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Abstract: The aim of predictive maintenance, within the field of prognostics and health management
(PHM), is to identify and anticipate potential issues in the equipment before these become serious.
The main challenge to be addressed is to assess the amount of time a piece of equipment will function
effectively before it fails, which is known as remaining useful life (RUL). Deep learning (DL) models,
such as Deep Convolutional Neural Networks (DCNN) and Long Short-Term Memory (LSTM)
networks, have been widely adopted to address the task, with great success. However, it is well
known that these kinds of black box models are opaque decision systems, and it may be hard to
explain their outputs to stakeholders (experts in the industrial equipment). Due to the large number
of parameters that determine the behavior of these complex models, understanding the reasoning
behind the predictions is challenging. This paper presents a critical and comparative revision on a
number of explainable AI (XAI) methods applied on time series regression models for PM. The aim
is to explore XAI methods within time series regression, which have been less studied than those
for time series classification. This study addresses three distinct RUL problems using three different
datasets, each with its own unique context: gearbox, fast-charging batteries, and turbofan engine.
Five XAI methods were reviewed and compared based on a set of nine metrics that quantify desirable
properties for any XAI method. One of the metrics introduced in this study is a novel metric. The
results show that Grad-CAM is the most robust method, and that the best layer is not the bottom one,
as is commonly seen within the context of image processing.

Keywords: XAI; interpretability; predictive maintenance; prognostics and health management;
remaining useful life; deep learning; convolutional neural network; comparative analysis; XAI
evaluation and accountability

1. Introduction

Incipient AI systems, as small decision trees, were interpretable but had limited
capabilities. Nevertheless, during the last few years, the notable increase in the performance
of predictive models (for both classification and regression) has been accompanied by an
increase in model complexity. This has been at the expense of losing the understanding
capacity of the reasons behind each particular prediction. This kind of model is known as a
black-box [1] due to the opaqueness of its behavior. Such obscurity becomes a problem,
especially when the predictions of a model impact different dimensions within the human
realm (such as medicine, law, profiling, autonomous driving, or defense, among others) [2].
It is also important to note that opaque models are difficult to debug, as opposed to the
interpretable ones, which facilitate the detection of the source of its errors/bias and the
implementation of a solution [3].

1.1. Explainable Artificial Intelligence

Explainable AI (XAI) addresses these issues by proposing machine learning (ML)
techniques that generate explanations of black-box models or create more transparent
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models (in particular for post hoc explainability) [4]. Post hoc explainability techniques can
be divided into model-agnostic and model-specific techniques. Model-agnostic techniques
encompass those that can be applied to any ML model, such as LIME [5] or SHAP [6]
(SHapley Additive exPlanations), for example. Whereas model-specific techniques are
designed for certain ML models, such as Grad-CAM (Gradient-weighted Class Activation
Mapping) [7], saliency maps [8], or layer-wise relevance propagation (LRP) [9], which are
focused on deep learning (DL) models.

Regarding the kind of tasks where XAI can be applied, it is common to find applica-
tions in classification tasks with tabular and image data, while regression tasks—signal
processing, among others—have received little attention. The higher number of studies
devoted to XAI for classification tasks is due to the ease of its application, since implicit
knowledge exists around each class [10]. Similarly, there is not much work on XAI applied
to time series models [11]. The non-intuitive nature of time series [12] makes them harder
to be understood.

Several studies have applied XAI methods to regression time series. For instance,
Ahmed et al. [13] used SHAP and LIME to explain the predictions of a model trained to
forecast travel time. In another study, Vijayan [14] employed a deep learning multi-output
regression model to predict the relationship between optical design parameters of an asym-
metric Twin Elliptical Core Photonic Crystal Fiber (TEC-PCF) and its sensing performances.
Then, they used SHAP for feature selection and to understand the effect of each feature on
the model’s prediction. Mamalakis et al. [15] trained a fully connected neural network (NN)
using a large ensemble of historical and future climate simulations to predict the ensemble-
and global-mean temperature. They then applied various XAI methods and different
baselines to attribute the network predictions to the input. Cohen et al. [16] proposed a new
clustering framework that uses Shapley values and is compatible with semi-supervised
learning problems. This framework relaxes the strict supervision requirement of current
XAI techniques. Brusa et al. [17] examined the performance of the SHapley Additive
exPlanation (SHAP) method in detecting and classifying faults in rotating machinery using
condition monitoring data. Kratzert et al. [18] used integrated gradients to explain the pre-
dictions of a Long Short-Term Memory (LSTM) model trained for rainfall-runoff forecasting.
Finally, Zhang et al. [19] presented a framework to explain video activity with natural
language using a zero-shot learning approach through a Contrastive Language-Image
Pre-training (CLIP) [20] model. This is a very interesting idea that could be useful to apply
to time-series data to explain predictions in natural language.

In the same way that there does not exist a model best suited to solve any ML task,
there is no particular XAI method that will provide the best explanation of any model.
A significant body of literature devoted to innovations in novel interpretable models and
explanation strategies can be found. However, quantifying the correctness of their expla-
nations remains challenging. Most ML interpretability research efforts are not aimed at
comparing the explanation quality (measuring it) provided by XAI methods [21,22]. It can
find two types of indicators for the assessment and comparison of explanations: qualitative
and quantitative. Quantitative indicators, which are the focus of this paper, are designed to
measure desirable characteristics that any XAI method should have. The metrics approxi-
mate the level of accomplishment of each characteristic, thus allowing us to measure them
on any XAI method. As these metrics are a form of estimating the accomplishment level,
they will be referred to as proxies. Numerical proxies are useful to assess the explanation
quality, providing a straightforward way to compare different explanations.

