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Abstract: In recent years, rapid advancements in both hardware and software technologies have
resulted in the ability to execute artificial intelligence (AI) algorithms on low-resource devices. The
combination of high-speed, low-power electronic hardware and efficient AI algorithms is driving the
emergence of on-device AI. Deep neural networks (DNNs) are highly effective AI algorithms used
for identifying patterns in complex data. DNNs, however, contain many parameters and operations
that make them computationally intensive to execute. Accordingly, DNNs are usually executed on
high-resource backend processors. This causes an increase in data processing latency and energy
expenditure. Therefore, modern strategies are being developed to facilitate the implementation
of DNNs on devices with limited resources. This paper presents a detailed review of the current
methods and structures that have been developed to deploy DNNs on devices with limited resources.
Firstly, an overview of DNNs is presented. Next, the methods used to implement DNNs on resource-
constrained devices are explained. Following this, the existing works reported in the literature on the
execution of DNNs on low-resource devices are reviewed. The reviewed works are classified into
three categories: software, hardware, and hardware/software co-design. Then, a discussion on the
reviewed approaches is given, followed by a list of challenges and future prospects of on-device AI,
together with its emerging applications.
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1. Introduction

Executing artificial intelligence algorithms on hardware devices with limited resources,
such as low-end microcontrollers, is becoming a reality because of the increasing power
and decreasing cost of electronic hardware technology, as well as the creation of more
efficient AI algorithms. In emerging research fields such as on-device AI, data can be
analyzed where sensors generate data instead of backend servers. This has created new
opportunities for advanced AI applications such as autonomous vehicles. Moreover, the rise
of modern methods for on-device inference and the creation of pre-trained AI algorithms
have contributed to a reduction in resources needed for the execution of AI algorithms. The
development of AI algorithms being implemented on devices has been making consistent
progress in recent years. It is now possible to execute AI algorithms on devices rather than
cloud servers, and it is anticipated that this trend will continue to grow [1]. Processing
that happens locally on the device, as opposed to that on the cloud, and saves time and
energy expenditure and enhances data security, since there is no need to transmit raw data
between the source device and a distant back-end server.

AI algorithms are built to analyze enormous amounts of data, identify patterns within
those data, and then learn from those data. AI algorithms refer to a host of methods used
to solve complex problems, recognize patterns, and make predictions based on data. Some
examples of well-known AI algorithms include gradient boosting, support vector machines
(SVM), random forest, decision trees, k-means, artificial neural networks (ANNs), etc. To
develop an AI algorithm, necessary data are first collected and preprocessed. The next step
is to train, validate, and test the algorithm. The goal of training is to teach the AI algorithm
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to recognize patterns and make accurate predictions or decisions based on the test data it
receives. The goal of validation is to check how well the trained model works and optimize
it. The goal of testing is to provide an assessment of the final model. The common types of
learning approaches for AI algorithms include (1) deep learning, (2) supervised learning,
(3) unsupervised learning, and (4) reinforcement learning [2]. In deep learning, large
quantities of data are sent into the network (with many layers) during training. Supervised
learning occurs when the algorithm is provided with both inputs and outputs, whereas
unsupervised learning involves only the provision of inputs. Reinforcement learning, on
the other hand, requires the model to learn through experimentation and feedback, as it
receives rewards or penalties in response to its actions. Deep neural networks (DNNs)
are a popular and effective type of AI algorithm. They have proven to be one of the most
efficient methods for dealing with complex data such as videos and images. They consist
of numerous layers of processing in between their input and output layers [3]. For DNNs
that analyze images and videos, a widely used technique is to combine convolutional
filter operations with matrix multiplications. A DNN model contains larger quantities
of parameters and calculations, requiring larger memory when compared to other types
of ANNs. In addition, a DNN demands a large amount of processing time, energy, and
computing resources. Deploying DNNs on resource-constrained devices is thus a difficult
problem. Therefore, DNNs are often deployed on remote back-end cloud servers. In some
emerging applications, e.g., autonomous vehicles, data need to be analyzed where they
are captured by sensors instead of backend servers. Therefore, the execution of a trained
DNN model should take place on low-resource devices. This helps circumvent problems
associated with latency-sensitive data, security and privacy data, and always-on service.
When deploying a DNN model on a resource-constrained device, there is a need to make
compromises between several criteria such as the model’s size, the amount of energy
used, and processing speed [4]. To enable the execution of DNNs on resource-restricted
devices, there have been advancements in creating methods based on software, hardware,
or combined hardware and software.

On the software side, new programming frameworks and libraries have been created
to make it simpler to design DNNs for resource-constrained devices. These include well-
known frameworks like TensorFlow, PyTorch, and Keras. These frameworks provide
high-level abstractions and pre-built components for DNN development such as training
and inference. In addition, there have been developments in the tools that are used for
data preparation, model selection and hyperparameter tuning, and model deployment and
serving, as well as other applications. On the hardware side, customized processors and
architectures have been built specially to boost the deployment and execution of DNNs.
These include graphics processing units (GPUs), field-programmable gate arrays (FPGAs),
application-specific integrated circuits (ASICs), and tensor processing units (TPUs). There
have been a few publications containing a conceptual description of implementing DNNs
on Internet of things (IoT) devices with joint back-end computation. These papers, however,
do not provide an analysis of the current work in the same field of research. Accordingly,
the contributions of this paper include a detailed review of the existing methods and archi-
tectures for optimizing DNNs and executing them on resource-constrained devices. This
review is presented under three categories: software, hardware, and hardware/software
co-design. In addition, a comparison of the methods in the three categories is given together
with a discussion on the suitability of the reviewed methods.

2. Overview of DNN

A DNN architecture is constructed by connecting a series of layers, where each layer
consists of a grouping of units (neurons) interconnected with one another as shown in
Figure 1. In a DNN architecture, the input layer is the initial layer that receives the raw
data, which may consist of audio or images. On the other hand, the output layer is the final
layer that represents the inferred classes. The remaining layers are the hidden layers which
convert the input values into the inferred classes. Every unit has its own activation function,
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which defines how to compute the unit’s own state. Weights are learnable parameters on
the connection lines between the layers converting an incoming value to adjust an outgoing
value [5].
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Figure 1. A sample feedforward deep neural network.

There are a variety of DNN architectures. As an example, with a feedforward DNN,
the inference starts at the input layer and then proceeds forward layer by layer until it has
completed. The output of each unit is updated in a feedforward fashion at each successive
layer. When all the units in the output layer have been updated, the classification results will
become available. The inferred class is equivalent to the output layer unit that has the most
significant value. The majority of DNN’s operations consist of layer-wise multiplications
and accumulations. All the inputs are multiplied by their respective weights.

