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Abstract: The emergence of the novel coronavirus (COVID-19) generated a need to quickly and
accurately assemble up-to-date information related to its spread. In this research article, we propose
two methods in which Twitter is useful when modelling the spread of COVID-19: (1) machine
learning algorithms trained in English, Spanish, German, Portuguese and Italian are used to identify
symptomatic individuals derived from Twitter. Using the geo-location attached to each tweet, we
map users to a geographic location to produce a time-series of potential symptomatic individuals.
We calibrate an extended SEIRD epidemiological model with combinations of low-latency data feeds,
including the symptomatic tweets, with death data and infer the parameters of the model. We then
evaluate the usefulness of the data feeds when making predictions of daily deaths in 50 US States,
16 Latin American countries, 2 European countries and 7 NHS (National Health Service) regions
in the UK. We show that using symptomatic tweets can result in a 6% and 17% increase in mean
squared error accuracy, on average, when predicting COVID-19 deaths in US States and the rest of the
world, respectively, compared to using solely death data. (2) Origin/destination (O/D) matrices, for
movements between seven NHS regions, are constructed by determining when a user has tweeted
twice in a 24 h period in two different locations. We show that increasing and decreasing a social
connectivity parameter within an SIR model affects the rate of spread of a disease.

Keywords: social media; machine learning; origin destination matrices; disease modelling; death
predictions

1. Introduction

The novel coronavirus (COVID-19) has, at the time of writing, resulted in over 6.88 mil-
lion deaths and 676 million confirmed cases worldwide [1]. By January 2020, new cases
of COVID-19 had been seen throughout Asia, and by the time the World Health Organi-
sation (WHO) declared a global pandemic in March 2020, the disease had spread to over
100 countries. It quickly became imperative to establish reliable data feeds relating to
the pandemic, such that researchers and analysts could model the ongoing spread of the
disease and inform decision-making by government and public health officials. To facilitate
collaboration between researchers and allow for published results to be replicated and
scrutinised, these data sets and models must be open-source. A well-used interactive
dashboard collating total daily counts of confirmed cases and deaths for countries and,
in some cases, regions within countries can be found in [2]. The variables presented in
the platform are traditionally used to calculate metrics such as the reproduction number
(Rt). One such method for estimating Rt is by modelling how the disease spreads through
a population using a Susceptible, Infected and Recovered (SIR) model [3]. This method
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involves splitting the population into the unobservable SIR compartments and allowing a
fraction at every timestep t, to progress to the next compartment. The model consists of
three nonlinear ordinary differential equations (ODE) and a set of parameters which govern
how quickly individuals progress through the compartments. The standard SIR model
contains two parameters, β and γ, which are the infection and recovery rates, respectively.
This metric is vital in understanding both the infection growth rate, or daily rate of new
infections, and the number of people, on average, infected by a single infected person and
can be calculated by

R0 = β/γ. (1)

The quality of disease metrics is heavily dependent on the model and the ingested
data. In the United Kingdom (UK), up until December 2022, a joint effort was undertaken to
produce estimates of the Rt number, with notable examples provided in [4]. Different data
sets have been used by different institutions. Laboratory-confirmed COVID-19 diagnoses
are used in [5], UK’s NHS Pathways data in [6] and hospital admissions data in [7]. The
statistical model developed by Moore, Rosato and Maskell [8] contributes to these estimates
through the incorporation of death, hospital admission and NHS 111 call data. Aggregated
111 call counts contain the individuals that reported potential COVID-19 symptoms through
the NHS Pathways telephone service.

Evaluating short-term forecasts of COVID-19 related statistics is useful to determine
the accuracy of a model. A multi-model comparison of predicted deaths, hospital admis-
sions and intensive care unit (ICU) occupancy is given in [9]; deaths, hospital admissions
and ICU occupancy in [7]; daily hospital admissions in [10] and short-term forecasting of
deaths in [8]. A set of scoring rules for evaluating these short-term forecasts is outlined
in [11], with an application to COVID-19 deaths provided in [8].

The latency and reliability of COVID-19 related data sources can vary. Death data
can be seen as reliable when compared with confirmed cases derived from positive test
results; however, observations of this data are typically delayed from the initial point of
infection. Delays also occur between the occurrence and reporting of deaths. The reliability
of confirmed cases is limited as the sampling of those tested varies with time with the
reason for testing often not recorded. In addition, hospital admissions typically occur
around 1–2 weeks after infection and so may be considered outdated in relation to the time
of initial infection. The extent to which these issues are problematic is likely to vary over
time and between countries. For example, reliable, publicly available tests only began to
become available a number of months after the outbreak and declaration of the COVID-19
pandemic. As such, information on the spread of the disease was limited and varied
between countries. Twitter provides real-time data that overcome the timing limitations
of the aforementioned data sources. Correlation between tweets relating to influenza and
true influenza counts have been observed in [12–14]. It is possible to set up a pipeline for
collecting and analysing COVID-19 tweets that can be scaled up to multiple countries in a
short amount of time.

