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Abstract: IoT devices collect time-series traffic data, which is stochastic and complex in nature. Traffic
flow prediction is a thorny task using this kind of data. A smart traffic congestion prediction system
is a need of sustainable and economical smart cities. An intelligent traffic congestion prediction
model using Seasonal Auto-Regressive Integrated Moving Average (SARIMA) and Bidirectional
Long Short-Term Memory (Bi-LSTM) is presented in this study. The novelty of this model is that
the proposed model is hybridized using a Back Propagation Neural Network (BPNN). Instead of
traditionally presuming the relationship of forecasted results of the SARIMA and Bi-LSTM model as
a linear relationship, this model uses BPNN to discover the unknown function to establish a relation
between the forecasted values. This model uses SARIMA to handle linear components and Bi-LSTM
to handle non-linear components of the Big IoT time-series dataset. The “CityPulse EU FP7 project”
is a freely available dataset used in this study. This hybrid univariate model is compared with the
single ARIMA, single LSTM, and existing traffic prediction models using MAE, MSE, RMSE, and
MAPE as evaluation indicators. This model provides the lowest values of MAE, MSE, RMSE, and
MAPE as 0.499, 0.337, 0.58, and 0.03, respectively. The proposed model can help to predict the vehicle
count on the road, which in turn, can enhance the quality of life for citizens living in smart cities.

Keywords: IoT (Internet of Things); SARIMA; Bi-LSTM; prediction; linear component; non-linear
component; smart cities

1. Introduction

IoT has brought a lot of development to smart cities, which in turn increased road
traffic. The transportation system is one of the basic necessities for a nation. It is a major
factor that decides national economy. A nation considers traffic congestion as a threat to
its economic growth. Traffic congestion also causes unnecessary delays for people while
reaching their destinations. To manage traffic, a smart traffic congestion control system is
needed [1]. That is why traffic congestion prediction has gained the attention of researchers
to study and find a solution for this problem.

Various traffic stakeholders such as government agencies, traffic managers, city ar-
chitects and planners, road users, policy makers, etc., get the benefit of traffic congestion
management. Traffic congestion management helps to reduce time travel, increases road
capacity, and makes roads safe to travel. Traffic congestion forecasting removes problems
such as air pollution, noise pollution, fuel consumption, etc., which further helps to main-
tain a sustainable environment [2]. All these reasons are enough for a researcher to work in
the field of traffic congestion forecasting, so that one can contribute to society.

In smart cities, roads have smart IoT sensors placed on both sides that collect data and
send it to the storage space. A complete communication and data transfer system is shown
in Figure 1. As shown in Figure 1, different sensors are placed near the road and send data
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to the message units. These message units are further connected to the IoT platforms using
wireless networks. This IoT platform is connected to the central server. The central server
handles the connection between the database server and storage units. All components can
communicate using Wi-Fi. These sensors can be used to measure the speed of the vehicle,
control traffic lights, and predict traffic congestion. Google Maps or Apple Maps also use
real-time data gathered from IoT sensory devices to accurately predict and manage traffic
congestion [3].

Road Side setup Central traffic management System
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Figure 1. Smart traffic monitoring communication system [3].

Smart wireless IoT sensors are used to calculate traffic flow, predict traffic congestion
and control traffic routes. Two types of IoT sensor are used to handle real-time traffic
problems, i.e., intrusive and non-intrusive. Intrusive sensors are placed on the pavements
of roads that provide more accurate results, but they have high installation and maintenance
cost. Piezoelectric, magnetic sensors, inductive loop detectors (ILD), and pneumatic road
tubes are some of examples of intrusive sensors used for traffic data collection. Non-
intrusive sensors are placed in different places on the road. These sensors are expensive
and can be affected by environmental conditions. RFID (radio-frequency identification),
ultrasonic, infrared, radar sensors, acoustic array sensors, video cameras, and road surface
condition sensors are some of the examples of non-intrusive sensors [4].

Data collected using different IoT sensors are used for analysis and prediction using
different Machine Learning (ML) or Deep Learning (DL) models. ML/DL models can
provide insight from data captured by loT devices using diagnostic, descriptive, predictive,
and perspective analysis techniques [5]. ML/DL models help to predict or estimate traffic
flow with accuracy. This helps to address the problem of traffic congestion in smart cities,
which further assists people in decision-making while travelling.

Predictive analytics is a vital part of smart society because it helps in decision-making
concerning the results. Machine learning and deep learning techniques can do wonders to
gain insights from any kind of data such as structured, unstructured, or semi-structured [6].
Smart cities have many application areas such as parking space prediction, traffic con-
gestion/flow prediction, etc. where predictive analytics can be useful to make the life of
common people easier. In this study, a traffic congestion predictive model is proposed
using ARIMA and LSTM. To enhance the quality of results, a back-propagation algorithm
is used for forecasting results. The contributions of this article are:
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(a) This paper discusses the detailed literature on traffic congestion prediction techniques
and different time-series dataset handling techniques.

(b) A novel univariate predictive model is proposed using SARIMA, Bi-LSTM, and back-
propagation techniques, which is elaborated in a stepwise manner.