Figure 1 depicts a feedforward neural network that consists of an input layer, three
hidden layers, and one output layer. Each layer in the network is connected to the next
through a weight matrix, resulting in a total of four weight matrices: w1 w2, w3, and w4.
When an input vector

→
x is provided, the first weight matrix w1 is used to calculate a dot

product, and the activation function is applied to the result. This produces a new vector
→
h1 representing the neurons’ values in hidden layer 1.

→
h1 is then employed as the input

vector of the following hidden layer, repeating the described operations. The same process
is repeated to obtain the final output

→
y which serves as the networks’ prediction. The

complete process is expressed through the subsequent equations, in which σ denotes an
activation function: →

h1 = σ(
→
x ·w1)

→
h2 = σ(

→
h1·w2)

→
h3 = σ(

→
h2·w3)

→
y = σ(

→
h3·w4) (1)

3. Implementation of DNN On-Device

In recent years, developments in software, hardware, or combined hardware and
software have made it feasible to implement DNNs directly on devices that contain sensors.
The execution of data in real-time on the cloud comes with a drawback of increased latency.
The communications that take place between devices and a cloud server are long-distance
and have a limited bandwidth, which is the cause of latency [1]. Running DNNs on a cloud
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server presents additional security and privacy challenges. During communications, there
is the possibility that sensitive information may be accessed improperly. The reliability of
the communication connection is another challenge that comes with operating DNNs on a
cloud server. Safe and secure processing of sensor data by DNNs needs to be established
for reliable operation. Thus, implementing real-time data processing directly on the device
itself is strongly recommended [6].

To deploy a DNN on a resource-constrained device, a number of approaches can be
employed. A DNN typically includes millions of parameters and processes, so several
approaches have been developed to optimize the parameters and processes of the DNN
while simultaneously maintaining its classification accuracy. Examples of such approaches
include network optimization, quantization and compression, data augmentation, power
management, and hardware acceleration approaches. These approaches can be categorized
into three groups: software, hardware, and hardware software co-design. The software
approaches include pruning, compact structure, quantization, and so on. The hardware
approaches alter the architecture, design, and memory hierarchy and dataflow mapping.
The hardware software co-design includes work carried out based on both hardware and
software techniques.

3.1. Software Approaches

In DNNs, compression refers to the process of shrinking the model’s size by elim-
inating redundant or unnecessary parameters without substantially compromising its
performance. Several approaches have been developed to compress a DNN and fit it into a
resource-constrained hardware platform. These approaches have been illustrated in the
following. Pruning refers to the elimination of the connections of a DNN that are not
highly essential for its operation. As a result, its memory footprint and computational
requirement are reduced to improve its energy efficiency and fit it into a low-resource
device [7]. Several pruning techniques have been developed, including weight pruning,
neuron pruning, filter pruning, structured pruning, and unstructured pruning. To achieve
additional compression, the pruning procedure may be carried out either during or after
training. Pruning should be used in combination with other strategies like regularization to
preserve the efficiency of the network. If pruning is not performed appropriately, it might
also lead to a loss of accuracy.

Weight sharing reduces the memory footprint of the model by allowing multiple
neurons to use the same set of weights, which can reduce the number of unique parameters
that need to be stored in memory [8]. The common method for achieving weight sharing in
CNNs is to apply the same set of weights to each position of the input feature maps. These
refer to a 3D matrix that represents the input data for a convolutional layer. The input
feature map has a width, a height, and a depth, where the depth corresponds to several
channels in the input data.

In a CNN, the same set of weights, also called filters or kernels, is used to convolve the
input feature map at different locations, resulting in different output feature maps. Each
filter generates one output feature map, and the number of filters determines the number
of output feature maps produced by the layer [9]. Each output feature map represents
a set of learned spatial features that the layer is sensitive to. Siamese networks typically
combine the two identical sub-networks with the same set of weights at some point in
the network, either through concatenation or by determining the absolute difference or
Euclidean distance between their outputs [10].

Weight tying involves arranging the weights of several layers to be equal in order to
bind them together. This is often accomplished by designating a layer as a child layer of
another layer, after which the weights of the child layer are adjusted to match those of the
parent layer [11]. The idea behind weight tying is to decrease various parameters in the
network, which can help prevent overfitting and improve generalization.

Compact structure in DNNs refers to the process of reducing the number of parameters
in the network by simplifying its architecture or by using more efficient building blocks.
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Methods such as depth-wise separable convolution, squeeze-and-excitation (SE) blocks,
ResNet skip connections, MobileNet architecture, and transformer-based architectures help
achieve compact structures in DNN. Low-rank approximation involves approximating
the weight matrices in a DNN with low-rank matrices, which can reduce the number of
parameters and computations required during inference [12]. Some common methods for
low-rank approximation in DNNs include singular value decomposition (SVD), tucker
decomposition, low-rank factorization, and matrix completion. Low-rank approximation
can be used to enhance generalization ability of the network. The specific method used for
low-rank approximation depends on the type of network and the specific implementation.

In the technique of knowledge distillation [3], a smaller and less intricate network is
trained to replicate the behavior of a larger and more intricate network, which can lead to
the development of a condensed model that performs comparably to its larger counterpart.
Several techniques used for knowledge distillation in DNNs are temperature scaling,
feature maps, inter-layer activations and multi-task learning. Knowledge distillation can be
a powerful technique for transferring knowledge to a smaller, simpler model from a larger,
more complex model (see Figure 2).
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Winograd transformation involves transforming the convolution operation in a CNN
into a set of smaller matrix multiplications, and thus can reduce the number of computations
required during inference [13]. This can result in a smaller and more efficient model, while
maintaining the accuracy of the larger model. Techniques used for implementing the
Winograd transformation include F(2×2,3×3) and G(2×2,3×3) transformations, direct
convolution, hybrid approaches, and optimization techniques. The specific techniques used
for implementing the Winograd transformation depend on the architecture of the CNN,
the size of the convolutional kernels, and the available computational resources. The goal
is to balance the computational efficiency of the convolution operation with the accuracy
and generalization performance of the model.

