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Abstract: Human Activity Recognition (HAR) has been a popular area of research in the Internet of
Things (IoT) and Human–Computer Interaction (HCI) over the past decade. The objective of this
field is to detect human activities through numeric or visual representations, and its applications
include smart homes and buildings, action prediction, crowd counting, patient rehabilitation, and
elderly monitoring. Traditionally, HAR has been performed through vision-based, sensor-based, or
radar-based approaches. However, vision-based and sensor-based methods can be intrusive and raise
privacy concerns, while radar-based methods require special hardware, making them more expensive.
WiFi-based HAR is a cost-effective alternative, where WiFi access points serve as transmitters and
users’ smartphones serve as receivers. The HAR in this method is mainly performed using two
wireless-channel metrics: Received Signal Strength Indicator (RSSI) and Channel State Information
(CSI). CSI provides more stable and comprehensive information about the channel compared to
RSSI. In this research, we used a convolutional neural network (CNN) as a classifier and applied
edge-detection techniques as a preprocessing phase to improve the quality of activity detection.
We used CSI data converted into RGB images and tested our methodology on three available CSI
datasets. The results showed that the proposed method achieved better accuracy and faster training
times than the simple RGB-represented data. In order to justify the effectiveness of our approach,
we repeated the experiment by applying raw CSI data to long short-term memory (LSTM) and
Bidirectional LSTM classifiers.

Keywords: human activity recognition; Internet of Things; deep learning; channel state information;
convolutional neural networks

1. Introduction

Over the past two decades, the Internet of Things (IoT) has emerged [1]. It refers
to a group of computing devices and objects operating interrelatedly in a network to
share and transfer data and information in a real-time, efficient, and fast manner without
human intervention [2]. It covers intelligent homes, cities and networks, automation, AI,
cybersecurity, telehealth, connected cars, hotel industries, and remote control [3]. One of
the hot topics and emerging areas of research in the field of smart buildings and health
monitoring which has been gaining considerable attention on both the academic and
industrial sides, is Human Activity Recognition (HAR) [4]. HAR seeks to determine what
specific daily activity is performed by users understanding the different responses that
devices give each other because of the action [4,5].

Three different types of data can be collected for HAR, namely: vision-based, sensor-
based, and radar-based [6] (As shown in Figure 1). Vision-based HAR focuses on visualizing
data (images or videos) such as color, depth, and the skeleton 3D camera. In this method,
there must be a direct sight to the users, and the presence of any hindrances and obstacles
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would diminish the system’s functionality and accuracy. In addition, vision-based HAR
approaches are highly dependent on weather and lighting conditions, and due to continued
monitoring, they can violate users’ privacy [7]. The sensor-based approach is carried out
either through different kinds of sensors assembled in a gadget, such as accelerometer,
gyroscope, gravity, and orientation in smartphones, or wearable sensors, such as coats,
shoes, smart watches/glasses, and gloves. Wearable sensors have achieved remarkable and
acceptable results in HAR; however, they run into problems such as inconvenient use that
may make them inefficient in some scenarios. Unlike the previously mentioned methods,
radar-based HAR can be applied in scenarios where a direct line of sight is impossible
between users and devices. Moreover, this approach is independent of environmental
conditions such as light and weather [4]. However, equipping this approach is costly [8].

WiFi-based HAR, as a subgroup of radar-based approach, has gained considerable
attention because of its advantages such as being less expensive, ubiquitously available,
easy to deploy, power-efficient, and independent from light/weather characteristics [9].
In WiFi-based HAR, the aim is to find and highlight each specific activity’s effect on the
propagated signals, and based on this variation, predict the users’ activities. Generally, WiFi-
based HAR is carried out through two metrics of WiFi channels: Channel State Information
(CSI) and Received Signal Strength Indicator (RSSI) [9]. RSSI contains information about
how the power of propagated signal varies through its way to the receiver and is ideally
used in localization tasks.

The major concern with RSSI is that it is unstable, so it cannot capture dynamic changes
during an activity performance [9,10]. In addition, the distance between the transmitter and
receiver affects the accuracy of this method. This is while CSI is more stable and contains
more information about wireless channels since it is measured at each orthogonal frequency-
division multiplexing from each packet. In addition, it records both the amplitude and
phase quantities; therefore, it can be implied how an activity would affect the propagated
signal more accurately. Thus, it is preferred for WiFi-based HAR [11].

Figure 1. Different possible sensory data collections taken in HAR.

