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Abstract: Understanding the reasoning behind a predictive model’s decision is an important and
longstanding problem driven by ethical and legal considerations. Most recent research has focused on
the interpretability of supervised models, whereas unsupervised learning has received less attention.
However, the majority of the focus was on interpreting the whole model in a manner that undermined
accuracy or model assumptions, while local interpretation received much less attention. Therefore,
we propose an intrinsic interpretation for the Gaussian mixture model that provides both global
insight and local interpretations. We employed the Bhattacharyya coefficient to measure the overlap
and divergence across clusters to provide a global interpretation in terms of the differences and
similarities between the clusters. By analyzing the GMM exponent with the Garthwaite–Kock corr-
max transformation, the local interpretation is provided in terms of the relative contribution of
each feature to the overall distance. Experimental results obtained on three datasets show that the
proposed interpretation method outperforms the post hoc model-agnostic LIME in determining the
feature contribution to the cluster assignment.

Keywords: interpretability; Gaussian mixture model; explainable AI

1. Introduction

Predictive modeling is ubiquitous and has been adopted in high-stakes domains as
a result of its ability to make precise and reliable decisions. The General Data Protection
Regulation (GDPR) in the European Union mandates that model decisions in crucial fields
including medical diagnosis, credit scoring, law and justice must be understood and
interpreted prior to their implementation. The notion of interpreting a model’s prediction
dates back to the late 1980s [1]. Since then, there have been several efforts to improve
interpretability, the majority of which have focused on supervised learning methods, such as
support vector machines [2], random forests [3], and deep learning [4]. Supervised learning
has the advantage of not only knowing the number of classes but also the distribution of
each population. It also has access to both the learning sample and objective function to
minimize an error.

Clustering, which is unsupervised learning, divides and clusters data into groups
by maximizing the similarity within a group and the differences among groups. It is also
useful to extract unknown patterns from data. Due to its exploratory nature, providing
only cluster results is not adequate. The cluster assignments are determined using all the
features of the data, which makes the inclusion of a particular point in a cluster difficult to
explain. It also limits the user’s ability to discern the commonalities between points within
a cluster or understand why points end up in different clusters, especially in cases of high
dimensions or uncertainty.

Due to its subjective nature and lack of a consistent definition and measure, assessing
interpretability is a difficult endeavor. Additionally, interpretability is extremely context-
dependent (domain, target audience, data type, etc.) [5,6]. The input data type is another
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factor to consider when selecting an output type. For instance, a tree is an effective method
for describing tabular data, but it is inadequate when attempting to explain images.

Many works have attempted to bridge this gap and provide interpretable cluster-
ing models. Nonetheless, local interpretation has received less attention and has mostly
adopted model-agnostic approaches. The reliance on model-agnostic and locally approxi-
mative models fails to represent the underlying model behavior, particularly in cases of
overlap or uncertainty. In addition, when offering a local interpretation that considers only
a small portion of the model, the interpretation cannot represent the model logic, and thus,
may be deceptive.

In this paper, we discuss developing an interpretable Gaussian mixture model (GMM)
without sacrificing accuracy by considering both global and local interpretations.
The interpretation of the cluster is supplied with as much specificity and distinction as
feasible. The local interpretation uses the GMM exponent to identify the features that led
to the assignment of a given point.

This paper first provides some background knowledge on the GMM along with the
interpretability fundamentals. Second, it reviews and discusses studies on unsupervised inter-
pretability. The proposed method is then presented, along with the results and their discussion.

2. Background

In this section, GMM and the basics of interpretability are briefly presented.

2.1. GMM

A GMM consists of several Gaussian distributions called components. Each compo-
nent is added to other components to form the probability density function (PDF) of the
GMM. Formally, for a random vector x the PDF of the GMM p(x) is defined as follows [7]:

p(x) = ΣK
k=1Pk N (x|µk, Σk), (1)

where Pk represents the weight (mixing proportions) such that Pk > 0, and ΣK
k=1Pk = 1; µk

and Σk represent the mean vector and covariance matrix of the k component, respectively;
K is the number of components.

The PDF of the GMM component is [7]:

N (x|µ, Σ) =
1

(2π)D/2|Σ|(1/2)
exp{−1

2
(x− µ)TΣ−1(x− µ)} (2)

Because the components might overlap, the result of GMM is not a hard assignment
of a point to one cluster; rather, a point can belong to multiple clusters with a certain
probability for each cluster.

2.2. Interpreteability

Interpretability aims to provide understandable model predictions to the user. Regard-
less of its different definitions and considerations, interpretability approaches have three
main dimensions: scope, stage, and specificity (Figure 1).

Interpretations dimensions

Scope

Global Local

Stage

Post-hoc Ante-hoc

Specificity

model specific model agnostic

Figure 1. Interpretation dimensions.
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In the scope dimension approaches can be classified into two main categories: local
and global. Local interpretation is provided per prediction to explain the model decision
for an individual outcome, while global interpretation provides interpretation for the
entire model’s behavior [8]. As the output, the local interpretation can be either feature-
based, where it is provided in terms of feature contribution, e.g., feature weights [9],
or saliency maps [10,11]. The other form is instance-based, which can be a similar case
(prototype) [12], counterfactual [13], or the most influential example which is done by
tracing back to training data [14]. Global interpretation usually takes the form of a proxy
model (converting the model into a simpler one) [15] or by augmenting the interpretation
within the model building process to make it intrinsic. However, because it is difficult to
provide an accurate global interpretation, approaches usually rely on some proxies that
compromise the model’s accuracy.

The second dimension is the stage when the interpretation takes place. The interpreta-
tion process can take place at two different stages, post hoc, where the process of providing
interpretation occurs after building a model, and ante hoc (intrinsic), which occurs during
the model building process.

The last dimension is specificity. Approaches can be either model-specific or model-
agnostic. Model-specific approaches are restricted to one black-box model or one class of
models (e.g., neural networks, CNN, or support vector machines). Model agnostic is untied
to any particular type of black-box model and can be applied to any machine learning
model. Agnostic models use reverse engineering approaches to reveal the underlying
black-box model logic. During this process, a black box is queried with test data to produce
output records, and the data are then used to approximate the original model and construct
an interpretation for it.

These dimensions may overlap as one model can be post hoc and either local or
global. Some examples include LIME [9], which is local, post hoc, and model agnostic, and
GoldenEye [16], which is global, post hoc, and model agnostic. However, no overlap can
be found between intrinsic and agnostic models.

3. Related Work

Most of the literature on interpretability covers supervised learning and particularly
neural networks. Little research has been conducted on the interpretation of unsupervised
learning, namely clustering.

Interpretable clustering models refer to clustering models that provide explanations
as to what characterizes a cluster and how a cluster is distinguished from others.

Decision rules are among the most interpretable and understandable techniques widely
used to either explain models or build transparent models.

Pelleg and Moore [17] fit data in a mixture model where each component is contained
in an M-dimensional hyperrectangle, and each component has a pair of M-length vectors
that define the upper Rh and lower Rl boundaries for every dimension (attributes). They
allow overlap among hyperrectangles to allow soft-membership. In the early stages of EM,
they allow rectangles to have soft tails. In the Gaussian mixture, the distance is calculated
from the point to the cluster mean. In their model, the distance is measured to the closest
point included in the rectangle; in other words, the distance is computed by how far away a
point x is from the boundary of rectangle R, so the mean point is stretched into an interval.

The resulting clusters can then be converted into rule-based boundaries, which only
consider continuous attributes.