A (non-exhaustive) list of work on proxies shows its usefulness. In [11], Schlegel, et al.
apply several XAI methods, usually used with models built from image and text data,
and propose a methodology to evaluate them on time series. Samek, at al. [23] apply a per-
turbation method on the variables that are important in the prediction generation, to mea-
sure the quality of the explanation. The work of Doshi-Velez, et al. and Honegger [24,25]
propose three proxies (called axioms in those works) to measure the consistency of ex-
planation methods. The three proxies are identity (identical samples must have identical
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explanations), separability (non-identical samples cannot have identical explanations) and
stability (similar samples must have similar explanations). There exists other work that
proposes different proxies for more specific models or tasks [26].

1.2. XAI and Predictive Maintenance

The industrial maintenance process consists of three main stages. The first stage
involves identifying and characterizing any faults that have occurred in the system. In the
second stage, known as the diagnosis phase, the internal location of the defects is deter-
mined, including which parts of the system are affected and what may have caused the
faults. In the final stage, known as the prognosis phase, the gathered information is used
to predict the machine’s operating state, or remaining useful life (RUL) at any given time,
based on a description of each system part and its condition. The first two are classification
problems, while prognosis is commonly addressed as a regression problem. In the field of
predictive maintenance (Pdm), there is an important lack of XAI methods for industrial
prognosis problems [22] and it is difficult to find existing work in which new XAI methods
are developed, or existing ones that are applied within this context. Hong, et al. [27]
use SHAP to explain predictions in RUL prediction. Similarly, Szelazek, et al. [28] use
an adaptation of SHAP for decision trees applied to steel production systems prognosis,
to predict when the thickness of the steel is out of specifications. Serranilla, et al. [29]
apply LIME to models used in the estimation of bushings remaining time of life. Recently,
Ferrano, et al. [30] have applied SHAP and LIME in hard disk drive failure prognosis.

1.3. Aim and Structure of the Paper

Raw signal time series are frequently voluminous, and it is challenging to analyze the
data. Due to this issue, a quantitative method must verify the quality of explanations [11].
This paper considers five XAI methods to address regression tasks on signal time series;
specifically, for system prognosis within the context of prognostics and health management
(PHM). Two of them, SHAP and LIME, are model-agnostic XAI methods. The other three
(layer-wise relevance propagation, gradient activation mapping, and saliency maps) are
neural network specific. It is worth noting that all these methods have been adapted in this
paper to work with time series regression models.

This article aims to present several contributions to the field of Explainable Artificial
Intelligence. Firstly, it presents a comprehensive review of eight existing proxy methods for
evaluating the interpretability of machine learning models. Secondly, it proposes a novel
proxy to measure the time-dependence of XAI methods, which has not been previously
explored in the literature. Thirdly, an alternative version of Grad-CAM is proposed, which
takes into account both the time and time series dimensions of the input, improving
its interpretability. Finally, the importance of layers in Grad-CAM for explainability is
evaluated using the proposed proxies.

The article is organized into five main sections. Section 2 covers the Materials and
Methods used in the study, including the XAI methods and the perturbation and neigh-
borhood techniques. Section 2.3 focuses on the validation of the XAI method explanations
using quantitative proxies. Section 3 provides details on the experiments conducted in
the study, including the datasets (Section 3.2) and the black-box models used (Section 3.3).
Section 3.4 describes the experiments themselves, and Section 3.5 presents the results of the
study. Finally, Section 4 provides a discussion of the findings and their implications.

2. Materials and Methods

This section describes the different XAI methods under investigation (Section 2.1),
as well as the consistency of explanation proxies used in the experiments carried out
(Section 2.2).

2.1. XAI Methods

This section provides a brief description of the XAI models used in the experiments.
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2.1.1. Local Interpretable Model-Agnostic Explanations

Local interpretable model-agnostic explanations (LIME) [5] is an XAI method based on
a surrogate model. In XAI, surrogate models are trained to approximate the predictions of
the black-box model. These models would be white-box models, easily interpreted (sparse
linear models or simple decision trees). In the case of LIME, the surrogate model is trained to
approximate an individual prediction and the predictions of its neighborhood obtained by
perturbing the individual sample studied. The LIME surrogate model is trained with a data
representation of the original sample x ε Rd. The representation uses x′ ε{0, 1}d′ to state the
non-perturbation/perturbation of each original feature. Mathematically, the explanations
obtained with LIME can be expressed as:

ξ(x) = argmin
g ε G

L( f , g, πx) + Ω(g) (1)

where g is a surrogate model from the class G of the all interpretable models. The compo-
nent Ω(g) is used as regularization to keep the complexity of g low, since high complexity
is opposed to the interpretability concept. The model being explained is denoted as f
and L determines the performance of g fitting the locality defined by π as a proximity
measurement function and πx = π(x, ·). Finally, each training sample is weighted with the
distance between the perturbed sample and the original sample.

2.1.2. SHapley Additive exPlanations

SHapley Additive exPlanations (SHAP) [6] is also a method to explain individual pre-
dictions, similarly to LIME. The SHAP method explains each feature by computing Shapley
values from coalitional game theory. A Shapley value can be described as the expected
average of a player’s marginal contribution (by considering all possible combinations). It
enables the determination of a payoff for all players, even when each one has contributed
differently. In SHAP, each feature is considered a player. Thus, the coalition vector x′,
or simplified features vector, is composed of ones and zeroes representing the presence or
absence of a feature, respectively. The contribution of each feature φi is estimated based on
its marginal contribution [31], and computed as follows:

φi( f , x) = ∑
z′ ⊆ x′

|z′|!(M− |z′| − 1)!
M!

[
fx(z′)− fx(z′ \ i

)
] (2)

where |z′| is the number of non-zero entries in z′, and z′ ⊆ x′ represents all vectors where
the non-zero entries are a subset of the coalition vector x′. The values φi are known as
Shapley values, and it has been demonstrated that they satisfy the properties of local
accuracy, missingness, and consistency [6]. Based on these contribution values, a linear model
is defined to obtain the explainable model g:

g(x′) = φo +
M

∑
j=1

φj (3)

The explainable model g is optimized by minimizing the mean squared error between
g and the predictions over the perturbed samples f (hx(z′)). The main difference to LIME is
that, in SHAP, each sample is weighted based on the number of ones in z′. The weighting
function, called the weighting kernel, gives rise to the so-called Kernel SHAP method.
The formula for the weight πx(z′) is given by:

πx(z′) =
(M− 1)

( M
|z′ |)(M− |z′|)

(4)
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The intuition behind this is that isolating features provides more information about
their contribution to the prediction. This approach computes only the more informative
coalitions, as computing all possible combinations is an intractable problem in most cases.

