated into the neural network model to effectively extract the
features of time-series data, especially in handling data with noise. This is a novel applica-
tion aiming to improve upon existing filtering techniques in neural networks. By applying
Kernel Filter, it is possible to capture the underlying trends of stock prices more accurately
and eliminate irrelevant noise interference, thereby enhancing the accuracy of predictions.
Secondly, a novel Time Attention mechanism is designed that assigns higher weights to
recent data, a unique approach developed to extend the capabilities of existing attention
mechanisms in capturing the temporal characteristics of stock prices. The advantage of this
approach is that it can more effectively capture the dynamics of recent prices, which often
serves as a crucial factor in predicting future prices. With these two innovative designs,
the proposed model considers the characteristics of time-series data, effectively extracts
data features, and pays more attention to recent data, thereby achieving higher accuracy in
stock price prediction.

In addition to introducing these innovative techniques, a series of carefully designed
experiments was conducted to measure the model’s performance against established
benchmarks in the field, such as RNN and LSTM. Our findings confirm that the TNN
stands up exceptionally well when challenged with various forecasting tasks, making it
particularly suitable for predicting stock prices. Notably, the model’s performance remains
robust even when applied to noisy, complex time-series data. Detailed evaluations and
comparisons are presented in the subsequent sections, reaffirming the model’s superior
predictive power with noteworthy metrics.

In the future, there are plans to further optimize the model and verify it on more
financial datasets, with the aim of further enhancing the model’s generalization ability and
prediction accuracy.

2. Related Work

Times-series forecasting has continually served as a research hotspot in the field of
finance, with its core premise being to decipher patterns from historical data to predict
future price fluctuations. To tackle this issue, researchers have implemented a variety of
machine learning methods, which include both traditional machine learning methods and
deep learning techniques.

2.1. Traditional Machine Learning Methods

In early research endeavors, traditional machine learning methods were ubiquitously
employed for stock price prediction. These methods encompassed Linear Regression
(LR) [22], SVM [23], and Decision Trees [24], among others. Linear Regression, a funda-
mental prediction model, primarily extrapolates based on the linear relationship between
inputs and outputs. Its basic form is as follows:

y = aX + b (1)

where X denotes the input variables, y the output variables, and a and b the model parame-
ters to be learned. However, as stock prices are influenced by a multitude of factors, the
inherent laws are often non-linear. Consequently, the linear regression model struggles to
capture this complexity.
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Support Vector Machine, a common method for both classification and regression,
operates by finding an optimal hyperplane to separate the data, thereby achieving the goal
of prediction. For regression problems, the form of SVM is as follows:

f (X) = 〈w, φ(X)〉+ b (2)

where φ(X) represents the feature mapping of input variables X, w and b are the model
parameters to be learned, and 〈w, φ(X)〉 denotes the inner product of w and φ(X). Although
SVM can handle non-linear problems, its high computational complexity when applied to
high-dimensional and large-scale datasets proves to be a substantial obstacle.

Traditional machine learning methods like SVM, Random Forests, and Decision Trees
often encounter several limitations in the context of stock price prediction. SVMs [25], while
effective for linearly separable problems, struggle with handling high dimensionality and
require substantial tuning, including the choice of an appropriate kernel function for non-
linear financial time-series data. Random Forests [26], although they offer an improvement
over Decision Trees by ensemble learning, still suffer from high computational complexity
and can underperform when dealing with highly noisy and volatile markets. Decision
Trees, on the other hand, are simple to implement and interpret but are prone to overfitting,
especially when grappling with the complex, noisy, and erratic nature of stock markets.
These methods often require manual feature engineering and generally fail to capture the
intricate, non-linear patterns and long-term dependencies that are inherent to financial
time-series data.

2.2. Deep Learning Methods

In recent years, deep learning methods, particularly RNN [27] and LSTM [28], have
found extensive application in the field of stock price prediction. RNN, a neural network
with memory function, is capable of capturing temporal relationships within sequence data.
Its basic formula is as follows:

ht = σ(Whhht−1 + Wxhxt + bh) (3)

yt = Whyht + by (4)

where xt is the input, ht the hidden state, yt the output, σ the activation function, Whh,
Wxh, and Why the weight parameters, and bh and by the bias parameters. Although RNNs
can handle sequence data, they suffer from vanishing and exploding gradients in long
sequences, making it challenging to capture long-term dependencies.

LSTM, an improved RNN, introduces a gating mechanism to resolve the issue of
long-term dependencies. The basic formula of LSTM is as follows:

ft = σ(W f [ht−1, xt] + b f )

it = σ(Wi[ht−1, xt] + bi)

C̃t = tanh(WC[ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(5)

where ft, it, and ot are the forget gate, input gate, and output gate, respectively, Ct is
the cell state, σ is the sigmoid function, tanh is the tanh function, ∗ represents element-
wise multiplication, and [ht−1, xt] denotes the concatenation of ht−1 and xt. While LSTM
exhibits commendable performance in certain tasks, it also encounters several issues, such
as possessing numerous parameters, high computational complexity, and difficulty in
dealing with discontinuous and irregular time-series data.
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While RNN and LSTMs have been popular for time-series forecasting, including
stock price prediction, they also come with their own sets of challenges. RNNs [29,30], for
example, are prone to issues like vanishing and exploding gradients when handling long
sequences, making them less effective for capturing long-term dependencies in stock price
data. LSTMs, designed to mitigate some of these issues, are computationally expensive
and still might require substantial parameter tuning for optimal performance [31,32].
Additionally, both RNNs and LSTMs can be sensitive to hyperparameter settings, making
them less robust when applied to the highly volatile and noisy nature of stock markets.

