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Abstract: The design of agents interacting with human beings is becoming a crucial problem in many
real-life applications. Different methods have been proposed in the research areas of human–computer
interaction (HCI) and multi-agent systems (MAS) to model teams of participants (agents and humans).
It is then necessary to build models analyzing their decisions when interacting, while taking into
account the specificities of these interactions. This paper, therefore, aimed to propose an explicit
model of such interactions based on game theory, taking into account, not only environmental
characteristics (e.g., criticality), but also human characteristics (e.g., workload and experience level)
for the intervention (or not) of agents, to help the latter. Game theory is a well-known approach to
studying such social interactions between different participants. Existing works on the construction of
game matrices required different ad hoc descriptors, depending on the application studied. Moreover,
they generally focused on the interactions between agents, without considering human beings in
the analysis. We show that these descriptors can be classified into two categories, related to their
effect on the interactions. The set of descriptors to use is thus based on an explicit combination of all
interactions between agents and humans (a weighted sum of 2-player matrices). We propose a general
model for the construction of game matrices based on any number of participants and descriptors. It
is then possible to determine using Nash equilibria whether agents decide (or not) to intervene during
the tasks concerned. The model is also evaluated through the determination of the gains obtained
by the different participants. Finally, we illustrate and validate the proposed model using a typical
scenario (involving two agents and two humans), while describing the corresponding equilibria.

Keywords: human–agent interaction; multi-agent system; matrix game; descriptor; Nash equilibrium

1. Introduction

Interactions between humans and software agents in the context of complex tasks
have been studied in different research domains, notably in human–computer interaction
(HCI) and in multi-agent systems (MAS). For example, we find works in the fields of road
traffic management [1,2], autonomous cooperative robotics [3], and workflow modeling [4],
and more recently on the problems of explanation of reasoning [5]. From the point of
view of MAS, (autonomous) agents are usually defined as entities capable of acting (and
interact) without human intervention [6–10]. From the point of view of human–machine
interaction, and particularly intelligent interaction, studies focus on the characterization
of interactions between a human being and an intelligent system [11–14]. Beyond the
visual aspects of interfaces, interaction models involve software mechanisms based on
an adaptation principle, to ensure intelligent interactions. The cross-fertilization between
these two fields of research has led to different perspectives, considering teams composed
of different human beings and intelligent agents [15–18]. Research has led to models of
new interactions (and tools to enable these interactions), making them more explicit. Col-
laboration and cooperation between software agents and humans seems to be a promising
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solution. Indeed, Badeig et al. [19] highlighted that these interactions require essential
properties (autonomy, proactiveness, context awareness, and situatedness) to model real
applications. For example, these properties supported tangible human–agent interactions
with an interactive tabletop [20]. In [21], the authors proposed a model of interaction be-
tween these different participants, with the objective of improving the artificial intelligence
component by relying on human expertise. The design of such (human–compatible) agents
is still an open issue, as underlined by [22–24].

Overall, few research works have taken into account the explicit relationships between
humans and software agents, with each participant having its own characteristics. The ma-
jority have taken ad hoc approaches, hence our interest in an explicit formulation of these
interactions. In our previous work, we proposed interactions between an agent (driving
a simulated vehicle) and a human being (driving a vehicle in a virtual environment) [25].
We also studied the context of road traffic congestion: agents and humans were trying to
reduce the number of conflicting situations in a road traffic simulation [1,2]. These works
focused on the modeling of particular interactions between agents and humans, which
were described using matrix games.

The game theory approach is a well-known method for studying and understanding
different types of interaction between individuals, and particularly their social relations [26].
The idea is based on finding a strategy that helps a group of players to maximize their own
benefits (utilities). This mathematical approach has been explored in different applications
based on agents (without direct intervention of humans beings); for example, in modeling
(i) the land change and spatial and temporal dynamics of the urban environment [27,28];
(ii) specific behaviors of people (e.g., extremist behaviors [29], spatial segregation [30,31],
and dissemination of culture [32]); (iii) social networks [33–35]; and (iv) resource alloca-
tion [36–38]. In their study, Kaviari et al. [27] claimed that “urban land development is the
result of the game between different players representing different human behaviors, thus
game theory can improve the efficiency of the simulation of such a problem”. These authors
showed that a game theory model (in this context, to predict the growth of Zanjan city) with
temporal resolution gave better results for urban planning. In this context, the decision of
resident agents (to seek the best land relatively to the income level of people) was based
on different criteria, such as accessibility, land price, etc. Another illustrative example was
introduced by [29]: The authors proposed an agent-based model of the emergence and
escalation of anxiety in situations in which individuals from two different groups encounter
various hazards. This model is characterized by different criteria, called social identity
and identity fusion. The model is not directly based on game theory; nevertheless, the
agents make their decision by estimating a utility, which is based on the evaluation of
the anxiety level and the perception of a hazard in the group (individual and collective
criteria). Lemos et al. [33] studied network formation for agents from different groups.
The game proposed in this approach was defined by the payoff of a social dilemma game
a particular case of a 2-player matrix. This study showed that the influence on the formation
of social networks, depends on the size of the minority group, the frequency with which
agents react to adversarial agents, and a cooperation barrier. Noori et al. [38] dealt with
water allocation policies and demand management. More specifically, the water demand
and the interactions of agricultural agents (concerning products such as rice and citrus)
were estimated using utilities corresponding to the level of satisfaction of stakeholders.
In these studies, the authors proposed different criteria for estimating the utilities, but their
approach, which was well-suited for these applications, proposed ad hoc criteria, without
the direct intervention of humans in the loop. The objective of this paper was to build these
decision matrices into a more general structure, with a consideration of direct interactions
between agents and human participants. The problem is, thus, to allow agents to make
decisions to assist or not the human participants.

The paper is organized as follows: Section 2 presents the state of the art related to
different concepts useful for modeling human–agent interactions. Section 3 proposes
a model based on game matrices for two players/participants. Section 4 generalizes
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the 2-player model to any number of participants. We show that matrices depend not
only on the interactions between participants, but also on predefined criteria/descriptors.
The model is then evaluated in Section 5, through a scenario involving two agents and
two humans. Section 6 discusses our approach in a more general context. Finally, the last
section concludes and gives some perspectives.

2. Background

We propose to list in a non-exhaustive manner the main descriptors that can be
involved in intelligent assistance, and which are available in the literature (Section 2.1). We
also show that these descriptors can be classified into two categories, which are associated
with the relative importance of their numerical value. We provide a description of different
steps of the principles considered for the modeling of interactions based on descriptors
(Section 2.2). Finally, we explain the concept of a matrix game and the way to determine an
equilibrium (Section 2.3).

2.1. Main Existing Criteria (or Descriptors)

Privacy is the first criterion (or descriptor) that can be taken into consideration.
The greater the need to respect privacy, the less relevant it will be for a system to in-
teract with a human to provide assistance, with the risk of transmission of confidential
information [39]. For example, assistive systems in smart homes, for people in general
or people with disabilities in particular, must protect their privacy. The disability of the
human, whether physical (e.g., visual) or cognitive (difficulties in understanding, memoriz-
ing, etc.), is also an important criterion. For example, the greater the visual impairment
(ranging from visually impaired to blind), the more crucial is the need for assistance when
interacting with the system [40]. In addition, the weaker the performance of a user, the more
useful the assistance of an agent [41]. For example, human performance with office soft-
ware consisting of hundreds of functions and/or options may be poor for many users for
complex or non-routine tasks. Another example is the saturation of road traffic (involving
inter-blocking situations) controlled by human operators. In general, the lower the usability
of an interactive system, the more useful an assistive system should be for the user [42].
For example, an intelligent aid can be associated with interactive software composed of
multiple functionalities(for instance a CAD interactive system) and can guide the user
according to the tasks to be performed. The user can be confronted with an environment
having a stochastic character, leading to random events. This is the case, for instance, in
power plants, production lines, or in multimodal transportation networks. In this case,
the higher the level of stochasticity, the more help in anticipating events should be useful
for the human [43]. In the same way, the higher the criticality of a situation, the more useful
it is help the human with interventions. The goal can be, for example, to avoid possible
incidents or accidents, or even disasters [44] (air traffic control is a typical example). Indeed,
in a highly sensitive environment, any human error can have serious consequences, and it
is useful to have assistance in detecting them or even to anticipate them [45,46]. Depending
on the field of application, human error can lead to the loss of a document, an erroneous
financial transaction, or an explosion at a chemical plant. In an uncertain environment,
an agent can act to evaluate the reliability of the information transmitted to the human.
Depending on the experience level of the user of a system, assistance may be more or less
useful. This can be the case in certain social networks or in war situations. For example
if the user is a novice, assistance may be crucial [47]. The higher the workload of a user,
the more useful the assistance can be in reducing it [48,49]. This is the case for control
tasks with complex dynamic systems composed of hundreds or sometimes thousands of
variables (multi-modal transportation networks, nuclear power plants, etc.).