2.1.3. Layer-Wise Relevance Propagation

The Layer-wise Relevance Propagation (LRP) method [9] aims to interpret the pre-
dictions of deep neural networks. It is thus a model-specific XAI method. The goal is to
attribute relevance scores to each input feature (or neuron) of a neural network, indicating
its contribution to the final prediction. LRP works by propagating relevance scores from
the output layer of the network back to its input layer. The relevance scores are initialized
at the output layer: a score of 1 is assigned to the neuron corresponding to the predicted
class and 0 to all others. Then, relevance is propagated backward from layer to layer using
a propagation rule that distributes the relevance scores among the inputs of each neuron in
proportion to their contribution to the neuron’s output. The rule ensures that the sum of
relevance scores at each layer is conserved. The propagation rule is defined by the equation.

Ri = ∑
k

zik

∑0,j zjk
Rk (5)

where R represents the propagation relevance score, j and k refer to neurons in two consecu-
tive layers, and zjk = ajwjk denotes how neuron j influences the relevance of neuron k based
on the activation of each neuron. The denominator enforces the conservation property.

2.1.4. Image-Specific Class Saliency

Image-Specific Class Saliency [8] is one of the earliest pixel attribution methods ex-
isting in the literature. Pixel attribution methods aim to explain the contribution of each
individual pixel, within an image, to the model’s output. These methods are typically used
in computer vision tasks such as image classification or object detection. However, in this
paper, attribution is assigned to each element of each time series, rather than individual
pixels in an image. It is based on approximating the scoring or loss function, Sc(x), with a
linear relationship in the neighborhood of x:

Sc(x) ≈ wT
c x + b (6)

where each element of wc is the importance of the corresponding element in x. The wc
vector of importance values is computed via the derivative of Sc with respect to the input x:

w =
∂Sc

∂x
|x0

(7)

This method was originally designed to work in Image Processing with neural net-
works, hence each element of w is associated with the importance of each pixel.

2.1.5. Gradient-Weighted Class Activation Mapping

Finally, Gradient-weighted Class Activation Mapping (Grad-CAM) generalizes CAM [32],
which determines the significance of each neuron in the prediction by considering the gradient
information that flows into the last convolutional layer of the CNN. Grad-CAM computes the
gradient yc of class c with respect to a feature map Ak of a convolutional layer, which is then
globally averaged, obtaining the neural importance αc

k of the feature map Ak:

αc
k =

global average pooling︷ ︸︸ ︷
1
Z ∑

i
∑

j

∂yc

∂Ak︸︷︷︸
gradients via backprop

(8)
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After computing the importance of all feature maps, a heat map can be obtained
through a weighted combination of them. The authors apply a ReLU activation since they
are only interested in positive importance;

Lc = ReLU

(
∑
k

αc
k Ak

)
(9)

Unlike saliency maps, Grad-CAM associates importance by regions of the input.
The size of them depends on the size of the convolutional layer. Usually, interpolation is
applied to the original heat map to expand it to the overall size of the input.

As this paper is focused on time series, we propose introducing additional elements
to Grad-CAM with the aim of exploiting the possible stationary information of the signal.
This is achieved by introducing an additional component to the Grad-CAM heat map
calculation, namely the time component contribution. Moreover, a second component was
introduced to exploit the importance each time series has in a multivariate time series
problem. Thus, the final Grad-CAM attribution equation reads as follows, namely, the
individual time series contribution:

αc
k =

individual f eature contribution︷ ︸︸ ︷
1

T ∗ F

T

∑
i

F

∑
j

∂yc

∂Ak + β
1
T

T

∑
i

∂yc

∂Ak︸ ︷︷ ︸
time component contribution

+

individual time series contribution︷ ︸︸ ︷
σ

1
F

F

∑
j

∂yc

∂Ak (10)

where T and F are the time units present in the time series, and the number of time series,
respectively. The components β and σ are used to weight these two new components.

Figure 1 displays examples of heat maps generated by each method. Each heat map
is a matrix of 20 by 160 values, representing 20 time series and 160 time units, where a
relative importance is assigned to each item in the time series.

Lime Shap

GradCAM

SaliencyLRP

Figure 1. Heat maps generated for each of the five tested methods.

2.2. Perturbation and Neighborhood

The LRP, saliency map, and Grad-CAM techniques can be used directly on time series
data. However, LIME and SHAP assume that significant changes in the performance of a
well-trained model will occur if its relevant features (time points) are altered. Due to the
high dimensionality of time series inputs, in order to achieve the former, it is necessary to
specify a grouping of time series elements to analyze the impact on each group instead of
on single time points. In image processing, this is achieved through super-pixels, which are
groups of connected pixels that share a common characteristic.

In this paper, time series are segmented considering adjacent elements. Two different
segmentation approaches are used. The first one is called uniform segmentation, which
is the most basic method, and involves splitting the time series ts = t0, t1, t2, . . . , tn into
equally sized windows without overlapping. The total number of windows is d = n

m ,
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where m is the size of the window. If n is not divisible by m, the last window may be
adjusted. The second segmentation minimizes the sum of l2 errors by grouping time points
as follows:

εl2(tsi,j) =
j

∑
k=i

∣∣tsk − tsi,j
∣∣2 (11)

where tsi,j represents a segment of the time series signal ts that goes from element i
to element j, and tsi,j is the mean of that segment. That is to say, the final cost of the
segmentation is the sum of the l2 errors, calculated between each pair of adjacent elements
within the segment. To find the optimal segmentation, a dynamic programming approach
is employed, similarly to that described in [33]. The two segmentation strategies are shown
in Figure 2.

