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Abstract: Pedestrian detection represents one of the critical tasks of computer vision; however,
detecting pedestrians can be compromised by problems such as the various scale of pedestrian
features and cluttered background, which can easily cause a loss of accuracy. Therefore, we propose a
pedestrian detection method based on the FCOS network. Firstly, we designed a feature enhancement
module to ensure that effective high-level semantics are obtained while preserving the detailed
features of pedestrians. Secondly, we defined a key-center region judgment to reduce the interference
of background information on pedestrian feature extraction. By testing on the Caltech pedestrian
dataset, the AP value is improved from 87.36% to 94.16%. The results of the comparison experiment
illustrate that the model proposed in this paper can significantly increase the accuracy.
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1. Introduction

Computer vision technology plays an essential role in artificial intelligence research,
which studies how to make computers intelligently perceive image data. Object detection
aims to predict the position and category of targets and marks the location of targets by
predicting a bounding box. Object detection, being one of the most essential aspects of
computer vision, has been the focus of many studies in recent decades. Object detection is
currently widely used in various real scenarios, such as autonomous driving, robot vision,
pedestrian detection, etc.

Pedestrian Detection [1], as a hot topic in the field of object detection, has standalone
value within a variety of applications, such as pedestrian attribute recognition [2], in-
telligent surveillance, unmanned driving, etc. Pedestrian feature extraction is a crucial
foundation for pedestrian detection. However, pedestrians have non-rigid characteristics,
multi-posture, image quality, and large-scale variation range, which present challenges
for pedestrian feature extraction. Most early methods were based on manual feature con-
struction, and due to the lack of effective image representations at that time, people had
to choose to design complex feature representations. Some typical methods, such as the
Histogram of Gradient Features (HOG) [3] and the deformation part model (DPM) [4],
have been widely used in pedestrian detection. Traditional handcrafted features are easily
affected by external conditions, and the robustness of the extracted features is weak, so the
detection accuracy is relatively low. As deep learning develops, researchers have started
to utilize deep neural networks to automatically capture features from the original input
images. To compare it with the traditional methods, the algorithm based on deep learning
can obtain higher-level features. such as the semantic feature, and then send these extracted
features to a pre-trained detector.

Generally, deep learning pedestrian detection methods are classified into two main
categories: the first is two-stage detectors, such as R-CNN [5] Fast R-CNN [6], Faster
R-CNN [7], etc. These algorithms first create a succession of candidate regions to be
utilized as samples, which are subsequently classified using neural networks to detect the
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location of the target. Such methods have a high degree of accuracy but are slower in speed.
The second method is one-stage detectors, such as YOLO [8], SSD [9], etc. These types of
algorithms are no longer required to create candidate regions and transform the localization
problem into a regression problem. This kind of method is faster but less accurate. All
of the aforementioned methods are based on anchors; Zhi et al. [10] argue that the aspect
ratio and the number of anchors have a large impact on the detection performance. The
parameters of anchors must be carefully calibrated. In most anchor-based algorithms, the
model encounters problems when detecting candidate targets with large variations due to
the fixed shape of the anchors. To avoid negative effects, the anchor-based algorithms need
to redefine the anchor for different target sizes when detecting pedestrians with a wide
range of scale variations.

The anchor-free algorithms can avoid these effects. However, the anchor-free algo-
rithms may cause a significant disparity in the number of positive and negative samples,
which affects the training effect. This happens because, without predefined anchors, most
of the anchors generated in the step of generating candidate regions are marked as the
negative sample, and too many negative samples will exacerbate the training’s imbalance
between positive and negative samples. To solve this, we propose a pedestrian detection
method that incorporates modules named key-center and feature-enhancement (FE-block).
The method proposed in this paper can reduce the generation of low-quality positive
samples in training. The F-E block can enhance the representation of pedestrian features
and ultimately improve the model performance.

2. Related Works

The two main categories of pedestrian detection methods are traditional detection methods
based on hand-designed features and detection algorithms based on deep neural networks.