The problem with converting CSI data into an image is that the generated images
in activities, such as walking and running, falling and lying down, have the same vi-
sual representations, which may make the classification difficult, in addition to applying
different preprocessing techniques such as Principal Component Analysis (PCA) and Lin-
ear Discriminant Analysis (LDA) to eliminate undesired values of noise. Based on our
preliminary analysis and observations, we hypothesize that by applying edge detection
techniques to the CSI images in WiFi-based HAR and utilizing the Canny, Prewitt, Sobel,
and Laplacian of Gaussian (LoG) filters, we can improve the accuracy and overcome the
challenge of visual representations of similar activities, leading to more effective activity
recognition compared to existing methods. We applied edge detection techniques and
used mentioned well-known filters on the converted RGB-based images. After apply-
ing edge detector filters, we repeated the classification process by the same CNN layers.
We witnessed an increase in accuracy and elimination of overfitting in all the studied
datasets. We analyzed three publicly available WiFi datasets gathered by [12–14], and
based on their characteristics, we applied edge detection techniques to the CSI images
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to extract more features out of them. In order to show the effectiveness of our proposed
method, we compared the results of our proposed method with two networks: LSTM and
Bidirectional-LSTM Deep Learning (DL) model proposed in [12,13].

The rest of this paper is organized as follows: a brief review of the previous literature
with different modalities and What is Channel State Information (CSI) is presented in
Section 2. In Section 3, we present previously studied papers in the field of WiFi-based
HAR with each drawback alongside the different approach we have taken in this study.
The overview of the analyzed datasets and the proposed method is described in Section 4.
The proposed activity recognition algorithm, experimental evaluation, and results are
presented in Section 5. Finally, conclusion and future works are described in Section 6.

2. Background

Human Activity Recognition (HAR) is a research field that classifies human actions
using sensor data. It is used in computer vision and Machine Learning (ML), aiming to
detect and recognize human activities automatically. HAR has potential in various sectors,
including healthcare, sports, and security, but requires ethical and transparent execution to
meet privacy concern. Sensor modalities used in HAR include:

• RGB, Skeleton, and Depth data: RGB data provides visual information about humans,
skeleton data focuses on the spatial relationships between body parts, and depth data
provides information about the 3D structure of a scene [15].

• Audio Data: Captures human activities based on audio patterns, useful when visual
information is limited [16].

• Wearable Sensors: Capture acceleration data, measuring changes in movement and
velocity, useful for detecting activities involving body motion [17].

• Radar Data: Represents reflected signals, used to detect human presence and move-
ment [18].

• WiFi Signal Data: Utilizes wireless signals to recognize activities based on changes
caused by human motion. The choice of sensor modality depends on the application’s
specific requirements, such as environmental conditions and available hardware
resources [12].

WiFi signals, which are commonly used for wireless communication, can also be
utilized to capture human activities within their range [12]. Channel State Information
(CSI) refers to the information carried by WiFi signals about the wireless channel between
the transmitter (WiFi access point) and the receiver (WiFi device) [12,14]. It includes data
about the amplitude, phase, and frequency response of the signals. When a human engages
in activity, their movements introduce changes in the wireless channel characteristics.
These changes affect the properties of the WiFi signals, which can be captured and analyzed
using CSI. By examining the variations in the amplitude and phase of the WiFi signals,
we can infer specific characteristics of human activities. To obtain CSI, specialized WiFi
devices with multiple antennas are used. These devices have the capability to measure
the variations in the wireless channel caused by human movements. The measurements
are typically collected at a high temporal resolution, capturing the rapid changes in the
wireless signals [12,13]. Suppose we have a MIMO communication system has several
subcarriers in a single connection between a transmitter and receiver. Each subcarrier has
unique CSI values. If we assume there are t transmitters, and r receivers operating in a
MIMO system, CSI for the mth packet can be represented as a matrix of

CSIm =

H1,1 · · · H1,r
...

. . .
...

Ht,1 · · · Ht,r

 (1)

where Ht,r is a complex-valued vector for each subcarrier. Each element of this matrix
contains information about the amplitude and phase of the propagated signal from the
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tth transmitter and rth receiver. A single element of CSI at central frequency of fk can be
described as:

Ht,r( fk) = ||Ht,r( fk)|| × ei∠Ht,r( fk) (2)

where ||Ht,r( fk)|| and ∠Ht,r( fk) represents the amplitude and the phase, respectively.
In addition, the nth received sequence at time t in the subcarrier with the central frequency
of fk can be shown as:

R( fk, t) = T( fk, t)× CSI + W (3)

where T( fk, t) and R( fk, t) are the transmitted and received sequence, respectively, whereas
W stands for the environmental noise in the experiment [13].

3. Related Works

In this section, we will focus on previous studies solely in the era of WiFi-based HAR
and finally, we will explain how our approach is different compared to former ones.