These criteria are called descriptors in the following. They can be classified into two
categories of descriptors:

• Category 1: an increase in the value associated with the descriptor requires a coopera-
tive situation;
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• Category 2: a descriptor with a low value implies a situation of assistance (an inter-
vention is recommended).

Table 1 classifies the main descriptors introduced previously, according to these two
categories. This list of descriptors is not exhaustive. It is representative and could certainly
be extended by analyzing in depth the specificities of certain fields of application. It
aims, above all, to help readers appreciate the complexity of the problem domain and the
diversity of possible descriptors.

Table 1. Classification of descriptors into two categories (those in bold are used to illustrate the
proposed approach).

Category 1 Category 2

Criticality Experience level
Workload Privacy
Disability Usability

Stochastic environment Performance
Human errors Reliability of the system

Hypothetically, numerical values can indicate the relative importance of each category
of descriptors. Indeed, for some descriptors (such as criticality), the higher the value,
the more useful it will be to set up cooperation between the different participants (in order
to reduce criticality). For example, let us imagine values ranging from 1 to 5, with 5 being
the maximum value of the descriptor of Category 1. If the criticality has the maximum value
(here 5), then an intervention with an assistance goal can be considered essential. For other
descriptors (Category 2), a high value (e.g., experience level) would not necessarily require
cooperation between participants. For example, if the experience level has the maximum
value (here 5), then an intervention with an assistance goal can be considered unnecessary.

The characteristics of the environment, as well as the essential aspects considered by
the different actors, are then defined using a set of descriptors. They thus describe certain
information that is crucial in the decision-making processes and joined actions selected by
the participants (with the aim of global effectiveness being obtained by the latter). These
descriptors are proposed by the designer. In order to decide which descriptors to exploit,
the designer can start with a global analysis of the application domain [50]. A literature
review can also be conducted in parallel, to study the descriptors implemented with the
purpose of assistance in the domain concerned (e.g., assistance in power plant supervision).
It is also necessary to have discussions with experts of the domain, as well as with users
having experience of situations in which assistance may be necessary.

Each descriptor should be computable (and/or estimable) in a reasonable time. Simi-
larly, the descriptors depend on the weights defined a priori by the designer. For example,
a designer may consider that criticality is more important than performance in a risk area
(e.g., control of major-accident hazards involving dangerous substances [51]).

Initially, our previous studies dealt with three descriptors: workload, experience level,
and criticality. These studies concerned a concrete application domain: traffic management
by humans assisted by software agents [1,2]. In this paper, even if we have shown that
many possible descriptors exist (classified into two categories), we propose to use these
three descriptors. They will be sufficient to show the feasibility of the proposed model.

2.2. Methodology Principles

We assume that the environment has its own temporal dynamics, which is correlated
to the actions of the different participants. It is therefore necessary to define a reasonable
temporal window for the decision regarding assistance (or not) of the different agents.
We will assume that this temporal window is defined by the designer. The principle
of the model is shown in Figure 1. In the general case (for each cycle), the participants
evaluate/assess the selected descriptors, build the game matrix, and then select a Nash
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equilibrium to make their decision. However, the proposed principle is necessarily partial,
since the human actors do not have to build the game matrix. Indeed, we try to propose
the best decision (according to Nash equilibrium determination) for the agents. In parallel,
human beings make their own decision, independently of the other actors. This first figure
gives an overview of the steps at the decision level, and the second figure complements
this one at the temporal level.

Figure 1. UML activity diagram for the representation of interactions.

This principle assumes a cyclical process for the reasoning of the agents (Figure 2).
In this figure, we consider a temporal window [t, t + ∆t] for Agent Ai and Human Hj; the
principle remains similar for any number of agents and humans. As such, in each cycle,
the participants are able to initialize and evaluate their own descriptors: for example, the
workload (descriptor from Category 1 according to Table 1) and experience level (descriptor
from Category 2). It is also assumed that each actor (agent or human) is able to evaluate
the criticality of the environment. MajAi ,t (resp. MajHj ,t) represents the update at time t
of the descriptor Maj for Ai (resp. Hj). Let us therefore decompose the temporal window
∆t into different phases:
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Figure 2. UML sequence diagram for the representation of interactions.

1. The different actors perceive the evolution of the environment and determine the level
of criticality: crtAi ,t for Ai (in the same way, crtHj ,t for Hj);

2. Agent Ai estimates the criticality from the point of view of Hj (denoted crt
′
Hj ,t

), which
may differ from that determined by Hj (There is no reason why we should have the
equality crt

′
Hj ,t

= crtHj ,t). In the following, we assume that the criticality (based on
the evaluation of the environment) of the human and that of the agent are identical;

3. In the same way, Ai estimates the workload and the experience level of each Hj,

denoted by WL
′
Hj ,t, expl

′
Hj ,t

. In the following, we assume that these two descriptors of
the agent are identical to those of Hj;

4. Each agent Ai builds the matrix MAxHy,t. We will come back to this in the following;
5. Ai determines the Nash equilibrium for the matrix computed from the S(si, si)t strate-

gies, where si is the strategy of Agent Ai and si the strategy of any actor other than Ai;
6. We assume that there are exchanges between the different actors (for example, infor-

mative acts for the chosen strategies);
7. We also assume that there are exchanges between the different actors, for example

requests about the action to be carried out (the strategy that an actor would like to be
selected by another actor). Note that these last two phases are a cyclical process that
should converge fairly quickly to a consensus;
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8. The actors perform their respective actions (doing nothing is also an action), which
take a certain time;

9. We assume that the workload and the experience level can be updated by Hj. The most
difficult problem is to consider an update of the two descriptors for Ai. Depending on
the strategy selected S(si, si)t, the experience level may increase (a failure could also
bring additional knowledge) depending on the success or failure of the action chosen
by the players. Similarly, in the previous steps of estimating the two descriptors
of Hj, Agent Ai could propose an estimation of the experience level according to
the success/failure of Hj, as well as the strategy considered optimal. In the end,
the updating of these two descriptors leads to their valuation at t + 1.

The principle of the interaction model thus leads to the determination of numerical
values for each descriptor during the building of the matrices. These matrices allow the
agents to make a rational decision about the necessity to cooperate or not with the humans.
We briefly detail the equilibrium search model, and thus the way to select an action.

2.3. Hypothesis and Concepts of Equilibria for a Matrix Game

We assume that assistant agents and humans share the same common environment.
It is accepted that like humans, assistant agents also have a limited competence for the
task to be completed. This task is in fact a priori a cooperative task. However, nothing
prevents us from thinking that the humans may be in a competitive interaction. Let us
note n assistants agents defined by A = {A1, A2, · · · , Ai, · · · , An}, and m humans defined
by H =

{
H1, H2, · · · , Hj, · · · , Hm

}
. We also define the set of participants pk ∈ P such as

P = A∪H.
Let us take just two players, a software agent and a human being. We consider by

convention that the actions of the first player (Assistant Agent A) are represented in the
rows, and the ones of the second player (Human H) in the columns. Each actor can decide
to cooperate or not, so we will use the usual convention of actions (by considering the usual
notation used to deal with the problem of the prisoners’ dilemma): C (for cooperation)
in the first row and column; D (for defection, the willingness not to cooperate) in the
second row and column. For example, the first row and first column are associated with
the strategy CC (this notation first indicates the agent strategy and then the human one).
Each player can choose between two actions, ∀i, Si ∈ {C, D}. A matrix game for a 2-player
2-action game is defined as:

A�H C D
C (vAcc , vHcc) (vAcd , vHcd)
D (vAdc , vHdc) (vAdd , vHdd)

(1)

Let us note any positive values for the different utilities or gains (vAcc , vHcc , . . ., vAdd ,
vHdd ). When Agent A chooses the strategy D and Human H the strategy C, we can determine
the utilities of these two players using the couple (vAdc , vHdc), i.e., uA(DC) = vAdc and
uH(DC) = vHdc . Moreover, as we mentioned in the previous subsection, we reinitialize the
matrix by calculating/estimating the different utilities, as in the work proposed in [17,25].
This is called an iterated game.