(¢) This study discusses the behavior of a big IoT time-series dataset.

(d) The study outlines the comparative analysis of the proposed model with the existing
ones.

The rest of the paper is organized as follows. Section 2 elaborates on the related
literature review that helps to understand the related work that has been undertaken in
this field. Section 3 explains all the basic predictive machine learning algorithms used
to propose a new technique. Section 4 explains the details of the proposed model in a
stepwise manner. It also specifies details of the dataset and the evaluation parameters used
in implementation. Section 5 presents the results analysis of the proposed model. It also
provides a comparative analysis of the proposed and existing models. The conclusion of
the research study is given in Section 6.

2. Literature Review

An Intelligent Transportation System (ITS) can be used to predict traffic congestion [7].
ITS uses IoT sensory devices to capture large-scale premium-quality traffic data that can be
further treated with advanced methods of machine learning and deep learning [8]. Usually,
the traffic dataset comes under the category of a time-series dataset, which requires extra
effort and care while analyzing it.

A.A. Kashyap et al. [2] gave a detailed review of traffic flow prediction models. The
authors emphasize the use of Multi-Layer Neural Network (MLNN) techniques, i.e., deep
neural networks, to get better output. A comparative analysis of RNN, CNN, ANN, sparce
auto-encoder, and hybrid models is given with respect to different datasets. The Caltrans
PeMS dataset is used to check the performance of optimizers such as RMSprop, Adam,
sgd for LSTM, and the GRU model. This study concluded that the hybrid model can
outperform other models with spatio-temporal correlations for traffic flow prediction.

N. Zafar et al. [9] presented an algorithm that can be used to combine heterogeneous
data collected using sensors or other data sources. The authors have presented an ex-
ploratory data analysis using GRU, CNN, LSTM, and their hybrid combinations. The
LSTM+GRU hybrid combination gave the best performance with 4.5% RMSE and 6.67%
MAPE.M.

T. Sun et al. [10] proposed an online traffic flow prediction model using GAN (Gen-
erative Adversarial Network) by combining Bi-LSTM and CNN (Convolutional Neural
Network). A real-time dataset is taken using IoT sensor devices at the intersection of
Hongzehu Road and Qingnian Road in Sugian City, Jiangsu Province, China. This is a
time-series dataset on which, first, Bi-LSTM is used as a generator and, then, CNN is
applied as a discriminant. Mean Squared Error (MSE), Mean Absolute Error (MAE), and
binary entropy are the performance parameters used to measure the losses formulated by
predictive models. The proposed model is found to be better than the Bi-LSTM and ARIMA
model prediction results.

S. Majumdar et al. [11] discussed different machine learning approaches to predict
traffic congestion for smart cities to make them sustainable. A Long Short-Term Memory
(LSTM) network is introduced in this study to predict traffic flow based on the speed of
the traffic. LSTM uses sigmoid as an activation function. The authors have considered
both univariate and multivariate models to calculate traffic congestion. This study widely
distributed the traffic flow prediction models into three categories: traffic-model-based
methods, statistical techniques, and machine learning models. Real-time data of a road in
Buxton (UK) is used for the analysis of the proposed model.

X. Feng et al. [12] proposed a short-term traffic flow prediction model using an Adap-
tive Multi-kernel Support Vector Machine (AMSVM). This model considered spatiotempo-
ral correlation in the time-series dataset to explore the linear and nonlinear components of
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a real-time dataset. The proposed model’s hyperparameters are tuned using the Particle
Swarm Optimization (PSO) technique.

T. Bogaerts et al. [13] proposed a long-term traffic forecasting model using deep
learning techniques. Both LSTM and graph CNN deep learning models are combined to
predict traffic. LSTM is used to handle temporal features and graph CNN is used for the
spatial feature of the dataset. The proposed model is trained on a 36.5 GB real-time dataset
collected from sparse trajectory (GPS) in CSV format.

S. Neelakandan et al. [14] proposed an IoT-based traffic prediction algorithm named
OWENN (Optimized Weight Elman Neural Network) algorithm for a smart city. The
authors used an Intel 80,286 microprocessor to propose a model for traffic signal control.
The proposed traffic prediction system is divided into five different phases, i.e., data
collection from IoT sensors, feature engineering, classification, optimization, and traffic
control system. The OWENN model proved its worth with 98.23% accuracy and a 96.69%
F-score.

Aid A. Khan et al. [15] proposed a model named modeling smart road traffic con-
gestion control using artificial back-propagation neural networks (MSR2C-ABPNN) for
traffic congestion prediction using machine learning techniques. The authors used two
layered feed-forward ANN (artificial neural network) deep learning method for prediction
optimized by a back-propagation neural network. The developed model is trained and
validated on the secondary dataset of “M1 junction 37 England”. The proposed model
provides an accuracy of 97.56% and RMSE of 4.351x 107>,

V. Rajalakshmi et al. [16] proposed two hybrid models. The first is ARIMA + MLP
(Multi-Layer Perceptron) and the second is ARIMA + RNN (Recurrent Neural Network).
The authors used the UK highway dataset to train the model. MAE, MSE, RMSE, and R2
are the different parameters used to validate the model. Between the two proposed models,
ARIMA + RNN outperforms all the existing models with 0.53 as MAE and 0.61 as MSE.

