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Abstract: As two significant performance indicators, structure connectivity and substructure connec-
tivity have been widely studied, and they are used to judge a network’s fault tolerance properties
from the perspective of the structure becoming faulty. An n-dimensional bubble-sort star graph BSn

is a popular interconnection network with many good properties. We find the upper bounds of
κ(BSn; K1,3) and κs(BSn; K1,3) in this paper. Furthermore, we establish κ(BSn; H) and κs(BSn; H) of
BSn, where H ∈ {K1, K1,1, K1,2}.

Keywords: connectivity; bubble-sort star graph; fault tolerance; interconnection network;
structure connectivity

1. Introduction

With the development of parallel and distributed computer systems, the number of
processors in an interconnection network is increasing at a great rate. The topology of a
high-performance computer can be indicated by an undirected graph G, represented by
G(V(G), E(G)), where we use V(G) to represent the processor set and E(G) to represent
the link set.

As a significant performance indicator, connectivity is widely studied, and it is used
to judge a network’s fault tolerance properties [1]. In addition, some other connectivities
with restrictions have been proposed, such as conditional connectivity [2], g-extra connec-
tivity [3], h-restricted connectivity [4,5], and Rg-connectivity[6]. Most works have only
focused on the impact on the network when individual nodes fail. In an actual network
environment, the vertices connected to a fault vertex are more prone to fail, which means
that some network structures or substructures may fail. Based on this thought, Lin et al. [7]
considered the impact on the network from the perspective of structure failure and pro-
posed two connectivities, which are called structure and substructure connectivity. These
two connectivities can be used to evaluate a network’s fault tolerance properties. A network
has good structure fault tolerance properties if its (sub)structure connectivity is high.

We use F = {H1, H2, . . . , Ht} to express one of the subgraph sets in G. Here, each
Hi ∈ F(1 ≤ i ≤ t) denotes a connected subgraph of G. F is called a subgraph cut of graph
G if removing V(F) from G disconnects G or makes G trivial. If each Hi ∈ F(1 ≤ i ≤ t) is
isomorphic to H(or a connected subgraph of H), where H denotes a connected subgraph of
G, we say that F is an H-structure-cut (or H-substructure-cut). The minimum cardinality of
all H-structure-cuts (or H-substructure-cuts) of G is defined as the H-structure-connectivity
(or H-substructure-connectivity) of G, which is denoted by κ(G; H) (or κs(G; H)). With the
definitions above, we have κ(G; H) ≥ κs(G; H).

Paths, cycle, and stars are three common structures that exist in all networks. Recently,
most of the research on structure connectivity was based on these three structures. For
example, star/cycle structure fault tolerance in a hypercube [7], k-ary n-cube [8], balanced

Information 2023, 14, 120. https://doi.org/10.3390/info14020120 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14020120
https://doi.org/10.3390/info14020120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://doi.org/10.3390/info14020120
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14020120?type=check_update&version=1


Information 2023, 14, 120 2 of 9

hypercube [9], and twisted hypercube [10] was studied. Star/cycle/path structure fault
tolerance in a folded hypercube [11] and alternating group graph [12,13] was investigated.
Cycle/path structure fault tolerance in a bubble-sort star graph [14], bubble-sort graph [15],
and wheel network [16] was studied.

The bubble-sort graph Bn and star graph Sn, which were introduced by Akers and
Krishnamurthy [17], are two alternatives to the hypercube. These two graphs have many
attractive features, except for the embeddability of Sn and the diameter of Bn. To improve
the performance of these two graphs, Chou et al. [18] proposed the bubble-sort star graph
BSn, which is a combination of Bn and Sn. It was proven that BSn had a better embeddability
than that of Sn and a smaller diameter than that of Bn. Hence, BSn has the advantages of
both Bn and Sn.

In [14], Zhang et al. gave κ(BSn; H) and κs(BSn; H) for BSn, where H is a path or a
cycle. In this paper, we determine the star structure fault tolerance in BSn. We present the
upper bounds for κ(BSn; K1,3) and κs(BSn; K1,3). Furthermore, we establish κ(BSn; H) and
κs(BSn; H) of BSn, where H ∈ {K1, K1,1, K1,2}. We will get the following results for BSn
with n ≥ 4:

κ(BSn; H) =


2n− 3 if H = K1

2n− 3 if H = K1,1

n− 1 if H = K1,2,

κs(BSn; H) =


2n− 3 if H = K1

2n− 3 if H = K1,1

n− 1 if H = K1,2

and

κs(BSn; K1,3) ≤ κ(BSn; K1,3) ≤


3(n−1)

4 if (n− 1)%4 = 0
3(n−2)

4 + 1 if (n− 2)%4 = 0
3(n−3)

4 + 1 if (n− 3)%4 = 0
3(n−4)

4 + 2 if (n− 4)%4 = 0.

