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Abstract: Recent developments in the mobile and intelligence industry have led to an explosion
in the use of multiple smart devices such as smartphones, tablets, smart bracelets, etc. To achieve
lasting security after initial authentication, many studies have been conducted to apply user au-
thentication through behavioral biometrics. However, few of them consider continuous user au-
thentication on multiple smart devices. In this paper, we investigate user authentication from a
new perspective—continuous authentication on multi-devices, that is, continuously authenticating
users after both initial access to one device and transfer to other devices. In contrast to previous
studies, we propose a continuous user authentication method that exploits behavioral biometric
identification on multiple smart devices. In this study, we consider the sensor data captured by
accelerometer and gyroscope sensors on both smartphones and tablets. Furthermore, multi-device
behavioral biometric data are utilized as the input of our optimized neural network model, which
combines a convolutional neural network (CNN) and a long short-term memory (LSTM) network.
In particular, we construct two-dimensional domain images to characterize the underlying features
of sensor signals between different devices and then input them into our network for classification.
In order to strengthen the effectiveness and efficiency of authentication on multiple devices, we
introduce an adaptive confidence-based strategy by taking historical user authentication results into
account. This paper evaluates the performance of our multi-device continuous user authentication
mechanism under different scenarios, and extensive empirical results demonstrate its feasibility and
efficiency. Using the mechanism, we achieved mean accuracies of 99.8% and 99.2% for smartphones
and tablets, respectively, in approximately 2.3 s, which shows that it authenticates users accurately
and quickly.

Keywords: multiple smart devices; privacy and security; continuous authentication; spatiotemporal
convolutional neural network; confidence-based strategy

1. Introduction

The use of smart devices has become an indispensable part of human daily lives
and communications. According to a recent technology report [1], there were around
1.51 billion units of smartphones, 168.8 million units of tablets, and 533.6 million units of
wearables that were shipped worldwide in 2021, and the global smartwatch market has
been increasing over the last few years. Given the extensive usage of smart devices, users
are likely to store large amounts of private data on their devices [2], which attracts attackers
to effect unauthorized access. Normally, smart devices are protected by static authentication
approaches including passwords, pattern locks, face recognition, and fingerprint scans to
thwart unauthorized access. However, these popular mechanisms offer limited security.
They are vulnerable to guessing, smudge attacks, side-channel attacks, and shoulder-
surfing attacks. In addition, static approaches no longer meet the demand for adequate
vigilance after authenticating users at login [3]. An attacker may access the user’s device
after login of the originally authenticated user who cannot be verified as the user in control
of the device.
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Unlike one-time authentication methods, continuous or implicit authentication tech-
niques have been developed to continuously observe user identity after login [4,5]. The
device implements user authentication via behavioral biometric signals from sensitive
inbuilt sensors such as an accelerometer, gyroscope, orientation monitor, touch screen, etc.
Behavioral biometric-based schemes contribute to continuous protection against unautho-
rized users. However, owning and using multiple smart devices meanwhile brings new
challenges in security and privacy [6]. When a user switches from one device to another, it
is required to rebuild the continuous or implicit authentication model in the latter device [7].
This process means that when using multiple devices, existing continuous or implicit au-
thentication mechanisms still allow one-time authentication and cannot achieve continuous
authentication between multiple devices. Hence, we ask the following question—instead
of only continuously monitoring user identity on one device, can we authenticate users on
multiple smart devices in a continuous manner? In this paper, we addressed the continuous
authentication concern from a broader perspective—not only continuously authenticating
a smart device user on individual devices, but also continuously authenticating the user
when he or she transfers to other smart devices. We developed a continuous authentication
method that makes use of behavioral biometrics and can be applied to multiple smart
device scenarios.

Smart devices are typically equipped with built-in sensors [8], touch screens [9],
keyboard interfaces [10], and other accessories [11] that can be used to capture behavioral
data. Continuous authentication systems essentially employ behavioral data originating
from the user interaction with the mobile device to extract invariant features of user
behavior. Many continuous authentication schemes identify the user through tapping
or swiping captured by the keyboard interface and the touch screen [12]. However, it is
inconvenient or impossible to manipulate keyboard interfaces or touch screens for some
popular devices such as smartwatches and wearable devices. Hence, an authentication
method based on such behavioral patterns of one device cannot establish the underlying
connections between multiple smart devices when another device is not equipped with
keyboard interfaces or touch screens. In fact, motion sensors such as accelerometers and
gyroscopes that can be used for biometric authentication are common in a wide range of
smart devices. They provide opportunities to build useful behavioral models that carry
on among multiple devices. We exploited a continuous behavioral pattern relevance on
multiple devices using the existing inbuilt accelerometers and gyroscopes so as to realize
continuous authentication on multiple devices.

Accordingly, the critical point in multi-device authentication is how to use sensor data
from different devices to model the biobehavioral features of users and identify them, when
inbuilt motion sensors can precisely capture user behavioral data from multiple devices.
Past approaches that mainly used traditional machine learning algorithms successfully
extracted behavioral features [13,14], while they usually took a long time to analyze which
features were effective manually. Nonetheless, because the multi-device data contains
more noise and features, it is difficult to obtain valid features from complex multi-device
sensor data using the time-consuming process of hand-crafted feature extraction. As deep
learning-based methods have been proven to outperform traditional machine learning-
based methods [15], they allow us to get rid of complex feature engineering and obtain new
solutions to the challenging problem of user behavioral model generation. In this paper, we
discovered the correlation between multi-device sensor data in time and space dimensions.
In addition, according to this correlation, data processing and neural network establishment
are carried out in an orderly manner. As a result, we utilized two-dimensional images to
present the relevance and input them into a spatiotemporal convolutional neural network.

While essential neural networks are capable of making decisions for user certification,
there are still some problems to consider. One is that the authentication accuracy needs
to be higher, and the other is that the authentication performance of different devices
varies. By noticing the continuity of user behavior, it is possible for multiple devices
to enhance authentication effectiveness and efficiency with a confidence-based strategy.
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During user authentication, the confidence-based strategy will rectify the neural network
prediction errors by combining them with the users’ past authentication results of the
device. Moreover, we adjusted the strategy appropriately for each device according to its
historical certification. The results of evaluating the strategy showed that it enhanced the
stability and usability of continuous user authentication.