To ensure the rational behavior of the agents, one method for finding the right decision
is to look for Nash equilibria [26,52–56]. To determine these equilibria, we choose the
algorithm described in [57,58]. This algorithm essentially consists of two consecutive
steps: (i) the gradual elimination of dominated strategies (if we obtain a single profile
by successively eliminating (strictly) dominated strategies); (ii) the determination of the
different equilibrium. Its application is possible to search for pure strategies, which seems
satisfactory in this context. For a non-zero-sum game, we know that the number of
Nash equilibria in pure strategies is many, and we assume that the agent then selects an
equilibrium from those obtained. Note that human beings do not calculate their respective
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matrix (the game can be considered partially uncooperative), but they are necessary for
software agents.

Recall that the Nash equilibrium is defined using a joint strategy s =
〈
s∗i , s∗i

〉
∈

S1 × S2 × · · · × Sn for n players, where, knowing the strategy chosen by the other players,
each player seeks to maximize their gain, i.e., ∀i, ∀s′i ∈ Si, ui(s∗i , s∗i ) ≥ ui(s′i, s∗i ). In this
context, a player i has no interest in changing strategy unilaterally. Therefore, for two
players, we consider the following inequalities according to the pair of winning strategies
in a 2-player game, H and A:

• CC: vAcc ≥ vAdc and vHcc ≥ vHcd , knowing that H cooperates, A has an interest in
cooperating (for example, the task is complex enough that H felt the need to call on A
and A detects an interest in cooperating with the human);

• CD: vAcd ≥ vAdd and vHcd ≥ vHcc , knowing that H is defecting (does not cooperate), A
has an interest in cooperating (for example, the task is complex enough for A to feel
an interest in cooperating with the human, even if the latter was acting individually);

• DC: vAdc ≥ vAcc and vHdc ≥ vHdd , knowing that H cooperates, A has an interest in not
cooperating (for example, H felt the need to call on A but A does not consider the
task complex enough and, occupied by other tasks, A does not detect an interest in
cooperating with the human);

• DD: vAdd ≥ vAcd and vHdd ≥ vHdc , knowing that H is defecting (does not cooperate), it
is in A’s interest not to cooperate (for example, H did not feel the need to call on A,
and A does not consider the task complex enough to offer cooperation or assistance).

For reasons of simplification and without loss of generality, we assume that the
descriptors from Category 1, as well as the parameters of the matrix (vAcc , vHcc , . . ., vAdd ,
vHdd ) are defined according to the same ordered scale of discrete values [vmin..vmax] (we
assume in the following, that vmin = 1 and vmax = 5). The challenge is then to know if the
intervention of the agent remains necessary for the intermediate values. We, therefore, also
assume that there is a threshold set a priori (which we note as v f ixed) that could trigger
the cooperative intervention of the agent. The definition of this threshold depends on the
designer and the level of freedom desired by the human actors (for example, reducing the
amount of intervention of an assistant agent allows humans to act more and progress in
their learning of the complex system they manipulate), which is in line with the learning
by doing [59] approach. We, thus, define v f ixed = δ · vmax. Considering that the human
beings must not lose their expertise, this parameter δ (in the following, we assume that
this parameter δ is identical for the different descriptors) thus sets the threshold for the
descriptor where the agent can begin to intervene. A value δ = 0 means that it intervenes
very quickly; its intervention is delayed when δ = 1.

Construction of the matrix for the second category is based on the notations described
previously. Suppose the following notations: (i) the value of any descriptor varying
from v′min to v′max; (ii) existence of a threshold set a priori that can trigger a software
agent intervention, defined by v′f ixed; (iii) v′A for the current value of Agent A, and v′H for
Human H.

We will now describe how to construct decision matrices for two participants/players.

3. Building Two-Player Matrix Game

We have shown that the construction of matrices depends on the interpretation of the
descriptors, which have been defined in two categories (cf. Table 1). We present matrix
models for two players (Sections 3.1 and 3.2). Then, we study the behavior of the agent
for various descriptors (Section 3.3), in the case where there are two players. Finally, we
propose three illustrations combining two and three descriptors (Section 3.4).
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3.1. Representation of the Two-Player Matrix For Category 1

We propose to study the first category of descriptors, and in particular its matrix game
(Section 3.1.1). We also illustrate our point for the following two descriptors: criticality and
workload (Section 3.1.2).

3.1.1. Building the Matrix Game For Category 1

To the notations already proposed, we add vA for the current value of assistant Agent
A and vH for that Human H for the studied criterion (i.e., the descriptor). For conve-
nience, these are also considered to be the utility values: the payoffs that can be obtained
by A and H, respectively, in the matrix game. Let us consider the two corresponding
extreme situations:

• When the value of the descriptor is equal to vmax for A, the agent should decide
to intervene to assist the human. The strategy in this case would be a cooperative
situation, denoted CC (or CD if this value is low for the human). A high value of the
descriptor should therefore lead to a cooperative strategy on the part of the agent. By
using the notations of Equation (1)), we have: vAcc = vA, vAdc = v f ixed, vHcc = vH , and
vHcd = v f ixed. Thus, having this inequality vA ≥ vA f ixed (a value greater than or equal
to the fixed threshold), sA = {C} will be the chosen strategy for the agent A;

• Similarly, when the value of the descriptor is low for A, it is not in the interest of the
agent to intervene. Strategies such as DC and DD are then necessary, to indicate its
non-intervention. To obtain the DC strategy, the first inequality vHdc ≥ vHcc is satisfied
as soon as the current value of the descriptor, for A, is less than (or equal to) the fixed
threshold. The second inequality vHdc ≥ vHdd must also be satisfied. If we consider the
current value (vHdc = vH), this will be verified for the operation where vHdd = vmin
(H considers the descriptor to be of relative importance). Strategy DD supposes the
satisfaction of vAdd ≥ vAcd , with vAcd = vA and vAdd = vmin (H partially considers
the descriptor).

Therefore, the assignment of matrix values associated with constructing a descriptor
from Category 1 is defined as follows, where only the values vA and vH are free (v f ixed
being defined by δ · vmax): (

(vA, vH) (vA, v f ixed)
(v f ixed, vH) (vmin, vmin)

)
Making assumptions about the possible values of descriptors, a reasonable setting of δ

seems to appear when δ ∈ [0.6, 0.7]. For small values of δ (i.e., v f ixed), the Nash equilibrium
is the cooperative strategy for A for any vH , if A deems the descriptor higher than the
minimum. For values of δ close to 1, there are many winning strategies, and a cooperative
strategy is more difficult to obtain. It should also be noted that the choice of vmin = 0 as
the lowest value would increase (with intervention rate) the willingness of the assistant
agent to cooperate. More generally, we want to evaluate the percentage of intervention
of the agent by varying vA on the same scale of values. For each value of vA, we set
the value of δ, while varying vH (see Figure 3). We can see that an increase in values of
vA increases the rate of intervention of the agent; which ends approximately at a rate of
50% for δ = 1. Therefore, the more A deems the descriptor to be important, the more it
decides to cooperate (the more A finds an interest in it). Note that for a zero value of vA,
the intervention rate converges quickly towards the non-intervention of the agent. We also
note that the variation of vA in relation to the value of vH tends to reduce the intervention
of the latter.
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Figure 3. Evolution of the level of intervention (i.e., the decision is C) for the agent.