In summary, both traditional machine learning methods and deep learning techniques
come with their respective advantages and drawbacks. In this work, a new time-series
neural network is proposed, integrating Kernel Filter and Time Attention mechanisms,
aiming to resolve the issues present in the aforementioned methods when applied to stock
price prediction.

3. Materials and Methods
3.1. Dataset Collection

In this research, a decade of stock data from the S&P 500 index was selected as
the experimental dataset. The 10-year span was chosen to offer a comprehensive yet
computationally feasible dataset for modeling. This timeframe incorporates various market
conditions, including both bull and bear phases, high- and low-volatility periods, and
multiple economic cycles. While a decade may not capture the full complexity and cyclical
nature of stock markets, it provides a rich set of data that allows for robust modeling and
prediction. Additionally, using a decade-long data sample enables the evaluation of the
model’s performance across a variety of scenarios, thereby enhancing the generalizability of
the study’s findings. It should be noted that although the 10-year dataset is comprehensive
in some respects, the scope of this research could be further expanded in future studies by
incorporating a larger and more diverse set of data points.

The S&P 500 index, a stock market index released by the Standard & Poor’s Financial
Services company, encompasses the largest 500 listed companies in the U.S. market. The
choice of the S&P 500 was based on two reasons. First, the S&P 500 index covers a
broad range of U.S. stock market sectors, with constituent stocks originating from various
industries such as technology, healthcare, finance, consumer, and industry. This extensive
coverage implies that the collected dataset is representative and can reflect the overall
status of the U.S. stock market. Second, the S&P 500 has a large volume of historical data,
spanning a long timeframe. Nearly a decade of stock data was collected, providing ample
training samples beneficial for the machine learning model’s learning and generalization.

To obtain these data, Python and the BeautifulSoup framework were utilized to
develop a web scraper. Python, with its concise syntax, extensive library functions, and
wide community support, is extensively used in the field of data science. BeautifulSoup is a
Python library that facilitates parsing HTML code from webpages, extracting the required
information. In the specific implementation process, the source of data was identified as the
Yahoo Finance website. Yahoo Finance offers abundant historical stock data and permits
users to download data in CSV format. A web scraper was developed to automatically
download historical data of the S&P 500 constituent stocks. In the scraper, the principle
of “respecting the Robots protocol” was adhered to, setting a reasonable access interval to
avoid imposing unnecessary pressure on the server. The collected data include information
such as the opening price, highest price, lowest price, closing price, and trading volume of
each trading day. The data span from 2013 to 2023, a total of ten years. This approach to
data collection not only provided abundant, high-quality stock data but also ensured the
data’s timeliness and completeness.



Information 2023, 14, 500 5 of 18

3.2. Dataset Preprocessing
3.2.1. Outlier Identification and Treatment

The first step was outlier identification and treatment. Outliers could potentially have
a detrimental effect on model learning, leading to inaccurate prediction results. Hence,
identifying and handling these outliers is crucial for ensuring model performance. In this
work, the 3σ rule was initially applied as a general guideline for outlier identification,
under the assumption of a normal distribution. Given the non-stationary nature of the
data, as well as the presence of fat tails and skewness, this method serves as a heuristic
rather than an absolute criterion for outlier detection. Under the assumption of normal
distribution, any value that diverges from the mean by more than three times the standard
deviation is considered an outlier. The specific formula is as follows:

µ =
1
N

N

∑
i=1

xi

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2

i f |xi − µ| > 3σ, xi is an outlier

(6)

Here, N represents the number of samples, xi represents the value of a single sample,
and µ and σ are the sample mean and standard deviation, respectively. After identifying
potential outliers, the median of the corresponding feature was used for replacement. The
median is robust to outlier perturbation and thus serves as a reliable measure for this
purpose. In our dataset, the actual number of outliers identified and replaced was 1.38% of
the total number of data points.

3.2.2. Missing Value Treatment

In the collected raw data, there might be missing values. Ignoring or simply deleting
these missing values could result in information loss, subsequently affecting the model’s
learning performance. Therefore, these missing values needed treatment. In this study,
interpolation was employed to fill in missing values. Specifically, linear interpolation
was used, assuming that the data could be linearly expressed at the missing point. The
formula is as follows:

xmiss = xbe f ore +
xa f ter − xbe f ore

2
(7)

Here, xmiss represents the missing value, while xbe f ore and xa f ter are the observed
values before and after the missing value, respectively.