The discriminative rectangle mixture (DReaM) [18] model utilizes the same idea. It
learns a rectangular decision rule for each cluster. Domain experts are utilized to gain
background knowledge and consider rules of thumb, such as clinical guidelines, in a semi-
supervised manner to separate samples into groups. This makes GMM more interpretable.
However, rectangular shapes may not necessarily fit the data of the clusters, so they may
sacrifice accuracy in favor of interpretability. Furthermore, the resulting rules become
remarkably long in high-dimensional settings. Fitting data using a rectangle approach
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assumes the local independence of features. This can be interpreted as assuming diagonal
covariance in GMM that then takes the covariance along the diagonal of the sides of the
hyperrectangle. Additionally, the transition from soft clustering to hard clustering and
from elliptical modeling to rectangular modeling is a design choice that is not fully justified
mathematically or grounded in probability.

In [19], the cluster interpretation is generated by optimizing a multi-objective func-
tion. In addition to centroid-based clustering objectives, the interpretability level, which
measures the fraction of agreement among a cluster’s node concerning a feature’s value, is
included as a tunable parameter. The authors assume that the interpretability level and
feature of interest will be provided by the user. The explanation is generated as logical com-
binations of the feature values for the feature of interest associated with the nodes in each
cluster using frequent pattern mining. The interpretation is a logical or over combinations
of the feature values of the feature of interest associated with the nodes in each cluster. To
quantify the interpretability, they compute an interpretability score per cluster concerning
a feature value, which is given by the maximum fraction of nodes that share the feature’s
value. However, in some cases, the algorithm might not converge to a local maximum to
achieve the given interpretability level.

The Search for Explanations for Clusters of Process Instances (SECPI) algorithm [20],
is a post hoc explanation method that applies SVMs on cluster results. SECPI takes an
instance to be explained as input after converting it to a sequence of binary attributes and
returns the label along with the score (probability). Adopting a winner-takes-all model (per
cluster—k SVM models), the model with the highest probability determines the label along
with the score. The interpretation output is a set of rules that are formalized as a set of sets
of attribute indices. The explanation is interpreted as all attributes that need to be inverted,
so the instance would leave its current cluster.

One strategy to improve interpretability is to describe the clusters using an example.
Humans learn by example, and exemplar-based reasoning is one of the most effective
strategies for tactical decision-making. In this strategy, the most representative example of
the cluster, termed a prototype, is used as an interpretation.

Case-based reasoning, investigated in [12], provides an interpretable framework called
the Bayesian case model (BCM) that performs joint inference on cluster labels, prototypes,
and features. The BCM is composed of two parts: the first is the standard discrete mixture
model to learn the structure of instances. The second part is for learning the explanation
(example) by applying uniform distribution over all the data points to find the most
representative instance per group (cluster). However, the authors assume the number of
clusters, all the parameters, and the type of probability distributions are correct for each
type of data. In addition, the data are composed of discrete values only. Moreover, being
dependent on examples, interpretation is an over-generalization and a mistake that is only
rectified if the distribution of the data points is clean, which is rare [21].

Carrizosa et al. [22] proposed a post hoc distance-based prototype interpretation
given the dissimilarity between instances. The prototype was found over the clustering
results by optimizing a bi-objective function that maximizes true positive and minimizes
false positives using two methods. The first method, covering, utilizes a user-provided
dissimilarity threshold for the closeness between data instances, where the distance between
the prototype and an individual must be less than the threshold. In the second method,
set-partitioning, an individual is assigned to the closest prototype. The authors just focused
on the case where there is only one prototype per cluster with a hard clustering condition.

Decision trees are a human-understandable format; thus, many approaches consider
providing the interpretation as a tree. ExKMC [23] separates each cluster from the others
using a threshold cut based on a single feature to form a binary threshold three with
k-leaves representing k-cluster labels, and each internal node contains a threshold value
that partitions the data to form a cluster ruled by the condition from the root-to-leaf path.
Essentially, they find k-centers and assign each data point to its closest center forming labels.
Then, they build a binary tree to fit the clustering label, using dynamic programming to
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find optimal split. They just focus on k-leaves trees for each cluster to maintain only a small
number of conditions. They also provide theoretical results on explainable k-means and
k-medians clustering.

A two-phase interpretable model is proposed by IBM’s group [24], and the authors
first applied their Locally Supervised Metric Learner (LSML) of patient similarity analytics
to estimate the outcome-adjusted behavioral distances between users. Then, based on the
adjusted behavioral distances, hierarchical clustering is employed to generate sub-cohorts
and learn the key features (which contain behavioral signals about implicit user preferences
and barriers) that drive the differential outcomes. Additionally, they provide prototypical
examples that represent the 10 closest instances to the centroid.

Kim et al. [25] proposed the Mind the Gap Model (MGM), an interpretable clustering
model that simultaneously decomposes observations into k clusters while returning a
comprehensive list of distinguishable dimensions that allows for differentiating among
clusters. MGM has two parts: interpretable feature extraction and selection. In the former,
the features are grouped by a logical formula considering only and/oroperators for the
sake of dimensionality reduction. Each dimension can be a member of one group (logical
formula) to avoid searching all combinations of d, which is an NP-complete satisfiability
problem [25]. In feature selection, the model selects the group that creates a large separation
-gap- in the parameter’s value. This model is focused on binary value data.

As shown in Table 1, most of the existing works focus on categorical data [12,19,20,22–24].
Continuous data are considered in two works. Both works address the interpretation
of GMM with rules as an interpretation output [17,18]. This is due to the difficulty of
determining and handling the thresholds and intervals in continuous data. None of the
existing works overcome uncertainty in the context of interpretation. They either adopt
hard clustering or well-separated data.

Another shortcoming is the lack of effective evaluation in the majority of the literature,
which either focuses on cluster objectives or provides only a theoretical analysis.
To the best of our knowledge, the literature on clustering only provides a global interpreta-
tion, which results in useful insight into inner workings. However, it is still necessary to
follow the decision-making process of a new observation, i.e., to provide a local interpreta-
tion of a new instance.

The local interpretation in clusters can be provided by relying on a post hoc model agnostic
such as the Local Interpretable Model-Agnostic Explanations (LIME) [9], and SHapley Additive
exPlanations (SHAP) [26]. However, it has been demonstrated that post hoc techniques that rely
on input perturbations, such as LIME and SHAP, are not reliable [27].

Table 1. Related Work Summary. The column Config. contains any configuration or supplementary
information that the model requires, where P-h refers to post hoc.

Ref. Approach Config. Output P-h

Continues data

[17]
Fit data in M-dimensional
hyper-rectangle # of clusters Rule No

[18]
Discriminative model
learn rectangular
decision rules

Domain expert for decision
boundaries, # of clusters Rule No

Discrete data

[12]

Use discrete mixture model.
Then apply uniform
distribution over all data
to find the representative
instance per cluster

# of clusters Prototype No
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Table 1. Cont.

Ref. Approach Config. Output P-h

[19]
Simultaneously optimize
distance and
interpretability

# of clusters,
interpretability level,
feature of interest

Rule No

[23]
Use k-means to extract class
label of cluster assignments,
then return tree with k-leaves.

# of clusters Tree No

[24]

Supervised Learner for
similarity then hierarchical
clustering for key feature
defining the different
outcomes

Label provided by physician Features, Prototype Yes

[20]
After clustering data
use a k SVM models
(on cluster results)

attributes template, search
depth, early stop parameter Rule Yes

[22]

Find prototype that
maximize true positive
and minimize false
positive

dissimilarity between
individuals Prototype Yes

Binary data

[25]

Finds set of distinguishable
dimensions per cluster
utilizing searching over
logical formula

# of clusters Features No

4. Contribution: Intrinsic GMM Interpretations

In the context of clustering, interpretability refers to a cluster’s characteristics and how
it is distinguished from other clusters. In our work, we explain a cluster’s similarities and
differences by utilizing the overlap. If two clusters overlap a feature, it implies that they
have similarities in that feature; thus, we exclude it from the distinguishing list between
those two clusters.

To determine key features globally per cluster, we eliminate highly overlapped features.
Locally, the key features are determined through an exponent analysis.

