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Abstract: This paper discusses challenges for M&S if it is to be increasingly important to decision
aiding and policy analysis. It suggests an approach that—from the outset of a policy analysis
project—incorporates M&S of a varied resolution with the intent that (1) the results of analysis
will be communicated with a relatively simple model and corresponding narrative that scans the
system problem in breadth, having been informed by richer modeling, and (2) the broad view is
supplemented by the selective detail (zooms) and selected change of the perspective as needed.
This is not just a matter of “dumbing down” communication, but a matter of thinking about both
forests and trees from the outset and about designing analytic tools accordingly. It will also enable
exploratory analysis amidst uncertainty and disagreement, which is central to modern policy analysis
and decision-aiding. All of this poses significant challenges for those who design and build M&S.

Keywords: modeling for policy analysis; multiresolution modeling (MRM); multiresolution; mul-
tiperspective modeling (MRMPM); multimodeling; families of models; base and lumped models;
contextual abstraction; modeling and simulation; exploratory analysis; decision making under deep
uncertainty (DMDU); robust decision making (RDM); qualitative modeling

1. Introduction
1.1. Motivation

Organizations often use relatively complicated models and simulations (M&S) for
research and to support planning. A recurring problem is that the models may appear to
leaders to be incomprehensible and insufficiently responsive. This greatly undercuts their
value, as occurred in 2011 when the U.S. Department of Defense dissolved a large modeling
group [1]. In this paper, I suggest methods to improve the substantive quality of work
while greatly mitigating communication problems. An admonition for analysts is—from
the outset—to use multi-resolution, multi-perspective modeling (MRMPM) with relatively
simple models for seeing forests and communicating to leaders, and with relatively more
complicated models for understanding deeper issues, while noting the consequences of
alternative perspectives [2] and avoiding blunders [3].

Such an MRMPM approach should also include human gaming and human-in-the-
loop simulation, which illuminate matters obfuscated in usual computer modeling. When
possible, a project should have a campaign plan for analysis that includes not only MRMPM,
but a variety of such other sources of information as empirical analysis and discussion
with experienced operators [4]. Further, it should confront the ubiquitous uncertainty
and disagreement common to the wicked problems arising in policy analysis for complex
systems [5]. The paper’s suggestions are consistent with the themes of the movement for
decision making under deep uncertainty (DMDU) [6].

1.2. Terminology

In this paper (rather than the literature on computer graphics), multiresolution model-
ing (MRM) is “building a single model, a family of models, or both to describe the same
phenomenon at different levels of resolution” [7]. An earlier term was “variable resolution
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modeling” [8,9]. MRM ordinarily involves families of models. MRMPM is similar except
that the model family also represents alternative perspectives [7]. Although not discussed
further here, a model’s resolution can be quite different with regard to time, space, objects,
object attributes, and processes [9,10].

Considerable work has been accomplished with multiresolution modeling [11] by
one term or another, as with multilevel modeling in Rouse’s work [12,13]. For example,
Moon has discussed the often-puzzling relationships among abstraction, resolution, and
fidelity [14]. Bettini, Jajodia, and Wang have discussed issues of time granularity in
considerable detail [15]. Some have explored MRM issues in connection with the DEVS
formalism for simulation [16,17]. In a recent work, Rabelo and colleagues reviewed MRM
issues integrating live, virtual, and constructive simulations [10]. Hadi used MRM in a
detailed guide for traffic planning [18]. Zeigler and co-authors discussed MRM in their
third-edition M&S textbook [19]. As their text describes, complex systems have multiple
components, each of which can be described by a base model and a lumped model that is an
abstraction of the first. They discuss the criteria for consistency adequate for a specified
purpose and context. See Chapters 15 and 22, which are an online lecture [20] and a short
article relevant to defense work [21].

The alternative perspective aspect of MRMPM does not seem to have been much ad-
dressed in the literature, but it is related to the discussion of multifaceted modeling [19] and
some of the literature on multimodels. A multimodel is a modular model with sub-models
that together describe the behavior of a complex multi-phased system [11]. Multimodels
reflect the common need for a variety of abstractions in and across applications [22]. Mod-
eling alternative perspectives is especially important in the social sciences where many
crucial issues involve values. Being able to generate the appropriate range of alterna-
tive perspectives may require diversity in the analytic team and organizational license to
acknowledge such alternatives [2].

