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Abstract: In this paper, we built an automated machine learning (AutoML) pipeline for structure-
based learning and hyperparameter optimization purposes. The pipeline consists of three main
automated stages. The first carries out the collection and preprocessing of the dataset from the Kaggle
database through the Kaggle API. The second utilizes the Keras-Bayesian optimization tuning library
to perform hyperparameter optimization. The third focuses on the training process of the machine
learning (ML) model using the hyperparameter values estimated in the previous stage, and its
evaluation is performed on the testing data by implementing the Neptune AI. The main technologies
used to develop a stable and reusable machine learning pipeline are the popular Git version control
system, the Google cloud virtual machine, the Jenkins server, the Docker containerization technology,
and the Ngrok reverse proxy tool. The latter can securely publish the local Jenkins address as public
through the internet. As such, some parts of the proposed pipeline are taken from the thematic area of
machine learning operations (MLOps), resulting in a hybrid software scheme. The machine learning
model was used to evaluate the pipeline, which is a multilayer perceptron (MLP) that combines
typical dense, as well as polynomial, layers. The simulation results show that the proposed pipeline
exhibits a reliable and accurate performance while managing to boost the network’s performance in
classification tasks.

Keywords: AutoML; MLOps; structure learning; hyperparameter optimization; Bayesian optimization;
multilayer perceptron

1. Introduction

Automated machine learning (AutoML) is a rapidly growing field that exemplifies
the systematic and automated development and deployment of machine learning (ML)
tools [1,2]. The impetus to the wide spread of AutoML techniques was given by the need to
avoid manual interference (i.e., trial-and-error choices) in model’s design, which have been
recognized as a time-consuming procedure, without giving guarantee for the ML model’s
accurate performance [3,4]. In the framework of AutoML, the model’s creation becomes
easier, in the sense that it requires a minimal (or at the best scenario not at all) designer’s
manual correction. As a result, it can be viewed as an alternative to more traditional
considerations [5,6], operating as a vehicle, to alleviate the high demands for experts in
building ML applications [7]; this is a fact that appears to be very appealing in commercial
software production [8]. In addition, under the umbrella of AutoML, the ML approaches
become accessible to non-expert users [9], thus enabling the organizations to leverage the
power of ML in effectively solving a variety of real-world problems [1].

So far, several libraries have been designed to perform AutoML procedures. Among
others, we can mention the Auto-Weka [10], Auto-Keras [11], Auto-Pytorch [12], Auto-
Sklearn [13], etc. In addition, AutoML structures have been used over a wide range of
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applications, such as classification [14,15], regression analysis [16], remote sensing [17],
cyber-security and privacy [18,19], medical applications [20], web-based applications [21],
time-series analysis [22], etc.

The basic philosophical idea behind AutoML techniques is the simultaneous training
of several models over the same data set, and then we select the best one, based on
establishing an effective evaluation strategy [23,24]. Overall, this encircles several stages
applied in sequence, which are shown in Figure 1.
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Figure 1. The typical pipeline of an AutoML approach involves four basic stages: data preprocessing,
feature engineering, model generation, and model validation (each one of the above stages involve
several tasks, where a subset of these tasks is developed and implemented in a specific application).

The first stage concerns the data preprocessing and is carried out in terms of [4,8,22,23,25]:
(a) data collection approaches that generate a proper data set to train an ML model, (b) data
visualization techniques, which are employed to assist the data analyst in comprehending
the internal data structure, (c) data cleaning mechanisms that eliminate the noise existing
in the available data set and avoid the creation of compromised models, and (d) data
augmentation procedures that are used to extend the original data set and enhance the
model’s robustness by avoiding overfitting problems. The second stage uses feature
engineering mechanisms to extract features from the raw data and to make more convenient
the design of ML algorithms in effectively describing the data [4]. Mainly, it is projected on:
(a) feature selection algorithms that act to reject features from the original feature set, which
appear to be redundant, or they deteriorate the model’s performance [8], and (b) feature
extraction methods that perform dimensionality reduction using specialized functional
data transformations thus, altering the original data features [4,9]. The third stage concerns
the model generation and is recognized as the very core of an AutoML approach. Model
generation is performed in terms of two processes, namely, structure identification and
architecture optimization [4,9]. Structure identification concerns the determination of the
ML approach that best solves the problem at hand. Typical structures commonly used
are neural networks or deep neural networks [4,9,25]. The next process is to optimize the
architecture and the set of hyperparameters (e.g., learning rate, number of layers, etc.) and
come up with the best ML model [22,26,27]. The final stage focuses on the assessment of
the model’s performance, which can be carried out in terms of well defined performance
measures [4,9].

A thematic area close to AutoML concerns the ML Operations (MLOps) practices.
MLOps constitute a set of tools and mechanisms able to enhance the collaboration between
data scientists and IT professionals in applying and maintaining ML models [28,29]. In
turn, MLOps practices are in the position to assist the risk management associated with
deploying ML models in production by providing traceability, monitoring, and testing
capabilities [28,30,31]. In general, two major issues are considered in designing MLOps
procedures [28,30,32]. The first one is related to compatibility problems arising from the
fact that MLOps practices integrate a wide range of heterogeneous tools, technologies, and
software environments. The second issue reflects on the risks of errors and failures in a
software production environment. To reduce the above risks, it is important to perform
robust monitoring and testing [4]. The main components that MLOps implementations
offer to ML software production are: (a) collaboration and communication, (b) automation
and orchestration, and (c) monitoring and testing. The former optimizes the model’s
development and deployment in terms of continuous integration and continuous delivery
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(CI/CD) practices. The latter enhances the production of highly effective and reliable ML
models [28,33]. CI/CD mechanisms are very essential in MLOps’ development because
they establish real-time model testing and deployment [34]. These mechanisms involve the
design of different versions of software frameworks to handle code changes and to create
automated testing tools for quality assessment and deploy software automation tools to
manage the rollout of the above code changes [35,36], with the ultimate purpose being
the automatic production of software applications in a continuous and iterative manner,
utilizing less time and effort [34–36].

This paper proposes a ML software development pipeline that combines AutoML
with MLOps practices to build, tune, validate, and monitor ML models for the test case
of data classification problems. The framework is synthesized by a sequence of steps that
encompass edge technologies, such as Git version control, Github repository, Jenkins server,
Ngrok, and Neptune AI. The ML structures employed are multilayer perceptron (MLP)
type of neural networks that involve dense layers, with typical activation functions and
layers with Hermite polynomial activation functions, thus resulting in a hybrid network
architecture. Certain simulation experiments are carried out to monitor and validate
the pipeline.

The rest of the paper consists of the following sections. Section 2 reports the related
studies and discusses the novelty of the current contribution. Section 3 presents a detailed
analysis of the structure and functionality of the proposed methodology. Section 4 illustrates
the experimental results. Finally, the paper concludes in Section 5.

2. Related Studies and the Current Contribution

In recent years, the AutoML thematic area has gained the attention of a growing
number of researchers, mainly due to its capability to engage ML algorithms with the
systematic software production at the level of organizations and companies that operate on
software development. As such, several theoretical and practical results have been acquired
so far. In this section, some methodologies, related to the one proposed in this paper, are
briefly described and discussed.

One of the most studied applications of AutoML is its usage in classification problems.
Singh et al. [20] created a programming environment for classifying various hepatic diseases
using ML models. The environment was a software platform synthesized by three libraries,
namely, Auto-WEKA [10], Auto-Keras [11], and Auto-Sklearn [13]. The resulting pipeline
was a fully automated machine learning procedure. Durbha et al. [37] used various AutoML
procedures, each of which was compared to the corresponding standard ML model for the
test case of wireless signal classification. Specifically, the ML models that were embedded
in the AutoML framework were the Deep Residual Network, a typical Convolutional
Neural Network, and the Recurrent Neural Network [38]. The overall pipeline reduced the
vulnerability regarding white- and black-box attacks. The use of AutoML in constructing
voting classifiers was discussed in [14]. The task was to create an OE-IDS model by
combining AutoML and soft voting classification techniques. The implementation of the
methodology was carried out by using in sequence specialized data preprocessing to
obtain appropriate data distributions and feature selection to reduce the computational
cost. Pecnik et al. [15] proposed an AutoML pipeline to perform classification tasks by
embedding, in the whole optimization process, a nature-inspired algorithm that used a
set of individuals. The optimization algorithm was set to deal with the generation of the
proposed pipeline and the optimization of the model’s hyperparameters. The size of each
individual defined the dimensionality of the hyperparameter search space. To alleviate
certain problems related to the overall AutoML strategy, the method was implemented
in two sequential phases, where the design of the pipeline was the first phase, while the
optimal estimation of the hyperparameter set was the second one.

Other implementations concern the development and deployment of AutoML systems
for web-based and industrial applications. For example, to fully organize timeline and
schedules during the development of ML models in web-applications, Mukherjee et al. [21]
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proposed an AutoML pipeline that retains two key processes. The first referred to the need
of submitting the corresponding data frames based only on the requirement that the target
feature is located at the last feature of the database. The second one focused on the nature
of the task, i.e., whether it is a regression or classification problem. Kurian et [39] attempted
to extend the usual applications involved in the existing AutoML libraries, such as image
and text classification, to industrial systems that deal with time series data analysis. The
pipeline included a hyperparameter optimization approach encircled by a meta-learning
module, an application programming interface able to assist the user in creating custom
models, as well as a sophisticated user interface that provided an overall assessment by
displaying detailed instructions to guide the ML model’s optimization and deployment.

