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Abstract: The estimated global population for 2050 is 9 billion, which implies an increase in food
demand. Agriculture is the primary source of food production worldwide, and improving its efficiency
and productivity through an integration with information and communication technology system,
so-called “smart farming”, is a promising approach to optimizing food supply. This research employed
bibliometric analysis techniques to investigate smart farming trends, identify their potential benefits,
and analyze their research insight. Data were collected from 1141 publications in the Scopus database in
the period 1997–2021 and were extracted using VOS Viewer, which quantified the connections between
the articles using the co-citation unit, resulting in a mapping of 10 clusters, ranging from agriculture to
soil moisture. Finally, the analysis further focuses on the three major themes of smart farming, namely
the IoT; blockchain and agricultural robots; and smart agriculture, crops, and irrigation.

Keywords: bibliometric; smart farming; clustering; machine learning; text mining

1. Introduction

In the 21st century, the challenge of food production has become an increasingly
pressing issue due to the steady growth of the world’s population. It is estimated that by
2050, the global population will reach between 9.4 and 10.1 billion, placing a significant
demand on the world’s biodiversity due to dedicated land for food production, particularly
for crops and livestock [1]. Anthropogenic changes in the environment may make it
impossible to develop new crops. Similarly, the trend towards urbanization has reduced the
availability of local labor, with an increase in costs and decrease in the sector’s production
capacity [2].

According to the research by Van Der Mesnbrugghe et al. from the World Bank, the
growth of the world’s population and food saturation will likely moderate the increase in
food demand. Additionally, health and environmental concerns could lead to a shift in
tastes that further tempers demand. The projected global population for 2050 is estimated
to be around 9 billion people, representing a 12.82% increase from 2022, in which the
population was 7.977 billion people [3]. Van Dijk et al. reported that total world food
demand will increase by 35% to 56% between 2010 and 2050, representing a 20% increase [4].
The United Nations General Assembly (UNGA) formulated the Sustainable Development
Goals (SDGs) as part of the Post-2015 Development Agenda, which aimed to create a global
development plan to succeed the millennium development goals. One of the SDGs focuses
on the issue of food security and sustainability [5]. Agriculture is the crucial factor in
the world’s food supply, as it involves the science, art, or practice of cultivating the soil,
producing crops, and raising livestock. This is in addition to preparing and marketing the
resulting products to varying degrees, as defined the by Merriam-Webster dictionary [6].

In response to the challenge of food production, numerous studies are being conducted
on the potential of information and communication technology to support agriculture and
drive innovation in farming, including the transition from traditional to smart farming.
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This trend is becoming increasingly important as farming practices evolve. According to
Balafoutis et al., precision agriculture involves the collection, analysis, and evaluation of
data from the field, followed by targeted action in specific areas that need improvement.
By implementing precision agriculture, productivity can be optimized, and farming can
become more efficient [7].

The agriculture sector has experienced significant influence from the development of
the IoT in recent years. This influence has resulted in the emergence of the theme “Smart
Farming”, which involves the application of intelligent information and ICT systems such
as Artificial Intelligence (AI) to optimize the production of farm products [8]. With the
integration of ICT into agriculture, the development of technology to support the potential
benefits of smart farming systems has become a motivating factor for numerous studies,
practitioners, and both private and public companies [9]. Based on research findings
from [6,7], smart farming systems present numerous areas for exploration, such as smart
systems for monitoring and controlling agricultural parameters, automated smart systems
to enhance efficiency and reduce human interactions, and smart systems for green urban
environments. The primary objective is to integrate ICT technology with existing agricul-
tural systems to enable broad connectivity across the globe. In recent years, IoT solutions
for smart farming have been reviewed in a number of publications, indicating constant
contributions and improvement. A review paper by Villa Henriksen et al. [10] investigates
smart farming research from 2008 to 2018; examines communication technologies and
protocols, data analysis, and collection, IoT architecture and applications; and highlights
the future prospects pertaining to the use of IoT technology in agriculture. A review paper
by Ray [11] presents the technology used for data collection and communication within IoT
solutions for smart farming, as well as several cloud-based IoT solutions for smart farming.
Several cases were also presented for the identified applications of the IoT in smart farming.
The review [12] presents a systematic review of papers published from 2006 to 2016, which
are classified by application domains, such as prediction, logistic, monitoring, and control-
ling. Within these domains, the data visualization strategies and the technology used for
edge computing and communication were also identified. A study by Tzounis et al. [13]
examined the papers published from 2010 to 2016, which relied on an IoT architecture
with three layers, namely application, perception, and network. The papers were further
reviewed in terms of applications, network technologies, and perception devices. These
studies identified embedded communication technology and platforms used in providing
solutions to IoT applications. Unmanned aerial (UAV) devices, network technologies,
embedded systems platforms, network topologies and protocols, and supporting cloud
platforms were frequently covered in previous studies. Finally, the authors of [14] analyzed
the reviewed papers published from 2010 to 2015 to show the state of the art of IoT in smart
farming. The studies referred to IoT architecture with three layers (application, network,
and perception) to analyze the application of actuators, sensors, technology with several
farming domains, food consumption, livestock farming, and agriculture.