4.1. Global Interpretation

Global interpretation provides useful insight into the inner workings of the latent
space. It highlights the relationship and differences among classes. Our approach focuses
on finding differences between clusters and commonalities by utilizing the overlap coeffi-
cient. Determining the overlap helps to provide sub-feature values that are important for
characterizing a cluster.

The cluster overlapping phenomenon is not well characterized mathematically, espe-
cially in multivariate cases [28]. It affects a human’s ability to perceive the cluster assign-
ment and has a strong impact on the prediction certainty which affects the interpretability
of the resulting clusters.

Many measures were designed to capture the overlap/similarity between two proba-
bility distributions. Following Krzanowski [29], those measures can be broadly classified
into two categories. The first category is measures based on ideas from information theory
such as Kullback & Leibler’s [30] and Sibson’s [31] measures. The second category repre-
sents measures related to the Bhattacharyya measure of affinity, such as Bhattacharyya [32]
and Matusita [33].

The Bhattacharyya coefficient BC reflects the amount of overlap between two statistical
samples or distributions, and it is a generalization of the Mahalanobis distance with
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a different covariance [34]. The coefficient is bounded below by zero, which implies
that the two distributions are completely distinguishable, and above by one, when the
distributions are identical and hence indistinguishable. The Bhattacharyya coefficient
geometric interpretation is the cosine of the angle between two vectors [35], and the angle
must be bounded by 0 ≤ val ≤ π therefore, BC always lies between 0 and unity.

In contrast to other coefficients that assume the availability of the set of observa-
tions, Bhattacharyya has a closed-form formula between two Gaussian densities [36] (see
Equation (3)):

BC[µ1, Σ1, µ2, Σ2] = |
Σ1 + Σ2

2
|−

1
2 |Σ1|

1
4 |Σ2|

1
4 exp

(
− 1

8
∆T

µ

(Σ1 + Σ2

2

)−1
∆µ

)
, (3)

where ∆µ = µ2 − µ1, µ is the population mean, Σ is the covariance matrix.
The BC coefficient between two Gaussian distributions of a given list of features

f1, . . . , fs, is the BC coefficient of the two lower-dimensional Gaussians that are obtained by
projecting the original Gaussians onto the linear space spanned by the features f1, . . . , fs.

To illustrate how to use the overlapping idea, we assume there are three occupational
clusters: students, teachers, and CEOs. Age distinguishes students from the other two
clusters, but it cannot do the same between teachers and CEOs, though income could.

Our approach to providing the cluster’s distinguishing feature values under the
overlap is to examine every feature fi for each pair of clusters by calculating BC, as
illustrated by Algorithm 1. When BC is lower than or equal to 0.05%, then the two clusters
are considerably different in this feature value, and it can be used to distinguish between
them. If BC is greater than or equal to 0.95%, then the two clusters have a feature value
that is statistically indistinguishable since the percentages of the overlapping area of the
normal density curve account for 95% of the normal curve, as recommended by [37].

The values in between must undergo another round of examination by taking a pair
of features as a single feature fail. This process will continue until an acceptable BC is
achieved or there is no further feature combination. When the clusters are indistinguishable,
another indicator needs to be considered: the cluster’s weight to outweigh the likelihood
of one cluster over another.

However, it is important to note that the cluster weight is not the same as the prior
probability (mixing coefficient), Pk Equation (2) shows that the denominator contains
(2π)D/2, which is constant for all clusters, and |Σ|1/2 for each cluster is the same according
to our assumption (we are using all the attributes). Accordingly, we define the cluster
weight as follows:

wk =
Pk

|Σk|1/2 (4)

which is normalized over all clusters:

Wk =
wk

ΣK
j=1wj

(5)

The final outputs of this process are clusters’ weight and a list of distinguishing feature
values per pair of clusters and commonalities. The list of features helps gain insight into
the borderlines between the clusters. Where the cluster weights are fed into the local
interpretation, see Algorithm 2.
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Algorithm 1 Global interpretation

Build GMM
for each pair of clusters Cj, Ct do

for each feature fi ∈ D do
Find Bhattacharyya coefficient between Cj, Ct of fi
if BC ≤ 0.05 then

add the feature to distinguish list between clusters {j,t} and remove fi from D
else if BC ≥ 0.95 then

add the feature to common list between clusters {j,t} and remove fi from D
end if

end for
end for
The remaining features go through another round over the pair of features, and the
process will continue by adding more features until an acceptable BC value is achieved
or there is no further feature combination.

Algorithm 2 Local interpretation

Find GMM assignment for x
Pick top two clusters Ca and Cb, check their total probabilities if less than 0.90 keep
adding more clusters.
Find Mahalanobis distance MD between x and each of Ca, Cb. . .
if (MDa ≤ MDb and P(x|Ca) ≥ P(x|Cb)) then

The assignment is based on the features
else

The point is closer to Cb but Ca has a higher cluster weight
end if
w1, w2 ← Garthwaite–Kock MDa, and MDb
for each feature fi do

if (w1[i] < w2[i]) then
add fi to Ca distinguish list

else if (w1[i] > w2[i]) then
add fi to Cb distinguish list

else
ignore fi . fi contributes equally for both clusters

end if
end for
The rest of the features must go to another round over the pair of features, and process
will continue by adding more features until finding the feature combination.

4.2. Local Interpretation

In many cases, there is a need to trace the path of decision-making to a new observation
to provide a local interpretation to a new instance. Our local interpretation is based on
Gaussian exponent quantification. The aim is for a given instance x, to determine the exact
contribution for each feature xj per cluster assignment. The cluster assignment (posterior
probability) is given by [7]:

p(k|x) = Pk N (x|µk, Σk)

ΣK
j=1Pj N (x|µj, Σj)

(6)

It also defines the responsibility that a component k takes for ‘explaining’ the ob-
servation x. The functional dependence of the Gaussian on x is defined through the
quadratic form:

∆2 = (x− µ)TΣ−1(x− µ), (7)
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where x is a d × 1 random vector x = (x1, . . . , xd), µ is a d × 1 vector representing the
population mean, and Σ is a d× d matrix representing the population variance.

This quantity ∆2 is called the Mahalanobis distanceand represents the exponent. It
determines the contribution of the input features to the prediction.

Quantifying the exact contribution of individual feature xj to the quadratic form is
not always easy. For the identity matrix, it is obvious that the contribution is (xj − µj)

2.
Additionally, in a diagonal matrix where all off-diagonal of covariance matrix Σ are zeros
(conditional independence of a feature), each feature contributes solely to the exponent by
(xj − µj)

2 × σ̂j
2, where the symbols σ2

j , σ̂j
2 denote the jth diagonal entries of Σ, Σ−1.

However, quantifying an individual variable’s contribution is tricky. The Garthwaite–Kock
corr-max transformation [38] is a novel method that is able to find the relative contribution of
each feature to the predictions. The corr-max transformation finds meaningful partitions, which
is based on a transformation that maximizes the sum of the correlations between individual
variables and the variables to which they transform under a constraint. By forming new
variables through rotation, the contributions of individual variables to a quadratic form become
more transparent. To form the partition, Garthwaite–Kock consider [38]:

x −→ w = A(x− µ), (8)

where w is a d× 1 vector, A is a d× d matrix, and:

wTw = (x− µ)TΣ−1(x− µ), (9)

for any value of x, then:

∆2 = Σd
i=0w2

i , (10)

so w yields a partition of ∆2.
Each wj corresponds to the contribution of feature xj to the exponent. When sorting

w = {w1, . . . , wd}, a large value of wjimplies a larger distance from the cluster mean; hence,
the corresponding feature is less similar to the cluster characteristics. A small contribution
implies less distance, and hence, more effect on the assignment.

The cluster assignment of the top two clusters is then considered, unless their probabil-
ities total are less than 0.90, in which case all the clusters satisfying this total are considered.
There are two important considerations in local interpretation. The first is the Mahalanobis
distance between the point of interest and each cluster; the second is the cluster weight. In
some cases, the cluster weight plays a higher role in the assignment, so we need to compare
the final assignment and the distances to determine the main cause.