Figure 2. Segmentation approaches: uniform segmentation (left) and minimal error segmentation
(right). X-axis is the time dimension and y-axis are three different time series. The orange vertical
lines are the separators between segments.

Once the segmentation is complete, a perturbation method must be applied to create
the neighborhood of the time series for SHAP and LIME. The following five perturbation
techniques have been applied on the segmented time series in the different experiments
carried out:

• Zero: The values in tsi,j are set to zero.
• One: The values in tsi,j are set to one.
• Mean: The values in tsi,j are replaced with the mean of that segment (tsi,j).
• Uniform Noise: The values in tsi,j are replaced with random noise following a uniform

distribution between the minimum and maximum values of the feature.
• Normal Noise: The values in tsi,j are replaced with random noise following a normal

distribution with mean and standard deviation of the feature.

To obtain a perturbed sample x′, firstly, it is divided into n segments. Then, from this
segmentation, a binary representation z′, identifying which segments will be perturbed, is
randomly generated:

x′ = h(x, z′) =
(
h(x, z′)1, h(x, z′)2, ..., h(x, z′)n

)
(12)

where

h(x, z′)i =

{
g(x, i) i f z′i is equal 0

p(g(x, i)) i f z′i is equal 1
i ∈ {1, ..., n} (13)

with p being a perturbation function and g a segmentation function.

2.3. Validation of XAI Method Explanations

This study uses the most relevant quantitative proxies found in the literature [24,34],
to evaluate and compare each method. Different methodologies need to be followed
depending on the proxy used to evaluate the interpretability of machine learning models.
These methodologies are depicted graphically in Figure 3. Approach A involves using
different samples and their corresponding explanations to compute metrics such as identity,
separability, and stability. In approach B, a specific sample is perturbed using its own
explanation, and the difference in prediction errors (between the original and perturbed
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sample) is computed. This methodology is used to evaluate metrics such as selectivity,
coherence, correctness, and congruence. Approach C involves using the explanation of the
original sample to build the perturbed sample, then the explanations from both the original
and perturbed samples are used to compute the acumen proxy.

identity
separability
stability

selectivity

A) B)

acumen

C)

Figure 3. Methodologies used to compute proxies for evaluating the interpretability of machine
learning models. (A) Estimation of identity, separability, and stability proxies by using two different
samples and their respective explanations. (B) Estimation of selectivity, coherence, correctness, and
congruency, by comparing the predictions of the original signal and the perturbed signal based on the
most important regions of the explanation. (C) Estimation of acumen by comparing the explanations
of the source signal and the perturbed signal based on the most important regions of the explanation.

The following are the desirable characteristics that each XAI method should accom-
plish, and the proxy used for each one in this work:

• Identity: The principle of identity states that identical objects should receive identical
explanations. This estimates the level of intrinsic non-determinism in the method:

∀a, b (d(xa, xb) = 0 =⇒ d(εa, εb) = 0) (14)

where x are samples, d is a distance function, and ε explanation vectors (which explain
the prediction of each sample).

• Separability: Non-identical objects cannot have identical explanations.

∀a, b (d(xa, xb) 6= 0 =⇒ d(εa, εb) > 0) (15)

If a feature is not actually needed for the prediction, then two samples that differ
only in that feature will have the same prediction. In this scenario, the explanation
method could provide the same explanation, even though the samples are different.
For the sake of simplicity, this proxy is based on the assumption that every feature has
a minimum level of importance, positive or negative, in the predictions.

• Stability: Similar objects must have similar explanations. This is built on the idea that
an explanation method should only return similar explanations for slightly different
objects. The Spearman correlation ρ is used to define this:

ρ({d(xi, x0), d(xi, x1), ..., d(xi, xn)}, {d(εi, ε0), d(εi, ε1), ..., d(εi, εn)}) =
∀i

ρi > 0 (16)

• Selectivity. The elimination of relevant variables must negatively affect the predic-
tion [9,35]. To compute the selectivity, the features are ordered from the most to least
relevant. One by one the features are removed, by setting it to zero for example,
and the residual errors are obtained to obtain the area under the curve (AUC).
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• Coherence. It computes the difference between the prediction error pi
e over the original

signal and the prediction error ei
e of a new signal where the non-important features

are removed.
αi =

∣∣∣pi
e − ei

e

∣∣∣ (17)

where αi is the coherence of a sample.
• Completeness. It evaluates the percentage of the explanation error from its respective

prediction error.

γi =
ei

e
pi

e
(18)

• Congruence. The standard deviation of the coherence provides the congruence proxy.
This metric helps to capture the variability of the coherence.

δ =

√
∑((αi − α)2

N
(19)

where α is the average coherence over a set of N samples:

α =
∑ αi
N

(20)

• Acumen. It is a new proxy proposed by the authors for the first time in this paper,
based on the idea that an important feature according to the XAI method should be
one of the least important after it is perturbed. This proxy aims to detect whether the
XAI method depends on the position of the feature, in our case, the time dimension.
It is computed by comparing the ranking position of each important feature after
perturbing it.

v = 1−
∑

fi∈I

pa( fi)
N

M
(21)

where I is the set of M important features before the perturbation and pa( fi) is a
function that returns the position of feature fi within the importances vector after the
perturbation, where features with lower importance are located at the beginning of
the vector.

Some of the previously depicted methods for evaluating the interpretability of machine
learning models perturb the most important features identified by the XAI method. In our
paper, we define the most important features as those whose importance values are greater
than 1.5 times the standard deviation of the importance values, up to a maximum of
100 features.

3. Experiments and Results
3.1. Problem Description

The problem revolves around the development of a model h capable of predicting the
remaining useful life y of the system, using a set of input variables x. The former is an
optimization problem that can be denoted as:

argmin
h ∈H

∑ S(y− h(x)) (22)

where y and h(x) are, respectively, the expected and estimated RUL. H is the set of the
different models to be tested by the optimization process and S is a scoring function
defined as the average of the Root-Mean-Square Error (RMSE) and NASA’s scoring function
(Ns) [36]:

S = 0.5 · RMSE + O.5 · Ns (23)
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Ns =
1
M ∑ exp(α|y− ŷ|)− 1 (24)

M being the number of samples and α being equal to 1
13 in case that Ŷ < Y and 1

10 otherwise.