3.1.2. Illustration of the Criticality and Workload Descriptors

The criticality level of the environment ranges from 1 (normal state) to 5 (hazardous
state). This assessment essentially depends on the application, and therefore we will
admit that the common criticality is perceived in the same way by assistant agents as by
human beings: vA = vH = crt. In the same way, we set the notations: (i) crt f ixed for a
fixed criticality, (ii) crt for the current criticality, and (iii) crtmin for the minimal criticality
(likewise crtmax for the maximal criticality).

The workload depends on the different actors and their analysis of their ability to carry
out the task. A value 5 for the workload means that the actor feels overwhelmed by how the
system works; A minimum value of 1 characterizes a task that the actor can perform without
stress and/or difficulty. We note wlA and wlH for the values of the current workload of
the assistant agent and the human being; wl f ixed is the threshold of acceptability of the
workload (above this threshold, agents will have to intervene); and wlmin (respectively
wlmax) for a minimum workload value (resp. maximum workload value). By applying
the analysis of Section 3.1.1, the matrices associated with criticality and workload for two
players are defined by:(

(crt, crt) (crt, crt f ixed)
(crt f ixed, crt) (crtmin, crtmin)

) (
(wlA, wlH) (wlA, wl f ixed)

(wl f ixed, wlH) (wlmin, wlmin)

)
In the following, we consider that software agents have no personal workload; they are

still able to perform a task at each iteration; at worst, we consider that the agent estimates
its workload like the human, and so we set wlA = wlH . The strategic behavior of the
assistant agent for the two descriptors described below are those described by vA = vH of
Figure 3.

3.2. Representation of the Two-Player Matrix for Category 2

This category of descriptors (in which the experience level falls, for example) assumes
that the maximum value is not critical; while the minimum value may raise a particular
concern for the proper completion of the task. Using an approach similar to the previous
category, we plan to study this second category of descriptors, and in particular the matrix
(Section 3.2.1), and we illustrate our proposal with a particular descriptor, the experience
level of participants (Section 3.2.2).

3.2.1. Building the Matrix Game for Category 2

A reasoning similar to the previous case (Category 1) leads, for this one, to the study
of the two extreme situations:
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• When the value of the descriptor is low, the assistant agent may have an interest in
intervening (strategies CC or CD), before the global system deteriorates. To respect
these constraints, one solution would be to swap the values proposed in Section 3.1.1.
Let us then take vAcc = v′f ixed, vAdc = v′A, vHcc = v′f ixed and vHcd = v′H ;

• When the value of the descriptor tends towards v′max, the agent will select a non-
intervention action. The strategies in this case would be DC and DD. Similarly, the per-
mutation of values proposed in Section 3.1.1 follows the same analysis. For vAcd and
vHdc , several values are then possible; for example, with two values: vAcd = vHdc = v′min
and vAcd = vHdc = v′f ixed.

For the descriptors from Category 2, the two-player matrix game is therefore repre-
sented by: (

(v′f ixed, v′f ixed) (v′, v′H)
(v′A, v′) (v′A, v′H)

)
where v′ ∈

{
v′min, v′f ixed

}
As we use the same scale and the same parameter δ, we can assume that v′f ixed = v f ixed

and v′min = vmin = 1. Figure 4 thus presents the rate of intervention of the agent for any
value v′A. For each of these values, we vary v′H by setting δ. The different values v′A tend to
converge towards the expected values; i.e., we obtain an approximately 50% chance that
the agent will intervene and therefore decide to assist the humans.
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v′A = vH

Figure 4. Evolution of an agent intervention rate (v′ = v′min = 1).

3.2.2. Illustration of Experience Level

Experience level is a descriptor from Category 2. Remember that an experience level
of 1 means that the actor does not really know the system and its evolution, while an
experience level of 5 indicates that this actor has perfect mastery of the evolution of the
system. We set explA and explH for the current experience level of the agent and the human
being; expl f ixed is the threshold of acceptability of the experience level (below this threshold,
agents should/could intervene); and explmin (respectively explmax) for a low level (resp. a
high value for experience). Continuing the analysis of Section 3.2.1, the matrix concerning
the experience level for two players is represented by:(

(expl f ixed, expl f ixed) (expl, explH)
(explA, expl) (explA, explH)

)
where expl ∈

{
expl′min, expl′f ixed

}
In the following, we consider that software agents do not have a variable level of

experience, as for human beings; they are always able to intervene wisely. Assuming then
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explA = explH , the strategic behavior of the agent would correspond to that proposed by
Figure 4 for vA = vH .

By calculating the Nash equilibria for each value of vH and vA in [0, 5] for a given δ,
and by accumulating the occurrences of the cooperative strategy (C), we obtain Figure 5 (Source
code that produced these figures can be found here: https://github.com/EmmanuelADAM/
Julia/blob/main/majJeux.jl, accessed on 17 March 2023). Figure 5a (respectively, Figure 5b)
accumulates for all δ in [0, 1] the cooperation distributions of A for Category 1 (respectively,
Category 2); the darker the color, the greater the level of agent involvement.

• For Category 1, we notice that the agent cooperates when it evaluates the descriptor
characterizing the situation more strictly than the human. In this case, the agent finds
it more useful not to cooperate, even if the human asks for it; because it judges the
descriptor weaker than the human values it. For example, if the agent judges the
situation as critical, whatever the human says, it will offer assistance.

• For Category 2, we note that the agent cooperates when it evaluates the descriptor
describing the situation as weaker than the human. In this case, the agent thinks it
is more useful not to cooperate, even if the human asks for it; because it judges the
descriptor more strictly than the human. For example, if the agent judges the user to
be very inexperienced, whatever the human says, it will offer assistance.

The proposed matrix game is therefore in line with what was expected: the agent
assists the human when it feels the need. On the other hand, it lets the human act alone,
and therefore learn and gain experience when the agent does not judge the situation to
be problematic.

(a) Category 1. δ ∈ [0, 1] (b) Category 2. δ ∈ [0, 1]

Figure 5. Degrees of cooperation for Agent A.

3.3. Combination of Descriptors for the Two-Player Matrix

Combining all the descriptors to obtain a matrix, while giving a reasonable/acceptable
interpretation of the Nash equilibria, is not obvious. Indeed, these descriptors are in-
dependent features, and depend on the correspondence of the different scales of values.
Nevertheless, we consider an empirical approach to their construction. Thus, we can

https://github.com/EmmanuelADAM/Julia/blob/main/majJeux.jl
https://github.com/EmmanuelADAM/Julia/blob/main/majJeux.jl
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establish a matrix (denoted MAx Hy for an agent Ax and a human Hy) as a weighted sum of
2-player Mi associated to k > 0 descriptors (Cf. Sections 3.1.1 and 3.2.1):

MAx Hy =
1

∑k
i=1 λi

·
k

∑
i=1

(λi ·Mi) with λi ∈ N

where λi is the parameter of a descriptor desci (associated to the 2-player matrix Mi) fixed
by the designer. As the matrix has a different behavior according to the category, it is
essential to differentiate the two-player matrices, Mi. Let us take for example that for
k = k1 + k2 descriptors, k1 descriptors (respectively k2) belong to the first category (resp.
the second category).