Quantization is the process of transforming deep learning models to use parameters
and computations at a lower precision. By using lower-precision data types, the model’s
memory requirements can be reduced, which can make it easier to deploy on devices with
limited memory. Some types of quantization techniques used in DNNs are fixed-point
quantization, dynamic range quantization, hybrid quantization, and vector quantization.
The parameters of a DNN may be quantized into predetermined levels through the process
of quantization, which results in a reduction in the number of bits that are required to hold
those parameters. As is the case with pruning, it requires striking a balance between the
two competing goals of reducing the size of the DNN and maintaining its accuracy. At the
other end of the spectrum are the binarized DNNs, which have weights and activations
that are either +1 or −1 [14]. This results in a reduction in the amount of memory that is
required to keep the parameters, and the action of multiplication and adding in binary
DNNs is converted into a simple XNOR operation, which is much quicker and saves a
significant amount of energy [15].
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3.2. Hardware Approaches

For implementing a DNN algorithm on a resource-constrained device, a number of
hardware platforms can be used. These include digital signal processors (DSPs), systems-
on-chips (SoC), graphics processing units (GPUs), field-programmable gate arrays (FPGAs),
and neural processing units (NPUs). Some popular SoC platforms for DNNs include
Qualcomm Snapdragon, Apple A-series, Nvidia Jetson, etc. Some popular FPGA platforms
for DNNs include Xilinx FPGAs, Intel FPGAs, and Amazon F1 instances.

In addition, microcontrollers have been recently used for hosting DNNs. The follow-
ing microcontroller platforms are recommended for hosting DNNs [16]: Arduino Nano
33 BLE Sense, STM32 microcontrollers, SparkFun Edge, Espressif ESP32-DevKitC, Adafruit
EdgeBadge, Espressif ESP-EYE, Wio Terminal: ATSAMD51, Himax WE-I Plus EVB End-
point AI Development Board, Synopsys DesignWare ARC EM Software Development
Platform, and Sony Spresense.

To deploy an optimized DNN into a resource-constrained device, hardware-based
methods have been developed as discussed in the following. When deploying DNNs on
resource-constrained devices, it is important to select an appropriate hardware architecture
that can support the computational requirements of the DNN while minimizing power
consumption and memory usage. There have been attempts made to decrease the total
time needed by the network to make an inference on the device. The majority of DNN
operations require a lot of processing power, such as multilayered matrix multiplications.
However, low-resource devices often have restricted memory size and computational
power. As a result, DNN architectures that use much less processing power are becoming
more common [7]. Convolution and matrix multiplication operations should be performed
using specific hardware blocks, and low-precision data formats should be used for weight,
and activation values and the network’s size and complexity should be supported by the
memory and processing capabilities of the selected platform. Since the energy requirement
of low-resource devices needs to be limited, it is essential to optimize the power usage of
the DNN execution. Power reduction techniques may be utilized in hardware, such as
power gating, dynamic voltage, frequency scaling, and clock gating without compromising
performance. Memory is often limited to low-resource devices; hence, memory utilization
and optimization are crucial. Without losing speed, hardware modifications like memory
compression, caching, and scratchpad memory may be employed to lower the memory
needs of DNNs. DNN calculations may be accelerated using on-chip accelerators like DSPs
or GPUs. On-chip accelerators may decrease the computational demands of DNNs and
enhance performance by offloading computation off the primary processor. The calculations
needed by DNNs may be sped-up FPGAs, SoCs, or NPUs. DNN calculations may be
accelerated by using parallel processing methods like pipelining or parallel execution. The
performance of DNNs on low-resource devices may be enhanced by parallel processing
and dividing the calculations into smaller, parallelizable tasks.

Most of the power is consumed during the process of obtaining the parameters and
weights from the main memory to the processor, which is where the actual calculations are
carried out. The implementation of the DNN requires the use of specialized hardware to
be successful. This often requires the expenditure of a substantial quantity of energy [17].
Additionally, the delay rises whenever data are retrieved from the main memory. These
issues are being tackled by DNN accelerators. In a broad sense, it is possible to represent
the training and inference processes of DNNs as matrix multiplications, unlike those seen in
graphics processing. Therefore, GPUs have emerged as the pillar for training and deploying
DNNs. The single instruction, multiple threads (SIMT) parallelization approach is used to
reduce latency during the DNN inference process. The matrix multiplications may also be
optimized for quicker calculations using software tools, which is another way to enhance
current hardware [17].

Memory hierarchy in DNNs refers to the organization of different types of memory
used in a DNN system to store and access data during training and inference [18]. The
primary objective of the memory hierarchy in DNNs is to enhance their efficiency and
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performance by utilizing faster, smaller, and costlier memory at the higher levels of the
hierarchy, and slower, larger, and more economical memory at the lower levels. Memory
hierarchy approaches that can be used to improve the performance of DNNs include
caching, tiling, compression, and data layout optimization. Memory hierarchy is created
so that data may be delivered rapidly and prevent memory access from being performed
twice. The generic memory hierarchy provides support for dataflow mapping and lowering
the amount of energy used and enhancing acceleration. Dataflow mapping is the process
of mapping the computations involved in DNN onto the available hardware resources. It
involves breaking down the DNN computation into smaller blocks and mapping them onto
the hardware resources in a way that maximizes the utilization of the available resources
and minimizes the overall execution time of the DNN. Some specific techniques used in
optimizing dataflow mapping in DNNs are spatial and temporal locality, memory reuse,
parallelism, and custom hardware accelerators. These techniques can help optimize the
placement and movement of data and computations and improve the overall performance
of DNN computations on a wide range of platforms. It is necessary to perform dataflow
mapping since DNN parameters may not be stored on the constrained on-chip memory [1].
Thus, an external memory may be used to transmit the parameters.

3.3. Hardware/Software Co-Design Approaches

DNN inference can be deployed on resource-constrained devices using hardware/
software co-design approaches. These approaches consist of a combination of a hardware
approach and a software approach. Examples of hardware approaches include power
reduction techniques; parallel processing methods like pipelining or parallel execution; the
single instruction, multiple threads (SIMT) parallelization approach; memory hierarchy;
dataflow mapping, etc. Examples of software approaches include pruning, weight sharing,
weight tying, compact structure, low-rank approximation, knowledge distillation, Wino-
grad transformation, quantization, etc. As the hardware and software approaches have
already been described in the previous subsections, they are not therefore explained here.

4. Existing On-Device DNNs

The works that have already been reported on the implementation of DNNs on
resource-constrained devices can be categorized either into software, hardware, and hard-
ware/software co-design approaches. The following subsections provide a review on the re-
ported works involving software, hardware, and hardware/software co-design techniques.