Wang et al. [19] proposed CARM (Channel State Information-based Human Activity
Recognition and Monitoring), a system that utilized WiFi signals to accurately recognize
and monitor human activities. The system addressed the limitations of existing WiFi-based
recognition systems by introducing the CSI-speed model and the CSI-activity model. The
CSI-speed model established the relationship between CSI power variations and movement
speeds, while the CSI-activity model represented the movement speeds of body parts to
specific activities. CARM offered several advantages. It enabled precise movement feature
extraction using commercial WiFi devices, allowing for quantitative assessment of activities.
The model-based approach guided system design and noise removal techniques, lever-
aging insights such as the frequency range of CSI variations caused by human activities.
The system handled challenges such as noisy CSI values by employing PCA-based denois-
ing and addressed variations in activity performance through the use of Hidden Markov
Models. Robustness in different environments is achieved by performing data fusion from
multiple WiFi links. Experimental results demonstrate high recognition accuracy, averaging
96% on a comprehensive activity database. CARM’s implementation on commercial WiFi
devices, such as routers and laptops, showcased its practical applicability. Although this
study could achieve an acceptable performance it had some drawbacks. For example, the
reliance on specific commercial WiFi devices, such as Intel 5300 WiFi cards, may limit the
system’s compatibility with other devices. This hardware dependency could hinder its
adoption in different settings or with future advancements in WiFi technology.

Ding et al. [20] presented a WiFi Channel State Information (CSI)-based human ac-
tivity recognition approach called HARNN (Human Activity Recognition using Deep
Recurrent Neural Network). The system addressed the need for accurate activity recogni-
tion using commercial WiFi devices in applications such as smart homes and interactive
games. HARNN incorporates four key techniques to recognize different human activities.
Firstly, it utilized a novel two-level decision tree that efficiently uses variance and correla-
tion coefficients of raw WiFi CSI data. A linear regression method is employed to determine
the optimal parameters for the decision tree, reducing false activity detection caused by
noise in indoor environments. To overcome the challenge of random noise interference,
a noise removal mechanism based on discrete wavelet transform (DWT) is introduced.
This strategy effectively filters out noise while preserving WiFi signal details, enhancing
the accuracy of activity recognition. Two representative features, channel power variation
(CPV) in the time domain and time-frequency analysis (TFA) in the frequency domain, were
extracted from denoised WiFi CSI data. These features provided profound characterization
of various human activities. The proposed HARNN employed a recurrent neural network
(RNN) model, specifically with a long short-term memory (LSTM) block. Experiments
conducted on commercial WiFi devices validate the high performance of HARNN in hu-
man activity recognition using WiFi CSI. The system outperforms benchmark approaches
in terms of recognition accuracy. The experiments also demonstrate the robustness of
HARNN in different indoor environments.
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Yuan et al. [21] proposed a CSI-based device-free HAR (CDHAR) system that inte-
grates WiFi-sensing radar on UAVs for human activity recognition. The system addressed
two disadvantages of existing CSI-based HAR systems: manually setting detection thresh-
olds and the use of a sole classifier for recognition. To overcome these challenges, CDHAR
employs machine learning and kernel density estimation (KDE) to obtain adaptive detection
thresholds, improving adaptability and instantaneity in different wireless environments.
Additionally, a random subspace classifier ensemble method is introduced, using frequency
domain features instead of time domain features, and ensuring higher recognition accuracy
compared to existing systems. The advantages of CDHAR include the adaptive detection
threshold algorithm, which accurately extracts activity durations even in varying wireless
environments. The use of frequency domain features and the random subspace classifier
ensemble method further enhances recognition accuracy. However, there are some draw-
backs to consider. Firstly, the reliance on machine learning and KDE for adaptive detection
thresholds introduces additional complexity and computational overhead. Secondly, focus-
ing primarily on frequency domain features may neglect important temporal patterns and
nuances present in the time domain.

Arshad et al. [22] present Wi-Chase, a sensorless system for human activity detection
using Channel State Information (CSI) from WiFi packets. The system aims to overcome
limitations of existing approaches by fully utilizing all available subcarriers of the WiFi
signal and incorporating variations in both phases and magnitudes. Wi-Chase introduces an
adaptive Activity Detection Algorithm (ADA) that evaluates the variations in all subcarriers
to improve recognition accuracy by leveraging detailed correlated information content.
The system employs subcarrier level majority voting and utilizes both amplitude and
phase features, resulting in higher classification accuracy compared to previous works.
The authors construct a diverse dataset of activities from different users and analyze the
system’s performance with varying numbers of subcarriers and communication links.
Experimental results demonstrate that Wi-Chase achieves an average accuracy greater than
97% for multiple communication links. Overall, Wi-Chase represents a novel sensorless
system that effectively detects and classifies human activities using WiFi CSI, providing a
promising approach for activity recognition in real-world scenarios.