Another term worth discussing at the outset is “validity.” Although organizational
leaders sometimes demand validated models, it makes no sense to talk about a model’s
validity in the abstract, a point emphasized long ago by Forrester and discussed in the
textbook on system dynamics [23]. As recognized by the U.S. Department of Defense for
decades, a model’s validity should be assessed for a particular purpose in a particular
context. Further, it is now recognized that “validity” should be seen as a multi-dimensional
concept: a model’s validity should be assessed separately for each of the following dimen-
sions [24–26].

(1) Description;
(2) Cause–effect explanation;
(3) Postdiction;
(4) Exploration;
(5) Prediction.
The members of a multiresolution family will typically have very different realms

of validity. For example, a machine-learning model may predict new data from the same
stable system but will usually provide little or no cause–effect explanatory power. In con-
trast, simulation models (e.g., system dynamic models) are often valuable for description,
explanation, and/or exploration, but with little or no predictive power (if only because
their input data are so uncertain).

Other systematic discussions of validation take a different tack and focus more on
means for assessing aspects of validity, notably testability, as in a paper that is careful in
discussing the balance between simplicity and veridicality [27]. The U.S. Department of
Defense, among other agencies, has an official article on the related issues of verification,
validation, and accreditation [28]. Rouse discusses the many different functions of models
in human-centric private- and public-sector applications. He touches upon assuring that a
multilevel model is a good enough approximation for the application [29].
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1.3. Outline of What Follows

With this background, this concept paper unfolds as follows. Section 2 identifies ten
major themes derived from my experience over the years. They do not purport to be tidy
or the result of a formal and comprehensive literature review. Section 3 discusses a few
past cases that tend to confirm the themes. Section 4 presents the conclusions, including
some of the many challenges for those who develop M&S concepts, methods, and tools.

2. Themes
2.1. Analytic Support for Policy Analysis Should Provide Breadth, Selective Depth, and Selective
Ability to Change Perspective

By and large, strategic decisionmakers need a top-down synoptic view of how their
actions may affect the system. That is, they require breadth in the same way that a system
designer needs a view of the whole. That said, some assessments and decisions depend
on relatively detailed matters that cannot be taken for granted. Selectively, then, analytic
support requires depth adequate to illuminate the troublesome issues. Similarly, ana-
lytic support should include the ability to discuss a problem area from selected different
perspectives. The word “selected” is crucial because no study or study group can be com-
prehensive. Table 1 lists some of the many alternative ways one might represent a system.
The intent is merely to illustrate that models for policy analysis may need to address such
differing views.

Table 1. Illustrative alternative perspectives for which modeling might be desired.

Type Contrast Left Side of Continuum Right Side of Continuum

Control Centralized Distributed

Approach to knowledge Empirical (neopositivist) Cause–effect theory as well as
empirical observation

Comprehensiveness Component focus System focus

Metaphysical approach “Western” “Eastern”

Understanding Actors operating in an
environment

Structures and processes
shaping actors and their
choices (constructivism)

Economics Rational-actor economy
Economy with actors having
bounded rationality at best

and some irrational behaviors

Economic lens Socialism Free enterprsie

2.2. Providing Breadth, Depth, and Variation Is Best Done with MRMPM Model Families

It follows that a project should plan for MRM and MRMPM from the start. This means
having models that can accept inputs at different levels of detail, rather than “selective view-
ing” (generating lower resolution outputs upon demand using a single higher-resolution
model) [8]. The need for this becomes manifest when we realize that higher-level reasoning—
ours as well as that of policymakers—amounts to using a lower-resolution model. Doing
so is essential for sense-making [7,8].