For a given matrix Mi, we made different assumptions (∀i, vi
f ixed = v

′ i
f ixed = δ · vmax

and ∀i, vi
min = v

′ i
min = vmin = 1) that should lead us to the need to evaluate the two

following quantities, in order to simplify our notations: ∑k1
i=1 λi · vi

f ixed −∑k2
j=1 λ′j · v

′ j
f ixed =

(
∑k1

i=1 λi −∑k2
j=1 λ′j

)
· δ · vmax

∑k1
i=1 λi · vi

min −∑k2
j=1 λ′j · v

′ j
min =

(
∑k1

i=1 λi −∑k2
j=1 λ′j

)
· vmin

(2)

We can then state, to simplify the writing: Λk = [λ1, . . . , λk]
T , Λ

′ k =
[
λ′1, . . . , λ′ k

]T ,

Vk
A =

[
v1

A, . . . , vk
A

]
, V

′ k
A =

[
v
′ 1
A , . . . , v

′ k
A

]
, Vk

H =
[
v1

H , . . . , vk
H

]
, V

′ k
H =

[
v
′ 1
H , . . . , v

′ k
H

]
,

Vk
value = [vvalue, . . . , vvalue], with card(Vk

value) = k and value ∈ {min, max, f ixed}. Equa-
tion (2) then becomes: Λk1 ·Vk1

f ixed −Λ
′ k2 ·V

′ k2
f ixed =

(
Λk1 −Λ

′ k2
)
·Vk

max · δ

Λk1 ·Vk1
min −Λ

′ k2 ·V
′ k2
min =

(
Λk1 −Λ

′ k2
)
·Vk

min

The general framework describes the use of different descriptors with different inter-
pretations. We thus give the results associated with the four possible strategies:

CC :

 Λk1 ·Vk1
A −Λ

′ k2 ·V
′ k2
A ≥

(
Λk1 −Λ

′ k2
)
·Vk

max · δ

Λk1 ·Vk1
H −Λ

′ k2 ·V
′ k2
H ≥

(
Λk1 −Λ

′ k2
)
·Vk

max · δ
(3)

CD :

If v
′ j
x = v

′ j
f ixed

{
Λk1 ·Vk1

A −Λ
′ k2 ·V

′ k2
A ≥ Λk1 ·Vk1

min −Λ
′ k2 ·Vk2

max · δ(
Λk1 −Λ

′ k2
)
·Vk

max · δ ≥ Λk1 ·Vk1
H −Λ

′ k2 ·V
′ k2
H

If v
′ j
x = v

′ j
min

 Λk1 ·Vk1
A −Λ

′ k2 ·V
′ k2
A ≥

(
Λk1 −Λ

′ k2
)
·Vk

min(
Λk1 −Λ

′ k2
)
·Vk

max · δ ≥ Λk1 · vk1
H −Λ

′ k2 · v
′ k2
H

(4)

DC :

If v
′ j
x = v

′ j
f ixed

{ (
Λk1 ·Vk1

max −Λ
′ k2 ·Vk2

max

)
· δ ≥ Λk1 ·Vk1

A −Λ
′ k2 ·V

′ k2
A

Λk1 ·Vk1
H −Λ

′ k2 ·V
′ k2
H ≥ Λk1 ·Vk1

min −Λ
′ k2 ·Vk

max · δ

If v
′ j
x = v

′ j
min

{ (
Λk1 ·Vk1

max −Λ
′ k2 ·Vk2

max

)
· δ ≥ Λk1 ·Vk1

A −Λ
′ k2 ·V

′ k2
A

Λk1 ·Vk1
H −Λ

′ k2 ·V
′ k2
H ≥ Λk1 ·Vk1

min −Λ
′ k2 ·Vk2

min

(5)

DD :
If v

′ j
x = v

′ j
f ixed

{
Λk1 ·Vk1

min −Λ
′ k2 ·Vk2

max · δ ≥ Λk1 ·Vk1
A −Λ

′ k2 ·V
′ k2
A

Λk1 ·Vk1
min −Λ

′ k2 ·Vk2
max · δ ≥ Λk1 ·Vk1

H −Λ
′ k2 ·V

′ k2
H

If v
′ j
x = v

′ j
min

{
Λk1 ·Vk1

min −Λ
′ k2 ·Vk2

min ≥ Λk1 ·Vk1
A −Λ

′ k2 ·V
′ k2
A

Λk1 ·Vk1
min −Λ

′ k2 ·Vk2
min ≥ Λk1 ·Vk1

H −Λ
′ k2 ·V

′ k2
H

(6)
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We discuss the two special cases, for which the descriptors are of the same nature: (i)
k = k1 (with k2 = 0) and (ii) k = k2 (with k1 = 0). For these particular cases, we can see
that the behavior of the matrix MAxHy is similar to the initial two-player matrices for a
given descriptor. Furthermore, the different Nash equilibria lead to a weighted sum of the
evaluations relative to the thresholds (more precisely to the minimum or fixed thresholds).

3.4. Illustration with Combinations of Two and Three Descriptors

We propose to illustrate different cases for two descriptors of the same or different
category (Sections 3.4.1 and 3.4.2), and for three descriptors (Section 3.4.3). Note that the
approach is not limited to three descriptors. It should be remembered that the model
proposed in the previous section is based on any number of descriptors that are weighted
by two-player matrices.

3.4.1. Combination of Two Descriptors of the Same Category

Let us take the two previous descriptors from the same category (Category 1), namely
criticality and workload levels (k1 = 2 and k2 = 0). The ratio α = λwl

λcrt
allows us to evaluate

the sensitivity of the two descriptors, according to the parameter δ. We show that for a
ratio of 1000, we can see that it corresponds exactly, not only to the number of interventions
of the agent, but also to the min/max/average number of equilibria according to the
value of δ and for a descriptor of this category. Above this value, the intervention rate of
the agent remains the same. Figure 6 shows the influence of the weights on the agent’s
intervention rate. An increase of δ leads to a decrease of the number of interventions for the
agent, corresponding to the importance of keeping the knowledge learning for the human
being (the closer δ is to 1, the more the agent’s intervention percentage is around 50%).
For example, for lambdawl = λcrt = 1 with the same assumptions on the valuations of the
two descriptors, we shift from 96% (for δ = 0) to 50% (for δ = 1). The difference between
the two extreme configurations, according to the ratio of the two coefficients associated
with the two descriptors: (i) λcrt

λwl
= 1 and (ii) λcrt

λwl
= 1000 is maximal (approximately 18%

for δ = 0.2). For values of δ > 0.8, the approach is not really significant for the different
weightings of these coefficients.
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λcrt = λwl = 1

Figure 6. Evolution of the agent’s intervention level for different values λcrt and λwl .

3.4.2. Combination of Two Descriptors from Different Categories

We wish to illustrate with the combination of the following two descriptors (k1 = k2 = 1):
(i) criticality or workload levels (from Category 1) and experience level (from Category 2).
Since the choice of criticality or workload does not change the following analysis, we
propose to select criticality to illustrate the first category.
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To address the sensitivity of the coefficients of the two descriptors (λcrt and λexpl),
we have to provide different values for the weight coefficients. The results (assuming
v′ = v′f ixed) obtained for the different weights of the coefficients associated with the

descriptors again show that a ratio of λcrt
λexpl

= 1000 allows us to find the same percentages
as for the criticality descriptor (a binary search allows us to again find this value). We see
that the number of min/max/average equilibria is also identical to the criticality level.
Above this value, we observe that the percentages do not change (it is thus not relevant
to take values higher than 1000). Figure 7 shows the agent intervention rates for the three
configurations: (i) λcrt = 1 and λexpl = 1, (ii) λcrt = 1000 and λexpl = 1, (iii) λcrt = 1 and
λexpl = 1000. The differences tend to decrease significantly for δ = 0.6; but they are almost
40% for a value of δ = 0. It is then possible to describe a range of values up to a ratio of
1000 between these two coefficients.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

δ

Pe
rc

en
ta

ge
fo

r
an

y
v H

va
lu

e

λcrt = 1000 and λexpl = 1
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Figure 7. Evolution of the agent’s intervention level for different values λcrt and λexpl .

For the hypothesis v′ = v′min = 1 and coefficients equal to 1, the result obtained is
identical for any value of the parameter δ. The behaviors are thus stable, with a 50% of chance
of intervening for the agent. Indeed, we show that from Equations (3)–(6): (i) Strategy CC is a
Nash equilibrium when the criticality level is greater than or equal to the experience level,
(ii) if the values of the descriptors are equal, Strategy DC wins; and (iii) the experience level
is greater than the criticality level for DD. In contrast, the results obtained by adjusting the
different parameters (including v′ = v′f ixed), and with the contextual conditions of these
two descriptors show that the level of assistance for the agent increases according to the
parameter δ from 44% to 65% (essentially due to the decreasing number of Strategies DD
as Nash equilibria).

3.4.3. Illustration with a Combination of Three Descriptors

We adapt the general matrix MAx Hy for k1 = 2, k2 = 1, vcrt
A , vwl

A , vexpl
A , vcrt

H , vwl
H , and

vexpl
H . The different simulations underline the consistency between the analytical result

and its contextual interpretation. Figure 8 gives some results obtained for the agent’s
intervention rate.
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Figure 8. Evolution of the agent’s intervention level for different values λcrt, λwl , and λexpl .