2.1. Traditional Detectors

Before deep neural networks were used for pedestrian detection, many methods based
on handcrafted features were investigated, such as SIFT [11], LBP [12], HOG, Haar [13], etc.
These methods usually extract pedestrian edge information. As one of the most exten-
sively utilized handcrafted features in pedestrian detection, the HOG feature is an edge
feature that uses the edge orientation and intensity information to compute a histogram of
the gradient orientation distribution of all pixels, which is aggregated to form the HOG
feature. Meanwhile, Dalal et al. used an SVM classifier to classify the obtained HOG
features. Zheng [14] improved on this by using the histogram from the directional gradient
histogram and the LBP extracted features in order to detect pedestrians quickly in still
images. However, the manual feature design is very labor-intensive. With the development
of deep learning technology, researchers have worked on a method that does not require
manual feature design and can learn the features from the image automatically, and deep
neural networks start to be used in pedestrian detection.

2.2. CNN Based Detectors

In the last few years, deep convolutional neural networks have shown great promise
in a variety of computer vision tasks, including image classification, object detection, and
instance segmentation. Deep learning technology has achieved great success in object
detection and has been used to extract features for pedestrian detection. Two-stage net-
works have obtained satisfactory results in object detection. However, the performance is
below expectation when the two-stage network is directly used for pedestrian detection.
This happens because the two-stage approach consists of two major parts in detecting
targets. One is to implement region suggestion through a selective search, and another
part is a convolutional neural network that is used to identify specific regions that are fed
to a classifier in order to determine the appropriate classification labels. As a result, the
detection speed is relatively slow. Although Zhang [15] introduced some modifications
to the Faster R-CNN, such as scoring the anchor and processing the ignored regions, the
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speed improvement was not significant. Many single-stage detection networks have been
created, including the YOLO series and SSD. In contrast to the two-stage methods, the
one-stage networks perform regression directly to find targets in the picture without re-
gion suggestion, thus providing a faster detection speed. However, all of these methods
require the pre-defined anchor at the time of detection. As the aspect ratio of the anchor
is constant, the model will encounter trouble when detecting candidate targets with large
variations, and most detection models need to redefine the anchor with different target
sizes for different detection task scenarios, due to the large impact of the model predefined
anchor on the model performance. Anchor-free approaches are simpler to construct than
anchor-based methods because they avoid the need to manually design the scale and aspect
ratio of the anchors. Song [16] proposed locating pedestrians in torso topography lines, and
Liu [17] proposed a method to predict pedestrian centroids and height based on advanced
semantic feature maps. Using deep neural networks based on anchor-free methods for
pedestrian detection can avoid the design of the anchor while ensuring speed. However,
the detection algorithm without the pre-defined anchor lacks the help of candidate regions
in determining positive and negative samples, which is very likely to cause an imbalance
between the positive and negative samples and generate a large number of low-quality
positive samples, thus leading to the degradation of detection accuracy. In this paper, we
propose a method to deal with this point.

3. Introduce FCOS Network
3.1. FCOS Network

In contrast to the other anchor-free networks, FCOS is a fully convolutional one-stage
object detection network that detects targets on a pixel-by-pixel basis [10]. The network
performs pixel-based regression on the multi-scale feature maps. DenseBox-based detection
algorithms, such as Unitbox [18] FCOS, shows that the use of multi-level feature pyramid
networks (FPN) prediction can improve the recall rate and increase the detection accuracy.
The overall structure of the network is displayed in Figure 1 [10].
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Figure 1. FCOS overall structure.

In contrast to the anchor-based detection algorithm, which first obtains the feature map
of an image after inputting the image to the backbone network and then uses a predefined
anchor to make predictions, FCOS performs a regression operation on each pixel point
on the feature map directly. First, each point (x, y) must be mapped to the input image.
If a point belongs to one of the ground-truth boxes and the class label corresponds, it is
taken as a positive sample for training; if not, it is taken as a negative sample. Immediately
afterward, regression is performed on (l, t, r, b), the distance between the center point and
the box’s left, top, right, and bottom, as shown in Figure 2 (left).
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Figure 2. The left image shows single-objective regression, (l, t, r, b) means the distance from the center
point to the bounding box. The right plot shows multi-objective regression. When points fall into the
overlapping area, it might be difficult to determine which box should regress.