Several studies have been conducted on the topic of smart farming, utilizing various
approaches such as surveys [15,16], bibliometric analysis [17–19], systematic mapping [20],
text mining [21], and comparation methods [22,23]. These studies aimed to improve the
quality of farm production through the implementation of these techniques. One major area
of concern is the impact of farming activities on soil carbon emissions and subsequent im-
plications for climate change [24]. Furthermore, practices are being developed in alignment
with the concept of food security, which is used to increase farm productivity [25].

A transition of agriculture from traditional to modern methods is currently taking
place, and the IOT is a tool that can assist this transition. Considering this, bibliometric
analysis is a useful tool for identifying emerging trends, evaluating journal performance,
and exploring the intellectual structure of a specific field based on the existing literature to
clarify what the trend is throughout this modernization phase. The data used in bibliometric
analysis are typically objective and massive, such as the number of publications, topics,
occurrences of keywords, and citations. However, the interpretations can include both
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objective (performance analysis) and subjective (thematic analysis) assessments, using
informed procedures and techniques. Well-conducted bibliometric research can provide a
solid foundation for advancing a field in novel and meaningful ways, enabling scholars to
gain a comprehensive overview of the field, identify knowledge gaps, derive novel ideas
for investigation, and position their intended contributions.

This paper aims to investigate smart farming trends, identify their potential benefits,
and analyze their research insight. It examines global research trends in smart farming and
related data, with potential interest for students, academic practitioners, science policymak-
ers, and research development management. It explores the major themes in a present key
term cluster analysis, captures the major themes in smart farming, provides a descriptive
analysis of the research structure based on the growth of the number of publications; text
collections; cited papers; and most productive countries, institutions, and authors.

We used the VOS Viewer application to present a bibliometric analysis from the Scopus
database in the publication period 1997–2021. VOS Viewer is a meta-analytical tool which
can provide information regarding interconnections between research articles in specific
terms and their topics. The use of VOS Viewer in bibliometrics studies of smart farming can
provide information regarding the most cited articles regarding specific terms and topics
and visualize them with a graph of citations related to smart farming. VOS Viewer can
assist researchers in analyzing a broad range of bibliometric networks with its keyword
analysis in terms of interconnection for each specific topic [26,27].

The remainder of this paper is as follows: Section 2 outlines the methods and data of
analysis used in this research; Section 3 shows the bibliometric analysis; Section 4 shows
the thematic analysis; Section 5 provides a discussion; and Section 6 is the conclusion.

2. An Overview of Smart Farming System

The use of smart farming systems is gaining more attention due to their potential
to meet the increasing demand and achieve global food supply needs. Smart farming
technology utilizes new technology to monitor, increase productivity, improve cost effi-
ciency, and predict crop diseases. Smart farming involves collecting more data and utilizing
information technology in the farm, extracting relevant knowledge for stakeholders, or
acting intelligently on that knowledge. It aims to increase productive activity and enable
strategic decision-making by farmers [28]. Over the last decade, the availability of low-cost
devices such as Arduino and Raspberry Pi boards has made it possible to build and pro-
gram sensor networks on a non-industrial scale. Meanwhile, advances in data gathering,
storage, and processing techniques have led to an increase in the amount of data, models,
and resources accessible for use in agriculture. This includes low-cost computers with
interfaces, cloud-based mass storage servers, high-resolution digital cameras first seen in
smartphones and later in drones and other flying objects, and improved satellite image
resolution and accessibility [29].