4.1. Current Works Based on Software Approaches

Yao et al. [19] propose a novel approach based on a compressor–critic framework. The
compressor-critic framework consists of two components: a compressor network and a critic
network. The compressor network takes a pre-trained deep neural network as input and
compresses it by removing unnecessary parameters and reducing the number of layers. The
critic network evaluates the compressed network and provides feedback to the compressor
network, guiding the compression process to produce a compressed network with high
accuracy. They also use a reinforcement learning approach to train the compressor and
critic networks, with the goal of maximizing the accuracy of the compressed network while
minimizing the compression rate. The authors also introduce a novel technique called “layer
fusion,” which combines multiple layers of the original NN into a particular layer in the
compressed network, reducing the number of parameters and improving the compression
rate. The paper provides experimental results demonstrating the effectiveness of the
proposed method, showing that it can achieve high compression rates while maintaining
high accuracy on a range of datasets and deep neural network architectures.

Molchanov et al. [20] propose a method for pruning CNNs by removing unimportant
weights. The pruning process is based on the magnitude of the weights in the network,
where weights with small magnitudes are considered unimportant and can be pruned
without significantly affecting the network’s accuracy. Several different pruning tech-
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niques are proposed, including pruning individual weights, entire filters, and even entire
layers of the network. To mitigate the potential accuracy loss caused by pruning, the
authors propose a technique called “iterative pruning and retraining,” where the network
is repeatedly pruned and then retrained on the pruned architecture to recover the lost
accuracy. The authors also propose a method for initializing the pruned network with the
weights of the original network, which can speed up the convergence of the retraining
process. This paper [20] provides experimental results demonstrating the effectiveness of
the proposed methods, showing that it can achieve significant reductions in the number
of parameters and computations without sacrificing accuracy on a range of datasets and
CNN architectures.

Anwar et al. [21] propose a method for pruning large blocks of filters simultaneously,
which can significantly reduce several parameters and computations needed during in-
ference. The method is based on a two-stage process. In the first stage, the network is
trained to identify the redundant blocks of filters using a set of heuristics, such as the
L1-norm of filter weights or activations. In the second stage, the redundant blocks of filters
are pruned, and the network is retrained on the pruned architecture to recover the lost
accuracy. To further optimize the network, a technique is proposed called “coarse pruning,”
where entire blocks of filters are removed from the network, rather than individual filters,
which significantly decrease the calculation and memory requirements of the network
without sacrificing accuracy. The aforementioned paper [21] provides experimental results
demonstrating the effectiveness of the proposed methods, showing that it can achieve
significant reductions in the number of parameters and computations without sacrificing
accuracy on a range of datasets and CNN architectures.

Yang et al. [22] propose a method for designing energy-efficient CNNs through a
technique called energy-aware pruning. The main idea behind energy-aware pruning
is to identify and remove the less important connections in a CNN that contribute less
to its overall accuracy. By removing these connections, the resulting pruned network
has fewer operations to perform, and therefore requires less energy to compute, while
maintaining a high level of accuracy. Firstly, a ranking algorithm to identify the most
significant connections in the network is used. The ranking algorithm assigns a score to each
connection based on its contribution to the overall accuracy of the network. Connections
with lower scores are then pruned. Secondly, an iterative pruning approach is used where
they gradually prune the network while monitoring its accuracy. At each iteration, a
certain percentage of the connections with the lowest scores are pruned and retrained in
the network to recover their accuracy. This process is repeated until the required level
of pruning is achieved. The proposed pruning technique is applied to several popular
CNN architectures, including VGG-16, ResNet-50, and AlexNet, showing that the pruned
networks achieve significant energy savings while maintaining a similar level of accuracy
compared to the original networks. The authors also compare their method to other pruning
techniques and show that their approach outperforms them in terms of energy savings and
accuracy. Overall, the paper provides a useful method for designing energy efficient CNNs
by leveraging the benefits of pruning techniques.

Narang et al. [23] propose a method for introducing sparsity into the weight matrices
of recurrent neural networks (RNNs), which can reduce various computations and memory
accesses essential during inference. The sparsity is introduced through a process called
“structured pruning,” where groups of weights in the weight matrices are pruned simulta-
neously to maintain the structure of the matrices. The authors propose several different
pruning techniques, including pruning individual weights, entire rows and columns, and
even entire matrices. To mitigate the potential accuracy loss caused by pruning, the authors
propose a technique called “iterative pruning and retraining,” like the method proposed
in [20], where the network is repeatedly pruned and then retrained on the pruned architec-
ture to recover the lost accuracy. The paper provides experimental results demonstrating
the effectiveness of the proposed method, showing that it can achieve significant reductions
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in the number of parameters and computations without sacrificing accuracy on a range of
datasets and RNN architectures.

Guo et al. [24] propose a method for surgically removing redundant neurons and
connections that do not contribute significantly to the network’s performance during train-
ing, without compromising the network’s accuracy. The method is based on a two-stage
process. In the first stage, the network is trained to identify the redundant components
using a set of heuristics, such as the magnitude of weights or the magnitude of activa-
tions. In the second stage, the redundant components are surgically removed, and the
network is retrained on the pruned architecture to recover the lost accuracy. To further
optimize the network, the authors propose a technique called “channel pruning,” where
entire channels of feature maps are removed from CNNs, which can significantly reduce
various computations and memory accesses essential during inference. The paper provides
experimental results demonstrating the effectiveness of the proposed method, showing
that it can achieve significant reductions in the number of parameters and computation
without sacrificing accuracy on a range of datasets and architectures.

Hinton et al. [25] propose a method called “knowledge distillation”, which is for
reducing the size and computational complexity of DNNs while maintaining their accuracy.
The authors use a smaller, simpler neural network (referred to as the student network) to
mimic the behavior of a larger, more complex neural network (referred to as the teacher
network) by learning to match the teacher network’s output. This is carried out by using the
output probabilities of the teacher network as soft targets during the training of the student
network. In other words, instead of using the hard labels (e.g., one-hot encoded vectors)
typically employed during supervised training, the student network is trained to match
the probability distribution produced by the teacher network for each input. In addition
to using soft targets, the authors introduce several regularization techniques to prevent
overfitting and improve the generalization of the student network. These techniques
include adding a temperature parameter to the softmax function used to calculate the
output probabilities and adding a term to the loss function that encourages the student
network to produce similar activations as the teacher network. The paper provides several
experimental results demonstrating the effectiveness of the proposed method, including
comparisons with other methods for reducing the size of neural networks. The results
show that knowledge distillation can reduce the size of neural networks by a factor of two
to ten while maintaining or even improving their accuracy.