An ambiguous sample is one in which a point falls into more than one bounding box,
as shown in Figure 2 (right), it is classified as an ambiguous sample. For this type of sample,
the algorithm directly takes the bounding box with the smallest area as its regression target.
If a location (x, y) is related to a bounding box, the regression equation for that location is
shown in (1) [10]:

l∗ = x− x0
(i), t∗ = y− y0

(i),
r∗ = x1

(i) − x, b∗ = y1
(i) − y.

(1)

(x0, y0) and (x1, y1) denote the upper-left and lower-right coordinate values of the
bounding box, respectively. The loss function in training is defined as in (2) [10].

Loss =
1

Npos
∑ x,yLcls

(
px,y, C∗x,y

)
+

1
Npos

∑ x,y I{C∗x,y>0}Lreg
(
tx,y, t∗x,y

)
(2)

where x,y denotes a position on the feature map; px,y means the predicted classification
score; C∗x,y denotes the true classification label; tx,y denotes the regression predicted target
position; t∗x,y denotes the true target location; Lcls is the Focal Loss classification loss, and
Lreg is the IoU Loss regression loss ; Npos denotes the total number of positive samples, and
I{C∗x,y>0} denotes the number of positive samples when C∗x,y > 0 is 1, otherwise is 0.

In the pixel-by-pixel prediction of the feature map, many pixel points are in the
truth box, but the closer the pixel points are to the center of the truth box, the higher the
probability of predicting a high-quality prediction box, so the prediction centrality loss
function is proposed, as shown in (3) [10]

centerness∗ =

√
min(l∗, r∗)
min(l∗, r∗)

× min(t∗, b∗)
min(t∗, b∗)

(3)

l∗, r∗, t∗, b∗ denotes the distance between the current pixel point and the box’s edge,
and sqrt is used to delay the decay of the center-ness loss. The value of center-ness loss is
in the range [0, 1], and the BCE loss is used for training. The center-ness loss will reduce
when the sample is in the center. The box’s final score is calculated by multiplying the
predicted loss of center-ness by the classification score, and this score is used to rank the
quality of the predicted bounding box. As a result, the center-ness reduces the predicted
bounding box scores distant from the target center, and low-score bounding boxes can be
filtered out using an NMS process. It can significantly improve the detection performance.
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3.2. Feature Extraction Network

As shown in Figure 3, the feature extraction network of FCOS uses a backbone network
plus FPN [19], and the backbone network uses ResNet [20] to extract the features. C3, C4
and C5 are the feature maps generated by the backbone network. In the part of FPN, there
are five different scales of layers: P3, P4, P5, P6, and P7. Each layer detects targets of different
scale sizes, which means the network can detect multi-scale targets. As shown in Figure 3,
the convolution is used to create P3, P4, and P5 from C3, C4 and C5. P6 and P7 are produced
by P5 and P6 through convolution with the stride being 2. The Pi layer detects the target
that satisfies the condition, and the condition is defined as follows:

max(l∗, r∗, t∗, b∗) ∈ [mi−1, mi] (4)

l∗, r∗, t∗, b∗ denotes the distance between the current pixel point and the boundary of
the bounding box, [mi−1, mi] is the range that feature layer i needs to regress, and m2, m3,
m4, m5, m6 and m7 are set as 0, 64, 128, 256, 512 and ∞, respectively.
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Each feature map point (x, y)will be transferred to the original image as
(⌊ s

2
⌋
+ xs,

⌊ s
2
⌋
+ ys

)
.

If the point (x, y) is included within a ground-truth box, it would be taken as a positive sam-
ple, otherwise, it would be considered a negative sample. However, all the points that fall into
the ground-truth box are regarded as positive samples, which will lead to a large number of
low-quality predicted anchors. As the pixel points located at the edge of the ground-truth box are
often background, treating them as positive samples and predicting anchor boxes for regression
will affect the accuracy of the model. FCOS introduces the center-ness to reduce the generation
of the low-quality bounding box, the details of which have been explained in the previous
subsection. However, this mechanism is used in pedestrian detection, which will complicate the
simple problem and affect the performance of the model instead. The method proposed in this
paper can improve this very well by enhancing the feature representation and speeding up the
convergence of the model, the details of which are explained in the fourth section.