There is research implementing various technologies in smart farming systems, such
as sensors, UAV, IoT, Artificial Intelligence (AI), etc. The authors of propose a survey for
smart farming technologies by describing and evaluating their challenges and issues. Smart
farming technologies have improved in many ways, but there is still room for improvement.
Further potential reviews should be carried out on topics such as the privacy, security, and
involvement of machine learning methods, such as unsupervised learning, to enhance the
user experience of the technology used in smart farming systems. Another area that has
been discussed recently is the smart IoT devices that can enhance the effectiveness of smart
farming systems and have a high impact on the success of smart farming systems. The
study [30] also encompasses the results of surveys, comparisons, and research challenges
of IoT application protocols for smart farming systems. An IoT application layer protocol
has been studied and further developed based on each characteristic, performance, and
agricultural application. Further research is expected to be in progress to enhance the avail-
ability of smart farming systems and their reliability in order to improve and implement
them for future generations.
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Smart devices are utilized to monitor farm data, which are transmitted to the cloud
through an edge gateway to facilitate real-time access, as shown in Figure 1. This sys-
tem enables farmers and users to easily analyze the data and respond quickly in case of
any activity, thereby enhancing the overall quality of smart farming. The evolution of
Industry 4.0, IoT, and other communication models has led to the automation of smart
farming in a collaborative and intelligent manner. Instead of relying solely on farmers,
sensors, communication devices, control units, and smart machines are now being used to
handle tasks such as planting, sowing, reaping, crop trimming, irrigation, weed cropping,
and cultivation in accordance with climate and greenhouse effects. These smart features
of the deployed devices ensure that the farm is operating efficiently and optimally [31].
The use of ICT (Information and Communication Technology) and IoT (Internet of Things)
technologies in smart farming can have significant quantitative impacts on productivity
and resource consumption. By integrating these technologies into agricultural practices,
farmers can achieve various benefits:

(a) Improved productivity: ICT and IoT enable real-time monitoring of crops, soil condi-
tions, weather patterns, and pests, allowing farmers to make informed decisions and
take action in a timely manner. This optimization can lead to increased crop yields
and overall productivity.

(b) Resource efficiency: Smart farming technologies enable precise monitoring and control
of resources such as water, fertilizers, and pesticides. By employing sensors, data
analytics, and automation, farmers can optimize resource usage, reducing wastage
and environmental impact.

(c) Water conservation: IoT-based smart irrigation systems can measure soil moisture
levels and weather conditions, ensuring that crops receive adequate water without
unnecessary over-irrigation. This targeted approach minimizes water wastage and
promotes sustainable water management.

(d) Reduced environmental impact: ICT and IoT technologies facilitate the implementa-
tion of precision agriculture techniques, such as variable-rate application of inputs.
This targeted approach minimizes the use of chemicals, reducing the environmental
footprint associated with farming.
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It is worth noting that the exact quantitative impact may vary depending on factors
such as the specific technologies implemented, the scale of adoption, and the local agricul-
tural conditions. Nonetheless, numerous studies have demonstrated the potential of ICT
and IoT in smart farming to improve productivity, resource efficiency, and sustainability
in agriculture.

3. Methods and Data
3.1. Data Analysis Framework

Our scientific research utilized a variety of tools for its analytical framework, as shown in
Figure 2. Scopus was used to analyze publication quantities, authorship, university affiliations,
and author countries. Microsoft Excel facilitated data recapitulation and processing through
its sorting and filtering features and enabled the creation of an S-curve from data extrapolation.
VOS Viewer was used to extract keywords and generate bibliometric networks [32], while
Desmos provided an interactive and user-friendly platform for plotting data [33].
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3.2. Data Collection

The initial stage of this research involved gathering data on author and index keywords
from journal and conference articles pertaining to “smart farming”, “smart-farming”, and
“smartfarming”. The Scopus database was selected as the data source due to its claim of
being the largest abstract database and citation of peer-reviewed scientific literature [34].
To identify relevant publications, the search query “smart farming” was used in the Scopus
database search interfaces, which includes many types of documents. A total of 1141 articles
published between 1997–2021 were collected, and those with duplicate or incomplete
required data were excluded. This resulted in the formation of a corpus of articles relevant
to this research.