1.1. Related Works

Infodemiology and infoveillance [15] refer to the ability to process and analyse data,
pertinent to disease outbreaks, that are created and stored digitally in real-time. The avail-
ability of these data sets, particularly at the beginning of an outbreak, could provide a noisy
but accurate representation of disease dynamics. Prior to the pandemic, tweets relating to
influenza-like-illness symptoms were seen to substantially improve the model’s predicting
capacity and to boost nowcasting accuracy by 13% in [16,17], respectively. Models allowing
for early warning detection of multiple diseases are proposed in [17,18] through analysis
of tweet content in real time. Many research papers use social media to gain valuable
information relating to the COVID-19 pandemic. Natural language processing (NLP),
in particular determining the sentiment of tweets, is a popular research area. Ref. [19]
uses sentiment analysis and topic modelling to extract information from conversations
relating to COVID-19. When including these data within forecasting models, they observed
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a 48.83–51.38% improvement in predicting COVID-19 cases. Large databases of tweets
are open-sourced [20,21]. Public sentiment relating to COVID-19 prevention measures is
analysed in [22]. Depression trends among individuals were analysed in [23]. Emotion was
observed to change from fear to anger during the first stages of the pandemic [24]. Misin-
formation and conspiracy theories propagated rapidly through the Twittersphere during
the pandemic [25]. Machine learning algorithms have been used to automatically detect
tweets containing self-reported symptoms mentioned by users [26], with Ref. [27] finding
symptoms reported by Twitter users to be similar to those used in a clinical setting. We note
that the analysis in [19,22,24–26] is conducted with the English language only. Analysis
conducted in multiple languages is less common. Topic detection and sentiment analysis
are conducted in the Portuguese and English language in [28] while misinformation was
detected in English, Hindi and Bengali [29]. To the best of our knowledge, researchers have
yet to use symptomatic tweets in multiple languages to calibrate epidemiological models.

Movement mobility patterns have been derived from anonymised cell phone data [30,31]
and Twitter [32,33]. Using movement between different geographic locations has been shown
to be an effective way of modelling the spread of disease [31,34–36]. During an epidemic,
limiting the movement of individuals with measures, such as school closures and national
lockdowns, can drive the reproduction number below 1 [37]. In Italy, when analysing mo-
bile phone movement data, less rigid lockdown measures led to an insufficient decrease in
COVID-19 cases when compared to a more rigid lockdown [38]. In this paper, we outline how
origin/destination (O/D) matrices can be derived from where people tweet and show, by
using an epidemiological model, that restricting movement can have an effect on the spread of
a disease. To the best of our knowledge, using O/D matrices derived from Twitter movement
to inform SIR disease models has yet to be explored.

1.2. Contribution and Structure

The contribution of this paper is as follows: first, we outline how to use machine
learning to identify tweets that correspond to COVID-19 related symptoms in multiple
languages. We present a comprehensive study of how these symptomatic tweets differ
from other open-source data sets when calibrating the extended SEIRD model described
in Section 3.1. When incorporating the surveillance data outlined in Section 2.2, the
Mean Absolute Error (MAE) and Normalised Estimation Error Squared (NEES) values
are calculated for 7-day death forecasts. Second, we outline a method for deriving O/D
matrices from Twitter and show how these can be included to better model the spread of a
disease. To the best of our knowledge, using O/D matrices derived from Twitter movement
to inform SIR disease models has yet to be explored.

We now present the structure of the remainder of the paper. The methodology for
extracting symptomatic tweets in real time and a description of other open-source data feeds
are outlined in Section 2.2. Methods for creating the O/D matrices are outlined in Section 2.3.
The extended SEIRD model for predicting deaths is outlined in Section 3.1 and the SIR
model including movement between NHS regions in Section 3.2. The corresponding results
are presented in Sections 4.1 and 4.2, respectively. Concluding remarks and directions for
future work are described in Section 5.

2. Data Collection

In this section, the methods for collecting UK NHS region-specific surveillance data
and symptomatic tweets are outlined in Sections 2.1 and 2.2, respectively. The O/D matrices
derived from Twitter mobility are included in Section 2.3. Two Twitter API developer
credentials were used for data collection, in line with our two objectives: (1) querying on
COVID-19 keywords and (2) querying on geo-located tweets.