The main contributions of this paper are summarized as follows:

1. We propose an effective and efficient multi-device continuous authentication scheme
that can complement the existing multi-device authentication mechanisms. Each
device in the scheme is monitored continuously for user authentication, even when a
user switches to another smart device.

2. We find the relevance of multi-device behavioral data from the accelerometer and
gyroscope sensors and transform the signal to two-dimensional images, which is
the basis for learning users’ unique behavioral features through a spatiotemporal
convolutional neural network.

3. We present a dynamic confidence-based strategy for addressing the issue of insuffi-
cient stability and accuracy in multi-device authentication, which is appropriately
adjusted for every device according to the situation of user authentication.

4. We carried out experiments to evaluate the performance of our scheme. First, we
checked the effectiveness of the user recognition model in a multi-device scenario and
the result showed the recognition model improved the accuracy of smartphones and
tablets to 97.9% and 96.3%, respectively, with FRR reduced to 0.02057 and 0.03695, and
FAR reduced to 0.00108 and 0.00194 for smartphones and tablets, respectively. Then,
we checked the effectiveness and efficiency of the confidence-based authentication.
The experimental results showed that the approach achieved 99.8% and 99.2% user
authentication accuracy on the smartphone and tablet, respectively, with false rejection
rates of 0.0029 and 0.00808, respectively.

The paper is structured as follows. Section 2 reviews related work. Then, our multi-
device continuous authentication scheme is described in Section 3. In Section 4, we evaluate
the multi-device continuous authentication performance in different scenarios. Finally,
Section 5 concludes the paper and looks ahead to future work.

2. Related Work

Academics are paying behavioral biometrics more attention to redeem the shortfalls
of authentication strategies in common use such as PINs, passwords, fingerprints, and
face detection, which are usually available for entry-point authentication and are easily
obtained or imitated. Behavior-based authentication leverages the distinct patterns of
people’s actions in daily life, allowing smart devices to confirm user identity more safely
and conveniently. Moreover, it enables devices to authenticate the user continuously
and implicitly.

With various sensors built into smart mobile devices, such as touchscreens, accelerome-
ters, and so forth, behavioral biometrics can be captured for continuous user authentication
when people use or carry these devices. Luzbashev et al. [16] proposed a method for smart-
phone user authentication via consecutive swipe gesture recognition, which depended
essentially on the gesture trajectory and gesture dynamic generated from the touch screen.
Dybczak et al. [17] presented a smartphone continuous authentication system based on
user hand movements utilizing inbuilt sensors such as the accelerometer and the gyroscope.
Especially for smart touch devices, Herath et al. [18] designed a non-foolproof continuous
authentication system based on features extracted from user keystroke dynamics. Moreover,
Ali et al. [19] explored the approach to identify distinct users through real-world wrist-
worn sensor data collected from a range of activities, and the sensors they exploited were
the accelerometer and the gyroscope in wearables. Using smart wearables—smartwatches—
Musale et al. [20] established an authentication framework based on gait to identify users
on these widely available commercial devices. As smart devices generally accessed in
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daily life can provide a different continuous authentication strategy, it is still a challenge to
consider a method that applies to multiple smart devices.

Existing research began investigating continuous authentication on multiple devices
via various accessories and sensors. By identifying users from the behavior of keystrokes,
Belman et al. [6] found correlations between smartphones, tablets, and desktops and
designed a system for cross-device user authentication. It attained mean accuracies of
99.31%, 99.33%, and 99.12% for relationships between desktop and phone, desktop and
tablet, and tablet and phone, respectively, using random forests (RF) classifiers. With
the authentication device being confined to the same type, Wang et al. [7] achieved user
authentication across the new and old smartphones by analyzing the similarity of sliding
screen data between these two devices and realized 80% to 96% AUC scores using an RF
(Random Forest) model. However, whether it is keystroke or touchscreen biometrics, the
hardware limitation of a keyboard or touchscreen excludes most smart wearables, such as
smartwatches, which are becoming increasingly popular.

As the majority of smart devices have internal motion sensors, such as accelerometers
and gyroscopes, that can perceive the state of human motion, including movement and
posture, biobehavioral features based on data from these sensors, such as gait [21], are
one of the most promising ways to implement multi-device continuous authentication.
Currently, all kinds of sensors are included in smart devices. According to the smart
products provided by large-scale Internet companies such as Xiaomi, Apple, Huawei,
Fitbit, and Samsung, built-in motion sensors—the accelerometer and the gyroscope—as
well as the communication technology adopted by popular devices—smartphones, tablets,
smartwatches, and smart bracelets—are shown in Table 1. Almost all these devices are
equipped with an accelerometer sensor, that is, it is available to all of them. Meanwhile, they
are all equipped with a gyroscope sensor, excluding the smart bracelet, i.e., it is optional
for smart bracelets to include a sensor in accordance with the functional requirement.
Significantly, all these devices can communicate with a cloud server or other endpoints. For
example, smartphones can be connected to the Internet through a mobile network, such
as 5G, and smart wearables can be linked with smartphones by Bluetooth, which means
that most smart wearables are capable of accepting and analyzing data relying on mobile
terminals, such as smartphones [22]. With the development of smart devices, they will
be better able to provide user motion awareness services. Correspondingly, it might be
possible to implement the biobehavioral features based on accelerometers and gyroscopes
for user authentication.

Table 1. The availability of accelerometers and gyroscopes in different devices.

Device Accelerometer Gyroscope Network and Transmission
(Bluetooth or WIFI)

Smartphone Available Available Available
Tablet Available Available Available

Smartwatch Available Available Available
Smart bracelet Available Optional Available

A line of investigation started from motion sensor data, which exhibited symptoms of
covertness and few or even no interactions [23,24]. Based on the behavioral data sensed by
the accelerometer and the gyroscope built into smartphones and wearable smartwatches,
Lee et al. [25] extracted user behavioral biometrics with the KRR (Kernel Ridge Regression)
algorithm, improving the accuracy to a high level of 92.1% in their smartphone authen-
tication system—iAuth. In iAuth, the time and frequency knowledge of the sensor data
from multiple devices was utilized successfully. More intelligent in feature engineering
than traditional machine learning techniques, Zou et al. [26] enhanced inertia-based gait
recognition performance on smartphones based on a deep learning method. They inte-
grated a DCNN (Deep Convolutional Neural Network) and a DRNN (Deep Recurrent
Neural Network) to function in different domains together after noticing both the space
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and time domains of the inbuilt sensor data. While these practices all served continuous
authentication for single devices—smartphones—we discovered the relevance of the sensor
data from multiple smart devices in the spatial and temporal domain, applying it as a
point of penetration to the multi-device continuous authentication. Given that the motion
data of built-in sensors on different kinds of smart devices contain more complicated noise
and behavioral features, deep learning neural networks are potentially able to analyze
biobehavioral features from multiple devices.