3.3. General Analysis and Thematic Mapping

Bibliometric methods were used to evaluate and measure the academic output [35].
Performance analysis and scientific mapping were the two main bibliometric techniques
used to assess and evaluate a research area. Performance analysis aimed to evaluate
research actor groups, including research, nations, and institutions, along with the impact
of their activities. On the other hand, scientific mapping was utilized to gather knowledge
and data on a particular research field’s conceptual or social structure [29]. This research
used general analysis to show the rise in the key journals and publications, and the most
prolific nations, organizations, and authors. Furthermore, the theme progression of smart
farming research was investigated by thematically categorizing the basic context in the
corpora, where basic contexts referred to words and sentences.
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Correspondence analysis [36] can be used to visualize and explore the relationship
between clusters in two-dimensional space. Graphs generated from this analysis can be
utilized to propose cluster labels automatically using a specific VOS viewer.

4. Bibliometric Results

A total of 1141 journal and conference proceeding articles within the scope of smart
farming were analyzed in terms of their publication years, as shown in Figure 3. Prior to
2013, only a few articles had been published. However, the number of articles published on
smart farming has steadily increased since 2013, as shown in Figure 3 and detailed in Table 1.
This trend suggests that this research topic has received increasing attention in recent years.
Using the publication data per year and extrapolating it using the formula from Lee’s
research [37], the results suggest that smart farming research will continue to increase
before eventually saturating in the next few years. Based on the information provided by
the researchers Venston and Hodges [38], it is suggested that the developmental phase of a
technology can be estimated using an S-curve, starting from its inception until saturation
occurs. This concept can be applied to smart farming technology, which may eventually
reach a saturation point and be replaced by more advanced alternatives. The expectation
of saturation in smart farming research can be attributed to various factors. As the global
population continues to grow, there is an increasing demand for efficient agricultural
practices to meet the rising food requirements. Smart farming, incorporating advanced
technologies such as IoT, AI, and data analytics, holds the potential for optimizing resource
utilization, enhancing crop yields, and improving overall agricultural productivity.

The saturation point signifies a theoretical threshold at which the widespread adoption
and implementation of smart farming practices result in diminishing returns in terms of
further productivity gains. This point is expected to be reached when a significant portion
of the agricultural industry has already embraced smart farming technologies and practices.
However, determining the exact timeline for saturation is challenging due to factors like
technological advancements, economic considerations, regulatory frameworks, and the
global adoption rate among farmers. Ongoing research in this area will likely provide more
insights into the anticipated timeline for saturation in smart farming.

Based on the yearly cumulative document, the keyword count and current beginning
phase increased. Using the formula, the extrapolation data of each keyword is shown
in Table 1.
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Table 1. Journal and conference proceeding publications of smart farming research yearly published.

Year Article Cum. Article

1997 1 1
2002 1 2
2008 1 3
2009 1 4
2011 4 8
2012 5 13
2013 5 18
2014 7 25
2015 11 36
2016 28 64
2017 65 129
2018 107 236
2019 238 474
2020 292 766
2021 375 1141

Further, we may continue the extrapolation to depict the continuous trend until it
reaches the saturation phase. There are variant reparametrized forms of the Richards curve
in the literature [39–42], and it is calculated using the following formula:

f (t; θ1; θ2; θ3; ξ) =
θ1[

1 + ξe(−θ2(t−θ3)
] 1

ξ

(1)

where θ1, θ2, and θ3 are real numbers, and ξ is a positive real number. The utility of the
Richards curve is its ability to describe a variety of growing processes, endowed with strong
flexibility due to the shape parameter ξ [39]. Analytically, the Richard curve (i) becomes the
logistic growth curve [43] when ξ = 1, and (ii) converges to the Gompertz growth curve [44]
as the ξ converges to zero from the positive side of real numbers. The Gompertz curve

is g (t; θ1; θ2; θ3) =
[
1 + ξe(−θ2(t−θ3))

] 1
ξ , but it is also known that the estimation of ξ is a

complicated problem [45], and we resorted to the use of a modern sampling scheme, the
elliptical slice sampler [46], to estimate the ξ.