In our research, we built upon the WiFi-based HAR concept and employed a Con-
volutional Neural Network (CNN) as a classifier. As a preprocessing step, we applied
edge-detection techniques to improve the quality of activity detection. Instead of directly
using the CSI data, we converted it into RGB images and used them as inputs to the CNN.
This conversion allowed us to leverage the powerful image-processing capabilities of CNNs.
We conducted experiments using three available CSI datasets which were collected via
different devices and modalities and compared the performance of our method with a
simple RGB-represented data approach. The results of our experiments demonstrated
that our proposed method achieved better accuracy and faster training times compared
to the simple RGB-represented data approach. To further justify the effectiveness of our
approach, we also repeated the experiments by applying raw CSI data to Long Short-Term
Memory (LSTM) and Bidirectional LSTM classifiers. These additional experiments pro-
vided further evidence of the superiority of our method in capturing and utilizing the
channel information for accurate activity recognition. By focusing on WiFi-based HAR
and leveraging the rich information provided by CSI, our approach offers distinct advan-
tages over traditional vision-based, sensor-based, and radar-based methods. It provides a
cost-effective, non-intrusive, and privacy-friendly solution for human activity recognition.
Our research contributes to the advancement of WiFi-based HAR techniques and demon-
strates the potential for improved accuracy and efficiency by incorporating advanced
machine learning algorithms and preprocessing techniques.
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4. System Model
4.1. CSI Dataset and the Collection Methodology

In this section, we will discuss the specialized hardware and software used for CSI
data collection and explore the datasets we used for this study. According to the previous
studies, the most prominent hardware to extract CSI data is Intel 5300 WiFi Network Inter-
face Card (NIC) or Linux 802.11n, Atheros CSI tools such as AR9580, AR9590, AR9344, and
QCA9558, and Raspberry Pi or Nexmon CSI Tool [23]. Since Nexmon CSI Tool offers better
and more promising features such as enabling access and monitoring MIMO antennas up to
44 numbers and also collecting the information on a channel between a specific transmitter
and receiver, and additionally, due to its easy deployment on Raspberry Pi 3B+, Pi 4B,
Google Nexus 5, and Routers, and more importantly its cost-friendly feature, recent studies
have been focusing on collecting data using this approach [12]. In this study, we analyzed
three available CSI-based datasets gathered by different researchers. The first dataset,
collected by Moshiri et al. [12], involved the use of Raspberry Pi 4 and Tp-Link Archer C20
as an access point. The experiments were conducted in a bedroom environment, where
three subjects in the age range of 25 to 70 performed seven different activities, including
bend, fall, stand up, sit down, lie down, run, and walk. Each activity was performed
for a duration of 10 to 20 s. The data collection was done in a 20 MHz bandwidth on
channel 36 in the IEEE 802.11ac standard with 52 subcarriers. The second dataset, collected
by Schäfer et al. [13], utilized a dual-band router Fritzbox operating at the 5 GHz frequency
band. Raspberry Pi 4B was used as the data collection device. One CSI Tool was employed
to extract CSI data at an 80 MHz bandwidth with 128 subcarriers. This dataset consisted
of four activities: empty, stand up, sit down, lie, and walk. The third dataset, collected by
Ashleibta et al. [14], involved the use of two Universal Software Radio Peripheral (USRP)
devices. One device served as the transmitter, and the other as the receiver, operating at
5GHz with 52 subcarriers. Ubuntu virtual machine and Gnu radio were used to generate
data traffic. The dataset contained categories such as empty, sitting, standing, and walk-
ing. Table 1 in our paper summarizes the key features of these datasets, including the
hardware and software used, frequency bands, bandwidths, subcarriers, and the activities
performed during data collection. By utilizing these publicly-available datasets, we en-
sured the diversity and generalizability of our proposed method across different scenarios
and activities.

Table 1. Summary of Studied Datasets.

Dataset Tool Used to Collect
Bandwidth & Number of

Subcarriers (Including Zero
& Pilot)

Number of Activities

Schäfer et al. [13] Raspberry Pi 4B + Nexmon
CSI Tool

80 MHz and 256 subcarriers
802.11ac Standard

1 + 4: Empty, Standup, Sitdown, Walk,
Lie down (in total 1800 number)

Ashleibta et al. [14] Universal Software Radio
Peripheral devices 3.75 GHz and 52 Subcarriers 1 + 3: Empty, Sitting, Standing, Walking

(in total 540 number)

Moshiri et al. [12] Raspberry Pi 4B Nexmon
CSI Tool

40 MHz and 52 Subcarriers
802.11ac Standard

7: Bend, Walking, Running, Standing
up, Sitting down, Falling, Lying down

(in total 420 number)

4.2. Neural Networks

Every specific action has a different effect on CSI, enabling the system to detect,
recognize, or even predict the action [12]. Many previous studies took the advantages
of ML and DL algorithms such as SVM, NB, Hidden Markov Model (HMM), RF, LSTM
and BiLSTM [13], 1D and 2D CNN [12]. Although these algorithms have scored good
accuracies in the classification task, they face problems such as overfitting, small batch sizes,
and weight decay due to the small size of datasets. In this research, we took advantage of
the DL model due to its superiority over ML algorithms, such as the capability of feature



Information 2023, 14, 404 7 of 15

engineering on its own. We presented two custom DL models based on 2D-CNN with
fewer computational complexity and training time for classification tasks.