It is worth noting that the continuous authentication system can recognize user identi-
ties immediately using either neural networks or traditional machine learning. In addition,
most approaches determine if the user is trustworthy in a primitive way [27,28]. Diversely,
some research noticed the shortcomings of the basic mechanism, such as insufficient ac-
curacy and efficiency. Motivated by the low robustness owing to the vulnerability to the
environment of biobehavioral authentication, Wang et al. [29] proposed a context-aware
scheme to improve authentication stabilization, which consolidated the results of different
features derived from gesture and touch behavior in static and dynamic contexts. When it
comes to the situation of switching between devices in a multi-device environment, there
are more complications. Due to the peculiarity of the multi-device motion sensor data, the
authentication accuracy of every single device based on the straightforward mechanism
differs from that of the others and is insufficient. Given the problem, we designed an
adapted strategy to evaluate the level at which users can be reliable, which is extended to
accommodate each device in the scheme of multi-device continuous authentication.

3. Multi-Device Authentication Scheme

In this section, we will first summarize the scheme of the multi-device continuous
authentication. Then, we will explain several issues important for its implementation,
including multi-device data acquisition and processing, neural network model, the scale of
model input, confidence-based strategy, and user authentication.

3.1. System Overview

Existing continuous authentication systems are usually appropriate for single devices
but seem ineffective for seamless authentication across multiple devices. As most smart
devices are equipped with motion sensors—accelerometers and gyroscopes—we can collect
users’ motion data in real time for multi-device continuous authentication. Figure 1 shows
the framework of the authentication scheme. The system is applicable to mobile smart
devices, such as smartphones, tablets, and smart wearables. The scheme mainly includes
three stages: (1) data acquisition and processing, (2) user identity recognition through the
spatiotemporal convolutional neural network model, and (3) user authentication with the
confidence-based strategy.

To release the computing resources of authentication devices, a cloud server is utilized,
especially for the storage and processing of large amounts of data and the common model
building of multiple devices. In the stage of data collection for training, smart devices
record and send the motion data to the server constantly by a background application.
Then, the cloud server stores and pre-processes the mass data. After normalizing the
original data, the cloud server will train the recognition network based on biobehavioral
characteristics derived from users’ holding and walking and send the optimal network
model to devices that require authentication separately. In the authentication stage, smart
devices recognize the user by the recognition model after processing the real-time data and
then update the user trust value employing the recognition result for final authentication. In
the scheme, the authentication system will be updated as either device is used. In addition,
when a new device needs to join the system, it will be updated by incorporating new data.
In this paper, we conducted experiments using these two smart devices—a smartphone
and a tablet—to verify the effectiveness and efficiency of this multi-device continuous
authentication scheme.



Information 2023, 14, 274 6 of 22Information 2023, 14, x FOR PEER REVIEW 6 of 23 
 

 

Cloud serverSmart devices (smartphone, tablets, smartwatches, etc.)

Data proccessing

Recognition m
odel

User 
authentication

User recognition 
model training

 
Figure 1. Authentication framework. The top left corner shows the multi-device raw data. These 
data will be processed to the grayscale image on an authentication device for user authentication, 
or on a cloud server for user recognition model training. The right side shows the feature extraction 
and classification process of the user recognition model, and then the model is passed to each au-
thentication device. The bottom left shows the process of confidence-based authentication by each 
device. The vertical dotted line defines the functional scope of smart devices and cloud servers. 

To release the computing resources of authentication devices, a cloud server is uti-
lized, especially for the storage and processing of large amounts of data and the common 
model building of multiple devices. In the stage of data collection for training, smart de-
vices record and send the motion data to the server constantly by a background applica-
tion. Then, the cloud server stores and pre-processes the mass data. After normalizing the 
original data, the cloud server will train the recognition network based on biobehavioral 
characteristics derived from users’ holding and walking and send the optimal network 
model to devices that require authentication separately. In the authentication stage, smart 
devices recognize the user by the recognition model after processing the real-time data 
and then update the user trust value employing the recognition result for final authenti-
cation. In the scheme, the authentication system will be updated as either device is used. 
In addition, when a new device needs to join the system, it will be updated by incorporat-
ing new data. In this paper, we conducted experiments using these two smart devices—a 
smartphone and a tablet—to verify the effectiveness and efficiency of this multi-device 
continuous authentication scheme. 

3.2. Data Acquisition and Processing 
3.2.1. Data Acquisition 

Due to the fact that most existing public datasets based on built-in motion sensors 
come from a single device and cannot be used for research on multi-device identity au-
thentication, we collected our own multi-device motion dataset. We designed a back-
ground motion data acquisition program to continuously collect the accelerometer and 
gyroscope data when users walk holding their device, with the accelerometer measuring 
the three-axis acceleration component of users’ hand movement in m/sଶ and the gyro-
scope measuring the three-axis angular velocity component of users’ hand posture in rad/s. 

Figure 1. Authentication framework. The top left corner shows the multi-device raw data. These
data will be processed to the grayscale image on an authentication device for user authentication, or
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and classification process of the user recognition model, and then the model is passed to each
authentication device. The bottom left shows the process of confidence-based authentication by each
device. The vertical dotted line defines the functional scope of smart devices and cloud servers.

3.2. Data Acquisition and Processing
3.2.1. Data Acquisition

Due to the fact that most existing public datasets based on built-in motion sensors come
from a single device and cannot be used for research on multi-device identity authentication,
we collected our own multi-device motion dataset. We designed a background motion
data acquisition program to continuously collect the accelerometer and gyroscope data
when users walk holding their device, with the accelerometer measuring the three-axis
acceleration component of users’ hand movement in m/s2 and the gyroscope measuring
the three-axis angular velocity component of users’ hand posture in rad/s.