The structure of this paper is organized as follows. First, the preliminaries will be
given in Section 2. Then, we determine the results of the structure connectivity κ(BSn; H)
and substructure connectivity κs(BSn; H) in Section 3. Finally, we give a summary of the
paper in Section 4.

2. Preliminaries

Two vertices µ, ν are adjacent if (µ, ν) ∈ E(G). Let NG(µ) denote a vertex set in
which each element is adjacent to µ. Suppose that S is a vertex set of G. We can define the
neighborhood of S as NG(S) = (

⋃
x∈S N(x))− S (or N(S) for short).

Let [n] = {1, 2, . . . , n}. BSn has n! vertices, each of which is labeled with a permutation
µ = µ1µ2 . . . µn on [n], where µi 6= µj and i 6= j. For example, 1234 and 1243 are vertex
labels when n = 4. We use vertex labels to represent the nodes in this paper. Let µ be any
vertex of BSn. We define an operator on µ, which is denoted by µ

j
i , where 1 ≤ i 6= j ≤ n,

such that the ith bit and jth bit of µ are exchanged. If µ = 12345, then µ2
1 = 21345 and

µ4
3 = 12435. The neighbor of µ

j
i can be denoted by (µ

j
i)

l
k, where 1 ≤ k 6= l ≤ n. For example,

(µ2
1)

4
3 = 21435 and (µ2

1)
3
1 = 31245. We give the following definition of BSn.

Definition 1 (see [18]). There exist n! vertices in BSn, each of which is labeled with a permutation
on [n]. Any two vertices µ and ν of BSn are adjacent if and only if ν = µi

1 for 2 ≤ i ≤ n or
ν = µi+1

i for 2 ≤ i ≤ n− 1.

The graphs BS3 and BS4 are depicted in Figure 1. We can see from the definition that
BSn is a (2n− 3)-regular bipartite graph. For any vertex µ in BSn, N(µ) = {µj

1|2 ≤ j ≤
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n}⋃{µj+1
j |2 ≤ j ≤ n− 1}. In addition, BSn is a Cayley graph with vertex symmetry. BSn

is composed of n subgraphs BS1
n, BS2

n, . . . , BSn
n, where each BSi

n(1 ≤ i ≤ n) is isomorphic
to BSn−1.

(a) (b)

Figure 1. The graphs (a) BS3 and (b) BS4.

3. Structure Fault Tolerance of BSn

We first prove κ(BSn; H) and κs(BSn; H) for any integer n ≥ 4, where H ∈ {K1, K1,1, K1,2}.
Then, we study the upper bounds for κ(BSn; K1,3) and κs(BSn; K1,3).

Lemma 1 (see [19]). For n ≥ 3, κ(BSn) = λ(BSn) = 2n− 3.

By Lemma 1, we can easily get the results as follows.

Theorem 1. κ(BSn; K1) = 2n− 3 and κs(BSn; K1) = 2n− 3 for any integer n ≥ 4.

Lemma 2 (see [19]). For n ≥ 2, κλ(BSn) = 2n− 3.

Lemma 3. Let µ be any vertex in BSn and let ν = µ3
2 for n ≥ 4. Then, (µi

1, νi
1) ∈ E(BSn) for

2 ≤ i ≤ n and (µi+1
i , νi+1

i ) ∈ E(BSn) for 4 ≤ i ≤ n− 1.