An important research area is the design of AutoML pipeline hyperparameter opti-
mization of neural networks. Javeri et al. [22] used an AutoML system to determine the
optimal neural network architecture regarding the forecast of intermediate length time-
series. Their key idea was to embed data augmentation techniques on the AutoML pipeline
based on predictions coming from statistical mathematical models. The whole procedure
was tested on COVID-19 data sets, where the results were promising as far as the neural
network’s structure identification and hyperparameter estimation are concerned. In this
direction, Stamoulis et al. [26] attempted to reduce the computational cost of developing
over-parametrized convolutional neural networks. This was accomplished by forcing the
hyperparameter optimization to obtain a reduced search overhead in terms of a single path
of computations.

Hyperparameter optimization has been recognized as a very important step for the
use of AutoML pipelines in determining the optimal architectures of neural networks. In
this direction, Esmaeli et al. [40] developed a hierarchical methodology to perform hy-
perparameter estimation using optimization searching steps that utilized an agent-driven
approach. One of the first attempts in this direction was published by Bartenet et al. in [41].
That work investigated the problem of implementing collaborative hyperparameter tuning
of the problem at hand by incorporating knowledge extracted from previous simulation ex-
periments. In that sense, previously explored optimal regions of the hyperparameter space
were considered to drive the new search and estimate the corresponding new optimal pa-
rameter values. The optimization approach was a surrogate-based technique implemented
in terms of Bayesian optimization.

Finally, the use of knowledge obtained from previous experiments was also investi-
gated in [19], where a privacy-preserved face detection method was proposed. In particular,
the previously learned experience acquired from previous tasks was used to assist currently
executed local tasks, without the need to upload raw image material to the AutoML system.
The reason behind this choice was the need to preserve privacy, since any attempt to upload
raw image material would negatively affect the assumed privacy requirements.

In this paper, an AutoML pipeline is presented, which uses a sequence of automated
processes to carry out the determination of the optimal structure and the hyperparameter
optimization of polynomial neural networks. As mentioned in the introductory section,
the pipeline consists of a sequence of automated technologies, such as the Git version
control, Github repository, Jenkins server, Ngrok, and Neptune AI. Note that some parts
of the proposed system were taken from the MLOps thematic area, resulting in a hybrid
software structure. The overall approach enables coordinated high-level collaboration
and communication among individuals working on the same ML project. Additionally,
it provides the link between the Git version control system, the Github online repository,
and the Jenkins server that manages the execution of Python scripts. In this manner, many
versions of the same product may be performed and tested in parallel, without interfering
with one another. Finally, the monitoring/testing step’s integration with the Neptune AI
platform enables easy tracking of any data generated by the ML model, making it simple to
analyze and, if necessary, return to rectify any probable code issues. This on-line monitoring
linked to the whole pipeline is crucial to the success of ML production.
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3. The Proposed Pipeline
3.1. The Overall Operational Structure of the Pipeline

The ML model that runs on the pipeline is a multilayer perceptron (MLP) that combines
layers with typical activation functions (e.g., Relu, Tanh, etc.) and layers with activation
functions represented as Hermite polynomials. The use of polynomial activation functions
was motivated by the research reported in [42,43], while the problem under consideration is
to perform classification tasks. The key point is to use the benefits of the AutoML workflow
and perform hyperparameter optimization in terms of Bayesian optimization. The ultimate
research target is to determine whether the presence of layers with polynomial activation
functions improves the classification accuracy or not.

The basic structure of the proposed pipeline encompasses three developing stages and
is illustrated in Figure 2.
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Figure 2. The proposed AutoML pipeline involves three stages: the Building Model stage, the
Hypermodel Training/Testing stage, and the Monitoring stage, where each one of the above stages
encompass several tasks implemented in sequence and in relation to the subsequent tasks.

The first stage refers to the building process of the ML model. The source code that
is being derived by the development team in the whole software cycle is tracked by the
popular Git version control system [44]. The main benefit provided by this stage is the
ability to construct and test any ML model configuration without considering intermediary
processes (such as the download and preparation of the dataset) that are traditionally
performed manually in ML model generation. Moreover, a master branch is created that
contains the final code and some custom branches, where each one of the developers work
on to test the derived code before merging it with the master branch. To this end, the
cooperation between different developers is accelerated, since the information is available
online and updated in a dynamic manner, as opposed to using static methods, such as
shared files.

In the second stage, cutting edge technologies are used to appropriately handle the
information flow. This stage performs the execution of the “runner.py” file, which includes
all the appropriate dependencies needed to allow the file to be correctly compiled and,
then, run the above-mentioned ML process. The main executing computer machine is
a virtual machine (VM) provided by Google, the characteristics of which are presented
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in Section 3.2.3. On the VM, the Docker software [45] is installed, and a Jenkins Docker
container [46] is created, which plays the role of the server that will handle the whole process
between developing and monitoring. The above containerization technology provides
flexibility in managing the Jenkins dependencies errors that may occur during the various
installations, which might not affect the VM itself. In this stage, Jenkins pull the source code
from Github that developers pushed. After checking all the appropriate functionalities,
such as the python version of the environment, Jenkins sends an execution request to the
physical processors of the VM. Additionally, Jenkins creates a job folder on the VM, where
all the files of the specific Jenkins job will be stored. At this point, it is emphasized that the
Jenkins server creates various jobs that can be executed in parallel (if the physical resource
system allows it). Moreover, Jenkins jobs can pull the source code from any working
branch, giving the ability to test ideas that are not approved, and which are yet to be
merged into the master branch, i.e., in the final ML product. In our application, the above-
mentioned execution is carried out in terms of the following steps: (a) connecting with the
Kaggle database, using the Kaggle API [47], (b) data preprocessing, (c) hyperparameter
optimization using Bayesian optimization, (d) training and evaluation of the resulting
ML models, and (e) sending monitoring requests to the Neptune AI platform [48] (see the
next stage below). It is strongly pointed out that the use of the docker containerization
technology is a crucial MLOps practice, as it provides a degree of isolation that prevents
conflicts between the various components of a ML pipeline. Traditionally, the whole process
would run in an executable computer program, and if anything goes wrong, technicians
will have to repair the entire system. The usage of Docker simply terminates the docker
container and begins a new one, saving further time. Moreover, Docker makes it simple to
scale applications by running several instances of a container, enabling the deployment of
ML models across numerous servers.

The third part of the pipeline contains the model’s monitoring process, which is carried
out by the Neptune AI platform. The monitoring process is also a crucial MLOps practice,
performed efficiently by the Neptune AI software. The main advantage provided by the
Neptune AI is the ability to effectively connect with Python codes by using specialized call-
back functions that track specific metrics (such as validation accuracy) during the training
and evaluation procedures. In addition, monitoring allows for tracking the performance
of the model over time, and it is in the position to record the exact time instant when the
model’s degradation starts to occur. This can be very helpful in identifying problems early
and taking action to improve performance.

3.2. Technologies Used in the Pipeline

In this section, the exact operation of each one of the technologies used in the pipeline
is analytically presented, including a reference to the Bayesian optimization that performs
the hyperparameter tuning process.

3.2.1. Git Version Control System

Git is a widely popular distributed version control system [44]. Its main task is to
manage/track changes, existing in a source code. It gives the capacity to the developers
in collaborating during the code creation and moreover to revert to any previous code
version if it is necessary [49]. Git has proven to be very effective in handling large projects,
supporting many contributors. The efficiency and productivity of software developers can
be improved via Git, allowing them to collaborate more effectively, and providing them a
clear record of code changes [49,50].

In this paper, the Git version control system is employed to track and manage code
changes in the resulting Python source codes. In addition, the proposed pipeline uses it to
revert the information flow to prior versions. This is especially handy when, on several
occasions, it is needed to return to a previous version of the model, as the current version
does not perform efficiently. Finally, the source code created in the model’s building stage
is stored in the Github repository, and it is pushed via the Git version control system.
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3.2.2. Jenkins Automation Server

Jenkins constitutes an open-source automation server that allows for automated build-
ing, testing, and deploying of produced software [46]. Its source code is written in Java
and offers several plugins, obtaining high-level support as far as the design of several
types of software is concerned, such as web-based, mobile, and cloud-based applications.
Its capability in providing full automation during the progress of software design and
implementation reflects on significantly lowering the needed time and effort [51,52]. A key
point that makes Jenkins very useful is its compatibility with many tools and technologies,
such as version control systems, testing frameworks, and deployment tools. As a result, it
can be used as a single control point in the entire software creation, spanning from source
code to applications [46].

In the current contribution, the Jenkins server constitutes the heart of the proposed
pipeline. Its main role is to organize information that exists in repositories, connect separate
technologies, and execute the appropriate tasks. Moreover, it is used to construct Jenkins
jobs, running within the pipeline.