Another challenging factor is the correlations. If all the features are independent, it
would be easier to interpret. If two or more features are col-linear, it would affect the feature
contribution results.

5. Results and Discussion

To demonstrate the efficacy of the proposed approach, we evaluate its performance on
real-world datasets. We present the results for both global and local interpretations.

5.1. Data Sets and Performance Metrics

The datasets considered for the experiments are as follows:

• Iris: it is likely the most well-known dataset in the literature of machine learning. It
has three classes. Each class represents a distinct iris plant type described with four
features: sepal length (F1), sepal width (F2), petal length (F3), and petal width (F4).

• The Swiss banknotes [39]: it includes measurements of the shape of genuine and
forged bills. Six real-valued features (Length (F1), Left (F2), Right (F3), Bottom (F4),
Top (F5), and Diagonal (F6)) correspond to two classes: counterfeit (1) or genuine (0).
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• Seeds: Seeds is a University of California, Irvine, (UCI) dataset that includes measurements
of geometrical properties of seven real-valued parameters, namely area (F1), perimeter (F2),
compactness (F3), length of the kernel (F4), width of the kernel (F5), asymmetry coefficient
(F6), and length of the kernel groove (F7). These measures correspond to three distinct
types of wheat. F3 (Compactness) is calculated as follows: F3 = 4πF1

F2
2

.

The Adjusted Rand Index (ARI) is used to evaluate how well the clustering results
match the ground-truth labels. The results are averaged over five runs. We marginalize out
over features to validate the selected similar and different features with the full model.

Having a d-dimensional feature space X = {x1, . . . xi, . . . xd} with the feature set
D = { f1, . . . , fd}, the conditional contribution for cluster Ck over feature fi by considering
all features in D except fi , is computed as follows:

I( fi|k) =
1
n

Σn
j=1|P(Ck|x

D−{ fi}
j )− P(Ck|xD

j )| (11)

The marginalised contribution over feature fi is given by:

I( fi) = ΣK
k=1 I( fi|k) (12)

In addition, we evaluate our local interpretation using two metrics. The first is
comprehensiveness, which requires including all contributed features; omitting these
features reduces the confidence of the model. The second metric is sufficiency, which
involves finding the subset of features that, if maintained, will maintain or increase the
model’s confidence.

S is the selected subset of features as class evidence and D is the full features.

comprehensivenessk = P(Ck|xD)− P(Ck|xD−S) (13)

comprehensiveness should always result in a positive value, as removing evidence should
reduce the model’s prediction probability. A high comprehensiveness value indicates that
the right subset of features has been determined.

sufficiencyk = P(Ck|xS)− P(Ck|xD) (14)

When the sufficiency value is negative, it indicates that the wrong features were
selected, as the model’s prediction would be greater or the same if the supporting features
were retained.

5.2. Global Interpretation

For global interpretation, the three tested datasets and our findings are presented
under each subsection. The results obtained on the dataset Seeds dataset are moved to
Appendix A because of the large number of related figures and tables.

5.2.1. Iris Dataset

For the global interpretation, we first eliminate highly overlapped features if there
were any. The computation of the BC values for each pair of clusters per feature is depicted
in Table 2. F2, sepal width, has a similar range of BC Values for all clusters, indicating
that all clusters are comparable relative to this feature. Therefore, F2 is not considered a
distinguishing feature, although it can be combined with other features. Additionally, for
clusters C1 and C3, the value of BC for F1, sepal length, is 0.89, indicating that both clusters
have a comparable range of BC values.

In contrast, F3, petal length, has the lowest BC value, less than 0.05, for both C1 vs.
C2 and C2 vs. C3, indicating a statistically significant difference in the distributions of this
feature. Consequently, F3 is added to the list of distinguishing features for the prior classes.
The same results were obtained for F4, petal width.
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None of the BC values for C1 and C3 are below 0.05. All the feature BC values
are between 0.05 and 0.95, which can be utilized as pairs to differentiate clusters in a
subsequent round.

Table 2. BC values over one feature of the Iris dataset.

Features F1 F2 F3 F4

C1, C2 0.27 0.810 0.00004 0.0002
C1, C3 0.89 0.944 0.40000 0.3000
C2, C3 0.50 0.640 0.00015 0.0015

In a second round, as shown in Table 3, we only consider the pair of features F1 and
F2 when comparing C1 vs. C2 and C2 vs. C3. In both cases, the BC value is more than 0.05,
suggesting that F3 and F4 are the best candidates. However, none of the BC values for C1
vs. C3 are smaller than 0.05, thus indicating that the cluster C2 is clearly distinct from the
other two clusters C1 and C3.

Table 3. BC values over pair of features of the Iris dataset (Algorithms 1 round 2 output).

Features F1, F2 F1, F3 F1, F4 F2, F3 F2, F4 F3, F4

C1, C2 0.0768 - - - - -
C1, C3 0.8699 0.19689 0.307 0.3779 0.2137 0.246
C2, C3 0.0658 - - - - -

Nonetheless, for the sake of statistical analysis, we consider the distinguishing features
F3 and F4 when examining overlap between C1 vs. C3 and C2 vs. C3; outcomes are
presented in Table 4.

From Table 4 and Figure 2, it is evident that clusters C1 vs. C2 and C2 vs. C3 are
substantially differentiated from one another, whereas clusters C1 vs. C3 are not.

Table 4. BC values over pairs of features of the Iris dataset (including the distinguishing features).

Features F1, F2 F1, F3 F1, F4 F2, F3 F2, F4 F3, F4

C1, C2 7.68× 10−2 1.61× 10−8 3.70× 10−4 9.56× 10−7 1.44× 10−5 1.16× 10−6

C1, C3 8.70× 10−1 1.97× 10−1 3.07× 10−1 3.78× 10−1 2.14× 10−1 2.46× 10−1

C2, C3 6.58× 10−2 5.90× 10−7 9.60× 10−4 7.82× 10−7 1.30× 10−5 9.27× 10−5

(a) Red: C1 and Blue: C2

(b) Red: C1 and Blue: C3

(c) Red: C2 and Blue: C3

Figure 2. BC plot over pairs of features: (F1, F2), (F1, F3), (F1, F4), (F2, F3), (F2, F4), and (F3, F4). Each
subfigure represents a pair of clusters of the Iris dataset.
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The high rate of overlap between clusters C1 and C3 necessitates an additional round
in which three attributes are considered. Table 5 depicts the results of the third round. Sets
F1, F3, and F4 offered the lowest BC value, 0.1, making those features the best option for
discriminating, although it is greater than 0.05. These numbers are consistent with the
Iris cluster analysis literature, as many authors state that the Iris data could be considered
2-cluster data as well as 3-cluster data based on the visual observation of the 2-D projection
of the Iris data [40,41].

Table 5. BC values over sets of three features of the Iris dataset.

Features F1, F2, F3 F1, F2, F4 F1, F3, F4 F2, F3, F4

C1, C3 0.17 0.24 0.1 0.16

In general, the overlap rate between each pair of clusters is substantially lower than
when only a subset of features is considered. Using BC as a reference, features F1, F3, and
F4 best distinguish the two clusters.

Iris Global Interpretation

Because cluster C2 is distinguishable from clusters C1 and C3, the algorithm includes
it first along with the two distinguishing features listed in order of importance and their
domains. The least separable clusters are C1 and C3, which have the best chance of being
separated using the set of features F3, F4 and F1. It finally provides the indistinguishable
feature F2 (see Figure 3).

Figure 3. Iris dataset global interpretation.

After setting the feature list, the cluster weight is determined using Equations (4) and (5)
for each cluster; we obtained the following weights w1 = 0.375, w2 = 0.6, and w3 = 0.025.