Note that testing methods and criteria for classifying deaths as COVID-19-related may
differ between geographic locations. All data sets and associated code can be found on the
CoDatMo GitHub repository [39].
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2.1. United Kingdom NHS Region-Specific Surveillance Data

The methods for collecting UK NHS region-specific surveillance data are presented in
the following subsections. The references from where the data were obtained are given in
Table 1. The NHS regions in the UK support local systems and provide more joined up and
sustainable care for patients through integrated care systems. Every individual born in the
UK is entitled to use this public health system.

Table 1. A description of the data feeds used per geographic location, the start date used in the
simulations and where they were obtained.

Geographic Location Data Feed Start Date Reference

U.S States and the rest
of the world Deaths 24 March 2020 [2]

Tests 1 March 2020 [2]
Twitter 13 April 2020 Section 2.2

U.K NHS Regions Deaths 24 March 2020 [40]
Hospital admissions 19 March 2020 [41]

Twitter 9 April 2020 Section 2.2
Zoe app 12 May 2020 [42]
111 calls 18 March 2020 [43]

111 online 18 March 2020 [43]

2.1.1. Deaths

The aggregated death counts contain individuals with COVID-19 as the cause of death
on their death certificate or those who died within 60 days of a positive test result.

2.1.2. Hospital Admissions

The aggregated admission counts contain the daily COVID-19 related hospital admis-
sions and the total number of COVID-19 patients.

2.1.3. Zoe App

The aggregated Zoe App counts contain entries of COVID-19 symptoms to a mobile
App. The App was developed in 2020 to help track COVID-19. However, it has since
broadened its capacity to track other health related concerns such as cancer and high blood
pressure. Users can input if they have COVID-19 symptoms as well as stating whether they
have been tested for COVID-19.

2.1.4. 111 Calls and 111 Online

The aggregated 111 call and 111 online assessment counts contain individuals that
reported potential COVID-19 symptoms through the NHS Pathways telephone and online
assessment services, respectively. The telephone service allows for individuals to speak to a
medical specialist regarding health concerns. The 111 online service provides information
regarding where it is best to obtain help for the symptoms provided. During the COVID-19
epidemic, both services provided a method for individuals to report COVID-19 symptoms.

2.2. Symptomatic Tweets

The geographic locations considered when querying on keywords are:

· US: 50 States;

· Rest of the world: 2 European and 16 Latin American countries;

· UK: 7 NHS regions.

Table 1 provides a summary of surveillance data corresponding to each geographical
location. Death and positive case data for the US States and the rest of the world (ROW)



Information 2023, 14, 170 5 of 21

were downloaded from the dashboard operated by the Johns Hopkins University Center
for Systems Science and Engineering (JHU CSSE) [2].

2.2.1. Pre-Processing Tweets

Tweepy [44] is the Twitter API written in the programming language Python. The free
Twitter streaming API was used for this research, limiting the number of tweets available
for download to 1%. We note that the premium API would allow for a higher percentage
of tweets to be collected. The API was filtered using 93 keywords in English, German,
Italian, Portuguese and Spanish that align with COVID-19 symptoms from the MedDRA
database [45]. The list of keywords can be found here [39]. These terms include those
associated with fever, cough and anosmia. While we considered other keywords (e.g.,
“COVID”), we found that keywords related to symptoms gave rise to a large number of
tweets that related to people experiencing symptoms. We do recognise that any choice
of keywords will inevitably identify some tweets that are related to advice or general
discussion of the disease. This motivated us to use machine learning to post-process the
output from the keyword-based queries, as is discussed further in Section 2.2.2.

2.2.2. Symptom Classifier Breakdown

A multi-class support vector machine (SVM) [46] was trained with a set of annotated
tweets that were vectorised using a skip-gram model. The annotated tweets were labelled
according to the following classes:

1. Unrelated tweet;
2. User currently has symptoms;
3. User had symptoms in the past;
4. Someone else currently has symptoms;
5. Someone else had symptoms in the past.

The total number of tweets mentioning symptoms, given by the sum of tweets in
classes 2–5, was calculated for each 24 h period. Geo-tagged tweets were mapped to their
location, e.g., corresponding city, via a series of tests using country-specific shapefiles. Pre-
vious studies demonstrate that approximately 1.65% of tweets are geo-tagged [47], where
the exact position of the tweeter is recorded using longitude and latitude measurements.