Based on existing mature gait datasets [30,31], we design the details of data acquisition,
including the number of participants, gender ratio, time span, carrying method, etc. In
order to collect the motion data of the user as accurately as possible, the data collection
experiment simulates the daily life scenario as much as possible. All motion data are sensed
when users walk while holding the device. Users walk with one device at a time, and in the
process, data from the accelerometer and the gyroscope will be sensed. Table 2 shows an
overview of our data collection initiatives. The data collection experiment was conducted
in multiple sessions and over multiple natural days to reduce the occasionality of data
acquisition. The experiment participants were 20 campus students, whose age distribution
was between 18 and 30 years old. Two ubiquitous devices were selected for the experiment,
an Android smartphone and an Android tablet that are available for behavioral data access
through the authorization of the Android system. To avoid missing information within the
action cycle of the arm swing due to a low sampling rate, the acquisition frequency was set
to 100 Hz.
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Table 2. Overview of the data collection.

Experimental Setup Item Settings

Number of Experimenters 20
Behavior Handheld walk
Duration Approx. 25 mins for each device

Age Group 21 years to 30 years
Gender Female: 9; Male: 11

Time Spread Approx. 3 months
Experimental Equipment LLD-AL00, KJR-W09

Acquisition Frequency 100 Hz

3.2.2. Multi-Device Data Relationship Analysis

The behavior of different users is unique [32]. The built-in accelerometer measures
changes in the velocity or acceleration of an object, which means it captures the way the
user moves their device in space [33]. The built-in gyroscope detects the orientation and
rotational motion of an object, which means it records small movements or changes in
position made by the user while holding the device [34]. The sensor data generated by
the same user on different devices have various differences and correlations in time (e.g.,
frequency) and space (e.g., acceleration, rotation angle), with the accelerometer capturing
the user’s movement patterns and the gyroscope recording the user’s subtle poses. Multi-
device data under the same action of a user is shown in Figure 2. As can be seen, the sensor
sensitivity of different devices is different. This is reflected in the difference in the value,
peak, amplitude, etc. of the sensor data. Taking the X-axis data of the accelerometer as
an example, the numerical range of smartphone data is significantly larger than that of
tablet data. However, the overall trend line of the data from the two devices is consistent,
indicating that different devices describe the user’s behavior from different perspectives,
enriching the user’s behavioral characteristics to a certain extent. Based on this consistency,
sensor data from multiple devices is potentially used for continuous certification research.
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3.2.3. Multi-Device Data Processing

A six-dimensional vector S = (A, G) was formed by concatenating the three axes’
signals of the accelerometer and the gyroscope of one device, where A = (accX , accY, accZ)
is the three-dimensional vector of the accelerometer sensor and G = (gyroX , gyroY, gyroZ)
is the three-dimensional vector of the gyroscope. We normalized the multi-device original
data as shown in Figure 3, which takes the X-axis data of the acceleration sensor as an
example in the intermediate process. The normalization process includes noise reduction,
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frequency synchronism, and grayscale image conversion, with the invalid experimental
data being cut in advance.
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The sensor signals contain high-frequency noise generated by the device and disturb
biobehavioral feature extraction. On the other hand, it is not conducive to the synchro-
nization of multi-device sensor signals in the next step. Therefore, the original data are
first subjected to Butterworth low-pass filtering to reduce noise and maximize the flatness
of the low-frequency curve. However, there is still a problem in that the equal amount
of sensor data exhibits different action durations as a result of the difference in actual
sampling frequency of various devices, which hinders the biobehavioral features analysis.
Thus, further frequency synchronization of the sensor signal is performed using the cubic
spline interpolation method. By interpolating the data in segments, it provides frequency
synchronization better for real-time motion data in the condition of user authentication.
The frequency synchronization algorithm is shown in Algorithm 1.

Algorithm 1 Frequency synchronization algorithm.

Input: Sensor data for device di: sdi, i = 1, 2, . . . , nd, nd is the number of devices; Duration of
sensor data for device di: tdi.
Output: The new data after interpolation.
1. Obtain the amount of sensor data for device di: ndi;
2. Obtain the actual acquisition frequency fdi of the device di: fdi = ndi/tdi
3. Obtain maximum acquisition frequency: fmax = max([ fdi]);
4. Obtain the interpolated ratio for device di: ratedi = fmax/ fdi;
5. Interpolation to obtain frequency-consistent signals: S′di = interpolate (Sdi, ratedi).

NS = L× L ≥ Tmax × fmax (1)

NS items of motion data records were intercepted and converted into grayscale images
for input to the spatiotemporal convolutional neural network. The number of intercepted
data, NS, is determined as in Equation (1), where L× L is the size of the grayscale image
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transformed from NS pieces of motion data, influenced by the maximum of the arm swing
period Tmax and the maximum of the actual motion data acquisition frequency among
multiple devices fmax.

Pjk =
Sjk −min

(
xj
)

max
(
xj
)
−min

(
xj
) × 255 (2)

Then, the data values are mapped into grayscale images in the manner shown in
Equation (2), where, Sj is the motion data sequence of the j-th column, Sjk is the k-th value
of the column, and Pjk is the pixel of Sjk mapped in the grayscale image. Finally, a grayscale
image containing L rows and L columns of motion signals, P, is formed, and the P(i) is the
input to the neural network consisting of the data of the i-th motion segment.

3.3. Spatiotemporal Convolutional Neural Network

The neural network structure is shown in Figure 4. The spatiotemporal convolutional
neural network consists of a three-layer CNN, which includes convolution and max-pooling,
and a two-stage stacked LSTM. The activation function used after convolution is ReLU.
The model’s input is a sequence of grayscale images P(i) transformed by motion segments.