In some cases, a single model can zoom to a greater or lesser resolution (hierarchical
variable resolution modeling or IHVR) [30]. More typically, we need different models for
different resolutions and different perspectives. Ideally perhaps, we might develop family
members jointly to understand how to relate them, i.e., how to aggregate, disaggregate,
and map among them. Realistically, as with human families, the members of a family may
develop over time without joint design and may not “play together” well without expert
adult supervision. A military example is the U.S. Air Force using both a mission-level
model (Brawler) for air-to-air combat, including pilot styles and tactics, and a campaign-
level model (STORM) in which air combat is much more aggregated. Only expert users can
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use the former to estimate the parameters sensibly for use in the latter, and then only for
the context of a particular application [31]. An epidemiological example would be expert
practitioners relating individual and population-level disease models [32].

Representing alternative perspectives in a family of models is more unusual, except
perhaps for using rotational coordinates as an alternative perspective in physics. As an
example, options for an international agreement might be assessed by a probable effect
on per-capita GDP or, instead, for effects on the structure of society and the health of the
middle class. Otherwise, one analysis might purport to compare options by a weighted
sum of scores, while another might rule out any option with bad effects on any of several
considerations (e.g., the continued viability of a nation’s fishing industry). Analysts can
sometimes represent perspectives with different objective functions, perhaps with the non-
linear weighting of criteria [33–35]. Nonlinearities often arise in strategic decision making
because success may depend on all of a system’s critical components possessing threshold
levels of effectiveness or, e.g., because the political environment includes single-issue
criteria that must be met.

2.3. Useful Lower Resolution Models May Not Be Straightfoward Aggregations from More
Detailed Model Isomorphic Relationships Are Not Required

In thinking about base and simple model pairs, as suggested by Zeigler [20], it is useful to
distinguish between (1) lumping achieved by isomorphic aggregation from the base model’s
structure and (2) using a simplified model that mimics aggregate behavior adequately, but
whose structure has no obvious relationship to the more detailed model. Aesthetically, the
former has always seemed preferable, but the latter is common and important.

Some may see it as natural to start with a relatively detailed model and then generate a
lumped version by aggregating. This, however, often proves difficult, complex, and hard to
understand. In contrast, simplified models may arise independently, e.g., by the empirical
discovery of scaling laws, by intuitive leaps, or by heroic assumptions that someone familiar
with details might be loath to make. Some examples familiar in both physical and social
modeling involve linearity. There may be myriad reasons for aggregate behavior to be
nonlinear, but linear approximations are often surprisingly good [36].

Another way to proceed is to start with a relatively simple model and add layers of
detail to it as seems useful. This is apt to clarify morphisms between simple and more
detailed models, but it may tend to oversimplify (and misrepresent) the more detailed
phenomena. If one began with a simple rational, analytic economic model and then added
detail, one might not postulate incorrectly a well-behaved and rational microlevel, rather
than representing the more chaotic microscopic behavior of real systems (including actual
human reasoning).

Interestingly, we humans are superb at shifting seamlessly between simplifications
as circumstances change (we hardly notice doing so), whereas models are often not so
good at doing so. In military work, force ratio models proved remarkably useful for
decades, but only by practitioners who would quickly adjust the force ratios depending on
circumstances [37,38]. In epidemiology, SIR and SEIR models have long proven valuable,
albeit with the necessary adaptations [39].

The theme here is that in generating a family of models, we should not hesitate
to contemplate “simple” models that at first blush appear simplistic. Perhaps the data
will demonstrate that they are better than expected and perhaps in-depth thinking will
reveal why.

As an example of why this matters technically, consider that the approximate validity
of lumpability is often said to depend on the approximate uniformity and indifference,
as when all the agents of a system’s components behave the same and do not affect each
other in ways that distinguish among them. Consider, however, a model F(X, t) with a
state vector X that may have 100 or 1000s of components, such as soldiers in combat. The
soldiers have varied abilities and may variously fight singly or in groups with small or
large groups of enemy soldiers. In other words, microscopic combat may not be uniform or
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indifferent. However, the overall outcome may be driven by only one or a few aggregate
variables, such as the initial force ratio and perhaps a relative will to fight. Or, conversely,
the aggregation of microscopic dynamics may not be so simple. The microscopic simulation
may, near a tipping point of relative prowess, show a bifurcation into cases in which one or
the other side wins decisively, rather than an outcome in which the sides mutually exhaust
themselves into stalemate. This kind of trajectory splitting is common in the study of
complex adaptive systems (CAS).