For non-geo-tagged tweets, the author’s profile is assessed to ascertain whether they
provide an appropriate location. The server was deemed to be offline if any 15 min period
within the previous 24 h had no recorded tweets. After checking all 96 15 min periods, the
count in each geographical area was multiplied by a correction factor:

reported tweet count = total tweet count · 96
96− downtime periods

. (2)

To ensure the labelled tweet data sets used for training and testing were balanced,
under- and over-represented classes were randomly up- and down-sampled. A subset
of data was used to train the classifier before testing on the remainder. The total number
of labelled tweets used for training and testing are provided in Table 2. Four metrics
outlined in Table 2 were used to evaluate the classifier. These include the F1 score, accuracy,
precision and recall. True positive (TP) and true negative (TN) classifications are outcomes
for which the model correctly predicts positive and negative classes, respectively. Similarly,
false positive (FP) and false negative (FN) classifications are outcomes for which the model
incorrectly predicts positive and negative classes, respectively. Accuracy, precision, recall
and the F1 score, which is the harmonic mean of precision and recall, are given as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (3)
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Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

F1 =
2 · (Precision · Recall)

Precision + Recall
. (6)

Table 2. Testing, training and performance measures of the machine learning classifiers in differ-
ent languages.

Language Number of Data Used Performance Measures
Training Testing F1 Accuracy Precision Recall

English 1105 195 0.85 0.85 0.85 0.85
German 412 260 0.89 0.89 0.90 0.89
Italian 254 260 0.97 0.96 0.97 0.96

Portuguese 3507 619 0.77 0.77 0.78 0.80
Spanish 1530 270 0.82 0.85 0.82 0.85

2.2.3. Comparison of Tweets and Positive Test Results

Figure 1 shows a comparison between the classified tweets and confirmed positive test
results for five US States and one South American country. Both time-series are standardised
between 0 and 1 and have been converted to a 7-day rolling average to smooth out short-
term fluctuations. It is evident that, at least in the context of these specific examples, the
classified tweets do (by eye) follow the trend of positive test results. In some cases, such
as Texas and Chile, there seems to be a lag between tweets and positive test results. We
suspect there is a reporting delay in these locations. A more rigorous analyses, such as
change point detection, could give a stronger indication of how well the trends in the two
time-series match. We note that, for some geographic locations, tweets align much less well
with the corresponding case counts: we assert that this could be caused by issues with how
cases are recorded in each location or by the processing of the tweets.

2.3. Twitter Mobility Origin Destination Matrices

We now present the data collection processes for the derivation of the O/D matrices.
The flow of individuals travelling from one location to another can be expressed

as an M × M matrix, where M is the number of locations in the simulation area. The
observation period of the data are 30 April 2020 to 31 May 2020. We divide England into the
seven NHS regions, which are treated as separate locations. Tweets with the geo-location
feature were collected using the same framework as described in Section 2.2.1; however,
different Twitter developer API credentials used as tweets were not filtered based on
keywords. To determine where an individual tweeted, a shapefile containing coordinates
of the boundaries of the seven NHS regions was used.

If an individual tweets twice from two locations, for example, London (Origin) and
South West (Destination), a movement is subsequently recorded. Figure 2 depicts each of
these movements in the form of an O/D matrix. Locations on the x- and y-axes represent
the origin and destination, respectively. Movements within regions, where an individual
tweets multiple times in different locations within the same region, have also been collected.
These are observed in the diagonal entries of the matrix.
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Figure 1. Plot of 7-day rolling average and standardised daily counts of positive COVID-19 cases
(blue) and self-reported symptomatic tweets (red) for different US States and one South Ameri-
can country.

Figure 2. Heat-maps of origin destination matrices derived from Twitter for NHS regions. Locations
on the x- and y-axes represent the origin and destination, respectively.

3. Models

In the following section, the model used for making inferences and death predictions
when utilising different data feeds is outlined in Section 3.1. The extended SIR disease
model catering for movement between different locations is described in Section 3.2.

3.1. Model for Surveillance Data Comparison

In this analysis, we use the statistical model developed by Moore, Rosato and Maskell [8].
The model can be described in two succinct parts. The transmission model (see

Section 2(a) of [8]) is an extension of the classical SIR model outlining how individuals
within the population move from being susceptible to exposed, then infected to recovered
or dead. The model is implemented in the probabilistic programming language Stan [48]
and uses a bespoke numerical integrator. Stan allows for statistical modelling and high-
performance statistical computation by utilising the high-performance No-U-Turn Sampler
(NUTS) [49]. The observation model (see Section 2(b) of [8]) outlines the relationship be-
tween the transmission model and the surveillance data feeds in Table 1 during calibration.
The data are modelled via the method proposed in [8]. Daily counts of the surveillance
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data feeds in Table 1 are assumed to follow a negative binomial distribution parameterised
by mean x(t) and over-dispersion parameter φx, such that

xobs(t) ∼ NegativeBinomial(x(t), φx), (7)

where x is data feed specific.
We refer the reader to [8] for a comprehensive description of the full model.