In more details, the main target of using the Jenkins automation server is to establish
and handle the connection between the source code created in the building model stage
(stored in Github repository and pushed via the Git version control system), the execution of
the target file (i.e., the runner.py), and the connection with the monitoring system Neptune
AI. To accomplish the above target, a Jenkins job, inside the web interface, is properly
configured in order to be responsible for the whole process.

In this job, important pipeline parameters are defined, such as (a) the Github repository
that has to be connected with and pull the source code from it, (b) the appropriate security
level of this connection, (c) the Git branch to look in, and (d) the Jenkins script file that
contains configuration information about the pipeline steps and the automated built triggers
after Git commit events that enable the option of the job to run automatically after commits
(we used the option Github hook trigger for GITScm polling as our main source code
in Github).

3.2.3. Google Cloud Virtual Machines

Google Cloud Virtual Machines (VMs) are cloud-based computing resources that
allow users to run applications and workloads on virtual servers. They are part of the
Google Cloud Platform (GCP), which is a cloud computing platform that offers a range of
computing, networking, storage, and other services.

Google Cloud VMs provide flexible, scalable, and reliable computing resources on
demand, allowing users to easily configure VMs, meeting the specified requirements of
the corresponding applications and workloads. They also offer a wide range of features
and options, such as the ability to select from a variety of operating systems, processor
types, and memory sizes, as well as the ability to customize the networking and security
settings of the VMs [53]. Table 1 depicts the properties of the Google Cloud VM, used by
the proposed pipeline.

Table 1. Properties of the worker, chosen from the Google Cloud VM.

Component/Resource Google Cloud Platform

CPU 2 vCPU (Intel® Xeon® E5-2696V4 Processor Base frequency 2.2 (GHz))
CPU platform Intel Broadwell 5

Memory 8 GB RAM (4 GB RAM per CPU)
Operating System Debian 11.6 (bullseye)

Storage SSD Balanced persistent disk, 80 GB

3.2.4. Ngrok API

Ngrok is a reverse proxy tool, allowing for the exposure of a local server, public to
the internet. Usually, it is used for testing web applications, running on a local machine or
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shared local environment. One of the main advantages of Ngrok is its simplicity and ease
of usage. It requires minimal setup, and it is compatible with a variety of programming
languages and frameworks. Ngrok also offers several useful features, such as its ability to
inspect traffic and provide secure tunnels, which are helpful in debugging and testing [54].

In the proposed pipeline, Ngrok API is used to expose the Jenkins local web server
to the internet. This choice provided the ability to harmonically collaborate among the
members of the team and to access the Jenkins jobs through a secure public Ngrok web
address, without having to deploy it to a shared network or cloud environment.

3.2.5. Kaggle API

The Kaggle API is a set of tools designed for interacting with the Kaggle platform
from the command line. It allows the managing of the user’s Kaggle account and enables
both the download and the upload of datasets [47,55].

In the current framework, the efficient usage of Kaggle API is based on installing the
Kaggle Python package, along with corresponding user authentication. Once authenticated,
the API is employed to perform a list of appropriate actions, such as the data sets’ download.
In addition, the Kaggle API provides a convenient way to interact with Kaggle database
resources and services directly from the Python source code. The above configuration
empowers the automation of data retrieval (i.e., download) directly from the Kaggle
database into the pipeline, without having to manually download the data.

3.2.6. Docker Platform

Docker is a containerization technology that enables developers to bundle applications
and dependencies into lightweight, portable containers that may be launched on any
machine [56]. It has the capacity to assist in the creation, testing, and deployment of
consistent and dependable software applications [57]. As such, it allows the construction
and testing of programs on their own systems, using the same tools and dependencies
that are used in production, reducing the risks arising in different environments [56,58].
In addition, there exist certain security benefits associated with the usage of Docker. For
example, containers can operate in an isolated environment, without sharing the host
operating system’s kernel, making them less susceptible to security vulnerabilities. In
this direction, the employment of Docker can reduce the attack surface of applications,
as containers only include the necessary libraries and dependencies required for their
operation [58,59].

In the proposed pipeline, the Docker containerization technology assists the software
provisioning, i.e., the process of installing, configuring, and setting up software applications
for end-users inside an executor. As such, it is used to construct a Jenkins container, as
described in Section 3.2.2. The main benefit, arising from that choice, is that the software
provisioning, as far as the python libraries (i.e., Tensorflow, Keras, etc.) are concerned,
becomes independent from the local Google VM engine system, thus not affecting the local
system if something goes wrong in the provisioning step. Based on this MLOP practice, it
is feasible to save computational time by just destroying the Jenkins container instead of
applying a workaround debugging process, which is time consuming.

3.2.7. Monitoring through Neptune AI

Neptune AI is an open-source machine learning and data science platform that allows
researchers to track and share their work easily [48]. Through Neptune ML, metadata can
be organized in a single accessible place. In a nutshell, it provides the subsequent features
that are useful for building ML models [48]:

• Easy integration with popular libraries and tools (e.g., TensorFlow, Keras, PyTorch,
Scikit-Learn, etc.)

• A web-based interface for tracking and organizing experiments and projects
• Collaboration features that allow multiple people to work on the same project
• A platform for sharing and reproducing results
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• Flexibility in handling complex projects that deal with different experiments and the
proper data/results tracking

In the proposed pipeline, the Neptune AI platform constitutes the monitoring system,
which is an MLOps process. To accomplish this task, the pipeline employs Python callback
functions to track certain metrics, such as validation accuracy. These kinds of metrics are
available by the Neptune AI and can be easily integrated and combined with Tensorflow.
Finally, inside its web interface, the pipeline uses the comparison capabilities between
different simulations, offered by Neptune AI.

3.2.8. Polynomial Neural Network

The neural network used in this paper is a multi-layer perceptron (MLP) with several
layers. Each layer can be a typical layer, with standard activation functions, such as the
Relu or the Tanh, or a layer with activation functions, such as Hermite polynomials [42,43].
The Hermite polynomials, with order n, are generated by the next differential equation,

Hn(z) = (−1)nez2 dn

dzn e−z2
(1)

where z ∈ R. They are orthogonal under the next condition.∫ +∞

−∞
Hn(z) Hm(z) e−z2

dz = 2nn!
√

π δnm (2)

where δnm is the Kronecker delta. An easy way to obtain the Hermite polynomials is the
following recursion relation,

Hn(z) = 2 z Hn−1(z)− 2 (n− 1) Hn−2(z) (3)

with the initial conditions being as follows: H0(z) = 1 and H1(z) = 2z. The reason for
choosing Hermite polynomials is that, according to Equation (2), they are orthogonal
with respect to the whole set of real numbers, whereas other polynomials retain their
orthogonality over the interval [–1, 1], only.

In the MLP network under consideration, the nodes of each layer have the same
activation functions, while different layers may have different activation functions. Thus,
there exist many architectures, each of which uses a specific sequence of layers with different
activation functions. Figure 3 illustrates a possible network’s structure.
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Figure 3. A possible structure of the used MLP neural network, where the `− Layer has Hermite
polynomial activation functions and it is encircled by the (`− 1)− Layer that has ReLU activation
functions, and the (`+ 1)− Layer that has Tanh activation functions (i.e., different structures can be
obtained by changing the positions of the above types of layers).
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In this figure, the network admits an input data vector x = [x1, x2, . . . , xp] ∈ Rp,
and it includes L hidden layers, where three hidden layers in sequence are clearly shown,
i.e., the (`− 1)-Layer, the `-Layer, and the (`+ 1)-Layer, with ` = 1, 2, . . . , L. To study
the network’s functionality, it is assumed that the first of the above three layers includes
c`−1 with ReLU activation functions, the second includes c` nodes with n-order Hermite
polynomial activation function, while the third one includes c`+1 nodes with Tanh activation
functions. Thus, the outputs of these layers read as follows,

g(`−1)
i (z) = ReLU(z), i = 1, 2, . . . , c`−1 (4)

g(`)j (z) = Hn(z), j = 1, 2, . . . , c` (5)

g(`+1)
k (z) = Tanh(z), k = 1, 2, . . . , c`+1 (6)

The weight and bias matrices of the `-Layer are, respectively, written as,

b(`) =
[
b(`)1 , b(`)2 , . . . , b(`)c`

]T
(7)

W(`) =
[
w(`)T

1 , w(`)T
2 , . . . , w(`)T

c`

]T
(8)

where,

w(`)
j =

[
w(`)

j,1 , w(`)
j,2 , . . . , w(`)

j,c`−1

]T
, j = 1, 2, . . . , c` (9)

To this end, the output of the `-Layer is g(`) : Rc`−1 → Rc` and is calculated as,

g(`)(x) =
[

g(`)1 (x), g(`)2 (x), . . . , g(`)c` (x)
]T

(10)

with
g(`)j (x) = g(`)j

(
w(`)T

j g(`−1)(x) + b(`)j

)
(11)

Note that, in Equations (4)–(6), the variable z is: z = w(`)T
j g(`−1)(x) + b(`)j ∈ R.

The above analysis for the `-Layer is similarly applied to the rest of the layers, consid-
ering the respective activation functions, as reported in Equations (4)–(6).