Using a COVID-19 example, individual-level sequences of infection, suffering, and
recovering may vary across individuals and random events, but none of this may matter if
sufficient mixing occurs. In contrast, if groups have different vulnerabilities and infection
mechanisms, and do not mix very much, the disease may generate distinct populations.
Averaging across populations may then be misleading. Naïve analysis might expect the
disease to die out in a month or two, whereas reality might see disease disappear in one
group, persist longer in another, and then manifest itself in cycles of disease. The prediction
of cycling was one of the “wins” in the modeling of the COVID-19 pandemic. Such cycling
is also not unusual in the modeling of complex or complex adaptive systems [23,40].

2.4. Within a Family, Models Should Be Cross-Calibrated for Mutual Consistency

A long-standing myth is that lower resolution models should be calibrated based on
the runs of higher-resolution models. The myth may have been the result of analogies to
physics where, e.g., classical thermodynamics can be derived from statistical mechanics,
which can in turn be derived from quantum statistical mechanics. When drawing that anal-
ogy, however, it is often not appreciated that the parameter values of aggregate phenomena
are usually obtained empirically.

The upward calibration approach might make sense if the detailed models and data
(see top of Figure 1) were accurate and certain. Unfortunately, in application areas (as dis-
tinct from the idealized universes of physics theory), models at different levels of detail are
flawed and their input data are uncertain [41]. A better approach for the M&S community
is to seek mutual consistency across all levels using all the available empirical data [42].
That is, the bottom depiction in Figure 1 is more appropriate for the military example used:
information flows upward, downward, and sideways, connecting information at all levels.
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To illustrate significance, consider that many detailed models, coupled with their
databases, predict aggregate system behaviors that are far more efficient than real-world
aggregate empirical data. Often, the detailed models lack processes corresponding to
frictions or inefficiencies. For example, when Russia invaded Ukraine in 2022, many models
had predicted a quick victory. They did not allow for such factors as the relative will-to-
fight of combatants, the relative prowess of the sides’ generals, and systemic corruption
affecting many aspects of the Russian army’s quality.

As a second example, some early models of the COVID-19 pandemic assumed rational
behavior on the part of populations, such as a quick and full acceptance of vaccines. Even if
they had a parameter for vaccine hesitation (as did the influential Imperial College London
model of the COVID-19 pandemic [43]), the model did not anticipate vaccine resistance
correlating to political schisms and tribalism.

The idealized notion of upward calibration from a definitive detailed model to simpler
aggregate models has always been misguided, even as an idealization. It may be a zombie
idea, meaning it is one that will rise again and again.

2.5. Motivated Meta-Modeling Can Help with Cross-Calibration and Data Analysis

Operations researchers have long used response surfaces or meta models, often simple
analytical expressions that predict approximately the same outcomes as a more complicated
model regarded as authoritative. Such models, however, often provide no conceptual music.
They are just regressions with various mysterious terms and coefficients.

A more attractive approach is to think about what simplified behavior might look like
based on plausible but perhaps heroic assumptions, such as integrals being approximated
by a representative value of the integrand times the width of the integration domain, a
single chemical or social process dominating the problem, economically rational behavior,
exponential decay of some property, or steady-state circumstances. If the resulting analytic
expression makes sense dimensionally and conceptually, then the result can be tested
against empirical data or against systematic runs of a more authoritative model. Perhaps
the simplified model explains results well, albeit with an empirical multiplier and an
empirical error term; if so, then the simplified model also provides the rough causal
explanation that is so crucial to narrative and communication.

A premier example which has emerged over the decades is the radar equation (dis-
cussed in many places, including Wikipedia). Such a formula model can be used to specify
elements of a regression, which is far better than merely having some coefficient values for
a regression that seems to fit extant data for unknown reasons. James Bigelow and I called
this approach motivated metamodeling [44]. When introducing the approach, we assumed
that it was common. Instead, it seems uncommon, especially by data-driven analysts
who talk about “letting the data speak” or those wedded to detailed models. Motivated
metamodeling could be a routine element of policy analysis projects connecting models and
data. I note that testing a motivated metamodel in no way corrupts analysis as data-driven
researchers sometimes claim; if the postulated form is not roughly right, the corresponding
coefficient will turn out to be small (the postulate will have been falsified). In contrast, even
though users may think that they are allowing “data to speak,” typical regression analysis
imposes the assumption of linearity (or of a polynomial structure).