Proof. Let µ = µ1µ2µ3 . . . µiµi+1 . . . µn. Then, ν = µ1µ3µ2 . . . µiµi+1 . . . µn. We have µi
1 =

µiµ2µ3 . . . µ1µi+1 . . . µn and νi
1 = µiµ3µ2 . . . µ1µi+1 . . . µn for 4 ≤ i ≤ n. Since (µi

1)
3
2 = νi

1,
then (µi

1, νi
1) ∈ E(BSn) for 4 ≤ i ≤ n. Again, we have µ2

1 = µ2µ1µ3 . . . µiµi+1 . . . µn, µ3
1 =

µ3µ2µ1 . . . µiµi+1 . . . µn, ν2
1 = µ3µ1µ2 . . . µiµi+1 . . . µn, and ν3

1 = µ2µ3µ1 . . . µiµi+1 . . . µn.
Then, (µ2

1)
3
1 = ν2

1 and (µ3
1)

2
1 = ν3

1 . Hence, (µi
1, νi

1) ∈ E(BSn) for 2 ≤ i ≤ n. Similarly,
µi+1

i = µ1µ2µ3 . . . µi+1µi . . . µn and νi+1
i = µ1µ3µ2 . . . µi+1µi . . . µn for 4 ≤ i ≤ n− 1. Since

(µi+1
i )3

2 = νi+1
i , then (µi+1

i , νi+1
i ) ∈ E(BSn) for 4 ≤ i ≤ n− 1.

Lemma 4. For n ≥ 4, κ(BSn; K1,1) ≤ 2n− 3 and κs(BSn; K1,1) ≤ 2n− 3.

Proof. Let µ = 12 . . . n and ν = µ3
2. We set H = {{µi

1, νi
1}|2 ≤ i ≤ n} ∪ {{µi+1

i , νi+1
i }|4 ≤

i ≤ n− 1} ∪ {{µ4
3, (µ4

3)
2
1}, {ν4

3 , (ν4
3)

2
1}}. Then, |H| = n− 1 + n− 4 + 2 = 2n− 3. Obviously,

N({µ, ν}) ⊂ V(H). Then, BSn − V(H) is disconnected and {µ, ν} is a component of
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BSn −V(H). By Lemma 3, each Hi ∈ H is isomorphic to K1,1, and we get κ(BSn; K1,1) ≤
2n− 3 and κs(BSn; K1,1) ≤ 2n− 3. See Figure 2 for an illustration.

Figure 2. An example of κ(BSn; K1,1) ≤ 2n− 3 and κs(BSn; K1,1) ≤ 2n− 3, where n = 4.

Lemma 5. For n ≥ 4, κs(BSn; K1,1) ≥ 2n− 3 and κ(BSn; K1,1) ≥ 2n− 3.

Proof. Let H = {Ti|1 ≤ i ≤ 2n− 4} be a subgraph set of BSn, where each Ti is isomorphic
to a connected subgraph of K1,1. To prove κs(BSn; K1,1) ≥ 2n− 3, we need to show that
BSn − V(H) is connected. Let He = H ∩ E(BSn) and Hv = H − He. We consider the
following three cases.

Case 1. |Hv| = |H|.
In this case, |V(H)| ≤ 2n− 4. Since κ(BSn) = 2n− 3, BSn −V(H) is connected.
Case 2. |He| = |H|.
In this case, |E(H)| ≤ 2n− 4. Since λ(BSn) = 2n− 3, BSn −V(H) is connected.
Case 3. 0 < |Hv| < |H| and 0 < |He| < |H|.
In this case, |He|+ |Hv| = |H| ≤ 2n− 4. By Lemma 2, BSn −V(H) is connected.
Hence, κs(BSn; K1,1) ≥ 2n− 3 and κ(BSn; K1,1) ≥ 2n− 3.

According to Lemmas 4 and 5, we have Theorem 2.

Theorem 2. κ(BSn; K1,1) = 2n− 3 and κs(BSn; K1,1) = 2n− 3 for any integer n ≥ 4.

Lemma 6. For n ≥ 4, κ(BSn; K1,2) ≤ n− 1 and κs(BSn; K1,2) ≤ n− 1.

Proof. Let µ = 12 . . . n and H = {{µi
1, (µi

1)
i+1
1 , µi+1

i }|2 ≤ i ≤ n− 1} ∪ {µn
1 , (µn

1 )
2
1, (µn

1 )
3
2}.

Then, |H| = n− 2 + 1 = n− 1. Since N(µ) ⊂ V(H), BSn − V(H) is disconnected, and
one component of BSn −V(H) is {µ}. Since (µi

1, (µi
1)

i+1
1 ), ((µi

1)
i+1
1 , µi+1

i ) ∈ E(BSn), each
element in H is isomorphic to K1,2, where (µi

1)
i+1
1 is the center vertex. Then, we get

κ(BSn; K1,2) ≤ n− 1 and κs(BSn; K1,2) ≤ n− 1. See Figure 3 for an illustration.