3.1.1. Computational Experiments

The time series considered begins on 17 February 2020. The start dates of each data
feed follow those outlined in Table 1. The terminal time for the US States and the ROW is
fixed on 1 February 2021, while, for NHS regions, the terminal time is 7 January 2021. In all
cases, forecasts are considered to include seven days.

Similar to the experiments in [8], the analysis was run on the University of Liverpool’s
High-Performance Computer (HPC). Each node has two Intel(R) Xeon(R) Gold 6138 CPU @
2.00 GHz processors, a total of 40 cores and 384 GB of memory. In the following experiments,
six independent Markov chains each draw 2000 samples, with the first 1000 discarded
as burn-in. Run-time is dependent on the location of the data and the date at which the
prediction is made. However, it typically takes 4.5 h per Markov chain for a complete run.

Initially, we only calibrate the model with death data and produce forecasts of seven
daily death counts for the geographic locations described in Section 2.2 for the time periods
outlined in Table 3. These forecasts are set as the baseline when comparing against forecasts
incorporating low-latency data feeds.

Table 3. Prediction windows for the US States and the rest of the world, and NHS regions.

US States and the Rest of the World NHS Regions

9 July 2020–16 July 2020 11 November 2020–18 November 2020
17 October 2020–24 October 2020 21 November 2020–28 November 2020
25 January 2021–1 February 2021 1 December 2020–8 December 2020

- 11 December 2020–18 December 2020
- 21 December 2020–28 December 2020
- 31December 2020–7 January 2021

We use two metrics to determine the accuracy of the resulting forecasts. First, we
calculate the MAE, which shows the average error over a set of predictions, and is given by

MAE =
1
N

N

∑
i=1
|xi − yi|, (8)

where N is the number of predictions and xi and yi are the predicted and true number of
deaths on day i, respectively. The percentage difference between forecasts using only deaths
(MAED) and those combining deaths with low-latency data feeds (MAEDL) is calculated
as follows:

MAE % Diff =
MAEDL −MAED

MAED
, (9)

where a smaller percentage difference is preferred.
Secondly, we consider the uncertainties associated with the forecasts by assessing the

NEES score. This is a popular method in the field of signal processing and tracking [50],
recently applied to epidemiological forecasts in [8]. The metric determines whether the
estimated variance of forecasts differs from the true variance. If the estimated variance is
larger than the true variance, the forecast is over-cautious and if the estimated variance is
smaller than the true variance, it is over-confident.
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The NEES score is defined by

NEES =
1
N

N

∑
i=1

(xi − yi)TCi−1
(xi − yi), (10)

where Ci−1 is the estimated variance at day i, as approximated using the variance of the
samples for that day. If xi is D-dimensional, then Ci should be a D× D matrix, and the
NEES score should be equivalent to D if the algorithm is consistent. As such, in assessing
death forecasts, the desired NEES value is D ≈ 1.

3.2. Model for Utilising Origin Destination Matrices

Here, we describe an extension of the discrete time approximation SIR model that
includes movement between geographic locations [31,51] and is an extension of [52]. The
population in location i is denoted Pi. At the beginning of the simulation, Pi is divided
into three compartments: susceptible, infected and recovered, denoted Si,t, Ii,t and Ri,t,
respectively, for timestep t. Location j represents the set of locations connected to location
i. The origin of the pandemic is simulated at a random location, with a fraction of the
susceptible compartment infected. The transmission rate in location i on day t is given
by βi,t, while mi,j is the count of individuals travelling from location j to i. The global
parameter γ describes the recovery rate.

The proportion of infected and susceptible individuals and the total population at
locations j and i at time t are xj,t and yi,t, and Nj and Ni, respectively. The disease spreads
via infected individuals travelling according to the O/D matrices in Figure 2. The full
extended SIR model is described below:

Si,t+1 = Si,t −
βi,tSi,t Ii,t

Ni
−

αSi,t ∑j mt
i,jxj,tβ j,t

Ni + ∑j mt
i,j

, (11)

Ii,t+1 = Ii,t +
βi,tSi,t Ii,t

Ni
+

αSi,t ∑j mt
i,jxj,tβ j,t

Ni + ∑j mt
i,j

− γIi,t, (12)

Ri,t+1 = Ri,t + γIi,t. (13)

The number of infected individuals that move from all locations j to location i and
transmit the disease to the susceptible population is given by

∑
j

mt
i,jxj,tβ j,t. (14)

Uninfected individuals at location i are infected by individuals at locations j with
probability

αSi,t ∑j mt
i,jxj,tβ j,t

Ni + ∑j mt
i,j

. (15)

This rate is dependent on α, which describes the intensity of the movement of individ-
uals and is referred to as the social connectivity parameter.