S. Lu. et al. [17] proposed a hybrid model using ARIMA and LSTM for traffic flow
prediction. This proposed model is implemented on a dataset given by the British govern-
ment. Mainly, three trunk highways, i.e., AL215, AL2206, and AL2292, are considered for
analysis data. Only six months of data are taken from the dataset, i.e., from September 2014
to March 2015. The linear component of this time-series dataset is handled by the ARIMA
model and the nonlinear component is handled by LSTM using a back-propagation neural
network. This method performed better than the standalone ARIMA and LSTM models.

F. Tseng et al. [18] proposed a traffic congestion prediction algorithm for real-time big
data. The authors proposed an SVM-based real-time highway traffic congestion prediction
(SRHTCP) model that collects real-time data from a highway of Tiwan. Spouts and bolts
are used in Apache Storm to handle the real-time dataset for prediction. This proposed
model improved accuracy by 25.6%.

H. Yi et al. [19] presented the use of the Tensorflow package of Python for traffic flow
prediction. The authors used the Traffic Performance Index (TPI) for logistic regression
analysis. Various on-board devices are used to collect real-time data for analysis purposes.
The limitation of this study is that it uses only 1% of daily traffic data because of limited
memory.

M. Bernas [20] proposed two new strategies to handle and improve the working of
Wireless Sensor Networks (WSN) for traffic monitoring purposes. One of these strategies is
to use a single mobile sink, and another is to use multiple sinks. Sensors are exploited in
regions of high traffic density and low traffic density. The proposed strategies have also
reduced power consumption. In [21], the author presented a way to predict weather using
VANET technology. The author used VANET and the GSM communication network to
carry weather data, and the calculation of this collected data is left for a smart vehicle. A
lane with a high volume of traffic provided better results.

M. Bernas et al. [22] proposed a hybridized wireless network. In this network, radio
signals play an important role, which helps to detect and classify the traffic on the road.
These radio signals are generated by Bluetooth beacons placed on both sides of the road.
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Random forest, K nearest neighbor, decision tree, logistic regression, support vector ma-
chine, and PNN are the machine learning algorithms used to classify and detect traffic.
The results obtained through the experiment explained that random forest outperforms all
the other machine learning algorithms with an accuracy above 97% while monitoring the
road traffic. This literature survey implies that traffic congestion prediction is a very active
area for researchers to work on as multiple problems can be solved by working on this
single problem. If the problem of traffic congestion is removed, then it can help in making
a sustainable air and noise-pollution-free environment. Moreover, it can help in growing
the economy of the nation by reducing the unnecessary time consumption of citizens in
traffic, saving fuel consumption, etc.

Zahid et al. [23] gave a short-term traffic speed prediction for different time horizons.
The authors proposed a Fast Forest Quantile Regression (FFQR) algorithm using hyper-
parametric optimization to enhance the performance of the speed prediction system. FFQR
is an ensemble learning technique that uses multiple regression tree structures.

Most of the existing research work has shown that there is a trend of handling the
linear and nonlinear features of a time-series dataset using hybrid models of statistical
models and machine learning models. Linear functions are handled by the statistical model
ARIMA, and nonlinearity is handled by any deep learning model that contains a nonlinear
activation function. These hybrid models are combined simply by adding their forecasted
results. However, how one can be so sure that the forecasted values can be hybridized
simply by linearly adding the forecasted values of linear and nonlinear models? This
creates a doubtful situation and uncertainty that motivates the work in this direction. This
research helps to reduce the error rate and also optimize the working of existing predictive
models. Table 1 summarizes the literature review explained in this section.

Table 1. Different models used for traffic congestion prediction.

S. N Reference Dataset Used Model Performance Matrices
1 T. Sun et al. [10] Real time-Time series IGAN-TF (Bi-LSTM + CNN) MAE, MSE
2 S. Majumdar et al. [11] Real time-Time series LSTM Accuracy
3 T. Bogaerts et al. [13] Real-time GPS Time series Graph CNN + LSTM MAE, MAPE, RMSE
4 5. Neelal[?zldan etal. Time series OWENN Accuracy, F- score
5 Aid A. Khan et al. [15] M1 junction 37 England MSR2C-ABPNN Accuracy, RMSE
6 V. Ra]ala[lzzlfml etal. UK highway ARIMA + 1\14[;1;{ ARIMA + MAE, MSE, RMSE and R2
. Three trunk highway dataset ARIMA + LSTM using
7 Lu. Saiqun et al. [17] of England BPNN MAE, MSE, RMSE, MAPE
8 N. Zafar et al. [9] FCD data source (data LSTM + GRU RMSE, MAPE
collected by a company)
. Real-time dataset of Ring Road,  Decision jungle, Local Deep
9 M. Zahid et al. [24] Bejing, China SVM, MLP F1 score, Accuracy

3. Background

Time-series data forecasting is one of the most challenging prediction tasks that can be
achieved using machine learning models such as ARIMA, deep learning models such as
RNN, CNN, LSTM, etc., and Fb Prophet [25]. The proposed hybrid model consists of the
following components, which are explained in this section.