To validate our results, we employe marginalization over features by utilizing
Equations (11) and (12). Table 6 displays the results. We can observe that feature F2
has a lesser impact than features F3 and F4. It is essential to note that no changes were
made to C2’s assignment because C2 is highly separable by more than one feature (see
Table 2), and it has the highest cluster weight.

Table 6. Iris dataset: marginalization over each feature.

C1 C2 C3

F1 6.6460× 10−2 2.73× 10−33 6.6460× 10−2

F2 5.0140× 10−2 3.78× 10−31 5.0150× 10−2

F3 7.4690× 10−2 6.45× 10−20 7.4691× 10−2

F4 9.3927× 10−2 8.02× 10−25 9.3927× 10−2

5.2.2. Swiss Banknote Dataset

There are only two clusters in the data; therefore, there is no need to examine various
pairings of clusters; each feature is examined separately. As shown in Table 7, feature F6
(diagonal) has the lowest BC, whereas feature F1 (area) has the highest BC, exceeding the
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0.95 threshold. Thus, it has to be removed from the list of features to be investigated and
added to the list of common features.

Table 7. BC values over one feature of the Swiss banknote dataset.

F1 F2 F3 F4 F5 F6

C1, C2 0.98 0.83 0.77 0.4 0.75 0.1

Features F1, F2, and F3 have no influence on the assignment when marginalization
is employed (Table 8). Feature F4 has a 1% impact on the probability of assigning 20% of
the test instances. The removal of feature F5 decreases the probability of a single instance.
Finally, feature F6 prompted a total reversal of two instances and a 50% decrease in a third
instance. However, no value is regarded as a distinguishing feature, and another round is
necessary for every pair of features.

As shown in Table 9, the BC value of the pair of features (F4, F6) is less than 0.05,
making it a distinguishing pair. Validation using Equation (11) yields 0.13, demonstrating
the importance of combining the two features. It is worth noting that we maintain feature
F1 to illustrate that retaining features with a high BC value, which does not improve the
ability to differentiate clusters (see Table 9).

Table 8. Marginalization over each feature of the Swiss banknote dataset.

F1 F2 F3 F4 F5 F6

Change 0 0 0 0.0003 0.008059 0.03862

Cluster C1 weighs 0.416% and Cluster C2 weighs 0.584% of the total clusters weight.
Therefore, we are aware that the assignment is mostly dependent on the value of the features.

Table 9. BC values over pair of features of the Swiss banknote dataset.

F2 F3 F4 F5 F6

F1 0.75 0.70 0.40 0.73 0.100
F2 0.73 0.33 0.64 0.090
F3 0.30 0.60 0.070
F4 0.06 0.017
F5 0.089

Swiss Banknote Global Interpretation

The features F6 and F4 are the best to distinguish the two clusters, with a BC value of
0.017. However, the feature F1 is the most indistinguishable between the two distributions
with a BC value of 0.98; hence, it is added as a common or similar feature (Figure 4).

Figure 4. Swiss banknote dataset Global Interpretation.
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5.2.3. Seeds Dataset

Calculating the BC values for each pair of clusters using a single feature (see Table 10
demonstrates that clusters C1 and C3 are distinguishable with three features (F1, F2, and
F5). In addition, feature F4 has a very low BC; hence, the set of features (F1, F2, F5) is
the distinguishing list between the clusters C1 and C3. On the other hand, cluster C2
overlapped with the other two, especially with cluster C3, as evidenced by BC values of
features F3 and F6 exceeding 0.95. Table 11 shows that when features were removed, cluster
C2 changed the most.

Table 10. BC values over one feature of the Seeds dataset.

F1 F2 F3 F4 F5 F6 F7

C1, C2 0.280 0.380 0.720 0.650 0.350 0.790 0.930
C1, C3 0.006 0.008 0.660 0.080 0.020 0.910 0.120
C2, C3 0.190 0.210 0.990 0.410 0.300 0.950 0.310

Table 11. Marginalization over each feature of the Seeds dataset.

F1 F2 F3 F4 F5 F6 F7

C1 0.073 0.073 0.065 0.028 0.002 0.004 0.000
C2 0.094 0.110 0.085 0.067 0.040 0.040 0.047
C3 0.020 0.033 0.020 0.039 0.039 0.039 0.039

Another round is needed over the features in between the ranges of 0.05 and 0.95,
namely those for the clusters C1, C2 = {F1, F2, F3, F4, F5, F6, F7}, C1, C3 = {F3, F4, F6, F7}, and
C2, C3 = {F1, F2, F4, F5, F7}, (see Appendix A Tables A1–A3 along with their corresponding
Figures A1–A3). It is evident that retaining features with considerable overlap serves
neither cluster C2 nor cluster C3 (see pair of features (F3, F6) in Table A3). As a result, it is
concluded that considering only two features is insufficient to distinguish cluster C2 from
the other clusters. The three features were more effective in differentiating the clusters C1
and C2 when the set of features F1, F2, and F3 was used, but it was still insufficient (more
than 0.05). The best set of features to differentiate C1 from C2 are F1, F2, F3, and F7, which
allow the least potential overlap between the two clusters (BC = 0.056).

Clearly, the clusters C1 and C3 are distinct from one another, as shown by the plot in
Figure A2 with three BC values below 0.05.

Finally, for the clusters C2, C3, after removing features F3 and F6, a combination of features
cannot exceed five. The set of four features yields the following values: 0.13, 0.1, 0.12, 0.12, and
0.11. This required the use of five features to distinguish the clusters C2 and C3.

Finally, we calculate the cluster weight using Equations (5) and (6) and obtain the
following weights, w1 = 0.7, w2 = 0.17, and w3 = 0.13.

5.3. Local Interpretation

We apply our local interpretation method to the three datasets by selecting instances
that exhibit a pattern that cannot be interpreted by features alone.

5.3.1. Iris Dataset

The Mahalanobis distance and the cluster weight are two crucial factors to consider
when interpreting the GMM assignment. We selected the first two Iris testing points to be
closer to cluster C3 in terms of distance, although cluster C1 has a greater probability due
to its greater weight (see Section 5.2.1). The values for each point are listed in Appendix B,
listed as iris-1, iris-2, iris-3, and iris-4 (Table A4).

Figure 5 depicts our interpretation of the point iris-1. Notably, iris-1 is closer to cluster
C3 than C1, yet C1 is assigned a higher probability due to its higher cluster weight.
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For the cluster C1, features F2 and F4 provide evidence that supports the cluster assign-
ment while feature F1 does not. This result is supported by Table 12, which demonstrates
that eliminating feature F2 reduces the cluster probability from 62% to 46%, while elimi-
nating feature F4 reduces the probability to 22%. In contrast, eliminating feature F1, which
does not support the cluster assignment, boosts the probability from 62% to 98% due to its
substantial contribution to the cluster mean distance (52%).

Figure 5. Iris dataset: iris-1 local Interpretation.

In terms of the Mahalanobis distance, the point is closer to cluster C3. Feature F1 is the
nearest evidence feature, but feature F4 defies the cluster assignment. Eliminating feature
F1 on the cluster C3 assignment results in the probability declining from 38% to 2%. As it
contributes equally to both clusters (C1: 1.75 and C3: 1.72; the difference is minor), feature
F3 is neutral and is not counted for either cluster.

Table 12. Validating local interpretation point iris-1. Clu. is the cluster number, Prob: cluster
probability, Dist: Mahalanobis distance from the point to the corresponding cluster mean.