θ1 θ2 θ3 ξ R2

9,897,000 0.1005 2051 0.1603 0.9956

Figure 4 examines the publication of articles on smart farming from 2013–2021 and their
indexing in the Scopus database; there were 129 papers published in the top eight journals
in this field. None of these journals were used in the research prior to 2013. The top
four journals, in terms of number of papers published, were Computers and Electronics
in Agriculture (29 papers), IEEE Access (20 papers), Sensors Switzerland (15 papers), and
Sustainability Switzerland (15 papers). Table 2 provides further details, including the total
number of articles published, the name of each journal, and the number of articles published
per year in each journal.

According to the data, 82 countries have contributed to the publication of journal articles
on smart farming. The top 10 most productive countries in smart farming research are shown
in Figure 5, with India having the highest number of publications, followed by the United
States and Germany. India alone accounts for more than one-fifth (23.6%) of worldwide
publications on the topic. The total number of journal articles related to smart farming
published by these three countries was more than four-fifths (76.4%) of world productivity.
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research were published.

Table 2. Top eight journals in which the number of documents regarding smart farming research
were published yearly and in total.

Journal 2013 2014 2015 2016 2017 2018 2019 2020 2021 Total

Computers And Electronics in Agriculture 0 1 0 1 2 3 7 11 4 29
IEEE Access 0 0 0 0 0 2 4 7 7 20
Sensors (Switzerland) 0 0 0 1 1 3 2 7 1 15
Sustainability Switzerland 0 0 0 0 0 0 1 2 12 15
Agronomy MDPI 0 0 0 0 0 0 2 4 7 13
Sensors MDPI 0 0 0 0 0 0 0 0 14 14
Njas Wagenigen Journal Of Life Sciences 0 0 0 0 0 0 12 0 0 12
International Journal Of Innovative
Technology And Exploring Engineering 0 0 0 0 0 0 11 0 0 11

129
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Figure 6 reveals the most productive institutions in smart farming research publi-
cations based on Pub data, led by Wagenigen University and Research, with 24 articles
published in this field. The second and third most active institutions are Vellore Institute of
Technology and De La Salle University, both with 12 articles published. Figure 7 shows
that the majority of these top 10 institutions are from Europe (62.9%), while the remain-
ing institutions are from Asia (37.1%). The characteristics of smart farming publications
released by the 10 most active institutions are summarized in Table 3. Institutions from The
Netherlands dominate the research activity in this field, while those located in India, the
world’s most productive nation, did not make it to the top 10 list. This is because research
on smart farming is distributed more evenly in India, which may explain why there are not
as many well-known institutes in this sector compared to The Netherlands.
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Figure 8 dis plays the top 10 most productive authors in smart farming research.
Among them, Mahmoudi, S.; Dadios, E.P.; Sarigianidis, P.; and Wolf, L. had the highest
number of publications, with eight articles each. The remaining authors ranked second
and have published six journal articles each. Table 4 summarizes the number of articles
and citations from these authors across four different periods. Interestingly, the authors
with the most publications are not necessarily the ones with the most citations. These top
authors started their research in the field of smart farming in 2017.
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Table 3. Top 10 most productive institutions in smart farming research.

Institution Country 1997–2015 2016 2017 2018 2019 2020 2021 Total Citation Cit/Pub

Wagenigen University and
Research

The
Netherlands 4 1 4 3 8 1 3 24 2390 99.56

Velore Institute of
Technology India 0 0 1 1 3 3 4 12 208 17.34

De LaSalle University Philippines 0 2 1 1 4 3 1 12 149 12.42
Technische Universitat

Brauncweig Germany 0 1 4 2 2 1 1 11 68 6.18

Aristotle University of
Thessaloniki Greece 0 0 0 1 4 4 2 11 185 16.82

Chiang Mai University Thailand 0 0 3 2 1 1 3 10 120 12
University of Western

Macedonia Greece 0 0 0 0 4 5 1 10 357 35.7

Consiglo Nazionale delle
Ricerche Italy 0 0 0 2 2 3 2 9 268 29.78

Amity University India 0 0 0 1 2 4 2 9 160 17.78
Osnabruck University Germany 0 0 0 2 1 4 1 8 80 10
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Table 4. The number of publications (Pub.) and citations (Cit.) of the top 10 most productive authors
in four periods.