4. Improved Pedestrian Detection Method

In the previous section, we introduced the basic model of our method. If the point
that is mapped back to the input images is in any ground-truth box, it will be taken into
account as a positive sample. All positive samples are responsible for predicting the
bounding box. To give different weights to the points at the edges and center, FCOS uses
the center-ness branch to weight the samples, the weights of the central samples tend to
be 1. Although this can somewhat mitigate the negative effect of the low-quality anchor
on the model, it complicates a simple problem. The valid features likely overlap with the
center of the bounding box, and the part at the edge has a high probability of being an
invalid background. This is illustrated in Figure 4.
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As can be seen from Figure 4, the useful part of the pedestrian (head, torso, etc.) is in
the box’s center, and the edges of the box are background information; if the center-ness
mechanism is still applied to each point, it will affect the model convergence speed and
final performance. In this paper, we propose a method based on the anchor-free network.
The method improves the FCOS algorithm by adding a feature-enhancement module and
key-center region. The overall network model is shown in Figure 5.
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detection. The backbone is ResNet, while the feature network is a multi-scale feature pyramid
network. The F-E block means feature-enhancement module, and the key-center region is also added
to the feature network. The detection head is shared by different feature levels.

4.1. Feature Enhancement Module

The feature extracted by the convolution network not only incorporates spatial in-
formation but also includes channel information; a feature map is regarded as a channel.
However, different features play different roles in the classification and localization of
pedestrians. Deeper features contain more semantic information but lack spatial details,
while shallow features have more texture detail information but less semantic information.
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Feature extraction is crucial for pedestrian detection. It plays a crucial role in classification
and localization. We proposed a feature enhancement module in this paper.

The structure of the module we proposed in this paper is shown in Figure 6. The
feature map is first subjected to a 2 × 2 max-pooling, which is a special operation in the
convolutional neural network that serves to extract the key information in a certain region.

Information 2023, 14, x FOR PEER REVIEW 7 of 14 
 

 

However, different features play different roles in the classification and localization of 
pedestrians. Deeper features contain more semantic information but lack spatial details, 
while shallow features have more texture detail information but less semantic infor-
mation. Feature extraction is crucial for pedestrian detection. It plays a crucial role in clas-
sification and localization. We proposed a feature enhancement module in this paper. 

The structure of the module we proposed in this paper is shown in Figure 6. The 
feature map is first subjected to a 2 × 2 max-pooling, which is a special operation in the 
convolutional neural network that serves to extract the key information in a certain region. 

 
Figure 6. Feature enhancement module. 

This approach is adopted because max-pooling can catch the crucial information of 
its region. After all, max-pooling takes the maximum value in the neighborhood region, 
which can reduce the error caused by the mean shift of the estimation due to the parameter 
error of the convolution layer and preserve more local details. The next part is 1×1 convo-
lution, which plays the role of preserving the feature information that is extracted by max-
pooling and changing the channel dimension. Batch Normalization avoids the problem of 
gradient disappearance through regularization. Subsequently, the activated information 
is added, point by point, with the feature map through the ReLU activation function to 
achieve the purpose of feature enhancement. In this paper, the F-E block is used for the 
P5, P6, and P7 layers. The improved feature network is shown in Figure 7. 

 
Figure 7. The multi-scale feature extraction network with FE-block module added. 

4.2. The Key-Center Region 
In pedestrian detection, the effective part of the pedestrian features is likely the center 

of the image. In this case, using the center-ness mechanism to generate the predicted 

Figure 6. Feature enhancement module.