Lemma 7. Let µ be any vertex in BSn, let M ∼= K1,2 be any connected subgraph in BSn, and
let c(M ∩ N(µ)) be the maximum number of neighbors of µ that can be contained in M. Then,
c(M ∩ N(µ)) ≤ 2.

Proof. Let V(M) = {µi|0 ≤ i ≤ 2}, where µ1 is the center vertex of M. Suppose that
c(M ∩ N(µ))=3. Then, we have two C3: {µ0, µ1, µ} and {µ2, µ1, µ}. Since BSn is bipartite,
there is no C3 in BSn, and we get a contradiction. Hence, c(M ∩ N(µ)) ≤ 2.
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Figure 3. An example of κ(BSn; K1,2) ≤ n− 1 and κs(BSn; K1,2) ≤ n− 1 where n = 4.

Lemma 8. Let H = {H1, H2, . . . , Ht} be a subgraph set of BSn, where each Hi ∈ H is isomorphic
to a connected subgraph of K1,2. If t ≤ n− 2, then BSn −V(H) is connected.

Proof. Suppose that µ is any vertex in BSn. Let s =
t

∑
i=1

c(Hi, N(µ)). By Lemma 7,

s ≤ 2(n− 2) = 2n− 4 < 2n− 3 = κ(BSn). Then, by Lemma 1, BSn−V(H) is connected.

According to Lemma 8, we have Lemma 9.

Lemma 9. For n ≥ 4, κ(BSn; K1,2) ≥ n− 1 and κs(BSn; K1,2) ≥ n− 1.

According to Lemmas 6 and 9, we have Theorem 3.

Theorem 3. κ(BSn; K1,2) = n− 1 and κs(BSn; K1,2) = n− 1 for any integer n ≥ 4.

Lemma 10. Let µ be any vertex in BSn, and let µi
1, µi+1

1 and µi+1
i have a common neighbor in

BSn for 2 ≤ i ≤ n− 1 and n ≥ 4.

Proof. Let µ = x1 . . . xixi+1 . . . xn. Then, µi
1 = xi . . . x1xi+1 . . . xn, µi+1

1 = xi+1 . . . xix1 . . . xn,
and µi+1

i = x1 . . . xi+1xi . . . xn. Let ν = (µi
1)

i+1
1 = xi+1 . . . x1xi . . . xn. Then, (µi

1, ν) ∈
E(BSn). Since (µi+1

1 )i+1
i = xi+1 . . . x1xi . . . xn = µ and (µi+1

i )i
1 = xi+1 . . . x1xi . . . xn = µ,

(µi+1
1 , ν), (µi+1

i , ν) ∈ E(BSn). Hence, ν is the common neighbor of µi
1,µi+1

1 and µi+1
i .

Lemma 11. Let µ be any vertex in BSn, and let µi+1
i and µi+3

i+2 have a common neighbor in BSn
for i with 2 ≤ i ≤ n− 3 and n ≥ 4.

Proof. Let µ = x1 . . . xixi+1xi+2xi+3 . . . xn. Then, µi+1
i = x1 . . . xi+1xixi+2xi+3 . . . xn, µi+3

i+2 =

x1 . . . xixi+1xi+3xi+2 . . . xn. Let ν = (µi+1
i )i+3

i+2 = x1 . . . xi+1xixi+3xi+2 . . . xn. Then, (µi+1
i , ν) ∈

E(BSn). Since (µi+3
i+2)

i+1
i = x1 . . . xi+1xixi+3xi+2 . . . xn = ν, then (µi+3

i+2, ν) ∈ E(BSn). Hence,
ν is the common neighbor of µi+1

i and µi+3
i+2.

Lemma 12. For n ≥ 4,
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κs(BSn; K1,3) ≤ κ(BSn; K1,3) ≤


3(n−1)

4 if (n− 1)%4 = 0
3(n−2)

4 + 1 if (n− 2)%4 = 0
3(n−3)

4 + 1 if (n− 3)%4 = 0
3(n−4)

4 + 2 if (n− 4)%4 = 0.