Author 1997–2015 2017 2018 2019 2020 2021 Total

Pub. Cit. Pub. Cit. Pub. Cit. Pub. Cit. Pub. Cit. Pub. Cit. Pub. Cit. Cit/Pub

Mahmoudi, S 0 0 0 0 1 28 0 0 5 20 2 14 8 62 7.75
Dadios, E.P. 1 28 1 15 1 0 2 41 1 4 1 10 7 98 14

Sarigiannidis, P. 0 0 0 0 0 0 2 61 4 44 1 35 7 140 20
Wolf, L. 1 20 3 17 0 0 2 5 1 0 0 0 7 42 6

Aschenbruck, N. 0 0 2 23 1 40 3 16 0 0 0 0 6 79 13.17
Bauer, J. 0 0 2 23 1 4- 3 16 0 0 0 0 6 79 13.17
Ford, T. 0 0 0 0 1 4 2 2 1 1 2 0 6 7 1.17

Gupta, M. 0 0 0 0 0 0 0 0 4 212 2 2 6 214 35.67
Klerkx, L. 0 0 0 0 1 41 1 156 3 424 1 0 6 621 103.5
Mittal, S. 0 0 0 0 0 0 0 0 4 212 2 2 6 214 35.67

Table 5 presents the top 10 most cited journal articles in the field of smart farming
publications. The number of citations reflects the level of popularity of each study in this
area. The majority of these articles are surveys that focus on smart farming analytics, deep
learning, AI, unmanned aerial vehicles (UAV), and IoT. The highest-ranked article, entitled
“Deep Learning in Agriculture: A Survey”, was written by Kamilaris et al. This paper
provides an overview of the use of deep learning in agriculture, which is directly relevant
to smart farming research. Field data were collected and reviewed with deep learning
techniques to optimize farm operations based on the results [15].
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Table 5. Top 10 most highly cited articles.

No Title Author(s) Year Cited by

1 Deep learning in agriculture: A survey Kamilaris, A. et al. 2018 1402

2 Big data in Smart Farming—A review Wolfert, S. et al. 2017 1063

3 A review on the practice of big data analysis in agriculture Kamilaris, A. et al. 2017 380

4 A review of social science on digital agriculture, smart farming, and agriculture 4.0:
New contributions and a future research agenda Klerkx, L. er al. 2019 273

5 Cropping practices manipulate abundance patterns of root and soil microbiome
members paving the way to smart farming Hartman, K. et al. 2018 247

6 A survey on the role of IOT in Agriculture for the implementation of smart farming Farooq, M.S. et al. 2019 235

7 Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas Ahmed, N. et al. 2018 230

8 A review on UAV-based applications for precision agriculture Tsourus, D.C et al. 2019 229

9 UAV-based crop and weed classification for smart farming Lottes, P. et al. 2017 224

10 Design of Secure Authenticated key Management Protocol for Generic IoT Networks Wazid, M. et al. 2018 219

5. Analysis

Figure 9 displays the co-occurrence network cluster visualization generated using
the VOS Viewer tool. The largest bubble represents IoT, agricultural robots, and smart
agriculture, with each cluster showing the relationships between the cited documents based
on the frequency of their co-occurrence, as shown in Table 6. The research on IoT in the
context of smart farming is a major area of investigation. The left and right bubbles relate
to technology to support smart farming and biotechnology. The big bubbles for IoT and
agricultural robots indicate their prominence in the field, while the lack of connections
between some keywords suggests opportunities for further research.
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Authors’ keywords and index keywords from bibliographic records were grouped
in order to fully capture the topic map of smart farming research. Table 6 presents the
total number of key terms, as well as the quantity and proportion of categorized key terms
for eight periods (1997–2015, 2016, 2017, 2018, 2019, 2020, 2021, and 1997–2021). Figure 9
shows the number and percentage of key terms classified in each cluster for the data period
2009–2018. IoT emerged as the most prominent key term in smart farming research, align-
ing with the concept of Industry 4.0. Additionally, specific key terms related to plant-based



Information 2023, 14, 396 12 of 19

smart farming research, such as soybeans, show potential for further investigation. Term
such as “cloud computing”, “middleware”, “big data”, “decision support systems”, “com-
munication protocols”, “wireless sensor and actuator networks—WSANs”, and “integrated
farm management” had a number of occurrences less than 90. Artificial intelligence was
ranked 10 with a percentage of 3%, and had a number of occurrences of 90.