CNN

CNN is a feed-forward DL algorithm that can take images as input and assign weights
and biases to the various objects in images to make them distinguishable from each
other [12]. Compared to the other classification algorithms, CNN requires less preprocess-
ing, making it more efficient for a situation where a decision must be made fast. There are
various components called layers present in a simple CNN architecture. CNN uses filters
(or kernel) to extract an image’s spatial and temporal feature dependencies. Some of the
most important layers are Convolution, Padding, Pooling, Dropout, Batch normalization,
and fully connected. The objective of initial Convolution layers is to extract low-level fea-
tures such as color and gradient variation by a convolution operation. They can understand
high-level features such as edges, lines, and curves by increasing the number. In order to
save the information on the corner of images, this layer is used to preserve that information
by adding extra columns and rows on the outer dimensions of images. Like the convolution
layer, the pooling layer is responsible for reducing the spatial size of the convolved features,
which is called dimensionality reduction [12]. This procedure is maintained to decrease
the computational efforts required to process the data by highlighting dominant features
and taking out trifling ones. As mentioned above, training these data may result in a
phenomenon called “Overfitting” when we do not have a plethora of data. A remedy
to overcome this issue is applying a dropout layer after each convolution layer, which
randomly sets some input weights to 0 with a frequency rate during the training process.
The other frequently-used layer aims to decrease the training time by normalizing the
layers’ input, such as re-scaling and re-centering. Finally, the fully connected or Dense
layer is used to learn non-linear high-level features as represented by the output of the
convolution layer. Every neuron is connected to the previous and subsequent layers in
this layer. Based on the complexity of the model, the number of layers varies, and specific
layers are used.

5. Proposed Methodology and Experimental Evaluations

Image analysis is the technique to extract features automatically [24]. Some of the
most common techniques are image segmentation, texture and motion analysis, and edge
extraction and detection [24]. The edge detection process significantly reduces the amount
of processed data by filtering unnecessary information. Generally, the edge detection
methods are categorized into two sections: 1—Gradient and 2—Laplacian. The gradient
method searches for minimum and maximum values in the first derivative of the image
while Laplacian for the zero crossings in their second derivative. This paper applies edge
extraction techniques to our generated CSI images and use four well-known filters, includ-
ing Sobel, Canny, Prewitt, and Laplacian of Gaussian (LoG), in which an improvement was
seen both in terms of accuracy and consumed time for each training and testing phase. The
main goals to be achieved by using edge detection techniques are:

• Detect edges with least probability of error;
• Mitigate the amount of the noise presented in images in order to prevent false edges.

In the following subsection, we introduce some of the well-known filters briefly.

5.1. Sobel Filter

The Sobel filter is a subgroup of gradient operators used to clarify the local transfor-
mation, such as sharp edges. A Sobel edge detector comprises a pair convolution layer
in which the second one is a transformed version of the former one. These two layers are
as follows:

Sx =

+1 0 −1
+2 0 −2
+1 0 −1

× A (4)
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and

Sy =

+1 +2 +1
0 0 0
−1 −2 −1

× A (5)

where A is the source image. Px responds to edges through x-axis while Py to ones in the
y-axis. In order to find the absolute magnitude and the direction of the gradient at each
point, these two metrics can be combined as follows:

P =
√

P2
x + P2

y (6)

Θ = arctan(
Gy

Gx
) (7)

Figure 2 represents the original and filtered images using the Sobel filter:

(a)

(b)

(c)
Figure 2. Original and filtered images using Sobel edge detector for: (a) Moshiri et al. [12]
(b) Ashleibta et al. [14] and (c) Schäfer et al. [13].

5.2. Canny Filter

Canny is one of the well-studied and applied filters due to its features. The main
contribution of the canny filter are as follow: (1) Apply a Gaussian filter to minimize
the amount of presented noise. (2) Verify if the detected edges are either true with high
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probability or misrepresented by applying a threshold. The most common 5 × 5 Gaussian
filter, which is also used by default in our experiment, is:

C =
1

159
×


2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

× A (8)

5.3. Prewitt Filter

The Prewitt filter is another filter that was used in this research. Like the Sobel filter, it
finds edges by convolving two masks on the horizontal and vertical axes. The vertical and
horizontal mask used in this filter is as follows:

Px =

−1 0 +1
−1 0 +1
−1 0 +1

× A (9)

Px =

−1 −1 −1
0 0 0
+1 +1 +1

× A (10)

Px prominent vertical edges while Py on the horizontal ones. These two matrices work as
a first-order derivative and calculate the difference of pixel intensities in an edge region.
As the center column is zero, it does not include the original values of an image.
However, rather it calculates the difference between right and left pixel values around
that edge, increases the edge intensity, and it becomes enhanced comparatively to the
original image.