Figure 9a illustrates the degree of cooperation of the agent when k1 = 2 and k2 = 0,
and λ1 = λ2 = 1; with the criticality and workload descriptors. Logically enough, the degree
of cooperation of the agent follows the same curve as in the case of a unique descriptor.
Figure 9b represents the degree of cooperation of the agent when k1 = 2 and k2 = 1
(workload, experience level, criticality descriptors), and λ1 = λ2 = 1 and λ′2 = 2000. We
observe a lower degree of cooperation of the agent. Indeed the descriptor from Category 2
(for example, the experience level of the human) is strongly supported by λ′2.

(a) k1 = 2, k2 = 0, δ ∈ [0, 1] (b) k1 = 2, k2 = 1, δ ∈ [0, 1]

Figure 9. Degree of cooperation for the agent; cases with combinations of descriptors.

We now propose to generalize to a team of n agents and m humans.
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4. Generalization for N Agents And M Humans

We are only interested in agent–human interactions, and thus in the construction of
a general matrix (denoted MAnHm for n agents and m humans) determining the different
interactions between the different participants. Two approaches can be defined, namely a
centralized approach (Section 4.1) and a distributed approach (Section 4.2) for the building
of the resulting matrices.

4.1. Centralized Approach for the Decision of Agents

We obtain a formulation that seems sufficient (see Equation (7)) for the centralized
matrix, which we will designate by MAnHm:

MAnHm =
1

∑
i=n,j=m
i=1,j=1

∣∣µi,j
∣∣
(

i=n,j=m +

∑
i=1,j=1

µi,j ·MAi Hj

)
(7)

Let us set the different parameters µi,j corresponding to the degrees of trust related to
the joint activities of the participating actors Ai and Hj. This degree could evolve according
to a positive or negative interaction between them (1 would indicate a positive relationship;
0 would indicate no interaction, and −1 a negative interaction). We could also imagine, in
a future perspective, reinforcement learning to determine these coefficients according to
the result of the joint activity. Let us denote the operator ∑+ as the sum of the valuations
computed by generating the combination of strategies of a set of players. For example for
three participants (Agents A1 and A2, Human H1), MA1 H1+MA2 H1 generates a (2, 4) matrix
where lines correspond to the strategies C and D for Agent A1, and columns corresponds
to the different strategies (CC, CD, DC, DD) for the other participants (Agent A2, and then
Human H1). Moreover, we denote MAnHm ↓〈si ,si〉, the value obtained by the projection of
the strategy s = 〈si, si〉 for the matrix. In the following, we distinguish the strategy of the
assistant agent Ai by the notation si and that of the human being Hj by the notation s′j. The
gains obtained for the assistant agents (Section 4.1.1) and human beings (Section 4.1.2) are
given for a centralized approach.

4.1.1. Determination of Gains for Assistant Agents

Let us consider the creation of an intermediate matrix that aggregates for each agent
Ai the information on the different Hk; the matrix thus aggregates its matrices against each
human, weighted by its trust on each relation. This matrix that we call MAi H

allows us to
determine the gains for the assistant agents (Cf. Equation (8)):

MAi H
=

1

∑
j=m
j=1 µi,j

·
(
µi,1 ·MAi H1+µi,2 ·MAi H2+ · · ·+µi,m ·MAi Hm

)
(8)

Let us build an intermediate matrix that aggregates for each human Hk the information
about the different assistant agents. This matrix that we call MAHk

determines the gain for
the assistant agents (Equation (9)) for a human being Hk:

MAHk
=

1

∑i=n
i=1 µi,k

·
(
µ1,k ·MA1 Hk+µ2,k ·MA2 Hk+ · · ·+µn,k ·MAn Hk

)
(9)

We are mainly interested in the control of the cooperation of the agents. Thus, we
propose a matrix representing the global behavior of the agents regarding the group
of humans:

MAH =
1

∑
i=n,j=m
i=1,j=1 µi,j

·
(

j=m

∑
j=1

µ1,j ·MA1 H+ · · ·+
j=m

∑
j=1

µn,j ·MAn H

)
(10)
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Recall the viewpoint consistency assumption: vdesc
Ai

= vdesc
Aj

= vdesc
Hk

for any two assis-
tant agents Ai and Aj and one human being Hk. We can easily show that:

MAi Hk = MAj Hk , for all i, j and k given (11)

Equation (9) then changes by using Equation (11), and in this case: MAHk
= MA1 Hk .

Considering this assumption, the utility of a strategy compared to the strategies taken by
human players can then be simplified:

u(si, si) = 1
∑

i=n,j=m
i=1,j=1 |µi,j|

· (µ1,1 ·MA1 H1 ↓〈s1,s′1〉 + · · ·+ µ1,m ·MA1 Hm ↓〈s1,s′m〉
+µ2,1 ·MA1 H1 ↓〈s2,s′1〉 + · · ·+ µ2,m ·MA1 Hm ↓〈s2,s′m〉
+ · · ·
+µn,1 ·MA1 H1 ↓〈sn ,s′1〉 + · · ·+ µn,m ·MA1 Hm ↓〈sn ,s′m〉 )

It is then possible to determine the number of cooperative agents and those who do
not want to intervene, for a given strategy. Thus, we could group the values according to
the strategies of the assisting agents, in order to obtain a reformulation:

u(si, si) = 1
∑

i=n,j=m
i=1,j=1 |µi,j|

· ( ∑
j=n
i=1/si=′C′

·
(

∑
j=m
j=1/s′j=

′C′ µi,j ·MA1 H ↓〈C,C〉 +∑
j=m
j=1/s′j=

′D′ µi,j ·MA1 H ↓〈C,D〉

)
+∑

j=n
i=1/si=′D′

·
(

∑
j=m
j=1/s′j=

′C′ µi,j ·MA1 H ↓〈D,C〉 +∑
j=m
j=1/s′j=

′D′ µi,j ·MA1 H ↓〈D,D〉

)
)

Let us set the following parameters such that n = ca + da and m = ch + dh:

• ca: Number of agents wishing to intervene
• da: Number of agents not wishing to intervene
• ch: Number of humans wishing to cooperate with agents
• dh: Number of humans not wishing to be assisted by agents

Let us assume that the coefficients µi,j are identical (if these weights are unitary µi,j = 1
for all i, j, for example). In this case, we can again simplify the previous formulation:

u(si, si) = 1
n·m · ( ca ·

(
ch ·MA1 H ↓〈C,C〉 +dh ·MA1 H ↓〈C,D〉

)
+da ·

(
ch ·MA1 H ↓〈D,C〉 +dh ·MA1 H ↓〈D,D〉

)
)

(12)

4.1.2. Determination of Gains for Human Beings

To compute the Nash equilibrium, it is necessary to estimate the utility of each human
participant Hj, depending on the strategies of the assistant agents and on their own strategy.
A similar reasoning, considering the particular case where the coefficients µi,j are identical,
leads to a simpler rewriting. Based on the notations ca, da, ch, and dh, we obviously obtain
a dual formulation of Equation (12):

u′(s′j, s′j) = 1
n·m · ( ch ·

(
ca ·MA H ↓〈C,C〉 +da ·MA H ↓〈D,C〉

)
+dh ·

(
ca ·MA H ↓〈C,D〉 +da ·MA H ↓〈D,D〉

)
)

(13)

4.2. Distributed Approach for the Decision of Each Agent

A distributed approach consists in studying the construction of the matrix from the
point of view of a single assistant agent Ai, which could be expressed as a weighted sum
combining the coefficients of the initial two-player matrix. In this distributed approach,
we determine the gains obtained for assistant agents (Section 4.2.1) and human beings
(Section 4.2.2).
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4.2.1. Determination of Gains for Assistant Agents

For n agents and m humans, let us denote the utility associated with agent Ai by
uAi (si, si) = uAi (s1, · · · , si, · · · sn, s′1, · · · s′m). Moreover, we have previously seen that the
initial matrices are identical for all assistant agents ( Cf. Equation (11)). Using similar
reasoning, we can also simplify the computation of utilities for the assistant agents, if the
different weights are equal. Thus, we can make the parameters ch and dh be such that
ch + dh = m:

uAi (si, si) =
1
m
·
(

ch ·MAi H
↓〈si ,C〉 +dh ·MAi H

↓〈si ,D〉

)
(14)

Note that this formulation is the same as the general equation defined previously (Cf.
Equation (12)). Indeed, It is only necessary to take ca = 1, da = 0 if the agent Ai chooses
Strategy C (similarly for Strategy D, ca = 0, da = 1). This calculation is, in fact, the outcome
of an analysis from the point of view of a single agent Ai, and not of all the assistant agents
(note that n = ca + da = 1). Moreover, if the parameter m = 1 (only one human being),
the formulation allows us to find the initial matrix by playing with the values of ch and dh.