P(i) is first convolved and pooled in the CNN with input xin ∈ R C1×H1×W1 until the
image is scaled to a small enough size, where C1 = 1 is the number of input channels and
(H1, W1) is the size of each image, then output the convolution result xout ∈ R C2×H2×W2 .
The CNN reconnects the convolutional layer with the pooling layer repeatedly to extract
the spatial features and flatten the result for input to the LSTM, which is a two-layer
stack. Each layer provides different hidden layers and neural units, respectively, and
the input of the second unit is the output of the first unit, with the storage state of the
memory unit reset for each layer. The two-layer stacked LSTM helps the whole neural
network maintain the temporal characteristics between behavioral feature images during
training. After the LSTM extracts the temporal features of the motion data, it outputs the
user recognition result y(i) =

[
y(i)0 y(i)1 · · · y

(i)
Nu−1

]
, where Nu is the number of users and

y(i)u denotes the probability that the image P(i) belongs to the user u, 0 ≤ u ≤ Nu − 1.
Finally, the spatiotemporal convolutional neural network is trained to obtain the optimal
user identity recognition model, by which the user identity can be recognized, i.e., the identity
of the user is predicted and the possibility of belonging to the predicted identity is assessed.
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3.4. Input Scale Selection

The scale selection of the image input to neural networks is a critical point for the
system because it controls the authentication effectiveness by determining whether the
neural networks predict more or less accurately and impacts the time for authentication.
Model inputs of different sizes are significantly relevant to multi-device common feature
extraction, while motion data of a complete cycle contain more comprehensive behavioral
features. When humans walk, most of the motion cycles of adults last between 1 and 1.32 s,
so 1.5 s of data contain at least one motion cycle of the user data. However, when we
choose some data according to the designed frequency of data acquisition (100 Hz), the
actual frequency conflicts with it because devices produce more data than the experiment
pre-set, and the amount of data exceeds that before frequency synchronization. According
to the frequency synchronization algorithm in Algorithm 1, the actual frequency is 175 Hz.
We selected different network inputs with a size L of 30 and 60 based on these two data
acquisition frequencies separately, as shown in Figure 5.
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Figure 5. Different image scales of neural network input. Subfigure (a) is a grayscale image of size
30× 30, and subfigure (b) is a grayscale image of size 60× 60.

The number of different-sized images obtained from the smartphone and the tablet,
respectively, is shown in Figure 6. In this paper, all the data were processed into two datasets
according to these image sizes. Each dataset contains two types of single devices and
one type of multiple devices, totaling three data types. Each dataset was divided into a
training set, a validation set, and a test set in the ratio of 8:1:1 for training, validation, and
testing, respectively.
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We achieved a stable model after training the user recognition networks for 1000 iterations
with a learning rate of 0.0002. Table 3 shows the user recognition accuracy of the models
trained with different sizes of network inputs and different types of data. With the image
size L being 30, the user recognition accuracy of the smartphone is 0.883 for single-device
data and 0.871 for multi-device data, which is a decrease of 0.012. Meanwhile, the user
recognition accuracy of the tablet is 0.865 for single-device data and 0.845 for multi-device
data, respectively, which is a decrease of 0.020. That is, when the image size is 30, the
accuracy of both devices with the multi-device user recognition model is reduced compared
to that with the single-device model, even if both the smartphone and tablet data are derived
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from the same user. While L is 60, the user recognition accuracy of the smartphone is 0.967
for single-device data and 0.979 for multi-device data, which is an improvement of 0.012.
In the meantime, the user recognition accuracy of the tablet is 0.952 for single-device data
and 0.963 for multi-device data, respectively, which is an increase of 0.011. That is, when
the image size is 60, compared to the single-device user recognition model, the accuracy of
both devices is improved with the multi-device model. These results indicate that images
of size 60 contain more comprehensive motion features, which is highly correlated with the
extraction of common behavioral features for multiple devices. Therefore, the dataset with
an image size of 60 is selected for subsequent experiments and analytical evaluation.

Table 3. Overall accuracy of user recognition test.

Input Size Device for Recognition Scenarios Recognition Accuracy

30× 30
Smartphone Single-device 0.883

Multi-device 0.871

Tablet
Single-device 0.865
Multi-device 0.845

60× 60
Smartphone Single-device 0.967

Multi-device 0.979

Tablet
Single-device 0.952
Multi-device 0.963

3.5. Confidence-Based Strategy

In order to cover the shortfalls in recognition with the basic neural network method,
including insufficient accuracy and efficiency, we introduced a confidence-based strategy to
establish long-term records of trust values for user authentication. The trust value measures
how much the device trusts the legitimate user as a confidence level, which is essentially
utilized by our strategy. It achieves the goal by minimizing the authentication fluctuation
caused by user action irregularities and the prediction errors of neural networks. For
legitimate users, the identity corresponding to the motion is consistent as their motion
is continuous over a period of time. Therefore, on the basis of historical authentication
results, the confidence-based strategy links the current recognition result to it and obtains
the current trust degree of the device as a value. With the trust value, the correction of the
next user authentication can be achieved.

ti =

{
ti−1 − downvalue, unexpected user

ti−1 + probabilityi × uprate, expected user
(3)

The trust value update method is as in Equation (3). The confidence-based strategy
sets an initial trust value t0, an increase rate up_rate, a decrease value down_value, and a
threshold T for user identity legitimacy determination. These values, together with the
user’s previous trust value ti−1 and the probabilityi of the current motion being recognized
as the user, determine the user’s current trust value ti. The predicted identity provided
by user recognition is compared with the expected identity of the device to assess the
user’s trust value. If it is matched, the trust value will be increased based on the historical
value, where the growth value is the product of the increase rate up_rate and the predicted
probability value probabilityi. Otherwise, the trust value of the user will be decreased by
the down_value.

We considered three factors that collectively balance the effectiveness and convenience
of authenticating legitimate users and the timeliness of device locking when attacked by
illegal users: (1) the gap between the threshold value T and the highest trust value 1; (2) the
increase rate in the trust value after successful identification; (3) the decrease rate in the
trust value after failed identification. By adjusting the values of T, up_rate, down_value,
it is possible to adjust the ease of use and reliability of authentication for each device.
Keeping the values of T and down_value unchanged, appropriately increasing up_rate will
correspondingly improve the ease of use of authentication. Keeping up_rate unchanged
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and appropriately increasing the value of T or down_value will enhance the reliability of the
certification. All adjustments are performed in accordance with every device requirement.
Preliminarily, the initial trust value t0 and threshold T are set to 0.8, with trust value 1
being fully trusted and no higher than 0.8 being untrustworthy. To reduce the abnormal
fluctuation of authentication for a legitimate user, the up_rate is set to 0.02. In addition,
since the threshold value T is close to the maximum trust value of 1, the down_value is set
to a larger value of 0.1 in order to prevent illegal users from making multiple attacks when
the device has reached the maximum trust value.