This approach is adopted because max-pooling can catch the crucial information of its
region. After all, max-pooling takes the maximum value in the neighborhood region, which
can reduce the error caused by the mean shift of the estimation due to the parameter error
of the convolution layer and preserve more local details. The next part is 1× 1 convolution,
which plays the role of preserving the feature information that is extracted by max-pooling
and changing the channel dimension. Batch Normalization avoids the problem of gradient
disappearance through regularization. Subsequently, the activated information is added,
point by point, with the feature map through the ReLU activation function to achieve the
purpose of feature enhancement. In this paper, the F-E block is used for the P5, P6, and P7
layers. The improved feature network is shown in Figure 7.
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4.2. The Key-Center Region

In pedestrian detection, the effective part of the pedestrian features is likely the center
of the image. In this case, using the center-ness mechanism to generate the predicted
bounding box will have negative effects on the model. We propose a strategy called
key-center to deal with the aforementioned concerns.
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The key-center strategy is a result of the center of the box overlapping highly with the
effective part of the pedestrian in most cases. This strategy uses the points located in the
center region of the ground-truth box to learn the predicted bounding box, avoiding the
use of center-ness to weigh all the points in the ground-truth bounding box. In the original
center-ness strategy, it can be seen that the ground-truth box corresponds to a region on the
feature map that is responsible for learning the candidate frame and weighting each pixel
point by its center-ness.

The key-center strategy no longer treats all the pixel points located in the ground-truth
box as positive samples. Only the points mapped to the original input image that fell into
the key-center region will be treated as positive samples. Then, it will be responsible for
learning the predicted bounding box. The key-center region is defined as a circular region
with the center point of the ground-truth box as the center, and the radius is defined as:

r = max
(⌊

x1 − x0

2

⌋
,
⌊

y0 − y1

2

⌋)
/s (5)

The s denotes the stride size of the current feature map. The key-center region will be
cropped to ensure that the original box is not exceeded.

As can be seen in Figure 8, the degree of the contribution of the pixel points and
the ability to extract the features diminish from the center to the edge of the box. The
effectiveness of the critical center region can also be demonstrated through experiments.
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4.3. Loss Function

As mentioned in Section 3.1, the loss function of FCOS has two parts: classification
and regression. The classification uses the focal loss function, and the regression loss uses
the IoU loss [21] function. However, there are some obvious problems with the IoU loss
function, which can be illustrated in Figure 9.
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Figure 9. The left image shows the situation where two targets are not overlapped, the overlapped
area is none, while the value of IoU will be zero. As shown in the right image, we can see two
overlapped situations in that targets have the same overlapped area. That means these targets have
the same IoU loss values and will regress in the same way. Obviously, the left situation will encounter
more difficulties than the right.

As shown in Figure 9, A and B mean two targets, and the overlapped part represents
the intersection of them. The first problem is that the loss value cannot continue to optimize
when the intersection of the regions is none. The loss function can be defined as:

IoU Loss = − ln
Intersection

Union
(6)

The intersection means the area where two targets overlap, and the union means all
of the union areas of the two targets. Obviously, in the situation shown in Figure 9 (left),
the gradient will be zero and will not be optimized. Another weakness can be shown in
Figure 9 (right), in which the overlapped area is same, which means that the loss value of
these two is the same. According to Equation (6), they will have the same loss, which means
they will regress in the same way. However, the IoU cannot distinguish the difference
between the two intersection cases, so the regression process cannot be optimized. To solve
all the above problems of IoU Loss, Rezatofighi H et al. proposed GioU [22]; the core idea
of GIoU is to find the smallest closed rectangle area that contains both targets, and then
calculate the ratio of the area of C excluding two targets to the total rectangle area. Then,
we can obtain GIoU by subtracting this value from the IoU of two targets:

GIoU = IoU − |C\(A ∪ B)|
|C| (7)

GIoU_Loss = 1− GIoU (8)

For the problem that the optimization cannot continue when the IoU is 0, it can be
seen from Equation (7) that the GIoU is not 0 when the IoU is 0, so the optimization can
continue. GIoU focuses not only on overlapping regions but also on other non-overlapping
regions, which can better reflect the degree of overlap between them.

5. Experiments
5.1. Dataset and Metrics

The Caltech pedestrian dataset was proposed by Dollár et al. [23] in 2009. It is one of
the largest pedestrian detection datasets at present. The dataset is made up of about 10 h
of video, captured from a vehicle moving through a regular traffic environment. The con-
figuration of the video is 640 × 480 30 Hz and the total number of labeled pedestrians
is approximately 350,000. It should be noted that, because most of the samples in the
dataset are collected in consecutive frames, many of the frames have similar contents.
Therefore, the training and testing sets in this paper are composed of frames taken from
every 8 frames of the respective video clips. In the end, the dataset contains 15,274 images,
there are 10,997 images in the training set, and the testing set has 4277 images.