4.2.2. Determination of Gains for Human Beings

As expected, the utility of Hj only depends on its own descriptors, whatever the
agent Ai. We can thus simplify the calculation of utilities for the assistant agents, if the
different coefficients are equal. Thus, we can introduce the parameters ca and da, such that
ca + da = n. The formulation becomes:

u
′ i(s′j, s′j) =

1
n
·
(

ca ·MAHj
↓〈

C,s′j
〉 +da ·MAHj

↓〈
D,s′j

〉) (15)

Note that this formulation is similar to the general equation defined previously (Cf.
Equation (13)). Indeed, it is sufficient to take ch = 1, dh = 0 if Hj chooses Strategy C
(similarly for Strategy D, ch = 0, dh = 1). This parameter setting is the consequence
of an analysis from the point of view of a single participant Hj, and not on all humans
(m = ch + dh = 1). Let us also underline that, if the parameter n = 1 (only one agent),
this formulation allows us to obtain the initial matrix by playing with the values of ca
and da.

In the studies proposed above, we are able to construct corresponding matrices,
and thus determine their Nash equilibria. We will now illustrate this analysis using
a scenario.

5. Case Study: Scenario Based on Two Agents and Two Humans

Let us illustrate our proposal for a team of two agents and two humans by describing a
scenario. We present a description of the scenario (Section 5.1). It is necessary to determine
and build the initial two-player matrix (Section 5.2). Then, we determine the Nash equilibria
for the two approaches, a centralized approach with a single matrix (Section 5.3) and a
distributed approach according to the point of view of each participant (Section 5.4).

5.1. Description of Scenario

We propose a scenario with four configurations by assuming δ = 0 for these illustra-
tions, i.e., the agents’ decision is very sensitive to the minimum valuation (Table 2). For each
configuration, we present the workload, the experience, and the criticality levels.

Initially, the descriptors are positioned at low levels (Configuration c1). As a result
of their action/inaction, probably due to their average experience, the environment has
deteriorated and the criticality level becomes very high, as well as the workload (Config-
uration c2). Following the actions of the participants, the situation returns to a normal
mode (Configuration c3), assuming an increased experience level for one of the two human
operators. Their action depending on their experiences allows decreasing the danger of
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the environment; one of the two humans, thus, increases his/her experience level. Finally,
the last situation (Configuration c4) is again degraded.

Table 2. Description of typical configurations for A2H2.

Configuration Workload Experience Level Criticality
wl1 wl2 expl1 expl2 crt

c1 1 1 1 1 1
c2 2 4 3 1 5
c3 2 4 3 2 1
c4 2 2 3 2 3

5.2. Determination of the Initial Two-Player Matrix According to the Three Predefined Descriptors

We calculate the initial matrix based on the three descriptors, using the previous

formulation and the various usual assumptions: v
′ expl = v

′ expl
f ixed , identical weightings

(λcrt = λwl = λexpl = 1) for these three descriptors (with v′ = v′f ixed), vmin = 1, vmax = 5,

vcrt
f ixed = δ · vmax, vwl

f ixed = δ · vmax, and v
′ expl
f ixed = δ · vmax, where δ = 0), and the val-

uations of the agents equal to those of the human being, vcrt
A = vcrt

H = crt, vwl
A = vwl

H

and v
′ expl
A = v

′ expl
H . The consideration of these assumptions defines the initial matrix

(Equation (16)):

MAx Hy =

(
vcrt

H +vwl
H

3 , vcrt
H +vwl

H
3 ) (

vcrt
H +vwl

H
3 , v

′ expl
H

3 )

(
v
′ expl
H

3 , vcrt
H +vwl

H
3 ) (

2+v
′ expl
H
3 , 2+v

′ expl
H
3 )

 (16)

5.3. Building the Centralized Matrix for Two Agents Two Humans

For this particular case, a team of two agents and two humans (x = 1 or x = 2;
y = 1 or y = 2) is considered. The resulting matrix would be defined by MA2H2 =
MA1 H1+MA1 H2+MA2 H1+MA2 H2 . Table 3 presents a summary of the Nash equilibria for
the four studied configurations. Recall, for example, that CDDC means the following
distribution of strategies: sA1 = {C}, sA2 = {D}, sH1 = {D}, and sH2 = {C}.

Table 3. Determination of equilibria for typical configurations in the A2H2 case (centralized approach).

Configuration Workload Experience Level Criticality Nash Equilibriawl1 wl2 expl1 expl2 crt

c1 1 1 1 1 1
CCCC, CDCD,
CDDC, DCCD,
DCDC, DDDD

c2 2 4 3 1 5 CCCC
c3 2 4 3 2 1 CCCC, DDDD
c4 2 2 3 2 3 CCCC

Configuration c1 gives different Nash equilibria, since the intervention of one or more
agents is not necessary. The matrix is as follows:

CCC CCD CDC CDD DCC DCD DDC DDD
C (0.67, 0.67,

0.67, 0.67)
(0.67, 0.67,
0.5, 0.5)

(0.67, 0.67,
0.5, 0.5)

(0.67, 0.67,
0.33, 0.33)

(0.5, 0.5,
0.67, 0.67)

(0.67, 0.67,
0.67, 0.67)

(0.67, 0.67,
0.67, 0.67)

(0.83, 0.83,
0.67, 0.67)

D (0.5, 0.5,
0.67, 0.67)

(0.67, 0.67,
0.67, 0.67 )

(0.67, 0.67,
0.67, 0.67)

(0.83, 0.83,
0.67, 0.67)

(0.33, 0.33,
0.67, 0.67)

(0.67, 0.67,
0.83, 0.83)

(0.67, 0.67,
0.83, 0.83)

(1, 1, 1, 1)

Configuration c2 changes the utility calculations (expressed by Equations (12) and (13)
and gives the final matrix:
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CCC CCD CDC CDD DCC DCD DDC DDD
C (2.67, 2.67,

2.67, 2.67)
(2.67, 2.67,
1.67, 1.67)

(2.67, 2.67,
1.67, 1.67)

(2.67, 2.67,
0.67, 0.67)

(1.67, 1.67,
2.67, 2.67)

(1.83, 1.83,
1.83, 1.83)

(1.83, 1.83,
1.83, 1.83)

(2, 2, 1, 1)

D (1.67, 1.67,
2.67, 2.67)

(1.83, 1.83,
1.83, 1.83)

(1.83, 1.83,
1.83, 1.83)

(2, 2, 1, 1) (0.67, 0.67,
2.67, 2.67)

(1, 1, 2, 2) (1, 1, 2, 2) (1.33, 1.33,
1.33, 1.33)

Configuration c3 gives only two Nash equilibria, either both agents intervene or do
not intervene. Configuration c4 leads to only one Nash equilibrium: the cooperation of
both agents is then necessary.

5.4. Building the Distributed Matrix According to the Point of View of Each Agent

In the context of our illustration, two agents and two humans, the resulting matrix
would then be (with the exception of weighting) reduced to the following calculation:
Mi

A2H2 = Mi
Ai H1

+Mi
Ai H2

for Agent Ai. This result implicitly leads to a specific matrix
for each agent. Indeed, for Agent A1, its calculation is defined by MA1 H1 + MA1 H2 (the
same for A2). Table 4 presents the results in terms of the Nash equilibria for the four
configurations considered.

Table 4. Description of typical configurations for A2H2 (distributed view).