3.6. User Authentication

The user authentication procedure with the confidence-based strategy is shown in
Figure 7. After the user trust value is determined, if the threshold is exceeded, it is
authenticated as a legitimate user; otherwise, it is an illegal user. Once authenticated as an
intruder, the device is locked out and the trust value returns to the initial value.

Information 2023, 14, x FOR PEER REVIEW 13 of 23 
 

 

3.6. User Authentication 
The user authentication procedure with the confidence-based strategy is shown in 

Figure 7. After the user trust value is determined, if the threshold is exceeded, it is authen-
ticated as a legitimate user; otherwise, it is an illegal user. Once authenticated as an in-
truder, the device is locked out and the trust value returns to the initial value. 

Start

User recognition result 
( prediction user, 

prediction probability)

Whether the user is 
expected by the device?

Increase the 
trust value

Decrease the 
trust value

The trust value of 
this legitimate user

NoYes

Is the trust value above 
the thresholdYes No

The current user 
is legal

The current user 
is illegal  

Figure 7. Confidence-based authentication process. 

4. Experimental Results 
In this section, we exhibit the experimental results and prove the effectiveness and 

efficiency of our multi-device continuous authentication system. We first show the feasi-
bility of user recognition across multiple devices utilizing spatiotemporal convolutional 
neural networks to model the common behavioral features. Subsequently, we display the 
performance of the confidence-based strategy and evidence it can be adapted to each de-
vice for better user authentication. 

4.1. Evaluation Criteria 
User authentication goes through two phases: user recognition and confidence-based 

authentication. In the user recognition stage, this paper uses False Rejection Rate (FRR), 
False Acceptance Rate (FAR), and Accuracy (Acc) to evaluate the recognition results, 
which are given as follows: 𝐹𝑅𝑅 = 𝐹𝑁𝑇𝑃 + 𝐹𝑁 (4) 

𝐹𝐴𝑅 = 𝐹𝑃𝐹𝑃 + 𝑇𝑁 (5) 

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (6) 

where TP is the number of true positive samples, FN is the number of false negative sam-
ples, FP is the number of false positive samples, and TN is the number of true negative 
samples. FRR represents the percentage of legal users misclassified as illegal in the total 

Figure 7. Confidence-based authentication process.

4. Experimental Results

In this section, we exhibit the experimental results and prove the effectiveness and
efficiency of our multi-device continuous authentication system. We first show the feasi-
bility of user recognition across multiple devices utilizing spatiotemporal convolutional
neural networks to model the common behavioral features. Subsequently, we display the
performance of the confidence-based strategy and evidence it can be adapted to each device
for better user authentication.

4.1. Evaluation Criteria

User authentication goes through two phases: user recognition and confidence-based
authentication. In the user recognition stage, this paper uses False Rejection Rate (FRR),
False Acceptance Rate (FAR), and Accuracy (Acc) to evaluate the recognition results, which
are given as follows:

FRR =
FN

TP + FN
(4)
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FAR =
FP

FP + TN
(5)

Acc =
TP + TN

TP + FP + TN + FN
(6)

where TP is the number of true positive samples, FN is the number of false negative samples,
FP is the number of false positive samples, and TN is the number of true negative samples.
FRR represents the percentage of legal users misclassified as illegal in the total number of
positive samples. FAR represents the percentage of illegal users misclassified as legal in the
total number of negative samples. The lower the FRR and FAR, the more user-friendly and
invulnerable the user recognition model will be. In addition, Acc represents the proportion
of illegal users misclassified as legal users in the total number of illegal user samples, which
is used to evaluate the overall classification performance of the algorithm.

The Acc and FRR can still be used in the confidence-based strategy phase. However,
FAR cannot continue to be used for evaluation because when tested, each attacker cannot
unlock the device after it is locked, so none of the rest can be certified. Therefore, for the
evaluation of the performance of attacker authentication, we will also test how long the
device accepts the illegal user’s possession of the device and analyze whether the device
can be locked in time to block the illegal user’s intrusion.

4.2. User Recognition across Multiple Devices

The overall evaluation of the user recognition models for single and multiple devices is
shown in Table 4. Both the FRR and FAR of smartphones and tablets with the multi-device
user recognition model are lower than those in the single-device model, and the accuracy is
higher than that of the single-device model. The results show the feasibility of the proposed
scheme for the problem of multi-device sensor data applying to user identification, and the
accuracy of multi-device user recognition is improved compared with that of single devices.

Table 4. Overall assessment of user recognition for multiple devices and single devices.

Device for Recognition Scenarios FRR FAR Accuracy

Smartphone Single-device 0.03314 0.0174 0.967
Multi-device 0.02057 0.00108 0.979

Tablet
Single-device 0.0485 0.00255 0.9515
Multi-device 0.03695 0.00194 0.963

The FRR, FAR, and Acc of each user recognition are shown in Figure 8. Among the
20 people with smartphone user recognition, the FRR of single-device user recognition was
higher than or equal to that of the multi-device user recognition for 16 people, compared to
14 people for tablets; the FAR of single-device user recognition was higher than or equal to
that of the multi-device user recognition for 14 people, compared to 15 people for tablets.
In addition, in terms of Acc, the Acc of single-device user recognition was lower than
that of the multi-device user recognition for 17 people, compared to 14 people for tablets.
Therefore, the multi-device model of recognition is better for most users.

The multi-device authentication scheme uses mixed data from multiple devices for
the training of the user recognition model, and each device is authenticated in a uniform
and efficient manner. Compared with the single-device recognition model, the multi-
device one not only provides more flexibility in updating motion data but also improves
authentication accuracy to a certain extent. The degradation in the recognition performance
of the multi-device model that occurs between several users is because the multi-device data
contains inter-device differences in user motion that do not exist in the single-device data.
It interferes with the extraction of common behavioral features by the neural network and
reduces user recognition accuracy. Therefore, the confidence-based strategy is necessarily
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introduced to further process the user recognition results to resolve the problem and
improve authentication effectiveness and efficiency.
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Figure 8. User recognition assessment for each user. Subplots (a,b) show the FRR of user recognition
for smartphones and tablets, respectively; Subplots (c,d) show the FAR of user recognition for
smartphones and tablets, respectively; and Subplots (e,f) show the Acc of user recognition for
smartphones and tablets, respectively. The green dashed line is the result of a multi-device recognition
model, and the blue solid line is the result of a single-device recognition model.