3.2.9. Hyperparameter Tuning

Hyperparameter optimization concentrates on calculating optimal values for the set
of ML model’s hyperparameters, which obtain the best model’s classification performance
evaluated on the testing data set [60]. For example, in the case of a neural network,
the hyperparameters can be the number of layers, the learning rate, the batch size, etc.
Traditionally, the hyperparameters have been decided by the model’s designer before the
training process, while the model’s parameters have been calculated through the training
process. However, this strategy has imposed certain difficulties as far as the reproducibility
and reusability of the models are concerned [10,41,60]. Another difficulty reflects on the
fact that different datasets require different sets of hyperparameters. As such, the usage of
manual intervention in deciding an appropriate set of hyperparameters for a ML model
appears to be a complex task, which, in most of the cases, is not solved optimally [26,40,60].

The mathematical formulation of the hyperparameter tuning used in the current
contribution is described by the subsequent analysis.

Let S denote the available data set, and I symbolizes the ML algorithm chosen to
perform the modeling process, e.g., the Adam optimizer [61]. The set of hyperparameters
involved in the above modeling process is described as a = [a1, a2, . . . , am]. Thus, the
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number of hyperparameters is equal to m. The domain of values for the ith hyperparameter
is denoted as Ai, yielding a search space, written as

A = A1 ⊗ A2 ⊗ . . . ⊗ Am =
m
⊗

i=1
Ai (12)

where ⊗ stands for the product space operator. Thus, for the hyperparameter vector,
the following holds—a ∈ A. The data set S is divided into two disjoint sets, namely,
the training data set, Strain, and the testing data set, Stest, where the former is used to
train the model, while the latter is used to evaluate its performance. Substituting a set
of hyperparameter values, a, in algorithm, I, is symbolized as Ia, and the result is the
generation of a model to describe the dataset, S. To this end, the objective function to be
optimized reads as follows [60]:

aopt = argmin
a∈A

E(Strain , Stest)∼S=(L, Ia, Strain, Stest) (13)

where L is the user-defined classification loss function, obtained by implementing the
algorithm Ia on the training set Strain, and E stands for the expected value. Popular
approaches to quantify the function, =, are the holdout and the cross-validation error
for a given user-defined loss function [60]. On the other hand, the optimization of the
function, =, is usually carried out by specialized hyperparameter optimizers, such as the
Grid search method [60,62], the random search approach [60,63], the Bayesian optimization
algorithm [60,64,65], etc.

In this paper, the types of hyperparameters taken into account are,

• the learning rate parameter
• the number of layers
• the number of nodes in each layer
• the type of activation function in each layer (the activation function types are given in

Equations (4)–(6))

The domains of values that define the search space for the above hyperparameters are
given in Section 4.

In addition, in the current study, the loss function L is the cross-entropy objective
function, the algorithm Ia, to minimize the function, L, is the Adam optimizer [61]. The
hyperparameter objective function, =, is the validity accuracy, quantified by the rate
of the correct classified instances, while the hyperparameter optimizer is the Bayesian
optimization algorithm.

In view of Equation (13), the basic information flow in the hyperparameter tuning
framework used in this paper is as follows. The initialization of the hyperparameter
optimizer provides a set of hyperparameter values a to the classifier, and the algorithm
Ia employs those values to minimize the loss-function, L, using the training data set,
Strain. Then, the loss-function, L, is evaluated on the testing data, Stest, and the resulting
loss-function values are fed back to the hyperparameter optimizer, which uses them to
spotlight areas in the search space that include promising hyperparameter values that
optimize the function =. To this end, these hyperparameter values, a, are provided to the
algorithm Ia, and the above approach continues until convergence. It is emphasized that,
while the model’s parameters are optimized in terms of the training data set Strain, the
hyperparameters are estimated in terms of the values of the loss-function L, evaluated on
the testing data set, Stest. Therefore, the testing data are not used (i.e., as training data) by
the Bayesian optimizer, and, rather, their corresponding evaluated loss-function values are
employed to guide the selection of new hyperparameter values.

The problem with hyperparameter optimization is that minimizing the hyperparam-
eter’s objective function in Equation (13) is computationally intensive [40,60]. Each time,
different hyperparameters are used, and the model’s training and evaluation processes
are to be repeated. As mentioned above, to address that issue, various optimization ap-
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proaches have been applied, such as grid search [62], random search [63], and Bayesian
optimization [64,65].

Grid search [60,62] checks all the possible combinations of the hyperparameters and,
therefore, it is subjected to the problem known as the “curse of dimensionality problem”,
which directly implies that the whole procedure is very computationally complex.

An alternative to grid search is the random search [60,62], which tests random samples
in the hyperparameter search space, thus alleviating the intensive computational cost of
grid search.

Finally, the Bayesian optimization algorithm [60,64,65] treats the objective functions as
a sample taken from a Gaussian process over the hyperparameter search space. The result-
ing posterior probability gives information about the possible function’s global optimal
position. After the probabilistic model is generated, the algorithm utilizes an acquisition
function and searches the space by obtaining a tradeoff between exploration and exploita-
tion. Exploitation guides the search to nearby points, where the performance is likely to
increase, while exploration searches a different area of the search space, where another
local (or even the global) minimum exists. The choice of acquisition function is crucial
for the performance of the algorithm. The most used acquisition function is the expected
improvement [64,65]. Other options include the probability of improvement, the lower
confidence bound, and the upper confidence bound [60,64]. Figure 4 depicts the basic steps
of the Bayesian optimization algorithm.
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Figure 4. The basic structure of the Bayesian optimization algorithm, where four steps are involved
to detect promising areas (that may include local or global minimum) in the search space and guide
the selection of optimal hyperparameter values.

The Bayesian optimizer provides several advantages when applied to hyperparam-
eter tuning. For convenience reasons, some of them are enumerated, as follows: (a) it
incorporates prior knowledge about the hyperparameters to assist the search, such as
domain-specific knowledge or the results of previous runs, (b) it is able to handle con-
straints imposed on the hyperparameters, such as bounds on their values, etc., (c) taking
the advantage of the probabilistic model, it provides an efficient exploration of the search
space, and (d) it can effectively cope with noisy or expensive evaluations by using Gaussian
processes to model the uncertainty existing in the evaluations.

To this end, the proposed pipeline uses the Bayesian optimization approach to perform
the optimization of the objective function reported in Equation (13). To accomplish that
task, the Bayesian optimization tuner from the Keras API is used [66]. The basic arguments



Information 2023, 14, 232 13 of 29

of the tuner are depicted in Figure 5. The values of the arguments reported in the above
table and used in this paper are reported in Section 4.
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4. Experimental Study

This section presents the results of the simulations that were executed by the proposed
AutoML pipeline. Ten data sets were taken from the Kaggle ML database, using the Kaggle
API to perform the experiments, the properties of which are shown in Table 2.

Table 2. Properties of used data sets.

No Data Set Number of Instances Number of Inputs

1 Diabetes 767 8
2 Surgical 14,634 24
3 Anemia 1420 5
4 Heart Attack 3584 13
5 Room Occupancy 2664 5
6 Blood Transfusion 747 4

7 BankNote
Authentication 1371 4

8 Ionosphere 349 34
9 Brain Tumor 35 7465
10 Phishing Website 1352 9

As indicated in that table, small datasets were used to perform convenient experimen-
tation using less computational time to run each simulation case. To do so, an extra size
restriction of 10 Mb was used in the kaggle.api.dataset_list function, which was responsible
for searching for a dataset with a specific predefined criterion. That selection criterion was
to refine datasets that include less than 4000 sample instances. As shown in Table 2, nine out
of ten datasets fulfill the above criterion, except for the “Surgical” data set, which includes a
significantly larger number of instances. The reason behind that choice was the need to test
and compare at least one much larger data set in terms of computational time and accuracy,
as well. Another interesting case is the “Brain Tumor” data set, which, although it contains
a very small number of instance samples, the number of feature variables is very large.
Again, the target was to check whether there is a significant impact of the number of input
features upon the computational time needed by the pipeline to perform the simulations.
At this point, it is strongly emphasized that all data sets concern binary classification tasks.

Table 3 depicts the domains of values for the hyperparameters. All possible com-
binations between the hyperparameter values reported in that table define the hyper-
parameter search space. In addition, as shown in Table 3, the polynomial activation
functions were taken to be Hermite polynomials of second order, denoted as H2, i.e., in
Equations (3) and (5), it was set to n = 2.

Note that Table 3 states that three out of four types of hyperparameters utilize dis-
crete set values as their domains. Therefore, the hyperparameter search space is a hybrid
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space, combining real and discrete domains. It is especially noted that, for the last hy-
perparameter in Table 3, three types of activation function were used, as also analyzed in
Equations (4)–(6).

Table 3. The hyperparameter search space.

Hyperparameter Domain of Values

Learning rate {0.0001, 0.001, 0.01}
Number of layers {3, 4, 5}

Number of neurons [5, 30] with step 5

Type of activation function {“ReLU”, “Tanh”, “2nd order Hermite
polynomial (H2)”}

The implementation of the Bayesian optimization was carried out in terms of the
above hyperparameter search space. For computational complexity reasons, an upper limit
of 100 trials was chosen (i.e., the argument max_trials defined in Figure 5), meaning that,
for each dataset, at most, 100 models were trained and evaluated, and the validation results
were fed into the Bayesian optimization module.