4. Results

The two sets of results are now outlined. Comparison of the accuracy of death
forecasts and findings on the impact of movement on the spread of a disease are presented
in Sections 4.1 and 4.2, respectively.
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4.1. Surveillance Data Comparison

The NEES value and MAE percentage difference between the baseline, ingesting
solely deaths, and the incorporation of low-latency data feeds for the US States, the ROW,
and NHS regions are given in Tables A1–A3, respectively. For all geographic locations,
the results are averaged over the prediction windows described in Table 3. A visual
representation of these predictions windows can be seen in Figure 3.
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Figure 3. Death forecasts in Florida (left) and Georgia (right). The first, second and third prediction
windows outlined in Table 3 and presented in the first, second and third rows, respectively. Confi-
dence intervals of 1 standard deviation from the mean given by the orange ribbon, the mean sample
given by the red line and the beginning of the prediction period by the vertical blue dashed line. True
deaths are given by the black and green dots.

When forecasting deaths using the data in [2], calibrating the model with tests, tweets,
and tests and tweets gives a 5%, 6% and 5% average increase in percentage performance,
respectively, for the US States. The corresponding improvement rates for the ROW are
6%, 17% and 24%. An example of this improvement is presented in Figure 4 for death
predictions in Colombia over the period 25 January 2021–1 February 2021. Considering the
mean sample in the plots, outlined in red, incorporating tests and tweets follows the true
death trend, outlined in green, with more accuracy when compared to only ingesting death
data, for which the forecast continues to increase despite true deaths falling.

For the US States, the average NEES values are 1.696, 1.409, 1.483 and 1.269 when
ingesting solely death data, tweets, tests, and tweets and tests, respectively. The corre-
sponding results for the ROW are 0.433, 0.500, 1.198 and 0.723. As explained in Section 3.1.1,
a NEES value of ∼1 is desired, with values <1 and >1 indicating that the forecast is over-
cautious or over-confident, respectively. Ingesting any combination of the data feeds
provides a NEES value closer to 1 than the death only forecast in both cases.
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Results for NHS regions are less consistent. Ingesting hospital admissions, 111 calls
and 111 online data sets provide an average increase in performance of 22%, 17% and
22%, respectively. However, tweets and Zoe App data perform less well, with decreases in
performance of 2% and 124%, respectively. We perceive that this issue arises because, in
these feeds, symptoms are self-diagnosed. Consequently, the counts may include relatively
large numbers of people who do not have COVID-19.
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Figure 4. Colombian death forecasts for combinations of data sets. Confidence intervals of 1 standard
deviation from the mean given by the orange ribbon, the mean sample given by the red line and the
beginning of the prediction period by the vertical blue dashed line. True deaths are given by the black
and green dots.

NEES values for NHS regions when ingesting solely deaths, hospital admissions,
tweets, Zoe App, 111 call and 111 online data are 0.662, 0.682, 1.044, 3.160, 0.916 and
0.912, respectively. These results infer that, apart from Zoe App data where forecasts
are overly-confident, ingesting all types of data feeds provides more consistent forecasts.
Figure 5 exemplifies this finding. In the top image, the forecast encapsulates almost all
true deaths. However, when ingesting the Zoe App data, the forecast only encapsulates
two out of the seven true deaths, resulting in a NEES value of 6.202, which indicates an
over-confident estimate.

Figure 5. Cont.
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Figure 5. London death forecasts for death and 111 call data (top) and death and Zoe App data
(bottom). Confidence intervals of 1 standard deviation from the mean given by the orange ribbon,
the mean sample given by the red line and the beginning of the prediction period by the vertical blue
dashed line. True deaths are given by the black and green dots.

4.2. Origin Destination Matrices Analysis

As explained in Section 2.3, a movement is recorded if an individual tweets twice in
one day in different locations over a 24 h period. The counts are assumed to be a percentage
of the true population for the seven NHS regions. Figure 6 depicts these aggregated
movements as O/D matrices.

Figure 6 shows the effect of the social connectivity parameter, α, on the spread of a
disease. This parameter models the level of contact individuals have with one another when
travelling between locations. For example, implementing a lockdown, using a personal car
or travelling via public transport will correspond to increasing values of α.