3.2. Datasets

The experiments have been carried out using three different datasets: a dataset of ac-
celerated degradation of bearings, a dataset of commercial lithium iron phosphate/graphite
cells cycled under fast-charging conditions, and a dataset of simulated run-to-failure turbo-
fan engines. Those three datasets are focused on RUL prediction. Each of these datasets
will be described below.

3.2.1. PRONOSTIA Dataset

The first dataset used is the bearing operation data collected by FEMTO-ST, a French
research institute, on the PRONOSTIA platform [37]. Figure 4 shows a diagram of the
platform and the sensors used to collect data on it. To gather the data, three operating
conditions were used to accelerate the degradation of the bearings: 1800 rpm of rotating
speed with 4000 N of payload weight, 1650 rpm and 4200 N, and 1500 rpm and 5000 N.

Figure 4. PRONOSTIA platform [37].

They employed two sensors, set in the x-axis and y-axis of the bearing. The data were
acquired every 10 s for 0.1 s, with a frequency of 25.6 kHz. Therefore, each time series has
2560 data points. The experiment was stopped when the vibration amplitude exceeded the
threshold of 20 g. It is assumed that the remaining useful life (RUL) will decrease linearly
from the maximum value (total time of the experiment) to 0. For this experiment, the RUL
is normalized to be between 0 and 1. Figure 5 shows the two full history signals of one of
the bearings.
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1x10 1x10

Figure 5. Bearing 1−1 (condition 1, bearing 1) of the PRONOSTIA dataset. x-axis is the time
dimension and y-axis the accelerometer amplitude.

To train the network, inputs are generated taking random windows of 256 data points
during the 0.1 s sampling period. The RUL is computed as

tend−tsample
tend

, where tend is the
total time of the experiment and tsample is the time of the treated sample. The vertical and
horizontal sensor values are normalized by dividing them by 50, as the range of values
of the sensors is [−50, 50]. To train the network, bearings 1, 3, 4, and 7 are selected, while
bearings 2, 5, and 6 are used in the test set.

3.2.2. Fast-Charging Catteries

Severson et al. [38] recently made available a large public dataset of 124 LFP-graphite
cells. These cells underwent cycles to 80% of their initial capacities under various fast-
charging conditions ranging from 3.6 to 6 C in an environmental chamber at 30 ◦C. Subse-
quently, the cells were charged from 0% to 80% SOC using one-step or two-step charging
profiles. All cells were then charged from 80% to 100% SOC to 3.6 V and discharged to
2.0 V, with the cut-off current set to C/50. During the cycling test, the cell temperature was
recorded and the internal resistance was obtained at 80% SOC.

The entire dataset is made up of three batches, but for this paper, only the first batch
is used, which consists of 47 battery experiments. Fifteen of these experiments were used
to test the model, while the remaining experiments were used for training. Nine features
were used to train the model, with a window of 256 data points taken from each charging
or discharging cycle.

The RUL is calculated using the formula tend − tsample, where tend is the total time of
the experiment in cycles and tsample is the current cycle of the analyzed sample. The input
features are scaled between 0 and 1 by computing the minimum and maximum values from
the training samples, which are then used to scale both the training and testing datasets.

3.2.3. N-CMAPSS Dataset

The Commercial Modular Aero-Propulsion System Simulation (CMAPSS) is a model-
ing software developed at NASA. It was used to build the well known CMAPSS dataset [36]
as well as the recently created N-CMAPSS dataset [39]. N-CMAPSS was created providing
the full history of the trajectories starting with a healthy condition until the failure occurs.
A schematic of the turbofan model used in the simulations is shown in Figure 6. All
rotation components of the engine (fan, LPC, HPC, LPT, and HPT) can be affected by the
degradation process.
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Figure 6. Schematic of the model used in N-CMAPSS [39].

Seven different failure modes, related to flow degradation or subcomponent efficiency,
that can be present in each flight have been defined. The flights are divided into three classes
depending on the length of the flight. Flights with a duration from 1 to 3 h belong to class
1, class 2 consists of flights between 3 and 5 h, and flights that take more than 5 h fall into
class 3. Each flight is divided into cycles, covering climb, cruise, and descend operations.

The input variables used are the sensor outputs xs, the scenario descriptors w, and
auxiliary data a. The different variables available to estimate the RUL of the system are
described in Table 1.

Table 1. Variable description, symbol, units and variable set.

Symbol Set Description Units

alt W Altitude ft
Mach W Flight Mach number -
TRA W Throttle-resolver angle %
T2 W Total temperature at fan inlet °R
Wf Xs Fuel flow pps
Nf Xs Physical fan speed rpm
Nc Xs Physical core speed rpm
T24 Xs Total temperature at LPC outlet °R
T30 Xs Total temperature at HPC outlet °R
T48 Xs Total temperature at HPT outlet °R
T50 Xs Total temperature at LPT outlet °R
P15 Xs Total pressure in bypass-duct psia
P2 Xs Total pressure at fan inlet psia

P21 Xs Total pressure at fan outlet psia
P24 Xs Total pressure at LPC outlet psia
Ps30 Xs Static pressure at HPC outlet psia
P40 Xs Total pressure at burner outlet psia
P50 Xs Total pressure at LPT outlet psia
Fc A Flight class -
hs A Health state -

The model used in the experimentation was designed and implemented by the authors
and it received third place in the 2021 PHM Conference Data Challenge [40]. The former
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20 variables have different scales, thus a z-score normalization is applied to homogenize
the variables scale:

x′f =
x f − µ f

σf
(25)

where x f is the data of a feature f , and µ f and σf are their mean and standard deviation,
respectively.