2.6. The Capacity for Exploratory Analysis under Uncertainty Needs to Be Built in from the Outset

Almost everyone agrees on the need for sensitivity analysis or even its cousin on
steroids, exploratory analysis, that explores outcomes as all the important and uncertain
parameters of a problem are varied simultaneously. In practice, however, studies usually
do far less ambitious uncertainty analysis than intended, in significant part because it is
difficult and tedious unless the groundwork has been laid from the outset in the modeling,
programming, and analytical tools.

The methods for exploratory analysis and support for robust decision making (RDM)
are hallmarks of considerable research in recent decades, associated with decision making



Information 2023, 14, 134 7 of 17

under deep uncertainty (DMDU) [4,6,45–50]. Such analysis is still the exception rather than
the rule, but that should change. So the questions asked of models should also change;
rather than asking “What if?” and running a simulation, we should routinely be asking
“Under what circumstances and assumptions will this strategy succeed or fail” [51]? This is
especially true in competitive domains, such as defense planning or commercial battles for
market share, but it is true also in planning to avoid environmental and other disasters.

2.7. Modular Rather Than Monolithic Models Should Be the Rule

Organizations often focus on a single premier model as authoritative, usually a com-
plex and monolithic model. Often, however, good analysis benefits from leaner, agile, and
tailored work. Monolithic models do not lend themselves readily to this.

Individual groups develop model families that they learn to work with, but this usually
requires a cadre with deep expertise and craft knowledge. Examples include the family
of high-resolution simulations used by Matsumura, Steeb, and Herbert, and the work in
several military service analytic teams such as the Air Force A-9. Some research groups
have composed models for analysis that use agent-based modeling, system dynamics, and
social science methods [52]. Some are taking a more modular approach to enterprise-level
analysis, as described by Gallagher and colleagues [53].

2.8. Qualitative Models Can Be Structure and Subtantive

Although most members of the M&S community focus on quantitative applications,
policy analysis typically involves the social sciences in which qualitative research is often
particularly insightful. A project considering a family of models should not hesitate to
address qualitative issues, especially since qualitative modeling can add significantly to
the coherence of the work. One of the contributions qualitative modeling can make is
to combine what otherwise might be carried along as competing social science theories
that merely pass in the night without unification. More unifying qualitative theories may
be highly structured, based on solid social science, and made quantitative for limited
mathematical purposes (e.g., by the use of subjective Likert scales).

2.9. Interface Models

Sometimes it is necessary to build an “interface model” that maps the questions of
policy analysis (sometimes questions from policymakers themselves) into the variables of
an existing model. The policy questions often reflect perspectives different from those of
model builders. Some examples are;

a. What if we could double the rate at which assets are deployed?
b. What if the adversary used strategy Y instead of strategy X?
c. How would improved morale affect productivity?
d. What if we allowed only vaccinated individuals to be in government workplaces?

Constructing such “interface models” can be nontrivial because if may require 1:n
mapping (disaggregation) and the good ways for doing that may or may not be obvious.
For example, policymakers may provide more resources, but the value of doing so may
depend on how they are allocated (perhaps evenly, “optimally” with a mission in mind, by
organizational clout, or by doctrine).

2.10. The Simplest Family Member May Be a Graphic or “Common-Sense” Argument

Readers of this journal are comfortable with mathematics. For both project-level
discussion and up-the-chain communication, however, the ideas may best be expressed
with a simple graphic, a short essay, or a 2 × 2 logic table such as those of which political
scientists are notoriously fond. As one example, we may take a system view and note that
“we need to assure that all the system’s critical components are satisfactory.” Heads will
nod in agreement. However, the significance of this may only be internalized when people
see charts or hear stories where disaster occurs because of a single failed component (a
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horseshoe nail or an angle-of-attack sensor on a Boeing 737-Max). Thus, it may be helpful
to demonstrate such points with simple computational models, even, perhaps, as simple as:

If efectiveness depends on critical components {Ai}, then if any Ai is below its critical
value Aio, effectiveness is 0. Otherwise, effectiveness is a weighted sum. In pseudocode,
this might be

If Min (Ai-Aio,i)< Aio Then 0 Else Sum(Wi*Ai,i)
As another example of how simple summary graphics can have a big impact, we

might recall the early COVID-19 modeling by Imperial College London [43]. It generated
graphics predicting the collapse of the healthcare system if the pandemic’s infection rate
was not greatly reduced (e.g., Figure 2). These projections led to measures such as directives
to maintain space between people, avoid large assemblies, and enact temporary lockdowns.
Although the original analysis was criticized and was subsequently found to have made
some incorrect estimates [54], it was extremely influential.
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3. Cases

The cases that follow are brief summaries of some experiences over the years that
influenced the themes discussed in Section 2.

3.1. Radiation from High-Altitude Rocket Exhaust Plumes

During the 1970s, the U.S. Defense Advanced Research Projects Agency (DARPA)
studied radiation from high-altitude rocket exhaust plumes. Its program included aero-
dynamic simulations with embedded models of chemical reactions, shock-tube testing,
testing from different platforms, and other components. As the program approached
conclusion, however, the results from the component studies were inconsistent with each
other and the empirical data, which was depressing. Fortunately, I was able to construct a
one-liner “formula model” derived from the physics (along with heroic assumptions) to
explain qualitatively what sensors might observe as a rocket flew through a high altitude
with some calibration based on simulations. Although originally intended as a rough
heuristic, the model provided coherence to the research project and explained the previous
contradictions. As a bonus, it proved to be accurate as a scaling law. In retrospect, having
had the formula model from the outset would have affected many elements of the research
program. Much of the research of this program (although not the model) was described in
an open publication by Fred Simmons [55].

3.2. The Military “Halt Problem” of the Eary 2000s

In the 1990s, the U.S. military was beginning to assimilate precision-strike capabilities
to stop (i.e., “halt’) invasions of friendly countries. The effectiveness of precision fires
depended on scenario-driven variables such as the availability of shooters, basing, the
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attacker’s strategy, terrain, and air defenses. Thus, when complex joint campaign models
were used to assess halt campaigns, the results depended on scenario details, which led
to fierce debate among factions for and against the new technology (in part, battles about
budget share).

Once again, simpler models sharpened issues, allowed exploratory analysis across
scenario space, and explained the results [56,57]. A simple analytical model organized
a good deal of subsequent simulation (see appendix of [56]). The simple model was
summarized with a single graphic showing how the key variables affected the halt time
or halt distance (Figure 3). In retrospect, the Greek letters and matrix notation were
unfortunate. Later models were expressed in admirably clear prose [57]. Interestingly,
while some conclusions could be tested with more detailed joint campaign models, the
more consequential issues could not; they required even more detail (see next case).
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3.3. Effectiveness of Long-Range Precision Fires

Even when the long-range precision fires were available, as discussed above, their
effectiveness was a mystery in the mid-to-late 1990s. Two entity-level simulation studies
had differed by an order of magnitude in estimating the effectiveness of different scenar-
ios [58,59]. Understanding this was very difficult because the entity-level Janus simulation
and the accompanying scenarios were very detailed. Janus tracked individual mechanized
vehicles as they moved through digitized terrain and engaged through line-of-sight tar-
geting; or, in the man-in-loop simulation of the Army’s long-range fire system (ATACMs),
the process would include spotting a group of vehicles, transmitting information to an
ATACMs battery, and launching ATACMs so that it might hit the advancing group at a
projected future time and place.