4.3. Confidence-Based User Authentication

Figure 9 shows result sequences for each user in the user recognition phase and
confidence-based authentication phase of our authentication scheme. Based on the his-
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torical trust value, the higher the probability that the user recognition result matches the
expected identity, the more the trust value increases; therefore, the trust value of most users
keeps increasing during legal user holding.
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As is shown in Subplots (c) and (d) of Figure 9, in the early stage of user authentication
with a low trust value, the authentication errors brought by drops in trust value are
synchronized with recognition errors. However, in the late stage of authentication with a
high trust value, these drops just disturb user authentication lightly while the legal user
uses the device. Significantly, it can still prevent the device from accepting illegal users for
a long time. Therefore, no authentication error occurs in the late stage of authentication
with the confidence-based strategy. Compared to the number of user recognition errors,
the number of confidence-based authentication errors of both the smartphone and the
tablet decreased a lot. This result indicates that, for legitimate users, the confidence-based
strategy improves the system’s fault tolerance for user recognition and allows for more
accurate authentication.

The Acc and FRR results of the confidence-based authentication and user recognition
are compared and shown in Figure 10. As it demonstrates, the FRR of legitimate users on
each device under the confidence-based strategy is lower than that of user recognition. It
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shows that the Acc of legitimate users on each device under the confidence-based strategy
is better than that of user recognition. That means that the authentication accuracy of all
users is improved under the confidence-based strategy.
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While the confidence-based strategy improved the accuracy of authentication of legal
users, it may also allow illegal users to be accepted by the device for a more extended period
of time. To verify the effectiveness of the confidence-based strategy on the authentication of
illegal users, the time taken for the device to refuse the illegal user is analyzed. Taking users
except for the legal user as illegal users for the attack test, the time for one authentication is
about 2.3 s, and the illegal user takes 2.3 s for each escape of authentication.

With the confidence-based strategy, the number of attacks accepted by the device with
different attack tolerance times is shown in Figure 11. It takes at most 4.6 s for each user
to deny the illegal user in a limited number of 258,303 attack attempts for smartphones
versus 257,127 attempts for tablets. Under the confidence-based strategy, the period when
the trust value often stays within the interval of (0.8,0.9] is the early stage of authentication,
at which time the device takes approximately 2.3 s to disable access to illegal users; the
period when the trust value usually stays within the interval of (0.9,1.0] is the late stage
of authentication, at which time the device needs more time (4.6 s) to block the access to
illegal users. No illegal user can pass the authentication three times in a row under the
confidence-based strategy. These results show that the confidence-based strategy improves
the accuracy and stability of authentication for legitimate users while preventing illegal
user attacks on time.
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4.4. Confidence-Based Strategy Adjustments

The same settings for the confidence-based strategy likely will not be suitable for every
device. For tablets, the authentication accuracy is only 98.6% under the preliminary setting
of the strategy, while it is 99.8% for smartphones. That is because the user recognition
accuracy of tablets is lower than that of smartphones before the confidence-based strategy
is implemented. Setting the appropriate parameters for the confidence-based strategy will
better balance ease of use and reliability for tablet authentication.

Leave T and down_value unchanged and under different up_rate of confidence-based
strategy, the FRR and Acc of authentication are shown in Figure 12. As the up_rate contin-
ues to increase, the authentication accuracy first increases, then flattens, and then continues
to increase. When the up_rate is 0.10 maximum, the accuracy of authentication increases
to 0.999, and FRR decreases to 0.00115. However, the reliability of authentication is com-
promised at this point. The trend of Acc and FRR changes with up_rate demonstrates the
effectiveness of the confidence-based strategy. When up_rate is between 0.05 and 0.09, Acc
and FRR keep flat, due to the finite error of user recognition. As up_rate rises again, the
number of authentication errors does not change. When the up_rate is increased to equal
the down_value, Acc is close to 1, while FRR is close to 0, because the increase in the trust
value of legitimate users is enough to offset the decrease in trust value caused by user
misidentification. At the point where the up_rate is 0.03 in Figure 12, it can provide a better
balance between ease of use and reliability of authentication by adjusting the up_rate to
the value that causes Acc to rise the most and FRR to drop the most.

Then we set the up_rate to a fixed value of 0.03. With the settings of different
down_value and the same threshold T, the FRR and Acc of the confidence-based authen-
tication are shown in Figure 13. As the down_value increases, the Acc of authentication
continues to decrease or remains flat. The flat situation is due to the fact that the decline
in trust values does not affect the number of passed certifications. When the down_value
is 0.20, the Acc of authentication decreases to 0.963 and FRR increases to 0.037. At this
point, the confidence-based strategy does not improve the ease of use for authentication
because the drop in trust value caused by a single misidentification is sufficient to prevent
the authentication from passing. A suitable point for down_value should be the point corre-
sponding to the right endpoint of each horizontal segment in Figure 13. For example, if
down_value is 0.11, it will be beneficial to improve the reliability of authentication without
changing its ease of use.
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We tested again the duration that illegal users can hold onto the tablet and compared
the results with those obtained before adjusting the strategy. As shown in Figure 14, after
increasing the up_rate and the down_value, the number of times the tablet allows illegal
users to hold for 2.3 s slightly decreases, while the number of times it allows for 4.6 s
slightly increases. This is because the increased up_rate causes the trust value to enter the
early stage of the confidence-based authentication earlier. Meanwhile, no illegal user has
been able to escape authentication two times in a row. This is because the down_value is
large enough.

On the whole, for tablets, when the confidence-based strategy takes an up_rate of 0.03
and a down_value of 0.11, it can better improve the ease of use of authentication. Increasing
the up_rate means that the trust value rises faster, which also means that legitimate users
will reach high trust levels faster. In addition, increasing the down_value means that
the trust value drops more sharply, and illegal users will be detected by devices earlier.
Therefore, in order to ensure both the ease of use and reliability of authentication, it is better
to increase the values of up_rate and down_value rather than decrease them. When we
increase the value of both appropriately, the Acc of user authentication will be improved to
some extent, but the device does not need a longer time to detect the illegal user. Through
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the adjustment of the confidence-based strategy parameters, the optimal authentication
accuracy of the tablet reached 99.2%, and at the same time, FRR was 0.00808.