Information 2023, 14, 123 10 of 14

The detection performance is generally judged by recall and precision. The classes of
interest are generally classified as positive classes, while the other classes are classified as
negative classes. The results predicted by the algorithm in the test set are classified into
four cases, as follows.

TP: the positive class samples that are correctly predicted as positive samples.
FN: the positive class samples are predicted as negative samples.
FP: the negative class samples are predicted to be positive samples.
TN: the negative class samples are predicted as negative samples.

The accuracy rate is calculated as:

P =
TP

TP + FP
(9)

The recall rate is calculated as:

R =
TP

TP + FN
(10)

Other commonly used metrics are the miss detection rate (1-recall rate), F1 value, etc.
The metric of the generic target detection algorithm is generally Mean Average Preci-

sion (mAP), which is the rubric for detection on the PASCAL VOC dataset. It is computed
by sorting the prediction frames in descending order of confidence and calculating the
precision and recall at each confidence level, with the precision getting lower and the recall
getting higher. Assuming that there are M positive cases in the category, there are M recall
rates, respectively, 1/M, 2/M, . . . M/M. For each recall rate, find the maximum precision
corresponding to it to obtain M precision rates, and calculate the average value to obtain
the average precision of this category.

The metric for pedestrian detection was developed based on the above metrics. A coor-
dinate plot of False Positive Per Window (FPPW)-miss rate (MR) for each pedestrian frame
was used to evaluate the pedestrian detection algorithms, while, later, Dollar et al. found
that the metric FPPW could not reasonably evaluate the merits of the algorithm and that
the frame as the basic unit of the metric could not measure the detection error due to the
incorrect detection of a certain part of the pedestrian body. Therefore, pedestrian detection
algorithms are mostly evaluated using the False Positive Per Image (FPPI), proposed by
Dollar et al. [24] instead of FPPW.

The FPPI-MR evaluation curve is plotted by ranking the confidence levels of the predicted
pedestrian frames from highest to lowest, calculating the number of false positives and missed
pedestrians for each confidence level, dividing the number of false positives by the total
number of images to obtain the horizontal coordinate of the evaluation curve FPPI, and
dividing the number of missed pedestrians by the total number to obtain the vertical coordinate
of the curve MR, and plotting the evaluation curve in a logarithmic coordinate system.

5.2. Analysis of Experimental Results

Implementation details. The configuration of the experiments in this paper is shown
in Table 1. Among them, the parameters of the experiments are set as follows: initial
learning rate = 0.002, batch size = 16, optimizer = Adam. The pre-trained ResNet50 is used
as the backbone of the model.

Table 1. Experimental environment configuration.

Names Related Configuration

Operating system Windows 10
CPU Intel(R) Xeon(R) Gold 5218R
GPU Tesla V100

GPU RAM/GB 16
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This paper performs experiments on the Caltech pedestrian dataset, which is used to
demonstrate the validity of each design. The results are shown in Table 2. The parameters
set for each variable are the same to ensure impartiality in the evaluation. The original
FCOS network with an AP of 87.36%, and with the addition of the feature enhancement
method, the AP is improved by 2.16%. The detection model with the key center region
judgment has a 1.71% improvement in AP compared to the detection model without this
judgment method. After redesigning the loss function, the AP improves by 1.58%. After
adding all the methods proposed in this paper, the AP increases by 6.8%, and the results
demonstrate the efficacy of the proposed methods for pedestrian detection.

Table 2. Ablation experiments.

Method AP

FCOS 87.36
FCOS + FE 89.52

FCOS + KeyCenter 89.07
FCOS + GIoU 88.94

FCOS + FE + KeyCenter 92.04
FCOS + FE + KeyCenter + GIoU 94.16

To demonstrate the effectiveness of the method in this paper, the classical HOG + SVM
method and several other advanced algorithms in the field of pedestrian detection are
selected for plotting the FPPI-MR evaluation curve, and the results are shown in Figure 10.
The vertical coordinate of the evaluation curve is the leakage rate of the algorithm, and
the horizontal coordinate is the false positive rate in an average image, which is the false
detection rate of pedestrians, and it is more convincing to compare these two metrics
together than to compare only one of them. According to the character of the FPPI-MR, the
curve performs better when it nears the lower-left corner. We can see that the curve of our
method has the best performance.