Ravi et al. [26] propose a three-stage approach to using deep learning for on-node
sensor data analytics. The first stage involves collecting data from the sensors on the device,
which can include accelerometers, gyroscopes, magnetometers, or other sensors depending
on the application. The collected data are then preprocessed to remove noise, normalize
the data, and perform feature extraction to prepare it for input into the deep learning
model. In the second stage, a deep learning model is used to process the preprocessed data.
It is proposed using a CNN architecture, which is well suited for processing sequential
data such as sensor readings. CNN is trained on a labeled dataset of sensor data using
supervised learning, where the labels represent the activity or state that corresponds to
each sequence of sensor readings. Finally, in the third stage, the trained model is deployed
on the device for real-time processing of new sensor data. A sliding window approach is
used to process the data in real time, where the window size is determined by the expected
duration of the activity or state being classified. The model outputs a prediction for each
window of sensor data, which can be used to trigger actions or provide feedback to the
user. This approach achieves high accuracy on both datasets while consuming minimal
resources, making it well suited for deployment on mobile or wearable devices with limited
processing power and battery life.

He et al. [27] propose the ResNet architecture, which introduces residual connections,
which allow the network to learn residual functions instead of directly learning the underly-
ing mapping. In the ResNet architecture, each layer learns a residual function that is added
to the input of the layer. This allows the network to learn the difference between the input
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and the desired output, rather than trying to directly learn the output from the input. This
makes it easier for the network to optimize the weights and avoid the vanishing gradient
problem. The ResNet architecture also includes bottleneck blocks, which reduce the number
of parameters and improve computational efficiency. These blocks consist of three layers,
with the first and last layers having fewer filters than the middle layer. This reduces the
number of parameters while still allowing the network to learn complex features.

Ham et al. [28] propose the NNStreamer framework, which provides an efficient and
flexible pipeline for on-device AI development. The framework includes modular compo-
nents that can be easily integrated and customized to suit different hardware platforms and
use cases. The NNStreamer pipeline includes several components such as data source, pre-
processing, neural network, post-processing, and data sink, which can be customized and
connected in a flexible manner. The framework also provides a set of built- in operators that
can be used for common preprocessing and post-processing tasks, as well as support for
hardware acceleration and optimization. The paper provides several experimental results
demonstrating the effectiveness and efficiency of the NNStreamer framework, including
benchmarks on various hardware platforms and use cases such as object detection and
image classification.

4.2. Current Works Based on Hardware Approaches

Shen et al. [29] trained a CNN model using a large dataset of images containing human
heads and non-human objects. They used this model to develop an algorithm that can
classify whether an image contains a human head or not. The authors then optimized the
algorithm for implementation on an edge device by decreasing the number of operations
and weights needed for the network to run efficiently on the chip. To implement the algo-
rithm on an edge device, the authors used Mipy evaluation board. “AVSdsp”, a technology
company, created the Mipy evaluation board to execute the task of detecting human heads
through images. They devised a software pipeline that comprises the subsequent stages.
Firstly, an image is captured using a camera connected to the FPGA board. Secondly, the
image is preprocessed to resize it to the desired input size for the CNN model. Thirdly,
the image is run through the CNN model on the FPGA to detect whether a human head
is present. Finally, the results of the human head detection algorithm are displayed on
an output display. The authors evaluated the performance of their implementation by
measuring the power consumption, accuracy, and real-time performance of the algorithm
on the FPGA board. They showed that the implementation achieves high accuracy and
real-time performance while consuming minimal power, making it suitable for use in edge
AI applications.

Dong et al. [30] propose a system that employs a hierarchical architecture consisting
of edge devices and cloud servers. The edge devices capture video streams and perform
preliminary processing to decrease the amount of data sent to the cloud. The cloud servers
are responsible for performing more complex processing, such as object detection and
tracking, using deep learning models. They describe the hardware implementation of
their system using Nvidia Jetson TX2 edge devices. They also propose a data compression
technique to reduce the amount of data sent from the edge devices to the cloud, thereby
reducing latency and bandwidth requirements. The authors evaluate their system on an
open-air object detection dataset and show that their system achieves real-time performance
with high accuracy. They also compare their system to existing state-of-the-art systems and
show that their system outperforms them in terms of accuracy and processing speed.

Suleiman et al. [31] propose the concept of visual–inertial odometry (VIO), which
uses a custom CNN architecture, which is a navigation method that combines visual
and inertial data to estimate the position and orientation of a drone in real time. They
then discuss the challenges associated with implementing VIO on small drones that have
limited power, processing, and memory resources. The paper presents Navion, a fully
integrated hardware accelerator that is designed to be low-power and lightweight, making
it ideal for use on small drones. The accelerator is based on a custom-designed systolic
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array architecture that is optimized for VIO computations. The authors also present an
algorithm that is specifically designed to run on Navion, which combines feature tracking
and filtering techniques to estimate the drone’s position and orientation. The authors
evaluate the performance of Navion using a custom-built quadcopter and compare it with
other state-of-the-art VIO algorithms. They demonstrate that Navion can achieve accurate
and real-time navigation while consuming only 2 milliwatts of power, which is several
orders of magnitude lower than other VIO accelerators.

Li et al. [32] propose a hardware architecture to implement the accelerator, which
consists of multiple processing elements (PEs) connected through a network on chip (NoC)
to form a systolic array. The PEs perform the convolution and pooling operations in parallel,
which allows for high throughput and low latency. The authors also developed a software
stack that includes a compiler and a runtime system to translate CNN models into configu-
rations that can be executed on the FPGA accelerator. The compiler optimizes the CNN
model by mapping its layers to the PEs and generating configuration files for the FPGA.
The runtime system manages the communication between the host computer and the FPGA
and controls the execution of the CNN model. The authors evaluated the performance of
their FPGA-based accelerator by comparing it with a software implementation of the same
CNN model running on a high-end CPU. They showed that their FPGA-based accelerator
achieved significant speedup and energy efficiency compared to the CPU implementation,
while maintaining high accuracy.