3.2.3. Normalization

After treating outliers, we also addressed missing values in the data. In our dataset, a
total of 218 missing values were observed across “Open”, “High”, “Low”, “Close”, and
“Vol” prices. These missing values were handled using normalization. Given that the scales
and value ranges of different features may vary, inputting them directly into the model
might impact the model’s learning performance. Through normalization, the value range of
all features could be adjusted to a unified interval, avoiding the model’s over-dependence
on features with large values. Min-max normalization, also known as linear normalization,
was adopted. The formula is as follows:

xnorm =
x− xmin

xmax − xmin
(8)

Here, xnorm is the normalized value, x is the original value, and xmin and xmax are the
minimum and maximum values of the sample, respectively. By systematically addressing
outliers and missing values, and by normalizing the feature scales, the data became more
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suitable for model learning. This contributes to improving the learning performance of the
model, thereby enhancing the accuracy of stock price prediction.

3.3. Proposed Methods
3.3.1. Overall

A novel time-series neural network model, termed the Time-series Neural Network
(TNN), is proposed in this research. It is designed to handle multivariate time-series data
such as stock market prices and trading volumes. Furthermore, the model possesses the
ability to manage textual data, such as news and reports, and even video data, like tasks
of behavior tracking. The essence of this model lies in its capability to capture complex
patterns in time-series data and efficiently integrate diverse types of data, including linear,
textual, and video data. This is made possible by the model’s flexibility and scalability,
allowing for easy fine-tuning across different tasks. The core of the TNN model is composed
of two primary components: the Kernel Filter and Time Attention.

The function of the Kernel Filter is to extract useful features from the time-series data.
Comparable to the convolutional layer in Convolutional Neural Networks (CNNs), the
Kernel Filter convolutes the input data in the time dimension, extracting local patterns
and trends. However, unlike traditional convolutional layers, the Kernel Filter can process
multivariate time-series data, with each element having its own convolution kernel to
extract features individually. The introduction of Kernel Filter enables the model to capture
complex patterns in the data, such as the fluctuation rules of stock prices and the changing
trends of trading volumes. These patterns and trends are crucial for predicting future stock
price movements. Moreover, as the Kernel Filter can automatically learn these features
from data, the burden of manual feature engineering is significantly reduced, easing the
model development workload.

The role of Time Attention is to determine the importance of different time points.
For time-series data, different time points have varying influences on future predictions.
Some time points may have a large impact, while others may have a smaller one. Therefore,
a mechanism is required to gauge the importance of each time point, and this is the
Time Attention mechanism. Specifically, Time Attention assigns a weight to each time
point to indicate its importance. This weight is learned by the model from the data, with
larger weights denoting higher importance. During prediction, the model pays more
attention to time points with larger weights and ignores those with smaller ones. With Time
Attention, the model can effectively distinguish which time points are more important for
the prediction results and which are relatively less important. This enables the model to
better capture key information when handling complex time-series data, thereby improving
prediction accuracy.

In practice, the Kernel Filter and Time Attention work together. Initially, the input
time-series data are sent into the Kernel Filter to extract the features. These features are
then sent into Time Attention, where they are weighted according to the importance of each
time point, resulting in the final prediction result. Through the cooperative work of Kernel
Filter and Time Attention, the model can extract key information from complex time-series
data and accurately predict future stock price trends. In experiments, remarkable results
were achieved on multiple stock datasets, demonstrating the model’s effectiveness in stock
price prediction tasks. Overall, the proposed TNN model, by integrating Kernel Filter and
Time Attention, can effectively handle various types of time-series data, including stock
prices, trading volumes, news reports, and even video data. This equips the model with a
wide range of application prospects in handling multivariate time-series prediction tasks,
such as financial market prediction, weather forecasting, and pedestrian flow prediction.

3.3.2. Time-Series Neural Network

The Time-series Neural Network (TNN) proposed in this study is a deep learning
model designed for time-series prediction tasks. The design of this model fully considers
the characteristics of time-series data, including time order, continuity, and periodicity,
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as shown in Figure 1. The network structure of TNN primarily comprises an input layer,
hidden layers, and an output layer. The input layer receives raw time-series data, the
hidden layers process these data using the Kernel Filter and Time Attention mechanism,
and the output layer produces prediction results.

Figure 1. Illustration of the time-series neural network structure.

In the hidden layers of TNN, a multi-layer design is employed. This is because deep
neural networks, through their multi-layer structure, can learn high-level features and
abstract patterns from input data, which is beneficial for enhancing the model’s predictive
performance. Specifically, the Kernel Filter is first used in the hidden layers to extract
local patterns from the time-series data. Then, the Time Attention mechanism assigns
weights to these patterns. Finally, the weighted features are passed to the next layer for
further processing.

TNN has significant distinctions from regular deep neural networks (DNNs) when
handling time-series data. Firstly, TNN designs the Kernel Filter and Time Attention
operators, which can better handle the characteristics of time-series data, while regular
DNNs often overlook these characteristics. Secondly, the number of layers and the network
structure of TNN are optimized for time-series prediction tasks, while regular DNNs
usually adopt a general network structure, which may not effectively handle time-series
prediction tasks. Lastly, TNN can adaptively assign weights for each feature, while regular
DNNs generally assume that all features are equally important. Furthermore, since the
network structure of TNN is optimized for time-series prediction tasks, TNN can make
more effective use of computational resources when handling large-scale time-series data,
thereby enhancing prediction efficiency.