Table 6. The number and percentage of key terms classified in the thematic analysis process for
each period.

Period Total Key Terms Number of Key Terms Classified Percentage

1997–2015 246 31 13%

2016 107 49 46%

2017 286 137 48%

2018 372 204 55%

2019 1013 402 40%

2020 1077 630 58%

2021 1367 703 51%

1997–2021 4468 2156 48%

5.1. Major Themes in Smart Farming Research

As seen in Figure 10, the clustering process of the entire data period (1997–2021)
resulted in 10 clusters of key terms. These key-term clusters can be considered as the
dominant topics or themes in smart farming research and can be further grouped into
three major themes as follows:

Information 2023, 14, x FOR PEER REVIEW 13 of 20 

aligning with the concept of Industry 4.0. Additionally, specific key terms related to plant-
based smart farming research, such as soybeans, show potential for further investigation. 
Term such as “cloud computing”, “middleware”, “big data”, “decision support systems”, 
“communication protocols”, “wireless sensor and actuator networks—WSANs”, and “in-
tegrated farm management” had a number of occurrences less than 90. Artificial intelli-
gence was ranked 10 with a percentage of 3%, and had a number of occurrences of 90. 

Table 6. The number and percentage of key terms classified in the thematic analysis process for each 
period. 

Period Total Key Terms Number of Key Terms Classified Percentage 
1997–2015 246 31 13%

2016 107 49 46%
2017 286 137 48%
2018 372 204 55%
2019 1013 402 40%
2020 1077 630 58%
2021 1367 703 51%

1997–2021 4468 2156 48%

5.1. Major Themes in Smart Farming Research 
As seen in Figure 10, the clustering process of the entire data period (1997–2021) re-

sulted in 10 clusters of key terms. These key-term clusters can be considered as the domi-
nant topics or themes in smart farming research and can be further grouped into three 
major themes as follows: 

Figure 10. The number of key terms in each cluster for the periods 1997–2021. 

5.1.1. Internet of Things (IoT) 
IoT infrastructure in smart farming starts with sensors placed in various locations on 

the farm, such as in the soil, for irrigation, on crops/plants, and on livestock. The data are 
transmitted wirelessly through communication layers, such as Wi-Fi, Radio Frequency 
Identification (RFID), Long-Range Radio (LoRa), and Narrowband Internet of Things 
(NB-IoT), to a cloud-based server. The server stores the collected data and shares it with 
applications and users such as farmers, owners, investors, and end-users for monitoring 
and decision-making purposes [47–50]. Figure 11 shows IoT infrastructure in smart farm-
ing. The analysis of key terms reveals the cluster’s labels and the terms related to IoT. An 
IoT system continuously monitors and collects data in the field, which is then analyzed 

Figure 10. The number of key terms in each cluster for the periods 1997–2021.

5.1.1. Internet of Things (IoT)

IoT infrastructure in smart farming starts with sensors placed in various locations on
the farm, such as in the soil, for irrigation, on crops/plants, and on livestock. The data are
transmitted wirelessly through communication layers, such as Wi-Fi, Radio Frequency Iden-
tification (RFID), Long-Range Radio (LoRa), and Narrowband Internet of Things (NB-IoT),
to a cloud-based server. The server stores the collected data and shares it with applications
and users such as farmers, owners, investors, and end-users for monitoring and decision-
making purposes [47–50]. Figure 11 shows IoT infrastructure in smart farming. The analysis
of key terms reveals the cluster’s labels and the terms related to IoT. An IoT system continu-
ously monitors and collects data in the field, which is then analyzed by machine learning
algorithms to provide effective and cost-efficient farm management solutions.
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5.1.2. Blockchain and Agricultural Robots

Blockchain technology is a type of ledger that can store important information for
different applications. Its potential use in precision agriculture has been extensively dis-
cussed in [51], where it is highlighted that blockchains can be used to record and verify
data related to agriculture products, track and monitor movables, and share information.
Selecting the right type of blockchain for smart farming depends on several criteria, and a
tool to evaluate the most suitable one has been proposed in [52]. Using blockchains in smart
farming provides authentication and supports the persistence and auditability of stored
data, ensuring the correctness of the data when needed later, and adding transparency,
anonymity, and traceability. Smart contracts can also be used in blockchain-based smart
farming [53]. Agricultural robots have become increasingly popular on farms as they help
to improve agricultural efficiency. These robots can perform operations such as harvesting,
weeding, and land preparation [54]. In some cases, tractors are controlled by a low-cost
brain–computer interface (BCI) to monitor the electroencephalographic (EEG) signal, result-
ing in high control accuracy (93.5%) and low time consumption (0.48 ms) [55]. Agricultural
robots have also been used for harvesting strawberries, potatoes, and mushrooms [56–58].