Moreover, random seed was used to enhance the stochastic behavior of the optimizer
during different runs. Table 4 presents the values for parametric arguments of the Keras
Bayesian optimization tuner, which were defined in Figure 5.

Table 4. Values assigned to the arguments of the Keras Bayesian optimization tuner.

Argument Value

max_trials 100
num_initial_points 2

alpha 0.001
beta 2.6
seed random.seed

As mentioned previously, the loss function for the Bayesian optimization algorithm
was the validation accuracy evaluated on the testing data in terms of the amount of correct
classified instances. Relationally, the objective function for the training process of each
model was the cross-entropy, which was minimized using the Adam optimizer.

To conduct the experiments, each data set was randomly divided into a training set,
containing 60% of the original data, and a testing set, containing the rest of the 40% of the
original data. The models’ validation accuracies refer to the evaluations of the models on
the testing data.

The main research problem was to check whether the use of second order Hermite
polynomial activation functions can improve the accuracy of the MLP network in binary
classification tasks.

However, it is crucial to mention that evaluating the polynomial neural network is
not the core of our work but only the application through which the functionality of the
proposed pipeline is tested and evaluated.

To investigate the above problem, four experiments were conducted.
The first experiment concerned the monitoring of the trained models and selecting

the best three MLP neural network (NN) models, namely, NN_1, NN_2, and NN_3. The
selection was based on the best three validity accuracy performances on the testing data.
The results were derived from the whole machine learning training/testing process and
captured automatically by the Neptune AI platform using callbacks functions inside the
runner Python file. Tables 5–7, and Figures 6 and 7, depict the experimental results obtained
by the first experiment.
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Table 5. (First Experiment) Optimal hyperparameter values, classification (i.e., validation) accuracy
evaluated on the testing data, and total time needed to perform the hyperparameter optimization
(i.e., total hyper-tuning time) obtained by the three best neural networks: NN_1, NN_2, and NN_3
(Data sets: diabetes and anemia).

Data Set NN_1 NN_2 NN_3 Total Hyper-Tuning
Time (in Minutes)

Diabetes

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-5 nodes
Layer2: Tanh-15 nodes

Layer3: Hermite-30 nodes
Layer4: ReLU-5 nodes
Layer5: ReLU-5 nodes

Accuracy: 0.6938

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-15 nodes
Layer2: ReLU-30 nodes

Layer3: Hermite-5 nodes
Layer4: Tanh-30 nodes

Layer5: Hermite-30 nodes
Accuracy: 0.7003

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-15 nodes
Layer2: ReLU-30 nodes

Layer3: Hermite-5 nodes
Layer4: Tanh-30 nodes

Layer5: Hermite-30 nodes
Accuracy: 0.7166

41

Anemia

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: Hermite-25 nodes

Layer3: ReLU-25 nodes
Layer4: ReLU-5 nodes

Layer5: ReLU-20 nodes
Accuracy: 0.9735

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: Hermite-20 nodes

Layer3: ReLU-20 nodes
Layer4: ReLU-5 nodes
Layer5: Tanh-5 nodes

Accuracy: 0.9647

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: Hermite-25 nodes

Layer3: ReLU-30 nodes
Layer4: ReLU-5 nodes

Layer5: Hermite-5 nodes
Accuracy: 0.9612

47.59

Table 6. (First Experiment) Optimal hyperparameter values, classification (i.e., validation) accuracy
evaluated on the testing data, and total time needed to perform the hyperparameter optimization
(i.e., total hyper-tuning time) obtained by the three best neural networks: NN_1, NN_2, and NN_3
(Data sets: surgical, heart attack, room occupancy, blood transfusion, banknote authentication,
and ionosphere).

Data Set NN_1 NN_2 NN_3 Total Hyper-Tuning
Time (in Minutes)

Surgical

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: Hermite-5 nodes
Layer3: ReLU-10 nodes
Layer4: ReLU-20 nodes
Layer5: Tanh-30 nodes

Accuracy: 0.7982

learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: Hermite-20 nodes

Layer3: ReLU-15 nodes
Layer4: ReLU-30 nodes

Layer5: Hermite-5 nodes
Accuracy: 0.7931

learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: Hermite-5 nodes
Layer3: ReLU-10 nodes
Layer4: ReLU-25 nodes
Layer5: ReLU-25 nodes

Accuracy: 0.7948

237.42

Heart Attack

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: ReLU-30 nodes

Layer3: Hermite-5 nodes
Layer4: Hermite-30 nodes

Layer5: Tanh-5 nodes
Accuracy: 0.7685

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: ReLU-30 nodes
Layer3: ReLU-30 nodes
Layer4: ReLU-5 nodes

Layer5: Hermite/30 nodes
Accuracy: 0.8264

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: ReLU-30 nodes
Layer3: ReLU- 30 nodes
Layer4: ReLU-5 nodes

Layer5: Hermite-30 nodes
Accuracy: 0.8264

29.57

Room
Occupancy

Learning rate: 0.01
Number of layers: 5

Layer1: Hermite-30 nodes
Layer2: ReLU-10 nodes

Layer3: Hermite-20 nodes
Layer4: ReLU-5 nodes
Layer5: Tanh-5 nodes

Accuracy: 0.9762

Learning rate: 0.0001
Number of layers: 5

Layer1: Hermite-5 nodes
Layer2: ReLU-30 nodes

Layer3: Hermite-30 nodes
Layer4: ReLU-5 nodes

Layer5: Hermite-5 nodes
Accuracy: 0.9762

Learning rate: 0.0001
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: ReLU-10 nodes
Layer3: ReLU-30 nodes
Layer4: ReLU-5 nodes
Layer5: ReLU-5 nodes

Accuracy: 0.9762

51.96
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Table 6. Cont.

Data Set NN_1 NN_2 NN_3 Total Hyper-Tuning
Time (in Minutes)

Blood
Transfusion

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-5 nodes
Layer2: Hermite-30 nodes

Layer3: ReLU-30 nodes
Layer4: Hermite-30 nodes
Layer5: Hermite-30 nodes

Accuracy: 0.7224

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-5 nodes
Layer2: Hermite-5 nodes
Layer3: ReLU-30 nodes
Layer4: ReLU-5 nodes

Layer5: Hermite-5 nodes
Accuracy: 0.7425

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: Hermite-5 nodes
Layer3: ReLU-30 nodes
Layer4: ReLU-5 nodes

Layer5: Hermite-5 nodes
Accuracy: 0.7492

35.75

Banknote
Authentication

Learning rate: 0.0001
Number of layers: 4

Layer1: Tanh-20 nodes
Layer2: Tanh-20 nodes
Layer3: ReLU-30 nodes
Layer4: ReLU-15 nodes

Accuracy: 0.9963

Learning rate: 0.01
Number of layers: 5

Layer1: Tanh-30 nodes
Layer2: ReLU-15 nodes
Layer3: ReLU- 30 nodes
Layer4: ReLU-30 nodes
Layer5: ReLU-15 nodes

Accuracy: 0.9981

Learning rate: 0.01
Number of layers: 5

Layer1: Hermitte-30 nodes
Layer2: Tanh-20 nodes
Layer3: ReLU-30 nodes
Layer4: ReLU-30 nodes
Layer5: ReLU-30 nodes

Accuracy: 0.9945

56.13

Ionosphere

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-20 nodes
Layer2: Tanh-30 nodes
Layer3: Tanh-5 nodes
Layer4: ReLU-5 nodes

Layer5: ReLU-15 nodes
Accuracy: 0.9426

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-10 nodes
Layer2: ReLU-30 nodes
Layer3: ReLU-30 nodes
Layer4: ReLU-5 nodes

Layer5: ReLU-20 nodes
Accuracy: 0.8929

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-5 nodes
Layer2: ReLU-15 nodes
Layer3: ReLU-15 nodes
Layer4: ReLU-5 nodes

Layer5: Hermite-5 nodes
Accuracy: 0.9143

34.76

Table 7. (First Experiment) Optimal hyperparameter values, classification (i.e., validation) accuracy
evaluated on the testing data, and the total time needed to perform the hyperparameter optimization
(i.e., total hyper-tuning time) obtained by the three best neural networks: NN_1, NN_2, and NN_3
(Data sets: brain tumor and phishing website).