Working with the previous authors, James Bigelow and I sought to untangle the
mystery in a study treating the output from an entity-level simulation as empirical data.
With fresh thinking about the physics, it became clear that even a “simple” model would
need high resolution in a few respects, as suggested by Figure 4 [60]. This microscopic
view of one aspect of the simulation was reflected in an otherwise simple simulation with
such aggregate features as average spacing between armored vehicles and average vehicle
speeds. For ATACMs to succeed, its impact would have to occur before the vehicles of
the target packet entered a wooded or otherwise cluttered terrain, even if the ostensible



Information 2023, 14, 134 10 of 17

footprint of the ATACMs was huge. However, what did being “in the clearing” mean?
Figure 5 shows the entity-level view. While an aggregate-level map might encode an area
as a largely “open” area, much of such an “open” area is actually cluttered with objects
(trees, houses and other buildings, and roads). This meant that to use the aggregate-level
model, it would be necessary to use data on the size of open areas based on detailed work
rather than aggregate maps. Thus, the exercise demonstrated the need for work at different
levels of detail even though it also explained the previous mystery and provided a way
to estimate the effectiveness of long-range precision fires for a wide range of conditions.
Covering such a range with an entity-level simulation was out of the question.
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3.4. Air Force Close Support of Ground Forces

Early in the 2000s, the U.S. Air Force leadership became concerned because field com-
manders in ongoing wars were not having their requests prioritized within the budgeted
process. The Air Force system for planning and budgeting was dominated by issues related
to high-cost, high-visibility systems that would typically not reach the field for years. Air
Force leadership and the Secretary of Defense were frustrated by the budgeting system’s
tendency to focus on future wars to the exclusion of present wars. Richard Hillestad
and I sought to illustrate in prototype what might be done to better diagnose current AF
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problems, identify solutions, and explain the associated program needs. The prototype
focused on close air support (CAS) to ground forces.

It would have been possible to approach the problem with the existing theater- and
mission-level combat models, but doing so would have required a great deal of time gather-
ing and negotiating detailed data on everything from weapon systems, forces, concepts of
operations, and scenarios. Instead, from the outset, the team focused on the close-support
mission and relatively simple modeling. Figure 6 describes the spreadsheet-level model
used. It was developed by Paul Dreyer and programmed in Visual Basic on a spreadsheet.
It included stochastic features and a number of decision processes. This was a useful level
of detail, and the model was exercised for many cases.
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After better understanding the issues, we developed a narrative understandable to
general officers and policymakers. We constructed a different simple model, as indicated
in Figure 7. Significantly, this model does not map neatly into that of Figure 6. Instead, it
represents a different perspective of the problem. In this, the image is that CAS effectiveness
would be low unless each of four separate factors were high: the probability of detecting
and redetecting the target, the probability of the pilot receiving timely permission to engage,
the probability that engagement would occur quickly enough to be militarily effective, and,
finally, the probability of destroying the engaged target. From our discussion with pilots
and other warriors, we had come to recognize that some of the major factors were in the
command and control system. In practice, aircraft might not be allocated to the mission
soon enough, enroute targeting decisions might be delayed (e.g., permission to engage),
aircraft would hit their targets too late to help to the ground commander, and so on. Some
of these system glitches were due to doctrine, which had evolved for the classic Air Force
problem of attacking fixed targets. That doctrine tended to value measures such as targets
killed rather than the timeliness of such kills.
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understand the underlying science, calling for a review led by social scientist Kim Cragin 
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sight about cause–effect relationships rather than mere correlations. The result was a 
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The spreadsheet model of Figure 6 described the phenomena well, but Figure 7
explained matters to the three-star sponsoring official, who appreciated the system view
even though he was not himself a system engineer.