The network inputs are generated by sliding a time window through the normal-
ized data, with the window size denoted as Lw and determined during model selection.
The inputs are defined as

Xk
t = [X̃ k

tend−Lw
, . . . , X̃ k

tend
]

where tend is the end time of the window (see Figure 7). The corresponding ground truth
RUL label for each input is denoted as Yt. This method generates Tk − Lw samples for each
unit, where Tk represents the total run time in seconds of the unit.

Figure 7. Sliding window. Note that the different colors are only to ease visualization.

The ground-RUL label has been defined as a linear function of cycles from the RUL of
each unit Yk

t = TULk − Ck
t , where TULk is the total useful life of the unit k in cycles and Ck

t
is the number of past cycles from the beginning of the experiment at time t.

3.3. The Black-Box Models

The black-box models are all a Deep Convolutional Neural Network (DCNN). The clas-
sical DCNN architecture, which is shown in Figure 8, can be divided into two parts. The first
part consists of a stacking of Nb blocks, each of which consists of Cbs stacked sub-blocks
that include convolutional and pooling layers. The main objective of this part is to extract
relevant features for the task at hand. The second part is made up of two fully connected
layers, which are responsible for performing the regression of the RUL. The output layer
uses the rectified linear unit (ReLU) activation function, since negative values in the output
are not desired. The detailed parameters of the networks can be found in Table 2.

While it is possible that these architectures could be considered simple from the
perspective of the current state-of-the-art in deep learning, they are still complex enough to
not be directly interpretable models. Thus, they are still valuable for achieving the goals
of this paper. Other models such as recurrent networks and transformers can be used for
time-series analysis. However, applying some of the model-specific XAI methods studied
in this paper can be challenging due to the accumulation of information within recurrent
cells or the self-attention mechanism of transformers. In these cases, other methods such as
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attention mechanisms may be more commonly used to extract explanations and interpret
how the model processes the time-series data.

2D Convolution Batch Normalization Activation function Pooling 2x2 Dropout ReLU outputFully connected layer

Figure 8. DCNN network architecture used in experiments.

Table 2. Parameters of the black-box model developed.

Parameter PRONOSTIA N-CMAPSS Fast Charge

Lw 256 161 512

Bs 32 116 32

Cbs 2 4 3

Ncb 4 4 3

f c1 118 256 168

f c2 100 100 24

kernelsize (1, 10) (3, 3) (1, 10)
σconv ReLU tanh ReLU

drate 4 2 4

σf c ReLU Leaky ReLU tanh

σoutput ReLU ReLU ReLU

Net params 3.0× 106 1.5× 106 2.8× 106

RMSE 0.24 10.46 84.78

MAE 0.17 7.689 51.98

NASA score 0.015 2.13 -

CV S score - 6.30 -

std(S) - 0.37 -

3.4. Experiments

The experiments were conducted using sets of 256 data samples for each dataset.
These samples were not used during the model training phase. The 8 proxies, that were
defined in Section 2.3, were computed for each sample, and the final score for each proxy
was determined by taking the mean of the 256 samples as described in the Algorithm 1.
This process was repeated for each XAI method studied.

For both LIME and SHAP, five perturbation methods were tested: zero, one, mean,
uniform noise, and normal noise. In the case of selectivity, due to performance issues,
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groups of 10 features, ordered by importance, were considered for computing the AUC.
The number of samples used to train the surrogate model in LIME and SHAP was selected
as 1000 to ensure reasonably good performance of the linear model and acceptable time
performance. However, these two methods are 10 times slower than the rest.

Algorithm 1 Algorithm to compute each proxy on the test set

X is a set of N samples
P is a proxy
N ← |X|
S← 0
for xi ∈ X do

si ← P(xi)
S← S + si

end for
return S

N

For the remaining XAI methods, the replace-by-zero perturbation method has been
used since, in the experiments performed, it provided the best results. Finally, in Grad-
CAM, different values between 0 and 1 for β and σ (factors adjusting the contribution of
the time and feature components in the computation of feature importance) were tested
using a grid search methodology with a step of 0.1. Furthermore, heat maps were extracted
for each convolutional layer to study the best layer for explaining the predictions of the
DCNN model on this dataset. It is important to note that the gradients are distributed
differently depending on its depth within the network (Figure 9), which means that the
last convolutional layer, commonly exploited in the literature, may not be the best to solve
all problems. By using the proxies, it is possible to assess which is the best layer from the
perspective of explainability.

Figure 9. Grad-CAM feature map distribution over the input depending on its depth within the net-
work. The green squares are the feature maps of the network. Each pixel in the feature map
corresponds to a specific region in the input image that contributed to the activation of that pixel. The
activation of a pixel in the feature map indicates that the corresponding region in the input image
contains important information that is relevant to the model’s prediction.

3.5. Results

The results for each method are presented in Tables 3–5.
For the model trained with the PRONOSTIA dataset, Grad-CAM obtained the highest

results for three out of the eight proxies tested, and for selectivity, completeness, and coher-
ence, the values were close to the maximum. When the average results for each method
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were considered, Grad-CAM achieved the best overall performance. The optimal result for
Grad-CAM was obtained using β = 0.5, σ = 0.5, and computing the gradient with respect
to the third layer of the network.

Table 3. This table shows the result of different proxies for the PRONOSTIA dataset. Perm: Permuta-
tion, I: Identity, Sep: Separability, Sel: Selectivity, Sta: Stability, Coh: Coherence, Comp: Completeness,
Cong: Congruence, Acu: Acumen. The maximum value for each proxy has been highlighted in bold.