5.4. LoG Filter

Laplacian of Gaussian (LoG) filter is considered the second derivative operation
and comprises two parts: Laplacian and Gaussian filter. The Laplacian of an image
highlights regions of rapid intensity change and, therefore, is often used for edge detection.
The Laplacian is often applied to an image that has first been smoothed with something
approximating a Gaussian smoothing filter in order to reduce its sensitivity to noise.
Hence, the two variants will be described together here.

5.5. Proposed Method

This subsection will describe the steps taken in this paper to detect daily activities from
CSI data from three available datasets. Based on the dataset’s characteristics, preprocessing
techniques such as Principal Component Analysis (PCA), Normalization, and Linear Dis-
criminant Analysis (LDA) were used for dimensionality reduction and denoising purposes.
Data from [13] consist of much noise. In order to decrease these unwanted values, we ap-
plied both PCA with three components and LDA. After applying preprocessed algorithms
on the CSI data, data were converted into RGB-based images, followed by different edge
detector filters to highlight more features from the generated images. For classification, we
proposed a CNN-based neural network, shown in Figure 3. The model comprises batch
normalization layer which was implemented after the dense layer to reduce the probability
of overfitting. In order to prevent overfitting, dropout layers were implemented after each
convolution and dense layer. First, original images are fed into CNN models, and filtered
ones are set to be fed in the next step. Figure 4. describes the roadmap we took in this
paper and Figure 5 shows the model architecture.
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Figure 3. The proposed CNN model.

Figure 4. The roadmap taken in this paper.

5.6. Experimental Setups and Results

Tensorflow 2.8 with Python 3.8 was used for simulation purposes, and accelerated
by GeForce RTX 3060. Since the data for [13] were noisy, we first applied PCA with
five components and LDA to mitigate these unwanted factors. In order to make the
numerical values of the scrutinized datasets to be in the range of RGB intensity pixels, all of
them were normalized between 0 to 255, followed by converting them into an RGB-based
representation. Since the number of data was not considerable, we adopted K-fold cross-
validation with k = 5 and in order to prevent overfitting, batch normalization and dropout
layers were added to the proposed CNN architectures. For the first part of the experiment,
generated images are fed into two proposed CNNs. Despite adopting techniques to prevent
overfitting, we faced this issue in all three dataset classifications. For the second scenario,
an image preprocessing technique called edge detection was applied using four different
filters on the generated images. Then, we repeated the classification using the same CNN
architectures, in which not only we see an increase in the accuracy for all evaluated datasets,
but also witnessed that the overfitting problem has been solved. Figure 6 demonstrates
the achieved accuracies for all evaluated datasets using four edge detection filters. Further,
in order to legitimize our proposed method, we compared our results with two neural
networks called Long Short-Term Memory (LSTM) and Bidirectional Long-Short Term
Memory (BiLSTM), proposed by [12,13], respectively, which the results are demonstrated in
Figures 7–9 for [12–14], respectively. As we witnessed, our proposed method outperformed
the other two methods, both in system performance and consumed time for training and
test. Table 2, shows the consumed time for training and test phases.
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Figure 5. Proposed CNN architecture for classification.
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Figure 6. The accuracies, before and after applying different edge filters for two proposed CNN
architectures [12–14].

Figure 7. The accuracies acquired for Moshiri et al. [12] using three different modalities: (1)—Proposed
Method. (2)—LSTM. (3)—BiLSTM.

Figure 8. The accuracies acquired for Schäfer et al. [13] using three different modalities: (1)—Proposed
Method. (2)—LSTM. (3)—BiLSTM.
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Figure 9. The accuracies acquired for Ashleibta et al. [14] using three different modalities: (1)—Proposed
Method. (2)—LSTM. (3)—BiLSTM.

Table 2. Consumed time on training and testing phase for each epoch in milliseconds.