Dinelli et al. [33] use a CNN architecture called SqueezeNet as the target network
for their accelerator. The hardware accelerator is designed to perform the convolutional
and pooling operations of the SqueezeNet architecture using only on-chip memories,
which helps to reduce the latency and energy consumption of the accelerator. The hardware
accelerator is implemented on a Xilinx Zynq UltraScale+ FPGA, which includes a processing
system and programmable logic. The authors use programmable logic to implement the
hardware accelerator, which consists of a convolutional layer, a max-pooling layer, and
a ReLU activation layer. The on-chip memories are used to store the weights and input
feature maps of the convolutional layer and the output feature maps of the max-pooling
and ReLU layers. The authors benchmark their hardware accelerator using the Intel
Movidius Neural Compute Stick, a popular edge device for running neural networks. They
compare the performance of their hardware accelerator with the Neural Compute Stick
using two different CNN architectures, SqueezeNet and MobileNet. The results show that
the hardware accelerator outperforms the Neural Compute Stick in terms of both latency
and energy consumption for both CNN architectures.

Chen et al. [34] propose an energy-efficient accelerator for CNNs called Eyeriss. Eye-
riss is designed to optimize the computation and communication patterns of CNNs, which
are the most computationally intensive operations in deep learning. Eyeriss uses a recon-
figurable architecture that allows it to adapt to different CNN models and layers. The
architecture is composed of PEs that perform the convolution and pooling operations and
a memory hierarchy that stores the weights, activations, and feature maps. The PEs are
arranged in a mesh topology, and each PE is connected to its neighboring PEs through
a communication network. Eyeriss also uses a dataflow organization that optimizes the
communication between the PEs and the memory hierarchy. The dataflow organization
ensures that the data are streamed from memory to the PEs only when they are needed,
and that the data are processed in the correct order. This reduces data movement and
energy consumption. To further reduce energy consumption, Eyeriss uses a technique
called weight stationary, which exploits the fact that the weights in a CNN are reused
multiple times. The weight stationary technique stores the weights in a separate memory
bank and streams them to the PEs as needed, reducing the energy consumption of fetching
the weights from memory. The authors of the paper implemented Eyeriss on a FPGA
platform and evaluated its performance on several CNN models. The results show that
Eyeriss achieves high energy efficiency compared to other state-of-the-art accelerators while
maintaining high accuracy on image classification tasks.
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Chen et al. [35] propose the Eyeriss v2 accelerator, which is implemented using a tiled
architecture, where each tile consists of a PE array and a local memory. The processing
element array is responsible for performing the computation of the neural network layers,
while the local memory stores the weights and input feature maps of the layers. The
Eyeriss v2 accelerator uses a flexible dataflow scheduling scheme to handle the complex
computation and data movement patterns of emerging deep neural networks. The dataflow
scheduling scheme allows the accelerator to dynamically allocate resources to different
layers of the network, based on their computation and memory requirements. The authors
use several emerging architectures, such as RNNs and attention-based models, to eval-
uate the performance of the Eyeriss v2 accelerator. The results show that the Eyeriss v2
accelerator achieves high energy efficiency and performance compared to state-of-the-art
mobile accelerators, such as the Google Pixel Visual Core and the Apple Neural Engine.
The authors also introduce a new performance metric called the “energy- delay product”
(EDP), which considers both the energy consumption and the latency of the accelerator. The
EDP metric shows that the Eyeriss v2 accelerator outperforms other mobile accelerators in
terms of energy efficiency and latency.

4.3. Current Works Based on Hardware/Software Co-Design Approaches

Lane et al. [5] propose a system called DeepX, which accelerates the inference of
DNNs on mobile devices. The authors use a combination of software techniques and
hardware optimizations to achieve this goal (see Figure 3). The software techniques include
optimizing the computation graph, pruning the network, and quantizing the weights and
activations. The hardware optimizations include using a custom hardware accelerator
and reducing the number of memory accesses. The authors use a custom instruction set
architecture (ISA) to efficiently map the computations required for deep learning inference
onto the hardware accelerator. The hardware accelerator is designed to work in conjunction
with a software stack that includes a compiler, runtime library, and driver. The authors
evaluate their system on several benchmark datasets and compare it to existing state-of-
the-art systems. They show that their system achieves a significant speedup compared
to the baseline system, while consuming significantly less power. They also show that
their system achieves state-of-the-art performance on several benchmark datasets. Overall,
the paper presents an interesting approach to accelerating deep learning inference on
mobile devices. The authors provide a detailed description of their system and evaluation
methodology, and the results show that their system is effective in reducing the power
consumption of deep learning inference on mobile devices while maintaining high accuracy.
However, it should be noted that the proposed system is still in the research stage and has
not been widely deployed or evaluated in real-world scenarios.
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Ding et al. [36] propose a novel method for quantizing weights and activations of
DNNs using integer and binary representations, which reduces the amount of memory
required to store the network parameters and improve the computational efficiency of the
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inference process. They show that their proposed method achieves competitive accuracy
on benchmark datasets such as CIFAR-10 and ImageNet, while reducing the memory
footprint and energy consumption by up to 4× compared to full-precision networks. The
authors also propose a hardware architecture for implementing the quantized DNN, which
uses parallel processing and pipelining to accelerate the inference process. The hardware
accelerator is designed to support low-precision computations, specifically 1-bit and 2-bit
quantization. This enables the accelerator to perform computations using a reduced number
of bits, which reduces power consumption and hardware complexity. To evaluate their
implementation, the authors tested their system on several benchmark datasets, including
CIFAR-10 and SVHN. The results showed that their hardware accelerator achieved high
accuracy while consuming significantly less power than existing DNN accelerators.

Zhang et al. [37] propose FitNN, a low-resource FPGA- based CNN accelerator that
can be integrated with a drone’s on-board processor. This involves the design and imple-
mentation of a CNN accelerator software stack for drones, which is optimized for use with
a low-resource FPGA-based hardware accelerator. The software stack consists of several
components, including a front end that handles input data processing and communication
with the FPGA accelerator, and a back end that performs output processing and sends
results back to the drone’s main processor. The FPGA accelerator itself is designed to
perform the computationally intensive convolutional and pooling operations that are re-
quired for CNN inference. The authors also develop a custom hardware-software co-design
methodology that allows for efficient communication between the FPGA accelerator and
the software stack. This methodology involves the use of specialized hardware interfaces
and a communication protocol that optimizes the transfer of data between the FPGA and
the software stack. To evaluate their software and hardware co-design approach, the au-
thors implemented their system on a low-cost FPGA development board and tested it using
the CIFAR-10 dataset. The results showed that their approach achieved high accuracy and
speed, while consuming very little power.

5. Analysis and Comparison
5.1. Comparison of Software-Based Approaches

The software-based approaches utilize algorithms to implement DNNs on low-resource
devices, which can improve efficiency and accuracy. With the wide range of existing works
reported in this paper, it is essential to compare their features, benefits, and limitations.
In Tables 1 and 2, we compare different software-based approaches to understand their
key features and differences, and ultimately make an informed choice for specific needs
at hand.