Information 2023, 14, x FOR PEER REVIEW 11 of 14 
 

 

set for each variable are the same to ensure impartiality in the evaluation. The original 
FCOS network with an AP of 87.36%, and with the addition of the feature enhancement 
method, the AP is improved by 2.16%. The detection model with the key center region 
judgment has a 1.71% improvement in AP compared to the detection model without this 
judgment method. After redesigning the loss function, the AP improves by 1.58%. After 
adding all the methods proposed in this paper, the AP increases by 6.8%, and the results 
demonstrate the efficacy of the proposed methods for pedestrian detection. 

Table 2. Ablation experiments. 

Method AP 
FCOS 87.36 

FCOS + FE 89.52 
FCOS + KeyCenter 89.07 

FCOS + GIoU 88.94 
FCOS + FE + KeyCenter 92.04 

FCOS + FE + KeyCenter + GIoU 94.16 

To demonstrate the effectiveness of the method in this paper, the classical HOG + 
SVM method and several other advanced algorithms in the field of pedestrian detection 
are selected for plotting the FPPI-MR evaluation curve, and the results are shown in Fig-
ure 10. The vertical coordinate of the evaluation curve is the leakage rate of the algorithm, 
and the horizontal coordinate is the false positive rate in an average image, which is the 
false detection rate of pedestrians, and it is more convincing to compare these two metrics 
together than to compare only one of them. According to the character of the FPPI-MR, 
the curve performs better when it nears the lower-left corner. We can see that the curve of 
our method has the best performance. 

 
Figure 10. FPPI-MR curve. 

Table 3 displays the test results of the various approaches. The table shows that the 
method we proposed in this paper outperforms the original FCOS algorithm in terms of 
the AP and recall. In comparison to Faster R-CNN and YOLO-v3, the performance of our 
method is still good. Although our method is lower than Faster R-CNN in recall value, 
our method has a higher AP value than Faster R-CNN. The comparison of different meth-
ods is shown in Figure 11. 

Table 3. The results of different models on test datasets. 

Figure 10. FPPI-MR curve.

Table 3 displays the test results of the various approaches. The table shows that the
method we proposed in this paper outperforms the original FCOS algorithm in terms of
the AP and recall. In comparison to Faster R-CNN and YOLO-v3, the performance of our
method is still good. Although our method is lower than Faster R-CNN in recall value, our
method has a higher AP value than Faster R-CNN. The comparison of different methods is
shown in Figure 11.
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Table 3. The results of different models on test datasets.

Method AP/% Recall/%

FCOS 87.36 70.32
YOLO-v3 80.75 65.22

Faster R-CNN 89.22 72.65
Ours 94.16 71.58

Figure 11. Comparison of our method results with other methods on the Caltech pedestrian dataset.

It is seen that the method we proposed has a better performance than the other
methods. Faster R-CNN and YOLO-v3 have some problems with missed detection and
FCOS has some wrong detection results of the pedestrian.

6. Conclusions

In this paper, we propose a pedestrian detection method based on an anchor-free
algorithm: first, the enhancement module FE-block is incorporated into the network of the
feature extraction to improve the feature representation; second, the center-ness mechanism
is modified to include the key-center region judgment to improve the model accuracy; third,
the loss function is optimized to better fit the pedestrian detection. The results show that
the AP value of the improved FCOS is improved from 87.36% to 94.16%. The FPPI-MR
curve, one of the most important evaluation metrics in the field of pedestrian detection,
is also chosen to evaluate the model and to compare it with other popular methods, and
the method in this paper can achieve a highly competitive detection result. However, the
method still needs improvement when dealing with changing scenes, such as environments
with strong lighting changes, etc. How to further optimize the algorithm and improve its
detection capability in complex scenes will be the focus of future research.
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