3.1. SARIMA

Generally, traffic congestion/flow prediction techniques are categorized into three
categories, i.e., parametric technique models, machine learning technique, and deep learn-
ing techniques. Parametric techniques cover the ARIMA model, regression models, and
Kalman filter. Machine learning techniques include ANN, KNN, and SVM. Deep learning
techniques that can be used for traffic congestion prediction are CNN, LSTM, Encoder,
GRU, and different hybrid models [26].
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Regression models are considered to be a great tool to handle a time-series dataset.
The ARIMA (autoregressive integrated moving average) model is used to predict the
dataset, which is nonseasonal but has some patterns. The SARMA model is used when the
dataset has some seasonal properties. The SARIMAX model is used when datasets have
seasonal properties, as well as exogenous variables. ARIMA uses ‘p” as a parameter for
autoregression (AR). In the autoregression model, the ARIMA model uses past regressive
values in the time-series equation to predict the future. ARIMA uses ‘q’ as a parameter for
moving average (MA). ‘g’ represents the moving average order of the model. ARIMA uses
‘d" as a parameter for integration (I). ‘d” represents the differencing required to make the
time-series dataset stationary.

Along with the variables (p, d, and q) used in ARIMA, SARIMA also requires periodic
seasonal cycle of the data, which is represented by ‘s”. Equation (1) represents the SARIMA
output (Y).

4 q P Q
Y =c+ Z Anlt—n + Z On Et—n + Z DulYt—sn + Z Mn €t—snt €t 1)

n=1 n=1 n=1 n=1

where c is a constant factor, « and y are used to calculate autoregression for time t in the
nonseasonal part, # and € are used to calculate moving average for time ¢ in the nonseasonal
part, @ and y are used to calculate autoregression for time ¢ in the seasonal part (s), 77 and €
are used to calculate moving average for time ¢ in the seasonal part (s),and &; is an error
term at time ¢.

3.2. Bi-LSTM

The Long Short-Term Model (LSTM) is an improved version of the RNN, which has
some memory retention power. Figure 2 represents the basic architecture of LSTM. The
LSTM model is divided into three basic gates called input gate, output gate, and forget gate.
A memory cell plays an important role in retaining previous values [27]. The first layer is
the forget layer, which decides on the data to be retained in the memory cell. Next is the
input gate layer, which gives input to the LSTM network. It decides which data should be
passed into the network and which data should be restricted outside the network. Last is
the output layer. This layer decides which memory cell state is given as output [28].

Ce-1 f MemoryCeII \ Ce

Output gate /

Figure 2. LSTM model.

Suppose, X {xg, X1, X2, ... ... .. Xt} is considered as input given to the LSTM model,
and hihg, hy, hy, ... ... . ht}is considered as output of the LSTM cell. Different gates of
LSTM can be elaborated mathematically as follows:

Input gate:

ir = o(Wy,xt + Wyl 1+ Weicr 1+ b;) 2)
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Forget gate:
fi = U(foxt + Wighi—1 +Weper1 + bf) 3)
Cell state:
et = frOci—1 +ixOtanh(Wy xt + Wiehi 1 + be) 4
Output gate:
0 = G(onxt + Wioht—1 +Weoci 1 + bo) @)
LSTM cell output:
hy = oy © tanh(c;) (6)

where t = timestamp, x; = input, i; = input gate at time t (Equation (2)), f; = forget gate at
time t (Equation (3)), ¢; = memory cell state at time t (Equation (4)), w = weight-matrix,
ot = output gate at time t (Equation (5)), and /; = LSTM output at time t (Equation (6)).

Bi-LSTM stands for bidirectional long short-term model. Bi-LSTM is an extended
version of LSTM. The main disadvantage of LSTM is that it makes predictions using only
past/previous values of the data. Future observations play no role in making decisions
using LSTM. Bi-LSTM improves the predicted outcomes using both previous as well as
future observations. In the Bi-LSTM model, data can flow in both the forward and backward
directions. This helps the predictive model to use past data, as well as future data, to train
the model and take appropriate actions. Both past observations and future results are stored
in the memory cells, which helps in decision making [29]. Figure 3 shows the bidirectional
LSTM architecture.

Qutputs
( \
Yl Yo Yei
- o iy PRiai Al ~
) —] f_'l N
e h
LSTM —L—p LSTM —— Forward
2 | : : Layer
— 1STM LN ! Backward
| hes 1 1 h, . Layer
N ol -’ e e -
Xl Xpg
\
Inputs

Figure 3. Bi-LSTM model architecture.

Suppose X{xg, x1, X2, ... ... ... ..x;} is considered as input given to the Bi-LSTM
model and y{yo, y1, y2, .-+ -.. ... yt} is considered as its output. Since data flows in

e —
both directions in the hidden layers of Bi-LSTM, hihg, hy,hy,. ... .. ,ht} is considered as
e e —

data flow in the forward direction and h{hg, h1,hy,...... , ht} is considered as data flowing
in the backward direction. The predicted value at time ¢ is represented as ‘y;” (given in
Equation (9)), calculated by concatenating the data values of forward and backward flow.
Mathematical representation of the Bi-LSTM model’s forward and backward dataflow is
given in Equations (7) and (8) [30].