3.3.3. Kernel Filter

Kernel Filter represents an operator designed for the extraction of features from time-
series data, with its primary objective being the isolation of key local patterns from the
input time-series data. This section proceeds to detail the mathematical principles, design
significance, conceptual source, and the specific application and advantages of the Kernel
Filter within the Temporal Neural Network (TNN) model. The design of the Kernel Filter
originates from the convolution operation within Convolutional Neural Networks (CNNs).
In CNNs, the convolution kernel slides along the spatial dimension to extract local features
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from the input image. Drawing inspiration from this idea, the Kernel Filter was designed to
slide along the temporal dimension, thereby extracting local patterns from time-series data.

The design carries several significant implications. Firstly, by applying convolutions
along the temporal dimension, local patterns within time-series data can be captured, such
as short-term fluctuations in stock prices. Secondly, different kernels can extract diverse
features, enabling the model to understand time-series data from multiple perspectives.
Finally, the convolution operation possesses the attribute of parameter sharing, implying
that the same patterns can be sought throughout the entire time-series, an operation
unachievable with traditional fully connected neural networks.

Within the TNN model, the Kernel Filter is responsible for the preliminary extraction
of features from the input time-series data. Specifically, the model receives a segment
of time-series data as input, which is initially processed by the Kernel Filter, resulting
in a set of feature maps {h1, h2, . . . , ht}. These feature maps not only encapsulate local
patterns of the time-series data but also preserve the temporal order of the data, providing
abundant information for subsequent Time Attention. Its advantages in the tasks are clear.
Firstly, since it can extract local patterns from time-series data, it enables the model to
capture short-term fluctuations in stock prices, which is not achievable by traditional fully
connected neural networks. Secondly, due to the parameter sharing attribute of the Kernel
Filter, the model can seek the same patterns throughout the entire time-series, which is
of significant importance for understanding and predicting stock prices. For a series of
time-series data {x1, x2, . . . , xt}, a group of Kernel Filters {k1, k2, . . . , kn} is defined; each
kernel ki is a convolution kernel that can perform convolution on the input data along the
temporal dimension, extracting local patterns from it. Each kernel ki consists of a group of
weights {wi

1, wi
2, . . . , wi

d} and a bias term bi, where d is the size of the kernel. The operation
of the Kernel Filter can be represented by the following formula:

hi
t = f (

d

∑
j=1

wi
j · xt−j+1 + bi) (9)

In this formula, hi
t represents the output of the ith kernel at time t, and f is the

activation function. When using the Kernel Filter, the size d and quantity n of the kernel
need to be determined first. The size d of the kernel determines the time range of the
patterns that can be captured, and the quantity n determines the diversity of the features
that can be extracted. Then, at each time point t, each kernel convolves the input data to
obtain the corresponding feature map hi

t. Finally, all feature maps are integrated to obtain
the final output of the Kernel Filter. Overall, the Kernel Filter extracts local patterns in time-
series data through convolution operations, providing rich information for subsequent
time-series prediction. Its design originates from the convolution operation of CNN,
inherits the advantages of convolution operation in feature extraction, and overcomes the
deficiencies of fully connected neural networks in handling time-series data, which is of
great significance for the task.

3.3.4. Time Attention

Time attention is an operator designed for the allocation of feature weights in time-
series data, as shown in Figure 2, with its main goal being to assign different weights to
features at different time points, enabling the model to pay more attention to the features
that have a significant impact on the prediction results. The mathematical principles,
design significance, conceptual source, and specific application and advantages of time
attention within the TNN model will be detailed in this section. The design of time attention
originates from the idea of the Attention Mechanism. The primary concept of the Attention
Mechanism is that when dealing with a task, the model should pay more attention to the
information that has a larger impact on the results and pay less attention to information that
has a smaller impact. Borrowing from this idea, time attention was designed to enable the
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model to pay more attention to the time points that have a larger impact on the prediction
results when processing time-series data.

Figure 2. Illustration of time attention structure.

The design carries several important implications. Firstly, by assigning different
weights to the features at each time point, the model can pay more attention to the features
that have a larger impact on the prediction results, which is beneficial for improving the
model’s prediction accuracy. Secondly, by introducing a weight generator, the model can
automatically adjust the weights based on the input features, giving the model better adapt-
ability. Lastly, the introduction of Time Attention allows the model to better consider the
sequence and continuity of time when processing time-series data, which is not achievable
with traditional fully connected neural networks.