Figure 6 exemplifies the role of α when simulating the disease dynamics. The SIR
epidemic curves for England are presented in the top row and the infected curves for
each NHS region in the bottom row. Limiting contacts within the population through
specification of α = 0.2 results in disease ceasing by day 15. For α = 0.5, the peak number of
infections occurs at approximately day 20 and consists of just over 0.1% of the population. In
contrast, when α = 0.9, the peak occurs at approximately day 10 and 0.3% of the population
are infected. Simulations of the SIR curves under no movement between NHS regions are
also provided in the rightmost column of Figure 6.
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Figure 6. (Top row): Susceptible, Infected and Recovered epidemic curves for England with different
values of the social connectivity parameters and with no movement between regions. (Bottom row):
The infected curves for the different NHS regions for different social connectivity parameters and no
movement between regions.

5. Conclusions and Future Work

In this paper, we have outlined a method for detecting symptomatic COVID-19 tweets
in multiple languages. Calibrating the epidemiological model outlined in Section 3.1
with low-latency data feeds, including symptomatic tweets, provides more accurate and
consistent forecasts of daily deaths when compared with using death data alone. We have
also shown how to extract movement data from Twitter in the form of O/D matrices. These
movement data were utilised in an extended SIR model to better represent the spread of
a disease.

Incorporating symptomatic tweets for UK regions does not provide the same level of
improvement as for other geographic locations. One reason for this reduced improvement
could be that daily counts of tweets for NHS regions are less plentiful than for the US States
or the rest of the world. It is possible to pay for a premium Twitter API that allows the
user to download a higher percentage of tweets than that used in this study. A second
way to potentially increase the hit rate of geo-located tweets is to use natural language
processing techniques to estimate the location of the tweet user, such as those outlined in
the review [53]. Another direction for future work is to train a more sophisticated classifier
such as the Bidirectional Encoder Representations from Transformers (BERT) classifier [54].

Calibrating the model in Section 3.1 with movement data was not explored in this
analysis due to the computational effort required. One interesting direction for future
work would be to use a sequential Monte Carlo (SMC) sampler [55] in place of the MCMC
sampling algorithm. An example of such sampler that uses NUTS as the proposal can be
found here [56].
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Appendix A

Table A1. The US States: MAE and NEES when using deaths and when using deaths and different
low-latency data feeds. Lower MAE diff and NEES∼1 = better. Averaged over the prediction
windows in Table 3. Only the English classifier was used.

Geographic Location Deaths Tests Twitter Tests and Twitter
NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES

Alaska 0.329 −36 0.334 −29 0.301 −92 0.302
Alabama 0.684 −29 1.874 −29 1.723 −2 1.000
Arkansas 0.275 3 0.317 −1 0.288 −1 0.313
Arizona 0.337 20 0.334 18 0.344 −20 0.244

California 0.611 6 0.709 9 0.802 5 1.206
Colorado 1.886 −25 0.401 −41 0.457 10 1.278

Connecticut 13.406 −8 1.922 −2 0.875 2 11.459
Delaware 3.020 −3 0.918 16 1.046 12 0.727

Florida 0.406 −24 0.179 13 0.353 −20 0.454
Georgia 0.550 9 0.325 41 0.891 −48 0.255
Hawaii 11.459 −12 28.114 −4 24.695 17 10.149

https://codatmo.github.io
https://codatmo.github.io
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Table A1. Cont.

Geographic Location Deaths Tests Twitter Tests and Twitter
NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES

Iowa 19.176 5 7.720 4 1.476 −3 1.600
Idaho 0.914 0 0.809 2 1.791 7 0.986
Illinois 0.573 9 0.350 13 0.319 −116 1.091
Indiana 0.561 −17 0.652 −40 0.781 0 0.481
Kansas 1.021 1 1.037 −2 1.835 1 0.488

Kentucky 0.355 −4 0.374 10 0.548 −15 0.214
Louisiana 0.298 −7 0.305 −2 0.341 9 0.234

Massachusetts 0.351 3 0.342 −3 0.365 14 0.409
Maryland 0.485 −3 0.619 10 0.581 31 0.313

Maine 0.488 1 0.567 −28 0.796 −9 0.952
Michigan 0.592 −6 0.445 −7 0.453 4 0.850
Minnesota 0.683 9 1.019 11 1.200 51 0.747
Missouri 0.810 −7 1.165 −27 1.609 20 0.475

Mississippi 0.683 12 0.721 2 0.997 −15 0.320
Montana 5.034 4 2.244 −1 1.538 −5 5.189

North Carolina 0.908 −1 0.453 9 0.877 −19 0.570
North Dakota 0.513 −32 0.521 −18 0.544 −8 0.661

Nebraska 0.259 5 0.253 7 0.570 5 0.286
New Hampshire 0.252 −74 0.240 −148 0.430 −36 0.288