Time (In Milliseconds) Proposed Method (In Average) BiLSTM LSTM

Training 15 17 25
Testing 5 8 14

6. Conclusions and Future Works

WiFi-based Human Activity Recognition (HAR), due to its specific characteristics such
as ease of deployment, cost-effectiveness, ubiquitousness, and preserving the privacy of
users has gained attention both on the academic and industrial applications. In this paper,
we studied three publicly available CSI-based datasets. We converted these data into an
RGB-image representation. In order to extract more features from generated images, we
utilized an image preprocessing technique called edge detection and applied the most four
well-known and used filters, namely, Canny, Sobel, Prewitt, and LoG to our images, follow-
ing which we finally classified using a Neural Network method called 2D Convolutional
Neural Networks. The results show improvement both in terms of consumed training
time and system overall performance. We also duplicated the proposed methods described
in [12,13], called Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term
Memory (BiLSTM), in order to compare the performance of our proposed method and
witnessed that our proposed method, meaning applying edge detection filters on generated
CSI images, has better performance and consumes less time in training phase. While our
research has yielded promising results, it is essential to acknowledge certain limitations.
Although the implementation of edge detection filters enhanced the classification perfor-
mance of our CNN model, the choice of specific filters (Canny, Sobel, Prewitt, and LoG) was
based on their popularity and well-known properties. Further exploration of alternative or
advanced edge detection techniques could potentially enhance the accuracy and robustness
of activity detection. In addition, based upon our perspective, there are some branches
in the field of WiFi-based HAR which could be potential directions for future work. For
example, undertaking field experiments in real-world settings, such as smart homes or
healthcare facilities, would provide insights into the practical challenges and performance
of WiFi-based HAR systems. Addressing issues related to environmental variations, inter-
ference, and user privacy concerns in real-world deployment scenarios would be crucial for
advancing the adoption of these systems. Another potential case study would be related to
feature engineering which means investigating additional feature extraction techniques
beyond edge detection could further enhance the discriminative power of CSI images for
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activity recognition. Techniques such as deep feature learning or transfer learning from
large-scale datasets could be investigated to enhance the representation and interpretability
of the extracted features.

Author Contributions: Conceptualization, M.N. and S.A.G.; Methodology, M.N. and S.A.G.; Soft-
ware, H.S.; Resources, P.F.M. and R.A.; Writing—original draft, H.S.; Writing—review & editing,
P.F.M., R.A. and S.A.G.; Supervision, S.A.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in GitHub: https://
github.com/parisafm/CSI-HAR-Dataset (accessed on 27 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hassan, Q.F. Internet of Things A to Z: Technologies and Applications, 1st ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2018; pp. 5–45,

ISBN 978-1-119-45674-2
2. Dey, N.; Hassanien, A.E.; Bhatt, C.; Ashour, A.S.; Satapathy, S.C. Internet of Things and Big Data Analytics Toward Next-Generation

Intelligence, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 30, pp. 199–243, ISBN 978-3-319-86864-6.
3. Perera, C.; Liu, C. H.; Jayawardena, S. The Emerging Internet of Things Marketplace from an Industrial Perspective: A Survey.

IEEE Trans. Emerg. Top. Comput. 2015, 3, 585–598. [CrossRef]
4. Wang, F.; Feng, J.; Zhao, Y.; Zhang, X.; Zhang, S.; Han, J. Joint Activity Recognition and Indoor Localization with WiFi Fingerprints.

IEEE Access 2019, 7, 80058–80068. [CrossRef]
5. Vlachostergiou, A.; Stratogiannis, G.; Caridakis, G.; Siolas, G.; Mylonas, P. Smart Home Context Awareness Based on Smart and

Innovative Cities; Association for Computing Machinery: New York, NY, USA, 2015; ISBN 9781450335805.
6. Palipana, S.; Rojas, D.; Agrawal, P.; Pesch, D. FallDeFi: Ubiquitous Fall Detection using Commodity WiFi Devices. Proc. ACM

Interact. Mobile Wearable Ubiquitous Technol. 2018, 1, 155. [CrossRef]
7. Moshiri, P.F.; Navidan, H.; Shahbazian, R.; Ghorashi, S.A.; Windridge, D. Using GAN to Enhance the Accuracy of Indoor

Human Activity Recognition. In Proceedings of the 10th Conference on Information and Knowledge Technology, Tehran, Iran, 31
December 2019.

8. Ahad, M.A.R.; Ngo, T.T.; Antar, A.D.; Ahmed, M.; Hossain, T.; Muramatsu, D.; Makihara, Y.; Inoue, S.; Yagi, Y. Wearable
Sensor-Based Gait Analysis for Age and Gender Estimation. Sensors 2020, 20, 2424. [CrossRef] [PubMed]

9. Nabati, M.; Ghorashi, S.A; Shahbazian, R. Joint Coordinate Optimization in Fingerprint-Based Indoor Positioning. IEEE Commun.
Lett. 2021, 25, 1192–1195. [CrossRef]

10. Zhang, W.; Zhou, S.; Yang, L.; Ou, L.; Xiao, Z. WiFiMap+: High-Level Indoor Semantic Inference with WiFi Human Activity and
Environment. IEEE Trans. Veh. Technol. 2019, 68, 7890–7903. [CrossRef]

11. Chen, Z.; Zhang, L.; Jiang, C.; Cao, Z.; Cui, W. WiFi CSI based passive Human Activity Recognition Using Attention Based
BLSTM. IEEE Trans. Mob. Comput. 2019, 18, 2714–2724. [CrossRef]