In the TNN model, the main task of Time Attention is to assign different weights to the
input feature sequence {h1, h2, . . . , ht}. To achieve this goal, a weight generator is designed
which generates a weight αt for the feature ht at each time point t. This weight generator
is a small neural network, with the feature ht as input and the weight αt as output. The
specific operation of the weight generator can be represented by the following formula:

αt = σ(g(ht)) (10)

In this formula, g is the weight generator, and σ is a normalization function, which
normalizes the generated weights so that the sum of all weights is 1. After obtaining the
weight αt, the feature ht can be weighted to obtain the weighted feature h̃t. The specific
operation is as follows:

h̃t = αt · ht (11)
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Through this approach, distinct weights can be allocated to the features at each time
point, enabling the model to focus on the features having a significant impact on the
prediction outcomes. When employing Time Attention, the structure and parameters of
the weight generator are first determined. Subsequently, the weight generator is utilized
to generate a weight for each time point feature. This weight is then used to weight the
feature, resulting in a weighted feature. Finally, all the weighted features are integrated to
attain the final output of Time Attention.

Time Attention exhibits notable advantages in the tasks at hand. Firstly, by assigning
different weights to the features at each time point, the model is better equipped to focus
on the features that have a larger impact on the prediction results, contributing to an
enhanced prediction accuracy of the model. Secondly, by introducing a weight generator,
the model can auto-adjust the weights based on input features, thus granting the model
improved adaptability. Finally, due to Time Attention’s superior consideration of the
order and continuity of time, the model, when dealing with time-series data, possesses
clear advantages over traditional fully connected neural networks. Compared to other
attention mechanisms, Time Attention embodies important distinctions. To begin with,
Time Attention is specifically designed for time-series data, providing a better consideration
of the order and continuity of time, often overlooked by other attention mechanisms.
Additionally, the weight generator in Time Attention is a small neural network capable
of auto-adjusting weights based on the input features, granting Time Attention superior
adaptability. In essence, by assigning distinct weights to the features at each time point,
Time Attention enables the model to focus more effectively on the features impacting
the prediction outcomes, will be discussed in Section 4. The design originates from the
concept of the Attention Mechanism, inheriting its advantages in weight distribution while
overcoming the shortcomings of traditional attention mechanisms when handling time-
series data. Within the TNN model, Time Attention significantly enhances the model’s
prediction accuracy and provides superior adaptability.

3.4. Experimental Settings
3.4.1. Experiment Designs

The initial problem addressed in this experimental design is the delineation of training
and validation sets. Ordinarily, the entire dataset is divided into training and validation
sets according to a specific ratio. The training set is primarily utilized for model training,
where parameters are continuously adjusted and optimized through iterative learning
of data in the training set. On the other hand, the validation set is mainly employed for
evaluating the predictive performance of the model. By utilizing the validation set, the
performance of the model on unseen data can be tested, thereby preventing overfitting of
the training data. In this work, the split ratio adopted is 70% for the training set and 30%
for the validation set.

To comprehensively evaluate the model’s performance, some baseline models are
chosen for comparison. In this experiment, the following models are selected as baseline
models: linear regression model [22], decision tree model [24], random forest model [33],
support vector machine model [23], RNN [27], and LSTM [28]. These models are common
in machine learning, have high practicality and wide applicability, and their predictive
capabilities and model complexity can cover a wide range, making them good references
to better evaluate the performance of the model.

Subsequently, validation experiments under different time slice spans are carried out.
A time slice span refers to the selectable time unit when predicting future data. For example,
days, weeks, or months can be chosen as the unit for predicting future data. Different time
slice spans can affect the prediction accuracy and range of the model, making the choice
of an appropriate time slice span crucial. In this experiment, the set of time slice spans is
set to 1 day, 7 days, 30 days. For each time slice span, all the above-mentioned models are
used for prediction, and their prediction results are recorded.



Information 2023, 14, 500 11 of 18

The experiments are conducted on a computing platform equipped with an Intel Core
i9 processor, 64GB of RAM, and an NVIDIA RTX 3090 GPU. The software environment
consisted of Python 3.8, PyTorch 1.9, and various other supporting Python libraries. For the
TNN models, we employed three major filters: Squeeze-and-Excitation Networks (SENets),
Convolutional Block Attention Module (CBAM), and Kalman Filters based on mentioned
libraries. It is essential to note that there are no “official” third-party libraries available
for these filters. Therefore, we implemented these algorithms from scratch in PyTorch by
carefully referencing their respective official papers [34–36].

3.4.2. Evaluation Metric

Model evaluation metrics are important tools for measuring model prediction capa-
bilities, and commonly used metrics include the Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of De-
termination (R2). The calculation methods, the significance in this research task, and the
model capabilities reflected by these metrics are explained in detail below.

Firstly, the Root Mean Square Error (RMSE) is a common model evaluation metric
used to measure the bias between the model’s predictions and the actual values. Its formula
is as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (12)

Here, n is the total number of samples, yi is the actual value of the ith sample, and ŷi
is the model’s prediction for the ith sample. In this work, RMSE can accurately evaluate
the accuracy of the model’s prediction of time-series data. The smaller the RMSE value,
the smaller the bias between the model’s predictions and the actual results, indicating a
higher prediction accuracy of the model. It is worth noting that RMSE gives more weight
to larger errors, so if the model’s predictions have large deviations, the RMSE value will
increase accordingly.