Method Perm I Sep Sta Sel Coh Comp Cong Acu Total

SHAP mean 0.0 1.000 −0.009 0.533 0.054 0.989 0.105 0.495 0.382
SHAP n.noise 0.0 1.000 0.020 0.532 0.053 0.991 0.103 0.485 0.386
SHAP u.noise 0.0 1.000 0.078 0.521 0.032 0.994 0.084 0.487 0.387
SHAP zero 0.0 1.000 0.011 0.529 0.012 0.997 0.045 0.519 0.371
SHAP one 1.0 1.000 −0.015 0.528 0.093 0.997 0.128 0.402 0.533

GradCAM 1.0 0.976 0.368 0.531 0.141 0.980 0.134 0.206 0.542

LRP 0.0 1.000 0.042 0.536 0.158 0.970 0.133 0.502 0.406

Saliency 1.0 1.000 −0.122 0.544 0.155 0.975 0.131 0.180 0.526

Lime mean 0.0 1.000 0.038 0.538 0.040 0.986 0.081 0.553 0.383
Lime n.noise 0.0 1.000 0.034 0.538 0.042 0.985 0.083 0.537 0.383
Lime u.noise 0.0 1.000 −0.043 0.530 0.032 0.985 0.071 0.525 0.368
Lime zero 1.0 1.000 0.108 0.529 0.008 1.004 0.036 0.500 0.526
Lime one 1.0 1.000 0.016 0.540 0.052 0.992 0.101 0.435 0.529

Table 4. This table shows the result of different proxies for the fast-charging batteries dataset. Perm:
Permutation, I: Identity, Sep: Separability, Sel: Selectivity, Sta: Stability, Coh: Coherence, Comp:
Completeness, Cong: Congruence, Acu: Acumen. The maximum value for each proxy has been
highlighted in bold.

Method Perm I Sep Sta Sel Coh Comp Cong Acu Total

SHAP mean 0.000 1.000 0.119 0.584 0.097 0.903 0.121 0.418 0.405
SHAP n.noise 0.000 1.000 0.120 0.588 0.100 0.900 0.122 0.383 0.402
SHAP u.noise 0.000 1.000 0.180 0.616 0.107 0.893 0.121 0.303 0.403
SHAP zero 1.000 1.000 0.153 0.597 0.093 0.908 0.130 0.536 0.552
SHAP one 1.000 1.000 0.176 0.526 0.077 0.923 0.113 0.269 0.510

LRP 0.441 1.000 0.007 0.659 0.073 0.936 0.076 0.492 0.460

GradCAM 1.000 1.000 0.259 0.664 0.063 1.050 0.080 0.317 0.554

Saliency 1.000 0.990 0.163 0.517 0.170 0.831 0.157 0.452 0.535

Lime mean 0.023 1.000 0.456 0.595 0.087 0.913 0.116 0.501 0.461
Lime n.noise 0.023 1.000 0.447 0.598 0.087 0.914 0.115 0.529 0.464
Lime u.noise 0.027 0.999 0.333 0.632 0.102 0.899 0.114 0.227 0.417
Lime zero 1.000 1.000 0.512 0.608 0.221 0.781 0.156 0.296 0.572
Lime one 1.000 1.000 0.601 0.537 0.065 0.936 0.061 0.138 0.542

For the model trained with the fast-charging batteries dataset, Grad-CAM achieved
the highest results in four out of the eight proxies. In this case, the scores obtained for
coherence and congruence are bad; they are almost 50 percent lower than the best result
obtained by LIME and Saliency respectively. The network layer that achieved the best
results was the first layer with β = 0.5, σ = 0.9.

Regarding the model trained with the N-CMAPSS dataset, the table indicates that
Grad-CAM achieved the highest value for five out of the eight proxies tested, and for
selectivity and completeness, the values were close to the maximum. The optimal result for
Grad-CAM was obtained using β = 0.9, σ = 0.0, and computing the gradient with respect
to the second layer of the network.
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Table 5. This table shows the result of different proxies for the N-CMAPSS dataset. Perm: Permuta-
tion, I: Identity, Sep: Separability, Sel: Selectivity, Sta: Stability, Coh: Coherence, Comp: Completeness,
Cong: Congruence, Acu: Acumen. The maximum value for each proxy has been highlighted in bold.

Method Perm I Sep Sta Sel Coh Comp Cong Acu Total

SHAP mean 0.000 1.000 0.033 0.582 0.120 0.973 0.152 0.505 0.421
SHAP n.noise 0.000 1.000 0.037 0.581 0.116 0.968 0.150 0.501 0.419
SHAP u.noise 0.000 1.000 0.027 0.581 0.125 0.961 0.162 0.503 0.420
SHAP zero 1.000 1.000 0.226 0.800 0.152 1.010 0.149 0.761 0.637
SHAP one 1.000 1.000 0.200 0.692 0.173 0.969 0.169 0.349 0.569

GradCAM 1.000 1.000 0.653 0.702 0.196 0.948 0.170 0.435 0.638

LRP 1.000 1.000 −0.037 0.599 0.180 0.967 0.165 0.495 0.546

Saliency 1.000 0.999 0.055 0.434 0.174 0.972 0.163 0.516 0.539

Lime mean 0.004 1.000 0.130 0.569 0.173 0.962 0.161 0.685 0.461
Lime n.noise 0.008 1.000 0.131 0.572 0.173 0.960 0.162 0.677 0.460
Lime u.noise 0.012 1.000 0.109 0.560 0.166 0.960 0.162 0.577 0.443
Lime zero 1.000 1.000 0.554 0.835 0.160 1.017 0.146 0.753 0.683
Lime one 1.000 1.000 0.349 0.728 0.184 0.969 0.166 0.069 0.558

It is interesting to note that the optimal values for the hyperparameters β and σ were
different for the different models. This highlights the importance of tuning these parameters
to the specific characteristics of the dataset and the model being used.

Note that, among all the proxies considered in this work to assess the quality and
consistency of XAI methods explanations, Grad-CAM achieves the worst result when
evaluated using the acumen proxy, defined in this work.

Since Grad-CAM tends to produce the best results in a few of the proxies, it is con-
sidered the more robust method. Further analysis has been carried out to understand the
behavior of the method under different settings for each of the studied proxies, with the
exception of the identity proxy, which is always 1 in Grad-CAM. Figures 10–12 compare
the scores obtained by Grad-CAM when applied to each convolutional layer of the DCNN.
Table 6 summarizes the kind of correlation of each proxy with the depth of the layer in
the network. The selectivity, stability, separability, and coherence proxies tend to have an
inverse correlation with respect to the depth of the layer. Conversely, the acumen proxy
presents a direct correlation with the layer depth.