— —
hy = G(szxt+W;th+bz> 7)
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-
hy = G(W—» + We + b—>> (8)
hy hy h

— —
yt:W%h+WFh+by (9)
yh yh
where o is a logistic sigmoid function, t is a time stamp, and b represents the bias function.

3.3. Back Propagation Neural Network

Back-Propagation Neural Networks (BPNNs) are most commonly used neural net-
works. The architecture of BPNN5s consists of an input layer, one or more hidden layers,
and an output layer. The main concept of the back-propagation technique is to send errors
in a backward direction from the output layer to the hidden layers. This helps to tune the
weights of the neurons, which reduces the error rate in the overall predicted result. BP is
similar to a multi-layer feed-forward neural network using a backward error propagation
algorithm [31]. The BP algorithm is made up of two basic steps: forward propagation and
backward propagation. Figure 4 shows the workflow diagram of back propagation.

e In the first step, input values of the dataset are fed forward from the input layer, then
to the hidden layers, and finally to the output layer.

e In the second step, output errors are calculated and then propagated in the backward
direction of network. This step helps to tune different features of the neural network.

o  These steps repeat until the desired output is achieved with a minimum error value.

Initialize the network ]
L
Set Parameters ]
I
1
Training data ]

|
L

Hidden layer and training
cIror

- - No

error

Output layer and training ]

Desired
output™

,-ﬁl,—\(_'\.-—-—-\-—

Caleculate error and scttle }

4

L Yes

[ Final weights as output ]

-

Figure 4. Algorithm of error back-propagation.

4. Proposed Model and Implementation

This study proposes a hybrid SARIMA + Bi-LSTM model optimized using BPNN to
predict traffic congestion using a univariate time-series IoT dataset. The proposed hybrid
model uses two prediction models: one is statistical and the other is a machine learning
model. SARIMA, which is a statistical model, is used to train linear components of the
dataset, and Bi-LSTM, which is a machine learning model, is used to train nonlinear values
of the time-series IoT dataset. After training the linear and nonlinear values of the dataset,
these predictive models are used for forecasting. Predicted results are then fed into the
BPNN, which helps to readjust the neurons” weights and reduces errors. The pseudocode
of the proposed model is given in Algorithm 1.
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Algorithm 1. Pseudocode of proposed model.

Input: Yi {yo,y1,¥2, - .- ... .yil = Timeseries dataset, i = number of time-series dataset instances
Output: Predicted output Oy,
Begin

For each Y; of dataset Y
Step 1: Data Preprocessing

Finding and removing null values

Set index as TIMESTAMP with frequency = D

Decompose dataset to check seasonality

Splitting Yt into Yiyain and Yiest

Step 2: SARIMA (Yirain, Ytest) // handling linear components of Y;

o  Estimated differencing term d

// use “pmdarima” package to calculate order of SARIMA model with minimum aic

e auto_arima (Yiin, seasonal=True, m=4, D=1, start_P=1, start_Q=1, max_P=5, max_Q=5,
° information_criterion="aic’, trace=True, error_action="ignore’, stepwise=True)

/ /use “pmdarima” package to forecast
o IL;- pmuresults.forecast(Yiest)
Step 3: Calculating residuals
e NL =YL
Step 4: Preprocessing residuals

e  Find autocorrelation in residual values
e  Splitting residual values in NLtest, NLyain, and NLyajidation data
e  Scaling residual values using minmaxscaler()

Step 5: Bi-LSTM (NL,in) // handling nonlinear components of NL
e  Setsequence size and number of features to be used for prediction

/ / create a sequential stacked bi-Istm model using “Keras” package

e Add two Bi-LSTM layer, a dropout layer and two dense layers
e  Add optimizer=Adam(learning_rate=0.01)
e  Compile model with loss="mean_squared_error’, metrics=[‘mse’,’ mae’]
e  Fitting the model with 100 epochs
/ / forecasting

. NE = predict(NLiest)
Step 6: BPNN (L;, NL;, Y;) // forecasted values of SARIMA and Bi-LSTM are given as input to produce combined

prediction values

e  Scale the predicted values of SARIMA and Bi-LSTM using minmaxscaler()
// Initialize the network

e  Neural network is initialized with ft, ﬂt as inputs, Y as output, and three hidden layers
// train the network

e  Calculate neuron activation for input

Activation function = 1.0/(1.0 + exp(-activation)) is used to find the correlation between Li, NL, Yy
Apply forward propagation with learning rate = 0.9, epochs = 5000

Calculate errors

Apply backward propagation to propagate and store errors in backward direction of the model
Update network weights with error

// Make a prediction with a network
. ?t = predict(trained network, Yt)
Step 7: Evaluating model
e  Evaluate proposed model using MSE and MAE
END
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4.1. Algorithmic Steps for the Proposed Model

The flow chart of the working model is given in Figure 5. Algorithmic steps of the
proposed hybrid model are explained as follows:

‘ Data preprocessing

|

[ Residuals of
! SARIMAX model —  SARIMAX model
— Forecast using ‘ . ‘
Bi-LSTM model
C_SARIMAX model |

( Forecas?lusmgbl '“>
___LSTM model -
1T
!
‘ BPNN model

L

(__ Forecasting Results >

Figure 5. Proposed SARIMA Bi-LSTM model optimized by BPNN.