Secondly, the Mean Absolute Error (MAE) is another evaluation metric for model
prediction capabilities. Unlike RMSE, MAE pays more attention to the average bias between
the model’s predictions and the actual results rather than the variance of the predictions.
Its formula is as follows:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (13)

In this formula, n is the total number of samples, yi is the actual value of the ith

sample, and ŷi is the model’s prediction for the ith sample. In this research task, using MAE
can more intuitively reflect the average deviation between the model’s predictions and
the actual results. The smaller the MAE value, the smaller the bias between the model’s
predictions and the actual results, indicating a higher prediction accuracy of the model.
Compared to RMSE, MAE gives equal weight to all errors, so when the model’s predictions
have large deviations, the MAE value will be relatively smaller.

The Mean Absolute Percentage Error (MAPE) is an evaluation metric that provides a
percentage-based representation of the errors between predicted and actual values, offering
an easy-to-interpret scale of accuracy. The formula for calculating MAPE is as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (14)

In this formula, n is the total number of samples, yi is the actual value of the ith sample,
and ŷi is the model’s prediction for the ith sample. The smaller the MAPE value, the
higher the model’s prediction accuracy. One of the advantages of using MAPE is that it
provides an easily interpretable percentage error, enabling the performance of the model to
be understood in a straightforward manner.
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Finally, the Coefficient of Determination (R2) is an evaluation metric that reflects the
correlation between the model’s predictions and the actual results. The closer R2 is to 1, the
higher the correlation between the model’s predictions and the actual results. Its formula is
as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (15)

In this formula, n is the total number of samples, yi is the actual value of the ith sample,
ŷi is the model’s prediction for the ith sample, and ȳ is the mean of the actual values. In this
research task, R2 can be used to evaluate the correlation between the model’s predictions
and the actual results. The higher the R2 value, the higher the correlation between the
model’s predictions and the actual results, indicating a higher prediction accuracy of
the model.

In summary, through the above model evaluation metrics, the predictive capabilities of
the model can be comprehensively evaluated from different angles. RMSE focuses more on
the variance of the model’s predictions, MAE focuses more on the average bias between the
model’s predictions and the actual results, MAPE offers a percentage-based representation
of the model’s prediction errors, providing an easily interpretable scale for assessing the
model’s accuracy, and R2 evaluates the correlation between the model’s predictions and the
actual results. These metrics are important tools for measuring model prediction capabilities
and can effectively help in understanding and improving the predictive performance of
the model.

4. Results and Discussion
4.1. Results of Time Series Forecasting

The primary objective of this experiment is to conduct stock price prediction using
various machine learning models and compare their predictive performance. To realize
this goal, different time spans (1 day, 7 days, 30 days) were set, and seven distinct models,
including TNN, linear regression, decision tree, random forest, SVM, RNN, and LSTM,
were utilized. The predictive performance of each model across all time spans was assessed
by computing the RMSE, MAE, and coefficient of determination (R2).

From the results tabulated in Table 1, it is observable that the TNN model performed
the best across all time spans, having the lowest RMSE and MAE, and the highest R2,
which is also shown in Figure 3. Upon further discussion, the sectors with the highest
prediction accuracy in the S&P 500 are Technology, Healthcare, Financials, and Communi-
cation Services, followed by Basic Materials and Consumer Staples. The sectors with the
lowest accuracy are Consumer Discretionary, Industrials, and Energy. This disparity in
predictive accuracy across sectors could potentially be attributed to the intrinsic volatility
and complexity of certain sectors compared to others. Specifically, sectors like Consumer
Discretionary, Industrials, and Energy tend to be more volatile and are influenced by a wide
array of external factors, making them harder to accurately predict. This indicates that the
TNN model exhibited a high degree of precision in stock price prediction, with minimal
deviation from the actual results, and a high correlation between the predicted and actual
outcomes. This can potentially be attributed to the strong feature extraction capability of
the TNN model, which can extract useful information from raw data, thereby enhancing
the predictive accuracy of the model. In the case of the other models, it was noted that as
the time span increased, the performance of the models generally decreased, i.e., RMSE and
MAE increased while R2 decreased. This could be due to the increase in future uncertainties
with the extension of the time span, leading to a drop in predictive performance. However,
the RNN and LSTM models demonstrated a lesser degree of performance reduction with
increased time spans compared to other models. This could be attributed to the fact that
both RNN and LSTM models are sequence models capable of handling time-series data,
thus outperforming other models in long-term trend prediction.
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Table 1. Results of S&P 500 price in different periods.