3.5. Insights from the Social Science of Terrorism

In 2007, the U.S. Department of Defense largely stopped the further M&S of terrorism
and insurgency because the results to date had been disappointing. It stepped back to
understand the underlying science, calling for a review led by social scientist Kim Cragin
and me, which drew heavily on the qualitative social science literature and provided
insight about cause–effect relationships rather than mere correlations. The result was a
large, edited book [62], the themes from which were summarized in factor tree models.
Figure 8 is an example of a factor tree from a follow-on study [63]. It is a multi-resolution
qualitative model indicating the variables (factors) affecting public support for insurgency
and terrorism.
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Such factor trees appeared prominently in well-received briefings to general officers
and larger audiences. Later, I showed, along with Angela O’Mahony, how a factor tree
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model could be turned into a computational model, not a simulation, but rather a model
“putting the pieces together” to predict the combinations of factors that would tend to
generate public support for insurgency and terrorism or, conversely, the repudiation of the
terrorism. Figure 9 is one summary graphics from [64,65]. In this depiction, the outcome
is represented by the color or number of a table cell, rather than the vertical axis. Red (or
the number nine) as a cell value shows high public support; green (or the number one)
shows very low public support. The single graphic shows the results as a function of five
factors. Regrettably, the graphic had to be manually generated using a combination of
Analytica, Excel, and tedious manipulations. A tool for generating such displays would
have been valuable.
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Figure 8 is a factor tree for a snapshot in time. However, what about dynamics? Ideally,
the project would have had a family of models that included system dynamic simulations,
agent-based simulations, empirical time series, and so on. We had none of that, but we
discussed dynamical considerations based on the social science research in the text. This was
important because the tree-like structure at a snapshot in time does not convey a sense of
how the factors change over time and how they affect each other and become intertwined
as they do so. At least one effort to undertake related modeling was undertaken by the
U.S. Joint Staff in an attempt to understand in modeling language the implications of the
then new Army–Marines counterinsurgency manual. The result was an interesting and
insightful system dynamics model said to have been useful to people in the field attempting
to understand the Iraqi and Afghan wars [66]. It was not, however, useful for prediction.
Further, it was deemed to be too complicated to be helpful in most discussions.

Taken as a whole, the cases provide examples of all the themes of Section 2. Most
obvious is the value of multiresolution modeling, but so also the cases demonstrated the
significance of different perspectives, the use of motivated metamodels, designing from the
outset for multi-dimensional exploratory analysis, the use of simple models not necessarily
isomorphic with the more detailed models we used, the value of one-pager graphics or
summaries, etc. Another lesson from these and other cases was that visual modeling was
extremely effective for the design phase and for communicating to audiences of different
technical sophistication. In much of this work, we used the Analytica modeling system
because of its visual modeling and array-friendly declarative programming, which made
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designing for exploratory analysis straightforward. When using models built in other
languages, we often worked hard to construct and substantive accurate diagrams to explain
their functioning.

4. Discussion

It is not the function of this paper to provide recipes on how to pursue the themes
discussed in Section 2. Rather, my intent has been to suggest challenges and frontiers. My
own view is that, while working across levels of resolution is currently an art, one in which
good analysts are often skilled in without even being aware how special their talents are,
much of the activity can be taught as a mixture of science and art. So, those developing the
tools for M&S should also put more attention on generating tools to help in the challenges
identified that will allow M&S to be more useful in policy analysis and decision-aiding.

As mere examples, I suggest the need for:

• Templates and tools to help specify and execute special-purpose aggregations in partic-
ular contexts. One such tool would generate experiments to inform local aggregations.
Together, the tools might generate good enough heuristic rules and establish warning
flags for when a heuristic is used out of range.

• Textbook advice on how to use “motivated metamodeling” routinely when analyzing
data and how to use historical or other empirical data to test the models embodied
in M&S when there is no straightforward mapping between what was measured and
what is needed by the model.

• Textbook advice on conceiving and generating appropriately different model perspec-
tives so model-based decision-aiding is not just conveying a single story but alternative
stories reflecting different beliefs, values, and perspectives. The textbook advice might
include examples of where such alternative perspectives have dramatic consequences,
such as when urban planning looks different when viewed strictly in economic terms
or in terms that value culture and urban character.

• Textbook advice on what Erica Thompson has called “Escaping from Model Land” to
better engage the real world [2]. One aspect of doing so is the multiple perspectives
previously mentioned.

• Computer languages or overlays to make multidimensional exploratory analysis
routine and easy, to include using the kinds of tools associated with robust decision
making and decision making under deep uncertainty (DMDU) (e.g., scenario discovery
tools) [6,49,67].

• More emphasis in the M&S community on visual programming, whether in system
dynamic languages such as Stella and Vensim, in using visual modeling platforms
such as Analytica and MATHLAB, or in providing visual interfaces to models coded in
languages such as Python, R, and Java. If experience should have taught us anything, it
is that visual depictions are powerful in design, documentation, and communication.
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