Clu. Prob. Dist. F1 F2 F3 F4

C1 62% 7.65 4.00 0.50 1.75 1.38
C3 38% 6.86 0.78 1.15 1.72 3.20
C1 98% 1.70 - 0.20 0.03 1.50
C3 2% 6.80 - 1.00 2.54 3.20
C1 46% 7.23 3.50 - 1.90 1.80
C3 54% 4.20 0.50 - 1.90 1.90
C1 85% 5.10 2.00 0.60 - 2.50
C3 15% 6.70 1.80 1.10 - 3.80
C1 22% 7.50 3.80 0.90 2.80 -
C3 78% 3.80 0.70 0.30 2.80 -

Figure 6 depicts the iris-2 interpretation, which reveals that the distances between iris-2
and the two clusters are approximately equal (10.2 and 10.21). However, GMM assigned
a 70% probability to cluster C1 and a 30% probability to cluster C3. This is due to cluster
weight rather than impact of the features. For cluster C1, features F2 and F4 represent the
evidence, and their removal reduces the likelihood to 69% and 62%, respectively, as shown
in Table 13. In contrast, feature F3 is considered to be against the cluster assignment, and
eliminating it boosts the cluster probability from 70% to 99.5%.
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Figure 6. Iris dataset: iris-2 local interpretation.

Table 13. Validating local interpretation point iris-2. Clu. is the cluster number, Prob: cluster
probability, Dist: Mahalanobis distance from the point to the corresponding cluster mean.

Clu Prob. Dist. F1 F2 F3 F4

C1 70.0% 10.21 0.50 0.10 7.04 2.6
C3 30.0% 10.20 0.08 0.30 1.57 8.3
C1 94.4% 6.60 - 0.03 4.20 2.4
C3 5.6% 9.60 - 0.30 0.90 8.4
C1 69.0% 9.80 0.40 - 7.10 2.3
C3 31.0% 8.55 0.18 - 1.70 6.7
C1 99.5% 0.96 0.22 0.14 - 0.6
C3 0.5% 9.50 0.07 0.30 - 9.1
C1 62.0% 3.75 0.40 0.01 3.30 -
C3 38.0% 3.50 0.14 0.08 3.30 -

In other cases, the Mahalanobis distance between the point and higher probability
cluster is smaller than the distance between the point and the lesser probability cluster.
This is demonstrated in iris-3 (Figure 7) where all features are closer to cluster C1 rather
than C3.

Figure 7. Iris dataset: iris-3 local interpretation.

As shown in Table 14, marginalizing over a single feature never flips the assignment
or reduces it by more than 8%.
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Table 14. Iris dataset: validating local interpretation point iris-3. Clu. is the cluster number, Prob:
cluster probability, Dist: Mahalanobis distance from the point to the corresponding cluster mean.

Clu Prob. Dist. F1 F2 F3 F4

C1 98.0% 4.64 0.120 1.97 0.42 2.12
C3 2.0% 11.01 0.420 3.80 3.70 3.10
C1 98.1% 4.10 - 1.80 0.09 2.19
C3 1.9% 9.30 - 4.13 1.90 3.30
C1 93.0% 3.70 0.023 - 0.54 3.11
C3 7.0% 6.06 0.920 - 3.90 1.23
C1 94.0% 4.60 0.040 2.06 - 2.50
C3 6.0% 8.01 0.100 3.80 - 4.10
C1 92.0% 4.02 0.095 2.70 1.20 -
C3 8.0% 7.80 0.530 1.97 5.30 -

The last point is iris-4. GMM is 100 percent certain that it belongs to the cluster C3.
The distances between iris-4 and the two closest clusters are vastly different. According to
our interpretation, which is shown in Figure 8, the evidence for the cluster C3 comes from
feature F3. This is confirmed by Table 15. On the other hand, feature F4 contributes equally
to both clusters, while features F1 and F2 are more closely related to the cluster C1.

Figure 8. Iris dataset: iris-4 local interpretation.

Table 15. Validating local interpretation point iris-4. Clu. is the cluster number, Prob: cluster
probability, Dist: Mahalanobis distance from the point to the corresponding cluster mean.

Clu. Prob. Dist. F1 F2 F3 F4

C1 0% 25.30 0.040 0.002 23.50 1.80
C3 100% 4.30 0.900 1.200 0.46 1.76
C1 1% 19.20 - 0.004 17.10 2.16
C3 99% 4.19 - 1.350 1.10 1.70
C1 0% 25.00 0.070 - 23.50 1.46
C3 100% 2.60 1.240 - 0.40 0.94
C1 16% 9.50 2.500 0.050 - 6.95
C3 84% 4.20 1.400 1.200 - 1.60
C1 0% 24.85 0.005 0.030 24.80 -
C3 100% 1.58 1.030 0.420 0.13 -

Finally, Table 16 displays local metrics across the three points (for iris-3, the models
select all features). The drop in probability in the comprehensiveness column indicates
that the correct features were selected. Furthermore, none of the values in the sufficiency
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column were negative, so retaining these features helped increase, or at the very least
maintained, confidence in the model’s original prediction.

Table 16. Iris dataset: local interpretability metrics.

Point Original Prediction Comprehensiveness Sufficiency

iris-1 C1: 62% C1: 25% (37%) C1: 93% (31%)
iris-2 C1: 70% C1: 66% (4%) C1: 99.5% (29.5%)
iris-4 C3: 100% C3: 81% (19%) C3: 100% (0%)

5.3.2. Swiss Banknote Dataset

For the Swiss banknote, the model has a high degree of confidence in the assignment
of the test data evidenced by all of the selected points belonging one hundred percent to
the cluster. The values of the selected points are listed in Appendix B, (Table A5).

For the first point swiss-1, the instance is assigned with absolute confidence to the
cluster C1 due to the similarities of features F5, F1, and F6 (Figure 9). Cluster C2 is supported
by features F4 and F3.

Figure 9. Swiss banknote dataset: Swiss-1 local interpretation.

We validated this interpretation by removing features F5 and F6 to determine their
effect on the cluster assignment probability. As shown in Table 17, the distance from cluster
C1 decreased from 10.7 to 3.11, while the distance from cluster C2 decreased from 22.4 to
2.2, resulting in the probability of cluster C2 increasing from 0% to 61%. Table 18 shows
that the largest decline induced by a single feature is obtained when feature F5 is removed.

Table 17. Validating local interpretation point swiss-1 after removing two features (F5, F6). Clu.
is the cluster number, Prob: cluster probability, Dist: Mahalanobis distance from the point to the
corresponding cluster mean.

Clu. Prob. Dist. F1 F2 F3 F4 F5 F6

C1 100% 10.70 0.0500 0.100 0.70 5.80 0.0002 4.07
C2 0% 22.40 0.1000 0.080 0.40 2.88 9.8000 9.10
C1 39% 3.11 0.0005 0.014 0.18 2.90 - -
C2 61% 2.20 0.3400 0.500 0.95 0.40 - -
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Table 18. Validating local interpretation point swiss-1. Clu. is the cluster number, Prob: cluster
probability, Dist: Mahalanobis distance from the point to the corresponding cluster mean.

Clu. Prob. Dist. F1 F2 F3 F4 F5 F6

C1 100.0% 10.70 0.0500 0.1000 0.70 5.80 0.0002 4.07
C2 0.0% 22.40 0.1000 0.0800 0.40 2.88 9.8000 9.10
C1 99.7% 10.01 - 0.0500 0.70 5.40 0.0020 3.90
C2 0.3% 22.30 - 0.1200 0.40 2.80 9.8000 9.30
C1 98.9% 10.13 0.0200 - 0.50 5.70 0.0002 3.90
C2 1.1% 20.50 0.1600 - 0.19 2.60 9.0400 8.70
C1 99.8% 8.70 0.0400 0.0034 - 5.26 0.0008 3.40
C2 0.2% 22.30 0.0700 0.0300 - 3.04 10.0000 9.15
C1 99.8% 3.50 0.0070 0.0900 0.40 - 0.9000 2.10
C2 0.2% 16.20 0.0200 0.0015 0.73 - 5.7000 9.70
C1 68.0% 9.40 0.0300 0.1200 0.70 4.80 - 3.80
C2 32.0% 11.40 0.0600 0.0400 0.80 0.30 - 10.15
C1 99.7% 3.20 0.0004 0.0140 0.17 2.90 0.1100 -
C2 0.3% 15.40 0.4000 0.0170 0.50 3.50 11.0000 -

The second point interpretation is depicted in Figure 10, with absolute certainty that
this point belongs to cluster C1 based on features F3 and F6 as an evidence and feature F4
as opposition. When the two evidence features are eliminated, the assignment yielded a
97% certainty that this point belongs to cluster C2, as shown in Table 19. Moreover, when
examining the impact of removing each feature individually (Table 20), we observe that the
feature F6 has the greatest influence due to its large distance from the mean of cluster C2.