Data Set NN_1 NN_2 NN_3 Total Hyper-Tuning
Time (in Minutes)

Brain Tumor

Learning rate: 0.01
Number of layers: 5

Layer1: Hermite-5 nodes
Layer2: Hermite-30 nodes

Layer3: ReLU-30 nodes
Layer4: ReLU-5 nodes
Layer5: ReLU-5 nodes

Accuracy: 0.7857

Learning rate: 0.01
Number of layers: 5

Layer1: Hermite-5 nodes
Layer2: Hermite-30 nodes

Layer3: ReLU-30 nodes
Layer4: ReLU-5 nodes

Layer5: Hermite-25 nodes
Accuracy: 0.9286

Learning rate: 0.01
Number of layers: 5

Layer1: Hermite-30 nodes
Layer2: Hermit-30 nodes
Layer3: ReLU-30 nodes
Layer4: ReLU-5 nodes

Layer5: ReLU-25 nodes
Accuracy: 0.9286

34.96

Phishing
Website

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: ReLU-30 nodes
Layer3: ReLU-25 nodes
Layer4: Tanh-5 nodes
Layer5: Tanh-5 nodes

Accuracy: 0.4233

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-25 nodes
Layer2: ReLU-30 nodes
Layer3: ReLU-20 nodes
Layer4: Tanh-5 nodes
Layer5: ReLU-5 nodes

Accuracy: 0.4344

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-25 nodes
Layer2: Tanh-30 nodes
Layer3: ReLU-25 nodes
Layer4: Tanh-5 nodes
Layer5: Tanh-5 nodes

Accuracy: 0.4370

49.50
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Figure 6. (First Experiment) Classification (i.e., validation) accuracy evaluated on the testing data
as a function of the number of training epochs obtained by the three best neural network models:
NN_1, NN_2, and NN_3 (Datasets: diabetes, anemia, surgical, and heart attack). The corresponding
hyperparameter values, accuracy, and total time (in minutes) needed for the hyper-tuning for each
data set are given in Tables 5 and 6.

Based on Tables 5–7, the obtained total hyper-tuning time results imply that the
implementation of the proposed AutoML pipeline is a fast execution process, given the
large number of models (as defined by the max_trials parameter in Table 4) that were
generated and evaluated.

Three additional important remarks are as follows: (a) apart from few cases, the best
models were obtained when the learning rate is equal to 0.01, (b) apart from the NN_1 in
the Banknote Authentication dataset, all models use five layers in total, (c) as far as the total
time needed to perform the hyperparameter optimization, the “Surgical” dataset obtained
the larger execution time (as it was expected in the first place), while, for the “Brain Tumor”
data set, the time is retained within the levels appeared in the rest of the data sets (mainly
because the number of instances is very small).

It is noted that 30 MLP neural network models were created, where eight have no Her-
mite polynomial layers, 10 have one, 10 have two, and two have three Hermite polynomial
layers. Thus, 73.3% of the produced best models have Hermite polynomial layers. This fact
directly indicates that the behavior of the MLP is increased by using such type of layers.

Finally, the comparative behavior of the three best models, illustrated in Figures 6 and 7,
directly support the results depicted in the above tables as far as the validation accuracy
is concerned.

The second experiment compares the best model obtained by executing the hyperpa-
rameter optimization in the search space given in Table 3, and the best model obtained
by using the hyperspace, where the domain of values for the hyperparameter “type of
activation function” is: {“ReLU”, “Tanh”} (i.e., the second order polynomial activation
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function is excluded). The former hyperspace is called “Hyperspace A”, while the latter is
called “Hyperspace B”. Thus, the best neural network trained in Hyperspace A includes
layers with Hermite polynomial activations and is denoted as NN_1, while the best model
trained in Hyperspace B does not contain polynomial layers and is denoted as NN_2.
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Figure 7. (First Experiment) Classification (i.e., validation) accuracy evaluated on the testing data as
a function of the number of training epochs obtained by the three best neural network models: NN_1,
NN_2, and NN_3 (datasets: room occupancy, blood transfusion, banknote authentication, ionosphere,
brain tumor, and phishing website). The corresponding hyperparameter values, accuracy, and total
time (in minutes) needed for the hyper-tuning for each data set are given in Tables 6 and 7.

The purpose of the experiment is to evaluate the needed computational energy to
produce models with performance comparable to the performance of the best models
relative to the hyperspace that does not contain polynomial in its structure.

To conduct the experiment, five datasets were used, i.e., Diabetes, Anemia, Room
Occupancy, Banknote Authentication, and Ionosphere. Tables 8 and 9, and Figures 8 and 9,
illustrate the results of the current experiment.
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Table 8. (Second Experiment) Optimal hyperparameter values, classification (i.e., validation) ac-
curacy evaluated on the testing data, and the mean time needed to perform the hyperparameter
optimization (i.e., mean hyper-tuning time) obtained by the best neural network (NN_1) using
the Hyperspace A, and the best neural network (NN_2), using Hyperspace B (Data sets: Diabetes,
Anemia, Room Occupancy).

Data Set NN_1
(Use of Hyperspace A)

NN_2
(Use of Hyperspace B)

Mean Hyper-Tuning
Time (in Minutes)

Diabetes

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-15 nodes
Layer2: ReLU-20 nodes
Layer3: ReLU-30 nodes

Layer4: Hermite-5 nodes
Layer5: ReLU-30 nodes

Accuracy: 0.7361

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-15 nodes
Layer2: ReLU-20 nodes
Layer3: ReLU-30 nodes
Layer4: ReLU-30 nodes
Layer5: ReLU-30 nodes

Accuracy: 0.7427

42.57

Anemia

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-10 nodes
Layer2: ReLU-30 nodes

Layer3: Hermite-5 nodes
Layer4: ReLU-10 nodes
Layer5: ReLU-30 nodes

Accuracy: 0.9665

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-5 nodes
Layer2: ReLU-5 nodes

Layer3: ReLU-15 nodes
Layer4: ReLU-5 nodes

Layer5: ReLU-10 nodes
Accuracy: 0.9595

56.08

Room
Occupancy

Learning rate: 0.0001
Number of layers: 5

Layer1: Hermite-5 nodes
Layer2: ReLU-30 nodes
Layer3: ReLU-5 nodes

Layer4: ReLU-30 nodes
Layer5: ReLU-5 nodes

Accuracy: 0.9675

Learning rate: 0.0001
Number of layers: 5

Layer1: ReLU-5 nodes
Layer2: ReLU-25 nodes
Layer3: ReLU-30 nodes
Layer4: ReLU-30 nodes
Layer5: ReLU-5 nodes

Accuracy: 0.9525

73.85

Table 9. (Second Experiment) Optimal hyperparameter values, classification accuracy evaluated on
the testing data, and the mean time needed to perform the hyperparameter optimization (i.e., mean
hyper-tuning time) obtained by the best neural network (NN_1) using the Hyperspace A, and the best
neural network (NN_2) using the Hyperspace B (Data sets: Banknote Authentication, Ionosphere).

Data Set NN_1
(Use of Hyperspace A)

NN_2
(Use of Hyperspace B)

Mean Hyper-Tuning
Time (in Minutes)

Banknote
Authentication

Learning rate: 0.0001
Number of layers: 3

Layer1: ReLU-20 nodes
Layer2: Hermite-10 nodes

Layer3: Tanh-5 nodes
Accuracy: 0.9982

Learning rate: 0.01
Number of layers: 3

Layer1: ReLU-20 nodes
Layer2: ReLU-10 nodes
Layer3: Tanh-5 nodes

Accuracy: 0.9944

58.48

Ionosphere

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30
Layer2: ReLU-30

Layer3: Hermite-5
Layer4: ReLU-5
Layer5: ReLU-20
Accuracy: 0.9214

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: ReLU-30 nodes
Layer3: Tanh-5 nodes
Layer4: ReLU-5 nodes

Layer5: ReLU-20 nodes
Accuracy: 0.9071

38.96
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Figure 8. (Second Experiment) Classification (i.e., validation) accuracy evaluated on the testing data
as a function of the number of training epochs obtained by the obtained by the best neural network
(NN_1) using the Hyperspace A, and the best neural network (NN_2) using the Hyperspace B (Data
sets: Diabetes, Anemia, and Room Occupancy). The corresponding hyperparameter values, accuracy,
and total time (in minutes) needed for the hyper-tuning for each data set are given in Table 8.
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Figure 9. (Second Experiment) Classification (i.e., validation) accuracy evaluated on the testing data
as a function of the number of training epochs obtained by the obtained by the best neural network
(NN_1) using the Hyperspace A, and the best neural network (NN_2) using the Hyperspace B (Data
sets: Bank Authentication, and Ionosphere). The corresponding hyperparameter values, accuracy,
and total time (in minutes) needed for the hyper-tuning for each data set are given in Table 9.
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The last column in Tables 8 and 9 is the mean hyper-tuning time, which is the mean
value of the AutoML pipeline’s execution time for performing the hyperparameter opti-
mization in Hyperspace A and Hyperspace B.

Based on Tables 8 and 9, the following remarks can be pointed out: (a) the mean
execution times, presented in the last columns of those tables, are small, given the large
number of models created and tested by the pipeline (as indicated by the parameter
max_trials in Table 4); (b) in four out of five datasets, the models with Hermite polynomial
activation functions appear to have better classification performance in terms of the validity
accuracy; (c) similarly to the first experiment, in most of the cases, the resulting learning
rates are equal to 0.01; (d) in the Banknote Authentication dataset, both models include the
smallest number of layers (i.e., three layers).

To this end, the models’ behaviors depicted in Figures 8 and 9 support the superiority
of the models that include layers with Hermite polynomial activation functions.

Based on the results obtained by the two experimental cases, it is safe to conclude that
the proposed AutoML generated and validated a very large number of neural network
models, utilizing relatively small execution time. At this point, it has to be emphasized that
the heaviest computational task was hyperparameter optimization.

As far as the research question that was used to investigate the pipeline’s performance,
it was shown that the use of Hermite polynomial layers is in the position to increase the
performance of a typical MLP network.