Information 2023, 14, x FOR PEER REVIEW 20 of 23 
 

 

the early stage of the confidence-based authentication earlier. Meanwhile, no illegal user 
has been able to escape authentication two times in a row. This is because the 𝑑𝑜𝑤𝑛_𝑣𝑎𝑙𝑢𝑒 
is large enough. 

 
Figure 14. The number of attacks accepted by tablet with different attack tolerance times before and 
after strategy adjustment. 

On the whole, for tablets, when the confidence-based strategy takes an 𝑢𝑝_𝑟𝑎𝑡𝑒 of 
0.03 and a 𝑑𝑜𝑤𝑛_𝑣𝑎𝑙𝑢𝑒 of 0.11, it can better improve the ease of use of authentication. 
Increasing the 𝑢𝑝_𝑟𝑎𝑡𝑒 means that the trust value rises faster, which also means that le-
gitimate users will reach high trust levels faster. In addition, increasing the 𝑑𝑜𝑤𝑛_𝑣𝑎𝑙𝑢𝑒 
means that the trust value drops more sharply, and illegal users will be detected by de-
vices earlier. Therefore, in order to ensure both the ease of use and reliability of authenti-
cation, it is better to increase the values of 𝑢𝑝_𝑟𝑎𝑡𝑒 and 𝑑𝑜𝑤𝑛_𝑣𝑎𝑙𝑢𝑒 rather than decrease 
them. When we increase the value of both appropriately, the Acc of user authentication 
will be improved to some extent, but the device does not need a longer time to detect the 
illegal user. Through the adjustment of the confidence-based strategy parameters, the op-
timal authentication accuracy of the tablet reached 99.2%, and at the same time, FRR was 
0.00808. 

4.5. Compared to Existing Work 
Currently, most studies that authenticate user identity based on motion sensor data 

from smart devices only serve a single device. The authentication performances of several 
studies are given in Table 5. These studies all collected the required data on their own. Li 
et al. [24] used the mobile phone accelerometer for gait authentication and achieved a suc-
cess rate of 93.63% on a dataset of 30 people. The authentication time of this work ranged 
from 1 to 2 s, but the accuracy was relatively low. Lee et al. [25] used the accelerometer 
and gyroscope data from a smartphone, achieving an authentication accuracy of 83.2%. 
Then, by combining it with a smartwatch for supplementary authentication, they im-
proved the accuracy to 92.1%. Additionally, the authentication time required to achieve 
this accuracy was 6 s. Ehatisham-ul-Haq et al. [35] proposed a continuous authentication 
scheme using the accelerometer, gyroscope, and magnetometer sensors of a mobile phone. 
In their walking dataset with 10 individuals, the authentication time was approximately 5 
s, and the accuracy reached 99.4%. Sara et al. [36] re-authenticated users in mobile appli-
cations using motion sensor data. In the dataset of 47 individuals, users were re-authenti-
cated with 96.70% accuracy within 20 s. Obviously, the re-authentication time was rela-
tively long. 

Figure 14. The number of attacks accepted by tablet with different attack tolerance times before and
after strategy adjustment.

4.5. Compared to Existing Work

Currently, most studies that authenticate user identity based on motion sensor data
from smart devices only serve a single device. The authentication performances of several
studies are given in Table 5. These studies all collected the required data on their own.
Li et al. [24] used the mobile phone accelerometer for gait authentication and achieved a
success rate of 93.63% on a dataset of 30 people. The authentication time of this work ranged
from 1 to 2 s, but the accuracy was relatively low. Lee et al. [25] used the accelerometer and
gyroscope data from a smartphone, achieving an authentication accuracy of 83.2%. Then,
by combining it with a smartwatch for supplementary authentication, they improved the
accuracy to 92.1%. Additionally, the authentication time required to achieve this accuracy
was 6 s. Ehatisham-ul-Haq et al. [35] proposed a continuous authentication scheme using
the accelerometer, gyroscope, and magnetometer sensors of a mobile phone. In their
walking dataset with 10 individuals, the authentication time was approximately 5 s, and
the accuracy reached 99.4%. Sara et al. [36] re-authenticated users in mobile applications
using motion sensor data. In the dataset of 47 individuals, users were re-authenticated with
96.70% accuracy within 20 s. Obviously, the re-authentication time was relatively long.

Table 5. Authentication performance in different methods.

Work Accuracy Authentication Time (s) Device Mode of Carrying Behavior User Number

[24] 0.9363 (1, 2) Smartphone Hold Walk 30
[25] 0.921 6 Smartphone Hold Use 20
[35] 0.994 ≈5 Smartphone Fixed at the wrist Walk 10
[36] 0.967 <20 Smartphone Hold Use 47

Ours 0.998,
0.992 ≈2.3 Smartphone,

Tablet Hold Walk 20

In addition, for the authentication of the single tablet device, Dee et al. [5] exploited the
consistent keystroke data generated by on-screen soft keyboard interaction to authenticate
the user, using the distance indicators of touch pressure, position, and time. The study
achieved 100% accuracy in 3.9 s, but the number of experimental users was small—only
four people.
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These methods achieve good authentication performance, but they are all based on a
single device. In the multi-device authentication scheme in this paper, the authentication
accuracy is 99.8% for smartphones and 99.2% for tablets. At the same time, our method takes
about 2.3 s to realize user authentication, and the device can be locked in approximately
4.6 s to prevent access by unauthorized users.

5. Conclusions and Future Work

In this paper, we proposed a continuous authentication system across multiple smart
devices with a unique motion model captured by inbuilt sensors—accelerometers and
gyroscopes. It monitors the user’s motion during walking and then authenticates him or
her in real time. With an Acc of 99.8% and 99.2% for smartphones and tablets separately,
as well as rejecting illegal users within two authentications, the system is proven to be
user-friendly and reliable. Moreover, it is designed to be extensible so that more devices
can join the system. While most existing works certificate users for every single device in
isolation, we authenticated users seamlessly across multiple devices by taking these smart
devices as a whole. In the future, we will adapt the system to more scenarios, such as using
the device with the body staying static.
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