Model Time Span RMSE MAE R2 MAPE

TNN 1 day 0.05 0.23 0.95 1.3%
Linear Regression 1 day 0.34 0.57 0.63 7.5%
Decision Tree 1 day 0.36 0.60 0.61 7.8%
Random Forest 1 day 0.21 0.47 0.69 5.1%
SVM 1 day 0.23 0.48 0.67 4.1%
RNN 1 day 0.13 0.37 0.87 2.8%
LSTM 1 day 0.09 0.3 0.91 1.9%

TNN 7 day 0.16 0.4 0.89 1.8%
Linear Regression 7 day 0.67 0.81 0.35 9.6%
Decision Tree 7 day 0.65 0.81 0.39 8.9%
Random Forest 7 day 0.56 0.75 0.43 6.3%
SVM 7 day 0.49 0.70 0.47 5.8%
RNN 7 day 0.25 0.50 0.61 3.3%
LSTM 7 day 0.23 0.48 0.66 3.1%

TNN 30 day 0.14 0.37 0.91 3.7%
Linear Regression 30 day 0.85 0.92 0.16 11.2%
Decision Tree 30 day 0.82 0.90 0.20 13.9%
Random Forest 30 day 0.77 0.88 0.29 10.4%
SVM 30 day 0.76 0.88 0.29 6.8%
RNN 30 day 0.27 0.52 0.63 4.9%
LSTM 30 day 0.28 0.53 0.58 3.7%
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Figure 3. Ground truth and the predicted values by TNN.

A deeper analysis of the experimental results from the characteristics and mathematical
theories of each model was subsequently undertaken. Firstly, the Linear Regression model
exhibited the poorest predictive performance among all models. This is likely because stock
price fluctuations are influenced by numerous factors, including macroeconomic conditions,
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company financials, and market sentiment, among others. The complex and non-linear
relationships between these factors make it challenging for linear models to accurately
capture these relationships. The Decision Tree and Random Forest models were next in the
analysis, both being tree-structured models with excellent interpretability. However, their
predictive performance left room for improvement. This might be due to the fact that while
they can handle non-linear relationships, they struggle with time-series data as they cannot
capture time dependency within the data. SVM, a model based on margin maximization,
demonstrated better predictive performance than Linear Regression, Decision Tree, and
Random Forest. However, its performance still lagged behind RNN, LSTM, and TNN. This
might be because while SVM can handle non-linear problems, it may struggle with the
“curse of dimensionality” when dealing with high-dimensional, complex time-series data.
Lastly, the RNN and LSTM models, both types of recurrent neural networks, are especially
adept at handling time-series data. RNN and LSTM can capture time dependency in data,
hence performing better in stock price prediction than other models. Particularly, LSTM,
due to its inherent design advantages, can overcome the gradient vanishing and exploding
problems faced by RNN, thereby demonstrating slightly superior predictive performance.

4.2. Test on Different Attention Mechanisms

The objective of this experimental design was to evaluate the performance of various
attention mechanisms in predicting the S&P 500 index prices. The aim is to understand the
effectiveness and applicability of different attention mechanisms specifically in the domain
of stock price forecasting.

Focusing on the experimental results in Table 2, it is clear that the Time Attention
model outperformed the other attention mechanisms across all metrics. This adds empirical
evidence to the model’s theoretical advantages in capturing time-dependent features. The
TNN model, which incorporates the Time Attention mechanism, yielded the lowest RMSE
and MAE values and the highest R2 score, demonstrating its superior predictive accuracy
and stability in stock price prediction. Specifically, SENet and CBAM, despite being
effective attention mechanisms, fell short in capturing temporal complexities inherent in
stock market data. This is reflected in their lower R2 values compared to the Time Attention
model. While SVM, RNN, and LSTM also performed better than traditional machine
learning models like Linear Regression and Decision Trees, they were still outperformed by
the TNN model. Interestingly, the data suggest that the ability to capture time-dependent
features effectively separates TNN from other models, justifying its superior performance
in our experimental setup.

Table 2. Results of different attention mechanisms.

Attention Model RMSE MAE R2

SENet [34] 0.08 0.27 0.87
CBAM [35] 0.09 0.3 0.92
Time Attention 0.05 0.23 0.95

In summary, the comparative evaluation of different models based on our dataset
provides concrete evidence that attention mechanisms, particularly Time Attention, can
significantly enhance the accuracy and reliability of stock price predictions. This suggests
that future research in this area could benefit substantially from the integration of time-
sensitive attention mechanisms.

4.3. Test on Kernel Filter

The principal objective of this experiment is to scrutinize the effectiveness of different
filters applied within the TNN, and thus underscore the significance of the Kernel Filter
in enhancing the precision of time-series forecasting. To be specific, three distinct model



Information 2023, 14, 500 15 of 18

configurations were compared in the experiment: a TNN model devoid of filters, a TNN
model equipped with a Kalman Filter [36], and a TNN model furnished with a Kernel Filter.

As illustrated in Table 3, the TNN model with no filter yielded RMSE, MAE, and R2