In the third experiment, each data set was divided into three disjoint subsets, namely,
the training, testing, and validation data. The training data were used to optimize the
machine learning model’s parameters, and the testing data were used to evaluate the
model’s loss function values and use them to assist the hyperparameter optimization,
and the validation data were used as independent control data for assessing the resulting
machine learning models. Note that, as mentioned in Section 3.2.9, while the training data
are directly used in the learning process, the testing data are involved indirectly in the
hyper-tuning procedure by providing the estimated loss function values to the Bayesian
optimizer. On the other hand, the validation data are not used by the learning mechanism at
all, thus giving a reliable means to objectively evaluate the resulting models’ performances.

To provide a proof of concept, two datasets were used, namely, the Diabetes and
Anemia data. For each dataset, the validation data consisted of 20% of the original data,
while the rest of the 80% of the original data were divided into 75% training data and 25%
testing data.

To conduct the experiment, two simulation cases were performed, using the Bayesian
optimization parameters depicted in Table 4.

The first simulation case used the hyperparameter search space, shown in Table 3,
and it is similar to the first experiment analyzed previously. As such, it concerned the
monitoring of the trained models and selecting the best three MLP neural network (NN)
models, namely, NN_1, NN_2, and NN_3, evaluated on the validation data.

The second simulation case used the Hyperspace A and Hyperspace B, as described
in the second experiment presented previously. More specifically, this simulation case
compares the best model obtained by executing the hyperparameter optimization in Hy-
perspace A, and the best model obtained by using the Hyperspace B. Thus, similarly to the
above-mentioned second experiment, the best neural network trained in Hyperspace A
comprises Hermite polynomial layers and is symbolized as NN_1, while the best model
trained in Hyperspace B does not include polynomial layers and is symbolized as NN_2.

Tables 10 and 11 show the results obtained by the first and second simulation case,
respectively. Note that, in both tables, the classification accuracy is evaluated on the
validation data.
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Table 10. (Third experiment-first simulation case) Optimal hyperparameter values, classification
(i.e., validation) accuracy evaluated on the validation data, and total time needed to perform the
hyperparameter optimization (i.e., total hyper-tuning time) obtained by the three best neural networks
NN_1, NN_2, and NN_3 (Data sets: Diabetes and Anemia).

Data Set NN_1 NN_2 NN_3 Total Hyper-Tuning
Time (in Minutes)

Diabetes

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-10 nodes
Layer2: Hermite-15 nodes

Layer3: Tanh-15 nodes
Layer4: ReLU-30 nodes
Layer5: Tanh-30 nodes

Accuracy: 0.6818

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-5 nodes
Layer2: ReLU-15 nodes
Layer3: Tanh-30 nodes

Layer4: Hermite-10 nodes
Layer5: Tanh-10 nodes

Accuracy: 0.6628

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-15 nodes
Layer2: Hermite-15 nodes

Layer3: Tanh-30 nodes
Layer4: Hermite-30 nodes

Layer5: Tanh-10 nodes
Accuracy: 0.6958

42.61

Anemia

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-10 nodes
Layer2: Hermite-20 nodes

Layer3: ReLU-25 nodes
Layer4: ReLU-5 nodes
Layer5: ReLU-5 nodes

Accuracy: 0.9484

Learning rate: 0.001
Number of layers: 5

Layer1: ReLU-30 nodes
Layer2: Hermite-10 nodes

Layer3: ReLU-25 nodes
Layer4: ReLU-30 nodes

Layer5: Hermite-5 nodes
Accuracy: 0.9528

Learning rate: 0.01
Number of layers: 5

Layer1: Hermite-10 nodes
Layer2: Hermite-20 nodes

Layer3: ReLU-30 nodes
Layer4: Hermite-30 nodes
Layer5: Hermite-30 nodes

Accuracy: 0.9390

48.09

Table 11. (Third Experiment-Second Simulation Case) Optimal hyperparameter values, classification
(i.e., validation) accuracy evaluated on the validation data, and the mean time needed to perform the
hyperparameter optimization (i.e., mean hyper-tuning time) obtained by the best neural network
(NN_1) using the Hyperspace A, and the best neural network (NN_2), using Hyperspace B (Data
sets: Diabetes, and Anemia).

Data Set NN_1
(Use of Hyperspace A)

NN_2
(Use of Hyperspace B)

Mean Hyper-Tuning
Time (in Minutes)

Diabetes

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-15 nodes
Layer2: ReLU-30 nodes

Layer3: Hermite-5 nodes
Layer4: ReLU-5 nodes

Layer5: ReLU-30 nodes
Accuracy: 0.7272

Learning rate: 0.01
Number of layers: 3

Layer1: Tanh-30 nodes
Layer2: Tanh-30 nodes
Layer3: Tanh-5 nodes

Accuracy: 0.6963

46.08

Anemia

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-5 nodes
Layer2: ReLU-30 nodes

Layer3: Hermite-5 nodes
Layer4: ReLU-5 nodes
Layer5: ReLU-5 nodes

Accuracy: 0.9613

Learning rate: 0.01
Number of layers: 5

Layer1: ReLU-5 nodes
Layer2: ReLU-30 nodes
Layer3: ReLU-15 nodes
Layer4: ReLU-5 nodes
Layer5: ReLU-5 nodes

Accuracy: 0.9417

52.63

In view of Tables 10 and 11, the following remarks are spotlighted. First, except for
one model, the optimal learning rates appear to be equal to 0.01, while, in most of the cases,
the number of layers is equal to five (note that the same observations were obtained in the
previous experiments, also). Second, for every model reported in Table 10, at least one layer
appears to be a Hermite polynomial layer, while, for each dataset, all models obtain similar
behaviors as far as the classification accuracy is concerned. In addition, in Table 11, the
models with Hermite polynomial activation functions obtain better classification accuracy,
which directly implies that performing the hyperparameter optimization in Hyperspace A
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is more efficient than in Hyperspace B (an observation that was also derived by the second
experiment presented previously). Third, the time duration needed to perform the models’
design lies within similar levels for all cases and models, something that was expected
given that the complexity of the two datasets is similar.

Finally, the subsequent analysis investigates the effectiveness of the proposed AutoML
pipeline in evaluating its performance on the testing data and on validation data, as they
were defined above. Since the first simulation case of the current experiment (i.e., the third
experiment) is similar to the first experiment and the second simulation case is similar to the
second experiment, the results in Table 10 are compared with the results in Table 5, whereas
the results in Table 11 are compared with the ones reported in Table 8. The comparison
analysis concerns the classification accuracy and the hyper-tuning time duration, regarding
the Diabetes and Anemia datasets.

The first comparative remark is that the accuracies obtained by the validation data in
Tables 10 and 11 are slightly inferior to the respective accuracies calculated on the testing
data in Tables 5 and 8. Although this was expected in the first place, the difference is not
large, which directly implies that the pipeline appears to have a robust behavior in dealing
with unknown data. The second comparative remark concerns the hyper-tuning time.
Regarding Tables 5 and 10, it can be easily seen that the total hyper-tuning time durations
are almost equal, while a similar observation is derived by comparing Tables 8 and 11 as
far as the mean hyper-tuning time is concerned. The last remark suggests that the division
of a dataset in three parts (i.e., training, testing, and validation data) has not significant
impact on the execution time of the pipeline’s simulations.

The last experiment concerns the quantification of the time difference between the
manual implementation of several activities involved in the overall procedure and their
respective automated implementation by the proposed pipeline. It is strongly pointed
out that this time difference is translated as the time saved by the usage of the proposed
AutoML system.

In total, nine processes have been identified as nominates to be applied by manual
procedures. These processes are spanned over the three stages of the proposed AutoML
pipeline. To provide a convenient presentation of the calculation of the respective time
difference for each one of those processes, we proceed with the subsequent analysis.

Regarding the first stage (i.e., the model building stage), the main process that can be
manually executed is the continuous Python code generation through the team’s members
coordination and collaboration. Note that this process is independent of a specific dataset.

In our pipeline, the collaboration between the team’s members (i.e., developers) is
carried out by the installation and operation of the Git version control system. This
system is connected with the on-line Github repository, which assists the coordination and
collaboration between the team members with the ultimate purpose of the speed up of the
model building process, thus resulting in a fully automated collaboration.

In the manual mode, the coordination/collaboration between developers depends on
the way they decide to collaborate (by not using the AutoML pipeline), employing different
ways to perform the collaboration, such as web-based call meetings.

To investigate the time saved using the Git system in our AutoML framework, a
hypothetical case study scenario consistent with the proposed pipeline is studied, according
to which it is assumed that there are four developers (and, therefore, four computer
machines), and the software has to be released in 30 days. To meet the schedule, the
developers make progress every day on the existing code by discussing the needed changes
for approximately 30 min/day via web-based meeting. Thus, the time required for the
above task is equal to 900 min/month. If the team has decided to share the work/code via
cloud repositories (e.g., google drive), it is assumed that the upload and download time
(which depends on the connection and the size of the files) is approximately 5 min/day
for the four members, resulting in 150 min/month. Finally, taking into account that
the coordination may not be perfect, 2 h/month are needed (for the four-member team)
to correct the misunderstandings and errors. Thus, without the use of the Git system,
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the extra time needed to perform the model building process is approximately equal to
900 + 150 + 2 = 1152 min/month.