Table 6. This table shows the kind of correlations of each proxy with the depth of the layer in the
network. Sep: Separability, Sel: Selectivity, Sta: Stability, Coh: Coherence, Comp: Completeness,
Cong: Congruence, Acu: Acumen.

Sta Sel Coh Comp Con Acu Sep

PRONOSTIA I I - - D - -
Fast-charging batteries I I I - I D I
N-CMAPSS I I I D D D I

The inverse correlation may be due to the existence of large groups of features having
a higher likelihood of including features that impact the proxy negatively. For example,
in the case of selectivity, a group that is considered important as a whole could contain
samples with low importance. Therefore, for these proxies it is better to consider features
independently, instead of as a group.

Figure 13 shows the influence of the time contribution, which is controlled by the
factor β. The factor being discussed shows a direct correlation with all proxies except
completeness, selectivity, and acumen, which exhibit an inverse correlation. In general, it
can be concluded that increasing the weight of the time dimension in Grad-CAM could be
beneficial for explainability in time-series for RUL.
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Figure 10. Grad-CAM behavior for each proxy and layer on the PRONOSTIA dataset. Each point
represents an evaluation of the proxy, and the blue line shows the trend across the layers.

Figure 11. Grad-CAM behavior for each proxy and layer on the fast-charging batteries dataset. Each
point represents an evaluation of the proxy, and the blue line shows the trend across the layers.
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Figure 12. Grad-CAM behavior for each proxy and layer on the N-CMAPSS dataset. Each point
represents an evaluation of the proxy, and the blue line shows the trend across the layers.

Figure 13. Grad-CAM behavior for each proxy with respect to β. Note that the different colors are
only to ease visualization.
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On the other hand, Figure 14 shows the influence of the feature contribution. In this case,
the trend is less clear, except for completeness, which presents a strong direct correlation.

Figure 14. Grad-CAM behavior for each proxy with respect to σ. Note that the different colors are
only to ease visualization.

4. Discussion

This paper is focused on the under-researched area of XAI methods for time series
and regression problems. The first aim of this paper was to review existing papers on XAI
addressing such topics, with an emphasis on the use of quantitative metrics to compare XAI
methods. Then, a comparison among the most promising XAI methods was carried out on
a highly complex model, as is the DCNN, applied to time series regression problems within
the context of PHM. With this aim, a number of experiments were performed, quantifying
the quality of explanations, provided by the XAI methods, by computing eight different
proxies. Results showed that Grad-CAM was the most robust XAI method among the ones
tested, achieving the highest values for a few of the eight proxies and being close to the
maximum in two others in the three experiments carried out.

In addition to comparing various XAI methods through quantitative proxies, this paper
also makes two additional contributions: First, by introducing a new quantitative proxy
called acumen, which measures a desirable property of any XAI method and highlights the
breach of this property by Grad-CAM. Second, by proposing an extension of Grad-CAM
that takes into account time and attribute dependencies (where such contributions can be
modulated). Results showed that this extension improves the performance of Grad-CAM
in all of the studied experiments. This is achieved thanks to the ability to adapt Grad-CAM
to the nature of the different datasets by adjusting the contribution of the time and attribute
dependencies (by means of β and σ parameters).
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The results also showed that the impact of the layers and the time component con-
tribution β on Grad-CAM varied for different proxies, showing for some of them a direct
correlation and for others an inverse correlation. These findings demonstrate the impor-
tance of considering time and attribute dependencies when evaluating the performance of
XAI methods in time series and provide valuable insights for future research in this area.

The results of this study highlight the need for further research in this area and the
importance of developing better XAI methods for time series and regression problems,
particularly in the PHM field.

The experiments were carried out using deep neural networks trained to predict the
remaining useful life of various datasets, which belongs to a type of regression problem that
has received little attention in XAI. All the code to reproduce the experiments, along with
the data and the model, is provided to allow the research community to further explore
these findings. Overall, this paper makes a valuable contribution to the field of XAI by
addressing important gaps in the literature and presenting novel approaches for time series
and regression problems.

5. Future Work

There are several potential directions for future research in the area of XAI for RUL in
time-series.

First, it would be interesting to explore the use of XAI methods on recurrent neural
networks (RNNs), transformer-based architectures, and other more complex neural network
architectures such as ResNet or DenseNet for RUL prediction tasks. Recurrent neural
networks (RNNs) and transformer-based models have shown great success in capturing
sequential and long-term dependencies, which are crucial for RUL prediction tasks that
involve time-series data. Therefore, the study of which XAI methods, including attention
mechanisms among others, work better in these architectures could be valuable for the
research community.

Second, an interesting avenue for future research is the composition of layers with
Grad-CAM. This work has shown insight into the fact that the depth of the layer is de-
pendent for some proxies. Therefore, optimizing the contribution of a few layers could
improve the score of the proxies capturing different aspects of the signal.

Overall, future work in this area should focus on developing more effective and
interpretable models or methods that can provide insight into not only the part of the signal
responsible for the prediction, but also the specific characteristics of the signal. This will
enable domain experts to make informed decisions based on the model’s outputs more
easily and effectively.
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Abbreviations
The following abbreviations are used in this manuscript:

AUC Area under the curve
CMAPSS Commercial Modular Aero-Propulsion System Simulation
DCNN Deep Convolutional Neural Networks
DL Deep learning
EM Explicable Methods
Grad-CAM Gradient-weighted Class Activation Mapping
LRP Layer-wise Relevance Propagation
LIME Local Interpretable Model-agnostic Explanations
LSTM Long Short-Term Memory
ML Machine learning
PHM Prognostics and health management
RMSE Root Mean Square Error
RUL Remaining useful life
SHAP SHapley Additive exPlanations
XAI Explainable Artificial Intelligence
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