Step 1: Time-series dataset is comprised of a linear component (L) and nonlinear
component (NL;). In the first step, the IoT time-series dataset is decomposed using the

“statsmodels” package of Python. This decomposition helps to check the seasonality, trend,

and residual values of the feature used for predicting traffic congestion. Equation (10) gives
the mathematical representation of the raw dataset (y;).

Yt =L+ NL; (10)
Step 2: Dataset is found to be seasonal, so linear components of the time-series IoT
dataset are given to the SARIMA model. Equation (11) shows the predicted values of the

SARIMA model (it). The “pmdarima” package is used to choose the best parameters for
SARIMA to forecast traffic congestion.

Lt = SARIMA(y;) (11)

Step 3: Residual values (NL;) of the SARIMA model are calculated as given in Equation
(12) and given as input to the Bi-LSTM model.

NLt = yt — Zt (12)

Step 4: The Bi-LSTM model is used to handle the nonlinear component of the time-
series IoT dataset given in Equation (13). Bi-LSTM generates the forecast values for nonlin-
ear components.

NL; = Bi_LSTM(NL;) (13)

Step 5: Forecasting Values of SARIMA and Bi-LSTM are combined using BPNN.
BPNN helps to find the unknown function “f”, which helps to combine the linear and
nonlinear forecasting values, as given in Equation (14). BPNN also optimized the results by
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propagating error values backward in the neural network and optimizing the weights of
the neurons in the forward direction.

7 = (Lo NLt) (14)

Through the BPNN, the model can forecast ij; values using forecasted results of
SARIMA (L;) and Bi-LSTM (N\Lt). This model uses a back-propagation neural network to
discover the real relationship function between SARIMA and Bi-LSTM forecasted values.
The novelty of this model is that it does not speculate that forecasted values of SARIMA
and Bi-LSTM can only be hybridized using the addition function only.

4.2. Dataset Used

For this research, the “CityPulse EU FP7 project” dataset is used [32]. This dataset is
considered as big data collected using IoT sensor devices of the smart cities. It contains
data of road traffic, weather, and pollution collected from smart cities, Aarhus of Denmark
and Brasov of Romania. For this study, the road traffic dataset is chosen. The road traffic
dataset for Aarhus city is collected over time in four different durations, i.e., from February
2014 to June 2014, from August 2014 to September 2014, from October 2014 to November
2014, and from July 2015 to October 2015 [33].

This dataset has a high-level smart city scenario, and this is a complete package of
functional and nonfunctional components of a smart city framework that can be helpful or
useless for data processing. A complete KPI (Key Performance Index) guide is given for
the evaluation of the smart city framework dataset. Based on the functional component,
the datasets provide three categories to measure them:

e  Observational KPI: these KPIs are related to the observation points such as the virtual
or physical environment near the sensors used, the environment nearby, and temporal
constraints.

e  Network connected KPI: these KPI are related to the kind of network used for the
connection of the sensors, security measures to be taken for safe connection over the
network, etc.

e  Data-processing KPI: these KPIs are related to the computational capabilities of the
smart city framework. It basically deals with the data processing that can take place
inside the functional component of the framework.

To handle data processing KPIs, a road traffic dataset of the duration from February
2014 to June 2014 is used in this study. This smart city framework collected data for various
locations within the city with respect to every single sensor device. The dataset contains
the different features, as explained in Table 2.

Table 2. Dataset description.

S.No. Feature Significance

1 Status This feature gives the status report of the IoT sensor device used.
2 avgMeasuredTime It gives average measured time.

3 avgSpeed It gives the average speed of a vehicle for the given time.

4 medianMeasured ime i’; El;?twdes a median time for the sensor to measure speed and
5 TIMESTAMP This feature gives the exact timestamp for which the vehicle

counts and the average speed of the vehicle.
It gives the number of vehicles on the street for a particular time

6 vehicleCount .
interval.
7 _id It gives the ID of a sensor device.
8 Report_id Report ID gives the ID for a particular area location for which all

the above features are observed.
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4.3. Evaluation Matrices

Evaluation parameters are used to validate the model with respect to the dataset
used. Evaluation parameters can be chosen according to the problem statement. Some
researchers focus on the accuracy of the results and some focus on reducing the error rate
in the model. For this study, error rate is considered as a parameter to evaluate the hybrid
model. The proposed model is considered as best if it gives minimum error. Although
there are different parameters such as Mean Squared Error (MSE), Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), etc., MSE, MAE, RMSE and MAPE are used as
comparative and evaluating parameters for this study [34].

e  Mean Squared Error (MSE): MSE is considered as the best parameter to check the error
rate of the regression prediction model. The lower the value of MSE, the better the
model is. MSE can be calculated as given in Equation (15):

1
MSE = -y, (Yi = Yy)? (15)

where n denotes the number of data items, Y; denotes the actual values, and Y;
represents the predicted value.

e  Mean Absolute Error (MAE): MAE is the difference between the predicted values and
the actual correct values but in the paired observation. These paired observations
are considered to be the ones that are creating the same phenomenon. MAE can be
calculated as given by Equation (16):

n NV
MAE = 721:1“: il (16)

where 1 denotes the number of data items, y; denotes the predicted values, and x;
represents actual correct values.

e  Root Mean Squared Error (RMSE): RMSE represents absolute fit of the model with
respect to the data. The lower the value of this parameter, the better the model is
considered. It can be calculated as given in Equation (17).