Figure 10. Swiss banknote dataset: Swiss-2 local interpretation.

Table 19. Validating local interpretation point swiss-2 after removing two features (F3, F6). Prob:
cluster probability, Clu. is the cluster number, Dist: Mahalanobis distance from the point to the
corresponding cluster mean.

Clu. Prob. Dist. F1 F2 F3 F4 F5 F6

C1 100% 14.2 0.0300 0.25 0.012 11.300 1.5 1.1
C2 0% 27.2 0.0009 0.40 1.800 0.120 1.9 23.1
C1 3% 9.8 0.0010 0.30 - 8.500 1 -
C2 97% 3.5 0.1000 0.20 - 0.003 3.2 -
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Table 20. Validating local interpretation point swiss-2. Clu. is the cluster number, Prob: cluster
probability, Dist: Mahalanobis distance from the point to the corresponding cluster mean.

Clu. Prob. Dist. F1 F2 F3 F4 F5 F6

C1 100.0% 14.20 0.03000 0.250 0.012 11.300 1.500 1.10
C2 0.0% 27.20 0.00090 0.400 1.800 0.120 1.900 23.10
C1 99.8% 13.60 - 0.340 0.009 10.800 1.500 1.00
C2 0.2% 27.04 - 0.370 1.800 0.100 1.900 22.80
C1 99.0% 14.00 0.07000 - 0.080 11.300 1.500 1.12
C2 1.0% 24.60 0.00980 - 1.100 0.200 1.400 21.90
C1 99.5% 14.00 0.03000 0.330 - 11.120 1.500 1.00
C2 0.5% 25.52 0.03000 0.060 - 0.050 2.150 23.20
C1 100.0% 0.42 0.06000 0.300 0.030 - 0.006 0.05
C2 0.0% 27.20 0.00004 0.400 1.700 - 2.120 22.94
C1 100.0% 7.40 0.00800 0.150 0.007 6.600 - 0.64
C2 0.0% 26.44 0.00340 0.200 2.000 0.600 - 23.70
C1 7.0% 9.93 0.00200 0.400 0.020 8.500 1.100 -
C2 93.0% 5.10 0.25000 0.006 1.980 0.005 2.800 -

Finally, Table 21 displays local metrics for the two points. We can see the high drop
in probability in the comprehensiveness column, indicating that the correct features were
selected. Furthermore, none of the values in the sufficiency column were negative, thus
maintaining the same level of confidence for the model.

Table 21. Swiss banknote dataset: local interpretability metrics.

Point Original Prediction Comprehensiveness Sufficiency

Swiss-1 C1: 100% C1: 30% (70%) C1: 100% (0%)
Swiss-2 C1: 100% C1: 12% (88%) C3: 100% (0%)

5.3.3. Seeds Dataset

The correlation between features F1 and F2 in the cluster C2 is 0.97. They are highly
correlated, and their values are used to calculate the feature F3. We select an instance that
demonstrates the significance of resolving the correlation. The sample is assigned to the
cluster C1 with a certainty of 72%. The contribution of feature F2 to the total distance from
the mean of cluster C2 is 11.3. When feature F1 is removed, this contribution decreases to 1.7.
The model cannot identify the contribution of each of the correlated features (see Table 22).

Table 22. Validating local interpretation point seed-1. Clu. is the cluster number, Prob: cluster
probability, Dist: Mahalanobis distance from the point to the corresponding cluster mean.

Clu. Prob. Dist. F1 F2 F3 F4 F5 F6 F7

C1 72.0% 21.50 2.20 0.050 0.1000 8.27 0.00200 2.300 8.60
C2 28.0% 20.60 1.50 11.300 5.9000 0.08 1.30000 0.025 0.53
C1 0.5% 19.94 - 0.360 0.0002 8.75 0.03700 2.300 8.50
C2 99.5% 7.44 - 1.700 3.5000 0.12 1.50000 0.020 0.63
C1 0.5% 19.80 0.33 - 0.0014 8.90 0.01700 2.300 8.30
C2 99.5% 7.15 1.70 - 3.0000 0.20 1.50000 0.030 0.65
C1 0.3% 20.10 0.70 0.090 - 8.50 0.00005 2.300 8.50
C2 97.0% 6.10 2.10 0.400 - 0.10 3.20000 0.050 0.30
C1 98.0% 15.20 6.30 0.200 1.5000 - 0.00500 2.000 5.10
C2 2.0% 20.34 1.30 11.500 5.7000 - 1.30000 0.030 0.60
C1 65.0% 21.20 1.80 0.030 0.1400 8.30 - 2.300 8.60
C2 35.0% 20.50 1.14 12.000 6.7000 0.10 - 0.020 2.70
C1 86.0% 18.90 2.05 0.007 0.0005 7.32 0.17000 - 9.36
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Table 22. Cont.

Clu. Prob. Dist. F1 F2 F3 F4 F5 F6 F7

C2 14.0% 19.50 1.20 10.600 5.8000 0.08 1.26000 - 0.55
C1 99.9% 6.80 1.70 0.100 0.0080 2.08 0.06000 2.800 -
C2 0.1% 20.30 1.20 12.200 5.5000 0.17 1.20000 0.050 -

It is essential to note that the instance is incorrectly assigned to cluster C1, and should
instead be placed in C2. However, correlated features are a prevalent problem that has been
addressed using a variety of strategies, such as modifying the model architecture and even
the dataset [42] or eliminating redundant neurons from neural networks [43]. One strategy
that might be taken to remedy this issue is to remove correlated features and then retrain
the model. Table 23 demonstrates that removing the area and perimeter features helps to
resolve this issue and improves the model’s overall performance.

Table 23. Validating local interpretation point seed-1 after removing F1 and F2 and retrain the model.
Clu. is the cluster number, Prob: cluster probability, Dist: Mahalanobis distance from the point to the
corresponding cluster mean.

Clu. Prob. Dist. F3 F4 F5 F6 F7

C1 0.01% 31.80 0.650 12.400000 1.8000 2.400 14.550
C2 99.99% 5.00 2.200 0.200000 1.1000 0.080 1.400
C1 0.01% 26.30 - 10.000000 0.3000 2.500 13.500
C2 99.99% 4.60 - 0.000001 3.4000 0.004 1.100
C1 20.00% 8.10 1.800 - 0.6000 1.900 3.800
C2 80.00% 5.00 2.200 - 1.2000 0.090 1.500
C1 0.01% 24.10 0.300 8.600000 - 2.700 12.500
C2 99.99% 5.00 2.800 0.380000 - 0.100 1.800
C1 0.01% 30.20 1.200 11.500000 2.9000 - 14.600
C2 99.99% 5.00 2.100 0.190000 1.2000 - 1.500
C1 63.00% 4.00 0.100 1.500000 0.0002 2.400 -
C2 37.00% 4.60 2.000 0.800000 1.6400 0.120 -

5.4. Comparisons with LIME

Since none of the related model-specific work provides a local interpretation, we
compare our local interpretation to model-agnostic LIME [9]. Despite being model-agnostic,
LIME requires the availability of training data in the case of tabular data.

LIME calculates the mean and standard deviation for each feature of the tabular data
and then discretizes them into quartiles to sample around the instance of interest. Since the
approximation of the black-box model is dependent on the data, the interpretation is in
some way misleading.