12. Fard Moshiri, P.; Shahbazian, R.; Nabati, M.; Ghorashi, A. A CSI-based human activity recognition using Deep Learning. Sensors
2021, 21, 7225. [CrossRef] [PubMed]

13. Schäfer, J.; Barrsiwal, B.; Kokhkharova, M.; Adil, H.; Liebehenschel, J. Human Activity Recognition Using CSI Information with
Nexmon. Sensors 2021, 11, 8860. [CrossRef]

14. Ashleibta, A.M.; Taha, A.; Khan, M.A.; Taylor, W.; Ahsen, T.; Zoha, A.; Abbasi, Q.; Imran, M.A. 5G-enabled contactless multi-user
presence and activity detection for independent assisted living. Sci. Rep. 2021, 11, 17590. [CrossRef] [PubMed]

15. Bagate, A.; Shah, M.A. Human Activity Recognition using RGB-D Sensors. In Proceedings of the International Conference on
Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019. [CrossRef]

16. Reynolds, F.; Neto, C.; Machado, J. Deep Learning for Activity Recognition Using Audio and Video. Electronics 2022, 11, 782.
[CrossRef]

17. Uddin, M.Z.; Soylu, A. Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-
based neural structured learning. Sci. Rep. 2021, 11, 16455. [CrossRef] [PubMed]

18. Li, Z.; Kernec, J.L.; Abbasi, Q.; Fioranelli, F.; Yang, S.; Romain, O. Radar-based human activity recognition with adaptive
thresholding towards resource constrained platforms. Sci. Rep. 2023, 13, 3473. [CrossRef] [PubMed]

19. Wang, W.; Liu, A.X.; Shahzad, M.; Ling, K.; Lu, S. Device-Free Human Activity Recognition Using Commercial WiFi Devices.
IEEE J. Sel. Areas Commun. 2017, 35, 1118–1131. [CrossRef]

20. Ding, J.; Wang, Y. WiFi CSI-Based Human Activity Recognition Using Deep Recurrent Neural Network. IEEE J. Mag. 2019, 7,
174257–174269. [CrossRef]

https://github.com/parisafm/CSI-HAR-Dataset
https://github.com/parisafm/CSI-HAR-Dataset
http://doi.org/10.1109/TETC.2015.2390034
http://dx.doi.org/10.1109/ACCESS.2019.2923743
http://dx.doi.org/10.1145/3161183
http://dx.doi.org/10.3390/s20082424
http://www.ncbi.nlm.nih.gov/pubmed/32344673
http://dx.doi.org/10.1109/LCOMM.2020.3047352
http://dx.doi.org/10.1109/TVT.2019.2926844
http://dx.doi.org/10.1109/TMC.2018.2878233
http://dx.doi.org/10.3390/s21217225
http://www.ncbi.nlm.nih.gov/pubmed/34770532
http://dx.doi.org/10.3390/app11198860
http://dx.doi.org/10.1038/s41598-021-96689-7
http://www.ncbi.nlm.nih.gov/pubmed/34475439
http://dx.doi.org/10.1109/iccs45141.2019.9065460
http://dx.doi.org/10.3390/electronics11050782
http://dx.doi.org/10.1038/s41598-021-95947-y
http://www.ncbi.nlm.nih.gov/pubmed/34385552
http://dx.doi.org/10.1038/s41598-023-30631-x
http://www.ncbi.nlm.nih.gov/pubmed/36859571
http://dx.doi.org/10.1109/JSAC.2017.2679658
http://dx.doi.org/10.1109/ACCESS.2019.2956952


Information 2023, 14, 404 15 of 15

21. Yuan, H.; Yang, X.; He, A.; Li, Z.; Zhang, Z.; Tian, Z. Features extraction and analysis for device-free human activity recognition
based on channel statement information in b5G wireless communications. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 36.
[CrossRef]

22. Arshad, S.; Feng, C.; Liu, Y.; Hu, Y.; Yu, R.; Zhou, S.; Li, H. Wi-chase: A WiFi based human activity recognition system for
sensorless environments. In Proceedings of the IEEE 18th International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM), Macau, China, 12–15 June 2017.

23. Raspberry Pi Hardware Reference. 2014. Available online: https://www.raspberrypi.com/ (accessed on 30 October 2022).
24. Reeves, S.J. Image restoration: Fundamentals of image restoration. Acad. Press Libr. Signal Process. 2014, 4, 165–192. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s13638-020-1654-3
https://www.raspberrypi.com/
http://dx.doi.org/10.1016/B978-0-12-396501-1.00006-6

	Introduction
	Background
	Related Works
	System Model
	CSI Dataset and the Collection Methodology
	Neural Networks

	Proposed Methodology and Experimental Evaluations
	Sobel Filter
	Canny Filter
	Prewitt Filter
	LoG Filter
	Proposed Method
	Experimental Setups and Results

	 Conclusions and Future Works
	References