Considering that, in order to install the Git system in one computer machine, approxi-
mately 3 min are required, and since there are four computer machines, the time needed
to install the Git system is more or less 12 min. This time must be subtracted from the
above estimated time. Therefore, the time saved by using the Git system is approximately
1140 min/month, which means approximately 40 min daily.

Finally, one operation that causes significant time consumption is restoring the code to
its previous state. With the use of Git system, that process takes only a few milliseconds,
while, without Git, it may take several hours. The evaluation of the time needed in the
latter case cannot be quantified, since several factors that depend on the team are involved.
In any case, it is safe to assume that the time saved by the Git system is significantly much
larger than 40 min/day.

Regarding the second stage (i.e., the hypermodel training and testing stage), the
following five processes were executed manually, and the time differences in relation to
their automated execution by the proposed AutoML pipeline were measured.

The first process concerns the execution to open the appropriate software (Python
IDE) and trigger the build button, the duration of which was approximately 30 s for the
first time and approximately 5 s for every next try. Thus, for 100 executions, we obtained
25 + 99 × 5 = 619 s, or approximately 9 min.

The second process concerns the connection with the Kaggle database to search for a
specific classification dataset and to download it. The duration of that task depends only
on the file’s size and the download speed. In view of this, the advantage provided by the
proposed AutoML system is that the search is not performed by opening a browser, but,
rather, by inserting keywords into the Kaggle API, using an appropriate Python function
provided by the API. In our case, the sizes of all targeted datasets were under 10 MB.
The measured mean time difference between performing the process manually and using
the proposed pipeline was approximately equal to 6 min for each data set. Given that
there were 10 datasets, the overall time saved by employing the proposed pipeline was
approximately equal to 60 min.

The third process concerns the creation of a working folder for each dataset and
the respective subfolders (i.e., one subfolder for each execution). The difference in time
between performing the above task manually and using the proposed pipeline was equal
to approximately 3 min/dataset (i.e., including 10 runs for each data set). Since there are
10 data sets, the overall time difference is estimated at around 30 min.

The fourth process concerns hyperparameter optimization. As this process runs
inside the Python engine whenever the python_runner.py file is executed, there is no
time difference between its manual execution and its execution through the proposed
AutoML system.

Finally, regarding the prosed pipeline, to pre-configure a Jenkins job, approximately
10 min were needed. The created Jenkins job was executed automatically (using Web hooks)
when a Git commit occurs. Since this job is reusable, it is irrelevant how many times the
model is executed, and the above time interval must be subtracted only once from the
overall time.

To this end, regarding the 10 data sets, the overall time difference between executing
the above processes manually and using the proposed system is approximately quantified
as: 9 + 60 + 30 + 0 − 10 = 89 min, which results in approximately 9 min/dataset.

In addition, an extra effort concerns the execution of parallel runs used to create more
than one Jenkins jobs to test different code versions. The time needed for this task is difficult
to evaluate, but, in any case, it is added to the final total time estimation. This fact directly
implies that the time saved by the implementation of the proposed pipeline is greater than
89 min (or 9 min/dataset).

Regarding the third stage (i.e., the monitoring stage), the time difference between its
manual implementation and its implementation using the proposed pipeline appears to
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have a high level of abstraction and mainly concerns the monitoring part of the classification
accuracy validation process.

Using our AutoML system, the results produced by the validation process are au-
tomatically sent to the Neptune AI platform for making graphs of the loss function, the
validation accuracy, the accuracy in the training data, and each metric to be monitored.
In the Neptune platform, graphs are automatically produced, enabling the comparison
between graphs coming from different runs.

The quantification of the time difference between the manual and the AutoML ap-
proaches is described next.

Data that need to be tracked must be saved in files and then read again to produce the
desired figures. In our case, each model runs for 100 epochs, and the monitoring process
focused on validating the classification accuracy for each one of the above epochs. For each
data set, the measured time difference to save the data in a file, to open manually another
script that reads these data, and to produce the graphs, was equal to 2 min/(run*dataset).
Considering that each data set was manually run 10 times, the resulting time difference
was equal to 20 min/dataset (i.e., 200 min in total).

Additionally, there is extra time if someone wants to track another variable, such as
the loss function, a procedure that is carried out automatically by the proposed pipeline.
The time difference for this procedure was measured as 5 min/dataset (i.e., 50 min in total).

Finally, in the manual implementation, the resulting figures must be uploaded on
a shared point (e.g., Google Drive). The resulting time difference to perform that task
was estimated to be approximately equal to 3 min/(run*dataset). Since each data set was
executed for 10 times, we obtain 30 min/dataset (i.e., 300 min in total).

To summarize, the overall time difference between executing the monitoring stage man-
ually and using the proposed system is approximately equal to 20 + 5 + 30 = 55 min/dataset.
Since there are 10 data sets, the overall time difference was equal to 550 min.

Table 12 summarizes all the time differences quantified above.

Table 12. Estimated time differences between the automated execution using the proposed AutoML
system and the manual execution of nine individual processes involved in the pipeline illustrated
in Figure 2 (the time differences are translated as the time saved by the implementation of the
proposed pipeline).

Stage Process
Time

Difference
(Minutes)

Total Time
Difference
(Minutes)

Time Difference per Dataset
(Minutes)

1 1.1 Collaboration between team’s members >>40 min
per day

>>40 min
per day - - - -

2

2.1 Execution to open the appropriate
software 9

>89 >9

2.2 Dataset search and download 60

2.3 Creation of folders and subfolders 30

2.4 Hyperparameter optimization 0

2.5 Create Jenkin jobs (the respective time
is

subtracted from the total time)

10
(subtracted)

3

3.1 Save tracked data values in a file and
open manually another script to read the

values and produce the figures
200

550 553.2 Track a different variable (for example
different loss function) 50

3.3 Share results and figures between
team’s members 300
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Note that the time saved by the proposed pipeline in the first process (i.e., the collabo-
ration between the members of the team) is not projected on each data set because it refers
to code generation of the whole pipeline and, thus, it concerns all data sets and the possible
applications. For the rest of the processes, the above time can be calculated per data set
(see last column of the table).

Based on the analysis so far and the results reported in Table 10, it becomes evident
that the time saved by the proposed AutoML pipeline is significant, given both the small
sized datasets and the simplicity of the MLP networks’ structure. To this end, the time
difference is expected to substantially increase for big data sets and more complicated
network structures, such as deep learning models.

5. Conclusions

In this paper, an AutoML pipeline to handle the generation and evaluation of ML
models was developed. The main task was to use the pipeline in performing architecture
and hyperparameter optimization. The pipeline’s implementation obtained fast model
creation process, while it was easily repeatable for various datasets and, at the same time,
gave the opportunity for a synchronous and efficient collaboration among the members of
our team through the Git and Jenkins technologies.

The main steps synthesizing the pipeline’s structure involved the Git source code
pulling, auto-triggering of Jenkin’s job, download and preprocessing of the dataset, hyper-
parameter optimization, and model testing/evaluation tasks. Technologies, such as Git,
Jenkins, and Docker, which are widely used in the CI/CD software development, have
been used to put in place the aforementioned steps.

The ML model under consideration was a MLP neural network, which included layers
with different types of activation functions. More specifically, three types were employed,
namely, ReLU, Tanh, and second order Hermite polynomials. The case scenario was to check
whether the presence of polynomial layers can improve the performance of the network in
classification tasks or not. To test the case scenario, several data sets were taken from the
Kaggle ML data base using the Kaggle API. The data sets were used to generate a very large
number of ML models, which were tested and evaluated accordingly. The corresponding
hyperparameter tuning was carried out in terms of Bayesian optimization. As a result, the
performance of the pipeline was evaluated in terms of the computational time.

The general outcomes of the experimental study are summarized as follows: (a)
given the large number of models that were generated, the computational time needed
by the pipeline to perform the corresponding optimization was small; (b) the presence of
polynomial activation functions is in the position to enhance the performance of MLPs in
most of the data sets used; (c) the pipeline shows an effective behavior in dealing with data
that are not involved (i.e., previously unknown data) in the overall learning process

A very important experimental outcome concerned the quantification of the time
difference between the manual implementation of several activities involved in the overall
procedure and their respective automated implementation under the umbrella of the
proposed pipeline. This time difference is translated as the time saved by the usage of the
proposed AutoML system. The results showed that this difference is significant, while it
is expected to substantially increase when bigger data sets and more complex machine
learning models, such as deep learning models, are to be considered.

At this point, it is strongly emphasized that the current attempt mainly focused
on creating an appropriate AutoML pipeline for the automatic development of machine
learning models. As such, typical model structures, such as the MLP model, were taken into
account. In this direction, the use of deep learning models appears to be very appealing case
for extending the current framework, with the ultimate purpose its testing and evaluation
in handling more sophisticated machine learning approaches and more complex data sets.
As far as the future work is concerned, extensive additional pipeline configurations will
be considered in the following directions: (a) to expand the hyperparameter space, (b)
to increase the total number of scenario trials, (c) to select alternative hyperparameter
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optimization methods and libraries, (d) to include additional MLOps practices as far the
testing and deployment steps are considered, and (e) to extend the current framework to
automatically generate deep learning models.
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