5.4.1. Iris Dataset

LIME is a stochastic model in the sense that it generates slightly different output per
run. Therefore, we run LIME multiple times and select the most repeated samples. LIME
generates two interpretations for the point iris-1 as shown in Figures 11 and 12, LIME
regards features F4, F3, and F2 as evidence favoring the cluster assignment for cluster C1,
however feature F1 is considered against. According to LIME’s alternative interpretation
of cluster C1, features F4 and F3 constitute evidence, but F1 and F2 are against. However,
Table 12, show that removing feature F3 (which is intended to be evidence) increases the
assignment probability from 62% to 85%; therefore, it cannot be considered an evidence
feature if its removal increases the assignment. Due to its location at the same distance
from both clusters, F3 neither supports nor opposes the assignment.
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For cluster C3, LIME outputs features F3, F1, F4, and F2 as evidence of the assign-
ment, whereas the other interpretation provides features F3, F4, and F1 as evidence of the
assignment and F2 is considered against.

Figure 11. LIME interpretation for point iris-1 (sample-1).

Figure 12. LIME interpretation for point iris-1 (sample-2).

However, removing feature F4 causes a drop in the distance between the point and
the cluster mean from 6.86 to 3.8, and the assignment probability increases from 38% to
78%. Therefore, F4 is against the assignment of the point to cluster C3, which contradicts
LIME. Our method, on the other hand, produces a consistent interpretation and is able to
identify the correct set of features.

For the iris-2 point, LIME outputs features F4, F3, and F1 as an evidence of the assign-
ment for cluster C1 (Figure 13). However, removing F1 increases the cluster probability from
70% to 94.4%, while removing F3 increases the cluster probability to 99.5%. F2, however, is
considered against the cluster. If we remove F2, the cluster probability decreased by 1%.

LIME considers F3 and F2 as evidence of C3. Removing F2 causes an increase in cluster
probability by 1%, while F1 is counted against C3. Indeed, eliminating F1 reduces the
cluster’s probability from 30% to 5%.

Figure 13. LIME interpretation for point iris-2.

LIME suggests two interpretations for the instance iris-3, as shown by Figures 14 and 15.
Both interpretations agree over features F1, F3, and F4 as evidence. However, F3 and F2
cannot be used as evidence for cluster C3 since their contribution to both distances, and
their impact when they are removed are inconsistent with this claim (see Table 14).

Figure 14. LIME interpretation for point iris-3 (sample-1).

Figure 15. LIME interpretation for point iris-3 (sample-2).



Information 2023, 14, 164 23 of 28

Figure 16 shows LIME’s interpretation for the instance iris-4 where it considers feature
F2 as supporting the cluster C3 assignment. This contradicts its impact when it is removed
to lower the overall distance from 4.3 to 2.6. However, there is no effect on the distance to
cluster C1 (see Table 15).

Figure 16. LIME explanation for point iris-4.

5.4.2. Swiss Banknote Dataset

Figures 17 and 18 show that LIME agrees with our interpretation presented in Figure 9,
specifically that features F5 and F6 constitute evidence. LIME also deems feature F4 to be
evidence, even though it contradicts cluster C1 and supports the other cluster, as shown
in Table 18.

Figure 17. LIME explanation for point swiss-1 (sample-1).

Figure 18. LIME explanation for point swiss-1 (sample-2).

LIME selects features F6, F4, F5, and F3 as evidence of the cluster assignment for the
point swiss-2, as shown in Figure 19. Table 20 reveals that feature F4 is the most remote
feature from the mean of cluster C1. Eliminating this feature decreases the overall distance
from 14.2 to 0.42. Therefore, F4 would never be considered as proof of the C1 assignment.

Figure 19. LIME explanation for point swiss-2.

The simplicity of an interpretation and its comprehensiveness are two important
factors to consider. The majority of approaches make a trade-off between these two factors,
whereas feature-based approaches can attain the optimal balance [44]. Our method can
quantify the degree of influence of each feature in a simple and concise way. The corr-max
transformation provides an estimate of each feature’s contribution to a quadratic form
where the necessary matrices are readily determined. It is a consistent method since, given
the same model and input, it always returns the same interpretation. In addition, the
interpretation is intrinsic and never compromises accuracy, and we test it in a cost-effective
manner compared to other methods, and it avoids the out-of-distribution problem [45].
However, strongly correlated features are a typical issue that hinders the capacity of the



Information 2023, 14, 164 24 of 28

approach to define the role of each of the correlated features. Our method is susceptible to
this issue.

Interpretation must reflect the logic of a model, and a blind test performed by a model-
agnostic to build an equivalent model is not adequate to show the reasoning as the logical
equivalence of models is not implied by their output being equivalent.

6. Conclusions

We developed an approach to intrinsically interpret GMM on global and local scales.
Our approach provides a global perspective by identifying distinguishing and overlapping
features to determine the characteristics of clusters along with cluster weights. Locally,
our approach quantifies the features’ contributions to the overall distance from the cluster
means. Because it lacks a global perspective, local interpretation fails to represent the real
behavior of the model on occasion. To prevent this, we considered global weight while
providing local interpretation. Our approach is able to find a precise interpretation while
preserving accuracy and model assumptions. The global interpretation is determined
by utilizing overlap to identify distinguishing features across clusters, whereas the local
interpretation utilizes the corr-max transformation to determine the precise contribution
of each feature per instance, in addition to incorporating cluster weights. There are a
variety of methods that alter the model to provide an interpretation but affect the accu-
racy or assumptions. In comparison, our solution maintained the original model’s logic
and accuracy.

However, in the case of strongly correlated features, it is difficult to determine the relative
importance of each feature; hence, this situation should be noted when interpreting the cluster
assignment. In the future, we will address this issue for a more robust interpretation. Addition-
ally, for the purpose of comparison, we intend to broaden the scope of our studies so that they
encompass additional data formats and use additional approaches, such as SHAP [26,46].
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Appendix A. Seeds

Table A1. Seeds: BC values over pair of features for the clusters (C1, C2) .

F2 F3 F4 F5 F6 F7

F1 0.25 0.238 0.257 0.256 0.208 0.173
F2 0.239 0.300 0.276 0.281 0.180
F3 0.246 0.318 0.592 0.576
F4 0.282 0.464 0.347
F5 0.264 0.328
F6 0.715
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Figure A1. Seeds: Bhattacharyya coefficient plot over pair of features for (C1, C2) (Table A1).

Figure A2. Seeds: Bhattacharyya coefficient plot over pair of features for (C1, C3) (Table A2).
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Table A2. Seeds: BC values over pair of features for the clusters (C1, C3).

F2 F3 F4 F5 F6 F7

F1 0.006 0.0058 0.0057 0.00550 0.00560 0.00610
F2 0.0043 0.0038 0.00450 0.00684 0.00688
F3 0.0159 0.00720 0.62900 0.02000
F4 0.00742 0.07030 0.08100
F5 0.01790 0.00609
F6 0.10900

Table A3. Seeds: BC values over pair of features for the clusters (C2, C3).

F2 F3 F4 F5 F6 F7

F1 0.1825 0.1888 0.1831 0.1869 0.1740 0.17340
F2 0.1860 0.1715 0.1849 0.1991 0.20300
F3 0.2826 0.2113 0.9308 0.21280
F4 0.2166 0.3874 0.28760
F5 0.2877 0.16115
F6 0.30840

Figure A3. Seeds: Bhattacharyya coefficient plot over pair of features for (C2, C3) (Table A3).

Appendix B. Used Data Points

Table A4. Iris data points.

iris-1 [5.6, 3.0, 4.5, 1.5]
iris-2 [6.1, 2.8, 4.7, 1.2]
iris-3 [6.3, 3.3, 4.7, 1.6]
iris-4 [7.2, 3.2, 6.0, 1.8]
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Table A5. Swiss banknote data points.

Swiss-1 [214.9, 130.3, 130.1, 8.7, 11.7, 140.2]

Swiss-2 [214.9, 130.2, 130.2, 8.0, 11.2, 139.6]
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