Table 1. Comparison of software-based approaches.

Author Architecture Compression Rate Memory

Yao et al. [19] DNN Not Available Before: 90% After: 98.9%
Molchanov et al. [20] CNN Before: 9× After: 13× Not Available

Anwar et al. [21] Deep
CNN Not Available Before: Not Available

After: 10×

Yang et al. [22] CNN Before: Not Available
After: 13× Not Available

Narang et al. [23] RNN Before: Not Available
After: 16×

Before: Not Available
After: 90%

Guo et al. [24] DNN Before: Not Available
After: 17.7×

Before: Not Available
After: 108×

Hinton et al. [25] DNN Not Available Before: Not Available
After: 30×

Ravi et al. [26] CNN Not Available Not Available

He et al. [27] DNN Not Available Before: Not Available
After: 52 MB
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Table 2. Comparison of software-based features.

Author Speed Power
Consumption

Compression
Ratio Accuracy

Yao et al. [19] Not Available
Before: Not
Available

After: 90.6%

Before: 71.4%
After: 94.5% Not Available

Molchanov et al.
[20]

Before: 2×
After: 4× Not Available Not Available Before: 2×

After: 4×

Anwar et al. [21] Not Available Not Available Before: 98.88%
After: 98.78% Not Available

Yang et al. [22]
Before: Not
Available

After: 3.7×

Before: Not
Available

After: 13×

Before:
Not Available

After: 1%
Not Available

Narang et al. [23] Not Available Not Available Not Available Before: 2×
After: 7×

Guo et al. [24] Not Available Not Available Not Available Not Available

Hinton et al. [25] Not Available Not Available
Before:

Not Available
After: 80%

Not Available

Ravi et al. [26] Not Available Not Available Not Available Not Available

He et al. [27] Not Available Not Available
Before:

Not Available
After 3.57%.

Before: Not
Available

After: 34%

Various techniques such as pruning, compression, and knowledge distillation can
significantly reduce the model size and computational requirements of DNNs while main-
taining high accuracy on various tasks. In terms of compression rate, Guo et al. [24]
reported a greater compression rate of 17.7× when compared with reported works of
Molchanov et al. [20], Yang et al. [22], and Narang et al. [23]. In terms of power consump-
tion, the approaches proposed in these papers vary in their focus and methodology, but
they all aim to reduce the power consumption of DNNs in different ways. Some papers
focus on model compression and pruning, while others focus on design. Yao et al. [19]
reported average power consumption of 94.5%, as many papers did not report power
consumption of their works. Overall, it is difficult to compare the accuracy results across
these papers as they use different datasets and tasks, and some of them focus on aspects
other than accuracy. However, Molchanov et al. [20] reported a greater accuracy of 94.2%
when compared with other reported existing works’ accuracy.

5.2. Comparison of Hardware-Based Approaches

The hardware- based approaches utilize various hardware components such as pro-
cessors, memory, etc., to fit DNNs on low-resource devices, which can improve efficiency
and accuracy. With various existing works we have reported in this paper, it is essential
to compare various aspects of these approaches. In Tables 3 and 4, we compare different
hardware-based approaches and features to provide greater insight of these reported works.

These papers propose different hardware architectures for accelerating DNNs, with
a focus on different application scenarios and optimization goals. Li et al. [32] and
Chen et al. [34,35] present designs that achieve high energy efficiency while maintaining
accuracy, while Dinelli et al. [33] propose a design that reduces off-chip memory accesses.
Shen et al. [29] focus on the application scenario of edge devices, while Chen et al. [34,35]
present flexible architectures that support emerging NN models. Suleiman et al. [31] re-
ported greater speed with 200 FPSwhen compared with Dong et al. [30] and Chen et al. [34].
Suleiman et al. [31] reported the lowest power consumption, with 2 mW. Shen et al. [29]
reported a higher accuracy of 98.7% when compared with other accuracies reported.
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Table 3. Comparison of hardware-based approaches.

Author Network
Type Accelerator Platform Size

Shen et al. [29] CNN NA SoC Not Available

Dong et al. [30] CNN Nvidia Jetson
TX2 Not Available Not Available

Suleiman et al. [31] CNN VIO
accelerator CMOS Before: Not Available

After: 6.4 mm

Li et al. [32] CNN Xilinx VC709 FPGA Before: Not Available
After: 1.45

Dinelli et al. [33] CNN Xilinx, Intel FPGA Not Available

Chen et al. [34] CNN Eyeriss NOC Before: Not Available
After: 168 PEs

Chen et al. [35] DNN Eyeriss v2 NoC Before: Not Available
After: 1024 PEs

Table 4. Comparison of hardware-based features.

Author Speed Power Consumption Accuracy

Shen et al. [29] Not Available Not Available Before: Not Available
After: 98.7%

Dong et al. [30] Before: Not Available
After: 30 FPS Not Available Not Available

Suleiman et al. [31] Before: Not Available
After: 200 FPS 2 mW Before: Not Available

After: 2.3%

Li et al. [32] Before: Not Available
After: 156 MHz

Before: Not Available
After: 330 W Not Available

Dinelli et al. [33] Not Available Before: Not Available
After: 2.259

Before: Not Available
After: 90.23%

Chen et al. [34] Before: Not Available
After: 35 FPS

Before: Not Available
After: 45% Not Available

Chen et al. [35] Before: Not Available
After: 42.5×

Before: Not Available
After: 11.3×

Before: Not Available
After: 80.43%

5.3. Comparison of Hardware-/Software-Based Approaches

Hardware/software co-design approaches leverage the strengths of both hardware
and software methods, combining their capabilities to achieve optimized solutions for com-
plex computing tasks. In Tables 5 and 6, we compare various aspects of hardware/software
co-design approaches and features. By providing a comprehensive overview of these ap-
proaches, we aim to assist in making informed decisions when choosing and implementing
hardware/software co-design approaches.

The three listed papers focus on developing efficient accelerators for deep learning
inference on different platforms. In terms of memory, Lane et al. [5] reduced the memory
usage size by 75.5%, whereas the remaining two papers did not mention the memory
usage. In terms of power consumption, Ding et al. [36] reduced the power usage by 61.6%,
whereas Zhang et al. [37] reduced the power usage by 1.97 w. Lane et al. [5] improved the
speed by 5.8 times when compared with other networks. Overall, it is difficult to compare
the accuracy results across these papers, as some papers did not report the accuracy of the
developed approaches.