values of 0.26, 0.51, and 0.82, respectively. These findings indicate that the TNN model
can produce satisfactory predictions even without any filter, primarily due to the inherent
advantages of the TNN model structure. This model is capable of attributing different
weights to features at each timestamp, thereby enabling a focused approach towards
features with significant impacts on the predictions. However, in the absence of a filter, the
model may encounter challenges when handling complex, noisy time-series data, leading
to a potential compromise in the predictive performance. In contrast, the TNN model
employing the Kalman Filter demonstrated RMSE, MAE, and R2 values of 0.12, 0.34, and
0.91, respectively, revealing a marked enhancement in predictive performance with the
inclusion of the Kalman Filter. The Kalman Filter, characterized as a linear filter, can
accurately estimate system states amidst noisy data, consequently boosting the model’s
predictive accuracy to a certain extent. However, being linear, the Kalman Filter might
fall short when faced with complex non-linear time-series data. Lastly, the TNN model
incorporating the Kernel Filter exhibited RMSE, MAE, and R2 values of 0.05, 0.23, and 0.95,
respectively. Evidently, the introduction of the Kernel Filter further improved the predictive
performance of the TNN model, outperforming the other two model configurations across
all metrics. This superior performance primarily results from the impressive capabilities
of the Kernel Filter. Compared to the Kalman Filter, the Kernel Filter can handle not only
noisy data but also non-linear time-series data effectively. Its proficiency in extracting
higher-level features from time-series data surpasses that of the Kalman Filter, as shown in
Figure 4. Therefore, the introduction of the Kernel Filter enables the TNN model to achieve
higher prediction accuracy when dealing with complex time-series data.

Table 3. Results of different filters.

Model RMSE MAE R2

TNN (No Filter) 0.26 0.51 0.82
TNN (Kalman Filter) 0.12 0.34 0.91
TNN (Kernel Filter) 0.05 0.23 0.95

Figure 4. Comparison of different filters on RNN, LSTM, Transformer [37], and ours. The orange line
denotes the performance for different models with Kernel Filter, while the blue one is that without
Kernel Filter.
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4.4. Limitations and Future Work

Despite the progress and achievements made in this research, the model does have
some limitations that suggest avenues for future work. For example, while the model per-
forms well on certain datasets, it can struggle with time-series data containing substantial
noise. Additionally, its treatment of time slice spans lacks flexibility, which is an issue for
varying real-world applications. Moreover, the model’s current capability does not fully
address the intercorrelation between features or offer a comprehensive set of evaluation
metrics. These limitations outline the areas where improvements are needed:

1. Noise Handling: To mitigate the issue of noise, future research will incorporate various
noise filtering and denoising techniques like Kalman filters and median filters.

2. Time Slice Flexibility: Future versions of the model will aim to allow dynamic ad-
justments of time slice spans to meet different application requirements, thereby
increasing the model’s adaptability.

3. Feature Correlations: Efforts will be undertaken to better uncover and incorporate the
intercorrelations among features, with the goal of improving prediction accuracy.

4. Evaluation Criteria: Additional metrics such as stability, robustness, and compu-
tational efficiency will be introduced to provide a more rounded evaluation of the
model’s performance.

5. Extended Capabilities: The TNN model will be further developed to capture not just
time dependencies but also more complex relationships dependent on the history
of changes in incoming parameters, making it more versatile for different types of
time-series prediction tasks.

Through targeted advancements in these areas, the model is expected to become more
robust and versatile, better serving the complex and varying demands of practical applications.

5. Conclusions

The theme of this research is centered on a high-accuracy time-series forecasting
method known as the TNN, which is based on a Kernel Filter and Time Attention mecha-
nism. Forecasting analysis of time-series data is a crucial task in various domains. Neverthe-
less, high-precision time-series forecasting remains a challenge due to inherent complexities
such as non-linearity, high dimensionality, and long-term dependencies. To overcome these
challenges, a novel Time Neural Network model has been designed and implemented in
this study.

The major innovation of the TNN model involves the introduction of a Time Attention
mechanism and a Kernel Filter. The Time Attention mechanism allows the model to allocate
different weights to the features at each time point, enabling the model to focus more on
features that have a significant impact on the forecasting results. Meanwhile, the Kernel
Filter is used to extract high-level features from time-series data, thereby improving the
prediction accuracy of the model. In addition, an adaptive weight generator is incorpo-
rated into the model, allowing it to automatically adjust the weights according to the
input features.

In the experimental section, several mainstream time-series forecasting models, in-
cluding RNN and LSTM, were adopted as baseline models, and exhaustive comparative
experiments were conducted. The results demonstrate that the TNN model significantly
outperforms the baseline models, regardless of whether the forecasting tasks are short-term
or long-term. Importantly, even for complex time-series data containing a large amount of
noise, the TNN model is still capable of maintaining high prediction accuracy. Ablation
experiments validated the crucial contribution of the Time Attention mechanism and Kernel
Filter to the performance of the model. When either the Time Attention mechanism or
Kernel Filter is removed, a significant decline in the predictive performance of the model is
evident, further underscoring the importance of these two components in the model.

Despite the excellent performance of the TNN model in the experiments, certain
limitations remain. These include the need for enhanced noise data processing capabilities,
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flexibility in dealing with different time slice spans, and comprehensive handling of the
interrelatedness among features. Future work will focus on improving and deepening the
approach to address these issues.

In conclusion, the TNN model proposed in this study provides a novel solution for
time-series forecasting. By incorporating a Time Attention mechanism and Kernel Filter,
the model demonstrates superior forecasting performance and adaptability when dealing
with complex time-series data. Despite some existing limitations, it is believed that through
future improvements and in-depth exploration, the TNN model can play a greater role
in the field of time-series forecasting, offering more accurate and reliable predictions for
real-world problem solving.
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