5.1.3. Smart Agriculture, Crops, and Irrigation

Smart farming has seen widespread adoption across countries, with numerous applica-
tions and services available for improving farming practices in crop cultivation and livestock
management. Many Asian countries, for example, are promoting farm automation using
data analytics, robotics, and sensor technology. These tools can have a significant impact
on crop yield, crop quality, and overall profitability for farmers and investors. Japan, for
instance, is using robots to automate fruit picking on farms. Farmers can monitor their fields
using technology that provides access to temperature, carbon dioxide levels, light sources,
and sterilizing water through their smartphones. The robots can pick fruits automatically
and at a faster pace than farmers [59]. Meanwhile, Australia is using UAV technology
to control rural farms, with the livestock industry utilizing UAV to monitor and manage
livestock in open areas. Cows are identified and their health monitored using dongles or
tags, with data managed on websites that are easily accessible through iPads [60,61].
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5.2. Future Smart Farming Research Trends

The challenges, new trends and opportunities in the future research of smart farming
are discussed below.

• The increasing prevalence of Industry 4.0 has made it challenging to analyze smart
farming using traditional tools, as the vast number of interconnected devices generates
large amounts of data. To effectively visualize and integrate this data in real time,
more advanced data processing techniques are required. Based on the results of
existing research in this area, it can be inferred that smart farming will continue to
be a growing research topic in the coming decades. This trend is reflected in the
interpolation patterns displayed in Appendix B, showing that the research topics
related to smart farming are still evolving and considered immature.

• The keywords identified from this research—such as agriculture robots, sensor net-
works, IoT, and blockchain—are still under development. These findings are in line
with the statements made during the observations.

• India has been found to be the most productive country when it comes to conducting
research related to smart farming. However, the institution that has been deemed the
most effective in conducting smart farming research is Wageningen University and
Research in The Netherlands.

• The most frequently occurring keyword in the research was ‘Internet of Things’,
followed by ‘Agriculture Robot’ and ‘Blockchain’. The combination of IoT with
Agriculture Robot and Blockchain for agricultural security is currently the best solution
and is in line with the principles of Industry 4.0.

5.3. Limitations

This research relied on data obtained from Scopus, an international scientific database.
However, it was restricted to four specific areas: computers, engineering, agriculture,
and mathematics. Additionally, the analysis only considered journal articles to exclude
research still in progress. The second limitation was on the use of keywords as clustering
input. Although the keywords selected could be considered to represent the contents of
a document, they might not adequately reflect the contents of an article. Future research
should consider more in-depth content analysis to address these limitations.

Figures A1 and A2 show the top 10 characteristic key terms for each cluster, while the
relationships between the clusters are visualized in Figure 8, where each circle represents a
key-term cluster or topic. The numbers and percentages of authors and index keywords
classified in each cluster are presented in Table 1, and Figure A3 displays the cluster
relationships for four different periods (1998–2021, 2019, 2020, and 2021).

6. Conclusions

This research employed bibliometric analysis to investigate smart farming trends, iden-
tify their potential benefits, and analyze their research insights. A total of 1141 publications
were collected from the Scopus database in the period 1997–2021 (accessed in October 2022).
The VOS Viewer tool was utilized to quantify the connections between the articles using the
co-citation unit. It resulted in 10 clusters of smart farming research topics, i.e., agriculture,
agricultural robots, artificial intelligence, machine learning, crops, IoT, irrigation, precision
agriculture, smart agriculture, and soil moisture. The main trend observed in smart farming
related to the adoption of new technology in line with Industry 4.0. However, the limitations
of this research included only presenting research trends and failing to compare them with
previous bibliometric research on smart farming. To address this, future research should
include improved statistical analysis to confirm the observed relationships.
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