Table 5. Comparison of hardware/software co-design-based approach.

Author Network Type Accelerator Platform Memory

Lane et al. [35] DNN Deepx SoC Not Available
Ding et al. [36] DNN Not Available Custom Not Available

Zhang et al. [37] CNN FitNN FPGA Not Available
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Table 6. Comparison of hardware/software co-design-based features.

Author Speed Power Consumption Accuracy

Lane et al. [35] Before: Not Available
After: 5.8 faster Not Available Before: Not Available

After: 15%

Ding et al. [36] Not Available Before: Not Available
After: 61.6% Not Available

Zhang et al. [37] Before: Not Available
After: 9 FPS

Before: Not Available
After: 1.97 W Not Available

6. Discussions

This review paper examined various hardware/software-based solutions for the im-
plementation of deep learning networks (DNNs) on devices that are limited in resources.
These solutions include model compression, quantization, and hardware-based solutions.
Model compression allows for a reduction in model size, a decrease in memory consump-
tion, and an increase in inference speed. Quantization techniques reduce the number
of parameters, allowing DNNs to be deployed on devices with fewer resources. Addi-
tionally, quantization methods can be used to reduce the precision of data types, further
reducing memory usage and computing requirements. Finally, hardware-based solutions
allow for the offloading of intensive calculations from the primary processor, allowing
for more system resources to be used for other tasks. Hardware/software co-design is a
combination of hardware and software approaches that seeks to achieve optimal DNN
performance on devices with limited resources. By combining hardware accelerators with
software optimization, co-designed systems can be more efficient and cost-effective than
pure software implementations. This type of approach allows for more granular optimiza-
tion, including hardware-specific optimization for critical operations, while also taking
advantage of software-based modeling and quantization techniques. Both co-design and
hardware-based approaches have their own trade-offs, with software-based approaches
typically requiring additional hardware components that can increase system complexity
and cost. Ultimately, the selection of an approach is dependent on the device’s resource
limitations, performance needs, and the desired application. Table 7 provides a comparison
of all three approaches for various parameters that were discussed earlier.

Table 7. Comparison of all three approaches.

Parameter Approach Author Network
Type Accelerator Obtained

Result

Power
consumption

Software Yao et al. [19] DNN Not available 90.6%

Hardware Suleiman et al. [31] CNN VIO
accelerator 2 mW

Hardware/
software co-design Zhang et al. [37] CNN FitNN 1.97 W

Compression rate

Software Guo et al. [24] DNN Not available 17.7×

Hardware Not available Not available Not available Not
available

Hardware/
software co-design Not available Not available Not available Not

available

Speed

Software Molchanov et al. [20] CNN Not available 4×

Hardware Suleiman et al. [31] CNN VIO
accelerator 200 FPS

Hardware/
software co-design Zhang et al. [37] CNN FitNN 9 FPS
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Table 7. Cont.

Parameter Approach Author Network
Type Accelerator Obtained

Result

Memory

Software Yao et al. [19] DNN Not available 98.8%

Hardware Not available Not available Not available Not
available

Hardware/
software co-design Not available Not available Not available Not

available

Accuracy

Software Molchanov et al. [20] CNN Not available 94.2%
Hardware Shen et al. [29] CNN Not available 98.7%
Hardware/

software co-design Lane et al. [35] DNN DeepX 15%
increase

7. Future Prospectus, Challenges, Advantages, Applications

Future Prospectus: Low-resource devices are poised to have a significant impact
on various industries and domains in the coming years. With advancements in edge
computing and the proliferation of IoT devices, low-resource devices are expected to play a
major role in enabling smart cities, smart homes, and smart industries [38]. They can enable
real-time data processing, improve automation, and facilitate seamless communication
between devices, paving the way for a more interconnected and intelligent world.

Security Considerations: Security is a crucial aspect of low-resource devices, as they
are often connected to the Internet and may handle sensitive data. Securing low-resource
devices presents unique challenges due to their limited processing power and memory,
making it essential to implement efficient security measures [39]. Ensuring data integrity,
authentication, and confidentiality are key considerations for securing low-resource devices
and protecting against potential cyber threats.

Challenges: Low-resource devices face several challenges, including limited process-
ing power, memory, and storage, which can impact their performance and functionality.
Developing NNs that can run efficiently on resource-constrained devices can be challenging,
as they require optimization to operate with limited resources [40]. Power management
is another challenge, as low-resource devices are often battery-powered and need to be
energy-efficient to extend their operational lifespan.

Advantages: Despite their limitations, low-resource devices offer several advantages. They
are cost-effective, as they are often cheaper to manufacture and maintain compared to high-
end computing devices. Low-resource devices are also compact and portable, making them
suitable for deployment in remote or constrained environments [39]. They can enable real-time
data processing at the edge, reducing the requirement for data transmission to the cloud and
minimizing latency. Additionally, low-resource devices can operate in harsh environments and
have longer battery life, making them ideal for IoT and embedded applications.

Applications: Low-resource devices find applications in various domains, including
healthcare, agriculture, logistics, industrial automation, and smart home systems [41]. In
healthcare, low-resource devices can be used for remote patient monitoring, telemedicine,
and wearable health devices. In agriculture, they can enable precision farming, smart
irrigation, and livestock monitoring. In logistics, low-resource devices can be utilized for
tracking and monitoring assets, optimizing supply chain operations, and improving fleet
management. In industrial automation, they can be used for machine monitoring, predictive
maintenance, and process optimization [42]. In smart home systems, low-resource devices
can control and automate household appliances, lighting, and security systems.

8. Conclusions

Deploying neural networks on low-resource devices can aid in reducing network
congestion by enabling computations to be executed near the data sources, maintaining
privacy, and lowering power consumption. This study was undertaken to provide a
description of the current methods that ensure the performance of neural network models
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on hardware with low resources. This review focuses on previously published studies
related to the implementation of DNNs on various devices. The examined methods detail
how to reduce DNN models and implement them on resource-constrained hardware
platforms. This deployment process may be carried out using either software, hardware, or
combined hardware and software. It is essential to note that the three approaches are not
mutually exclusive. Requirements such as computational complexity, privacy, and energy
consumption will determine which software and hardware approach will be required.
Software and hardware advancements have played a crucial role in the recent success and
broad acceptance of AI technologies, making it faster and more efficient to design and
deploy intelligent systems. However, many obstacles remain, such as the need for more
efficient and scalable electronic technology, improved algorithms and architectures, and
more resilient AI solutions.
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