New Jersey 0.901 −7 0.788 −6 0.926 10 3.177
New Mexico 0.832 −28 0.738 −12 0.969 0 0.489

Nevada 2.129 −24 0.353 −12 0.425 −13 1.904
New York 0.496 31 0.146 3 0.135 −17 0.418

Ohio 0.263 63 0.675 54 0.468 3 0.337
Oklahoma 0.301 −5 0.369 0 0.621 8 0.256

Oregon 0.729 0 1.032 −2 1.692 −4 0.793
Pennsylvania 0.411 −7 0.385 0 0.426 10 0.402
Rhode Island 0.609 −9 0.546 −31 0.446 −2 1.699

South Carolina 2.072 −3 2.157 −4 5.601 −39 0.429
South Dakota 1.259 14 1.080 −2 1.089 2 5.050

Tennessee 0.794 15 1.191 14 1.687 −11 0.600
Texas 0.585 6 0.784 1 0.750 −71 0.706
Utah 0.499 −98 0.716 −127 1.196 13 0.632

Virginia 0.731 −10 0.396 6 0.864 9 0.676
Vermont 0.142 59 0.300 −1 0.163 40 0.043

Washington 0.608 −8 0.561 19 1.787 −1 0.782
Wisconsin 0.842 6 1.028 25 3.921 8 0.850

West Virginia 0.650 −6 0.547 2 1.042 7 0.291
Wyoming 1.939 5 0.951 −15 1.126 25 0.395

Average 1.696 −5 1.409 −6 1.483 −5 1.269

Table A2. Rest of the World: MAE and NEES when using deaths and when using deaths and
different low-latency data feeds. Lower MAE diff and NEES∼1 = better. Averaged over the prediction
windows in Table 3. Language column states which classifier was used.

Geographic Location Language Deaths Tests Twitter Tests and Twitter
NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES

Argentina Spanish 0.567 3 0.695 −17 0.904 −19 0.765
Bolivia Spanish 0.339 −85 0.207 −117 0.182 −118 0.195
Brazil Portuguese 0.396 −4 0.405 11 0.578 4 0.493
Chile Spanish 0.371 15 0.439 14 0.506 10 0.425

Colombia Spanish 0.154 17 0.243 −46 0.164 −115 0.223
Costa Rica Spanish 0.423 6 0.583 18 3.060 2 0.786
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Table A2. Cont.

Geographic Location Language Deaths Tests Twitter Tests and Twitter
NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES

Ecuador Spanish 0.156 −26 0.195 −99 0.234 −69 0.234
Guatemala Spanish 0.557 −19 0.670 −31 0.815 −31 0.713
Honduras Spanish 0.405 −8 0.381 −27 0.915 −41 0.541

Mexico Spanish 0.766 16 0.939 11 1.100 11 1.110
Nicaragua Spanish 0.091 −13 0.207 −24 1.340 −22 0.364

Panama Spanish 0.550 −20 0.421 −4 0.451 −7 0.368
Paraguay Spanish 0.535 28 0.877 −7 2.615 8 1.473

Peru Spanish 0.507 33 0.103 26 1.630 16 0.515
Uruguay Spanish 0.619 11 0.742 −13 0.899 −7 0.643

Venezuela Spanish 0.610 −14 0.713 −49 0.890 −91 0.603
Germany German 0.379 5 0.613 15 2.131 14 1.570

Italy Italian 0.360 17 0.557 29 3.149 34 1.991

Average 0.433 −6 0.500 −17 1.198 −24 0.723
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Table A3. NHS Regions: MAE and NEES when using deaths and when using deaths and different low-latency data feeds. Lower MAE diff and NEES∼1 = better.
Averaged over the prediction windows in Table 3. Only the English classifier was used.

Geographic Location Deaths Hospital Twitter Zoe App 111 Calls 111 Online
NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES

East of England 0.435 −13 0.419 −7 0.655 38 2.908 −15 0.820 −19 0.795
London 0.878 −36 0.666 −7 1.163 131 3.150 −43 0.750 −47 0.754

Midlands 0.635 −16 0.466 13 0.569 132 3.330 −19 0.418 −47 0.404
North East and Yorkshire 0.753 5 1.188 −4 0.824 153 2.325 −16 0.860 −14 0.888

North West 0.735 −1 0.756 17 1.408 129 3.285 −25 0.932 −25 0.934
South East 0.652 −24 0.805 −3 1.255 126 4.390 8 1.018 6 0.957
South West 0.545 −69 0.474 2 1.432 160 2.729 −8 1.617 −6 1.653

Average 0.662 −22 0.682 2 1.044 124 3.160 −17 0.916 −22 0.912
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