MSE = \/ %2?21 (Yi —Y;)? (17)

where 1 denotes the number of data items, Y; denotes the actual values, and Y;
represents the predicted value.

e  Mean Absolute Percentage Error (MAPE): It is also called Mean Absolute Percentage
Deviation (MAPD). It represents keeping track of relative errors with respect to the
actual values in percentage. MAPE can be calculated as given in Equation (18):

Lyn1 Y=Y
MAPE = —
=)

=1 max(E, Y1) o

where n denotes the number of data items, Y; denotes the actual values, Y; represents
the predicted value, and £ is a small positive arbitrary value.

5. Results and Discussion

A big IoT dataset is used for this traffic congestion prediction research. At first, the
dataset is decomposed to check its seasonality, trend, and residuals. This would help
to decide the different pre-processing measures to be taken before data analysis. This
decomposition helps us to decide which kind of ARIMA model is to be used, i.e., SARIMA,
SARIMAX, SARMA, ARMA, etc. Figure 6 presents the decomposed result of the IoT dataset
used for this study. Decomposition of the dataset shows that there is seasonality in the
dataset but no trend. There are residual values present in the dataset also, which are to be
handled with care.
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Figure 6. Decomposition of the dataset.

After decomposition, the dataset is preprocessed and split into testing and training
data. Before giving the dataset to the SARIMA model, periodicity of the data is adjusted
to be quarterly. This testing and training dataset is given to the SARIMA model, which is
used to handle the linear component of this seasonal dataset. The “auto_arima” function of
the “pmdarima” package is used to calculate the best fit parameters that can be used for the
prediction with the minimum AIC (Akaike Information Criterion) value. The “auto_arima”
helps to parameterize SARIMA by choosing optimal values of (p, d, q) (F,Q,D,s). After
running the auto_arima function on the training dataset, (p, d, q) (P,Q,D,s) came out to be
(2,0,0) (0,1, [1], 4) with a minimum AIC value of 520.055. Since it is quarterly data, the
periodicity factor ‘s’ is 4.

Figure 7 represents diagnostic results of the SARIMA model. Figure 7 presents stan-
dard residual plot, normal Q-Q plot, correlogram, and a histogram with estimated density.
From a standardized residual plot, it can be seen that the residual errors are moving around
zero mostly, which implies that chances of error for the linear component of the data is
negligible. The histogram shows that it is a normal distribution curve that is centered
at mean 0. Theoretical quantities and sample quantities are skewed in the normal Q-Q
plot. Lastly, the correlogram represents the ACF values. The ACF plot represents that the
similarities between residual values and their lagged version for the given time period are
not correlated.

Figure 8 presents a comparative plot that shows the training dataset values, predicted
values, and actual values. As seen in Figure 8, there are gaps between actual and forecasted
values. To remove these gaps and reach more accurate data points, the Bi-LSTM model is
used. The Bi-LSTM model will handle the nonlinear data points. So, residual values are
given as input to the Bi-LSTM model. Figure 9 shows the residual values of the SARIMA
model. Before applying the Bi-LSTM model, residual values of the SARIMA model are
split into training, validation, and testing dataset. The ‘MinMaxScaler()” function is then
used to scale these residual values in the range of (—1,1). Scaled values help the model to
get better results. These scaled values are then given to the Bi-LSTM model.
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To implement the Bi-LSTM model, the “Keras” package is used. “Keras” is a Python-
based platform for implementing deep learning modules on “tensor flow”. Using “Keras”,
a stacked Bi-LSTM deep learning model is used to handle the nonlinear residual values
of the dataset. Table 3 shows the hyperparameter used in this stacked Bi-LSTM model.
Bidirectional LSTM helps to minimize the error by handling past and future predictive
values. The Adam optimizer [34] is used to optimize the Bi-LSTM model. The learning
rate used is 0.01 for Adam. An optimizer is used to reduce the error rate. In the Bi-LSTM
network, two layers of Bi-LSTM are used, having sigmoid and tanh activation functions
for layer 1 and layer 2, respectively. Then, one dropout layer is also there, which has a
0.2 dropout rate. The Bi-LSTM deep learning model uses 100 epochs to reach minimum
loss values.

Table 3. Hyperparameters of Bi-LSTM model.