Configuration Workload Experience Level Criticality Nash Equilibriawl1 wl2 expl1 expl2 crt

c1 1 1 1 1 1
CCCC, CDCD,
CDDC, DCCD,
DCDC, DDDD

c2 2 4 3 1 5 CCCC
c3 2 4 3 2 1 CCCC, CCDC
c4 2 2 3 2 3 CCCC, DDDD

Configuration c1 corresponding to the initial state of our scenario assumes all the
descriptors at the minimum value. This is described by the following matrix, whose Nash
equilibria require the intervention or not of the assistant agents. Given this situation,
the analysis corresponds to the intuitive interpretation (no real reason for the agents
to intervene).

CCC CCD CDC CDD DCC DCD DDC DDD
C (0.67, 0.67,

0.67, 0.67)
(0.67, 0.67,
0.67, 0.33)

(0.67, 0.67,
0.33, 0.67)

(0.67, 0.67,
0.33, 0.33)

(0.67, 0.33,
0.67, 0.67)

(0.67, 0.67,
0.67, 0.67)

(0.67, 0.67,
0.67, 0.67)

(0.67, 1,
0.67, 0.67)

D (0.33, 0.67,
0.67, 0.67)

(0.67, 0.67,
0.67, 0.67)

(0.67, 0.67,
0.67, 0.67)

(0.67, 0.67,
0.67, 0.67)

(1, 0.67,
0.67, 0.67)

(0.33, 0.33,
0.67, 0.67)

(0.67, 0.67,
0.67, 1)

(1,1,1,1)

For Configuration c2, the environment evolves relatively quickly to a critical situation.
This differs from the previous one by having a criticality at the maximum value. Following
the experience level and despite a low workload, the assisting agents must intervene (the
selected action, as the Nash equilibrium is CCCC). Intuitively, related to the urgency of
the situation, the intervention of the two agents becomes necessary. Thus, we obtain the
following matrix:

CCC CCD CDC CDD DCC DCD DDC DDD
C (2.67, 2.67,

2.33, 3)
(2.67, 2.67,
2.33, 0.33)

(2.67, 2.67,
1, 3)

(2.67, 2.67,
1, 0.33)

(2.67, 0.67,
2.33, 3)

(2.67, 1,
2.33, 0.67)

(2.67, 1,
1.33, 3)

(2.67, 1.33,
1.33, 0.67)

D (0.67, 2.67,
2.33, 3)

(1, 2.67,
2.33, 0.67)

(1, 2.67,
1.33, 3)

(1.33, 2.67,
1.33, 0.67)

(0.67, 0.67,
2.33, 3)

(1, 1, 2.33,
1)

(1, 1, 1.67,
3)

(1.33, 1.33,
1.67, 1)

Over time, let us imagine that one of the two humans has an experience level that has
increased (as a result of learning from their mistakes or following training, for example).
This would not change the intuitive interpretation of the actions of the assistant agents.
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Configuration c3 regarding a low criticality level requires the intervention of one or both
assistant agents. Configuration c4 is a slight modification of the previous one, in which the
criticality level is increased from 1 to 3. The assistant agents are told to choose between
their interventions (or not) (Actions CCCC and DDDD).

6. Discussion

Theoretically, we assume that the descriptors are defined for all the agents. We propose
evaluations by showing their respective influence on the agents’ strategic behaviors. In this
study, we considered three descriptors (workload, experience level, and criticality), which
we combined and weighted. The illustrations used to evaluate our approach considered
these three descriptors. We have therefore introduced three examples for the building
of two-player matrices (agent–human), illustrating our proposal for a given descriptor.
The first example used two descriptors from Category 1 that can be considered in many
application domains: criticality and workload. The second example involved a descriptor
from Category 2 that is also widely used in many fields: experience level.

However, the state of the art allows us to highlight a set of descriptors that we could
take into account. We also showed that our model remains valid for any number of descrip-
tors. Thus, we have completed our validation by analyzing the results for combinations of
descriptors: a combination of two descriptors from the same category (criticality and work-
load), two descriptors from different categories (criticality and experience level), and finally
a combination of three descriptors mentioned above. Currently, in the context of several de-
scriptors (e.g., workload and criticality), the same importance is given to each one, in order
to simplify the presented examples. It is of course entirely possible that each descriptor
has its own weighting. It would be possible to develop a method to define the priorities
to be given to descriptors according to the desired objective. Thus, in the case of high
criticality, the intervention of the agent could be the priority, whether the human workload
is medium or low (not just high). In this case, each agent could consider only a restricted set
of considered descriptors. The concerned coefficients λi and the choice of these descriptors
would explicitly guide the agents’ decisions. In the same way, the threshold set modifying
the behavior of the agents for a particular descriptor could also change the agents’s strategic
behavior. Indeed, the sensitivity of the assistant agents has been defined according to this
fixed threshold (depending on a parameter, δ). The value of this parameter (varying from 0
to 1) makes it possible to determine the thresholds for their interventions. In our model,
we assume that this parameter is unique for all descriptors; but it would be possible to
associate a specific value for each descriptor (or even for each agent).

Generalization for any number of participants has been also investigated. We proposed
a weighting of coefficients µi,j for these different initial matrices. These coefficients make it
possible to define a level of trust for the other interacting participants [60–62]. We could
then propose a dynamic evolution of these coefficients according to the level of trust for the
different interactions.

7. Conclusions

Interactions between humans and agents have been proposed in different research
domains (human–computer interaction, artificial intelligence and multi-agent systems)
and for different applications (for example, autonomous cooperative robotics, workflow
modeling). Different approaches have been proposed to model teams of participants
(agents and humans). The models described in these studies are often challenged by
the specificities of humans (workload and experience level, for example) and software
agents (autonomy, for example). Recently, studies on AI and MAS have considered human-
compatible agents. We think that the game theory approach is a well-suited method
for studying social interactions in such teams. The idea is based on the equilibrium
concept, to find the strategy which helps a group of participants to maximize their own
benefits (utilities). This mathematical approach has also been investigated for various
real applications based on interactions between agents (e.g., traffic management, resource
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allocation, social networks, urban planning). These approaches are often based on the
empirical construction of a two-player matrix, and studies underline the good behavior of
the built matrix. The human intervention is usually not directly considered, nor included
in the analyses of these matrices. We assume that their characteristics should be initially
defined in the decision processes, and the agents should also be allowed to decide to
cooperate or not. The assistance of one or more humans by one or more agents was the
subject of this paper.

The main objective was to achieve a model of the agents’ interventions, in order to
assist humans in the context of task realization. This modeling can be qualified as generic,
regarding the intervention criteria used by the agents. Thus, to determine the decision of
the agents (and thus their intervention or not), we proposed considering matrix games.
These depend on the descriptors (acting as criteria) defined by the designer for a given
application. These descriptors are classified in two categories. We have seen that the
first category means that the minimum value of the scale does not require any particular
attention; on the other hand, the maximum value generally requires an intervention by
the agent(s). The second category of descriptors, on the other hand, considers a dual
interpretation. The set of descriptors we propose to use is thus based on an explicit
combination of all interactions between agents and humans (represented by two-player
matrices). We also proposed a model based on a weighted sum of the matrices (associated
with an agent–human interaction) corresponding to the predefined descriptors. Finally,
we described a general model (n agents and m humans) allowing the definition of any
number of participants and any number of descriptors. The exploitation of the model
was illustrated using a typical scenario, functioning as a proof of concept. This scenario
considered a matrix with two agents and two humans, using the same three descriptors.
We considered the obtained equilibria according to two different approaches (centralized
or distributed) depending on the point of view: global or relative to a given agent.

The proposed model is generic but reveals two possible alternatives, leading to comple-
mentary research. On the one hand, it would be possible to take into account the feedback
of an agent’s action and to interpret the result with respect to the decision determined by
the selected Nash equilibrium. The action (with or without cooperation) can in this case be
judged irrelevant (for example, instead of intervening to help the human, it would have
been better for the agent to wait). On the other hand, instead of each agent intervening
individually, it would be possible for multi-agent coalitions [63–65] to be formed to assist a
human or group of humans in the achievement of a task. This would allow the other agents
to focus on other tasks. We plan to implement and test such configurations in different
application domains.
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