Hyper Parameter Bi-LSTM

Optimizer Adam

Learning rate 0.001

Activation function Sigmoid (layer 1), tanh (layer 2)
Dropout rate 0.2

Epochs 100

Figure 10 presents the loss between the training and validation data while modeling
the dataset according to the Bi-LSTM model. It can be seen in Figure 10 that after applying
the Bi-LSTM model on the training dataset, loss has been reduced. The loss became
minimum as the epoch increased.

35 4 = Taining loss
—— Validation loss
25 4
20
15 4

10 4

5 4 |_\_

0 20 40 €0 ) 100

Figure 10. Training vs. validation dataset losses.

Figure 11 represents the predicted values and the actual values for the nonlinear data
points using Bi-LSTM. Although losses have been reduced, the model could not achieve
the actual values. Here also, one can see a vast gap between the actual and the predicted
values.

Forecast values of SARIMA and bi-LSTM are given to the back-propagation neural
network (BPNN). The BPNN hybridizes the output of SARIMA and Bi-LSTM by using
a nonlinear activation function that can handle both linear and nonlinear relationships
among the outputs. It also optimizes the output and reduces errors by back-propagating
errors in the neural network and readjusting weights again and again. Inputs given to
BPNN are scaled using “Minmaxscaler()”. In total, 5000 epochs are used to reduce errors
and the learning rate is taken as 0.9. Figure 12 represents the predicted and actual values of
the proposed hybrid SARIMA Bi-LSTM model optimized by the BPNN model.
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Table 4 presents the comparative analysis of existing models with the proposed model.
The proposed hybrid model (SARIMA + bi-LSTM optimized with BPNN) performs best
with MSE as 0.337, MAE as 0.499, RMSE as 0.58, and MAPE as 0.03 compared to standalone
SARIMA, bi-LSTM models. SARIMA comes up with MSE, MAE, RMSE, and MAPE values
as 23.36, 4.06, 4.63, and 0.388, respectively. Bi-LSTM gave MSE, MAE, RMSE, and MAPE as
25.62, 4.2, 5.06, and 0.31, respectively. The hybrid model (SARIMA + bi-LSTM) gave MSE,
MAE, RMSE, and MAPE values as 17.79, 3.04, 4.21, and 0.20, respectively. This hybrid
model is created by simply adding the linear and nonlinear forecasted values.

Table 4. Comparative analysis of models.

S. No. Model MSE MAE RMSE MAPE
1. Graph CNN + LSTM [13] - 4.11 5.879 0.145
2. ARIMA + MLP [16] 0.71 0.55 0.84 -
3. ARIMA + RNN [16] 0.66 0.53 0.81 -
4. ARIMA + LSTM [17] 241.66 6.53 15.54 0.119
5. ARIMA+ LSTM + BP [35] - 20.00 33.17 14.13
6. ANN [36] - 3.866 - -
7. SARIMA 23.36 4.06 4.63 0.388
8. Bi-LSTM 25.62 4.2 5.06 0.31
9. SARIMA + Bi-LSTM 17.79 3.04 421 0.20

10. Proposed model (SARIMA + Bi-LSTM + BPNN)  0.337  0.499 0.58 0.03




Information 2023, 14, 268 17 of 19

In addition, a similar technique is used by Y. Deng et al. [35] to predict outpatient
visits to the hospital. The authors used the ARIMA model to handle linearity and the LSTM
model to handle the nonlinearity of the time-series dataset. These forecasted values are
optimized using back propagation. This model performs much better than its component
machine learning models and produces a MAE value of 20.00, RMSE of 33.17, and MAPE
of 14.13. However, our proposed approach performed much better than the model given
by Y. Deng et al.

6. Conclusions

Road traffic is considered a major cause of air pollution and degradation of air quality.
Reducing the traffic congestion problem helps to create a sustainable healthy environment.
It also saves a lot of time for the people travelling, which indirectly helps national economic
growth. A new hybridized model is proposed using SARIMA and Bi-LSTM. The proposed
model has been experimented with using “CityPulse”, a smart city big IoT time-series
dataset. The proposed hybrid model uses the “vehicalcount” feature of the dataset to
predict traffic congestion. The SARIMA model trains the linear values of the dataset and
then its residual nonlinear values are fed to the Bi-LSTM model. Predicted values of
SARIAM and Bi-LSTM are combined using a BP neural network. Comparative analysis
of the proposed univariate hybrid model is undertaken with existing models using MAE,
MSE, RMSE, and MAPE error-measuring matrices. MAE and MSE came out to be 0.499,
0.337, 0.58, and 0.03 for the proposed hybrid univariate model.

The proposed model can be used to reduce traffic on the roads, which in turn, helps
to make smart cites free of air pollution and noise pollution. The proposed model can be
used for stock trend forecasting, disease prediction, weather prediction, or any kind of
time-series dataset prediction problem.

The proposed model has some limitations such as only a few features being considered
for evaluating the model as per the chosen dataset. Various external factors like weather,
external events, peak hours, etc. can be considered in future enhancement of this work.
Future work also focuses on enhancing the performance by using some interpretation
analysis methods of the proposed model. Detailed interpretation analysis approaches such
as LIME, SHAP, etc. help to explain the decisions or predictions provided by the proposed
model.
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