Proof. Let µ be any vertex in BSn. Each µ has n neighbors N(µ) = {µi
1|2 ≤ i ≤

n}⋃{µi+1
i |2 ≤ i ≤ n− 1}, so we can construct K1,3 with N(µ). According to Lemma 10, we

can construct H1 = {{µ2i
1 , µ2i+1

1 , µ2i+1
2i , (µ2i

1 )
2i+1
1 }|1 ≤ i ≤ n−1

2 }, which has n−1
2 K1,3 when

n is odd. In addition, we can construct H1 = {{µ2i
1 , µ2i+1

1 , µ2i+1
2i , (µ2i

1 )
2i+1
1 }|1 ≤ i ≤ n−2

2 },
which has n−2

2 K1,3 when n is even. By Lemma 11, we can construct K1,3 with µ4i
4i−1 and

µ4i+2
4i+1 for i ≥ 1. Then, if there are still vertices left, we can build K1,3 with these vertices and

their neighbors. We have the following four cases.
Case 1. (n− 1)%4 = 0.
We can construct K1,3 as follows:
H1 = {{µ2i

1 , µ2i+1
1 , µ2i+1

2i , (µ2i
1 )

2i+1
1 }|1 ≤ i ≤ n−1

2 },
H2 = {{µ4i

4i−1, µ4i+2
4i+1, (µ4i

4i−1)
4i+2
4i+1, ((µ4i

4i−1)
4i+2
4i+1)

2
1}|1 ≤ i ≤ n−5

4 },
H3 = {{µn−1

n−2, (µn−1
n−2)

2
1, (µn−1

n−2)
3
1, (µn−1

n−2)
4
1}}.

Let H = H1 ∪ H2 ∪ H3. Then, |H| = n−1
2 + n−5

4 + 1 = 3(n−1)
4 . Since N(µ) ⊂ V(H),

BSn − V(H) is disconnected and µ is a component of BSn − V(H). For each Hi in H is
isomorphic to K1,3, we have κ(BSn; K1,3) ≤ 3(n−1)

4 and κs(BSn; K1,3) ≤ 3(n−1)
4 .

Case 2. (n− 2)%4 = 0.
We can construct K1,3 as follows:
H1 = {{µ2i

1 , µ2i+1
1 , µ2i+1

2i , (µ2i
1 )

2i+1
1 }|1 ≤ i ≤ n−2

2 },
H2 = {{µ4i

4i−1, µ4i+2
4i+1, (µ4i

4i−1)
4i+2
4i+1, ((µ4i

4i−1)
4i+2
4i+1)

2
1}|1 ≤ i ≤ n−2

4 },
H3 = {{µn

1 , (µn
1 )

2
1, (µn

1 )
3
1, (µn

1 )
4
1}}.

Let H = H1 ∪ H2 ∪ H3. Then, |H| = n−2
2 + n−2

4 + 1 = 3(n−2)
4 + 1. Since N(µ) ⊂ V(H),

BSn − V(H) is disconnected and µ is a component of BSn − V(H). For each Hi in H is
isomorphic to K1,3, we have κ(BSn; K1,3) ≤ 3(n−2)

4 + 1 and κs(BSn; K1,3) ≤ 3(n−2)
4 + 1.

Case 3. (n− 3)%4 = 0.
We can construct K1,3 as follows:
H1 = {{µ2i

1 , µ2i+1
1 , µ2i+1

2i , (µ2i
1 )

2i+1
1 }|1 ≤ i ≤ n−1

2 },
H2 = {{µ4i

4i−1, µ4i+2
4i+1, (µ4i

4i−1)
4i+2
4i+1, ((µ4i

4i−1)
4i+2
4i+1)

2
1}|1 ≤ i ≤ n−3

4 },
Let H = H1 ∪ H2. Then, |H| = n−1

2 + n−3
4 = 3(n−3)

4 + 1. Since N(µ) ⊂ V(H),
BSn − V(H) is disconnected and µ is a component of BSn − V(H). For each Hi in H is
isomorphic to K1,3, we have κ(BSn; K1,3) ≤ 3(n−3)

4 + 1 and κs(BSn; K1,3) ≤ 3(n−3)
4 + 1.

Case 4. (n− 4)%4 = 0.
We can construct K1,3 as follows:
H1 = {{µ2i

1 , µ2i+1
1 , µ2i+1

2i , (µ2i
1 )

2i+1
1 }|1 ≤ i ≤ n−2

2 },
H2 = {{µ4i

4i−1, µ4i+2
4i+1, (µ4i

4i−1)
4i+2
4i+1, ((µ4i

4i−1)
4i+2
4i+1)

2
1}|1 ≤ i ≤ n−4

4 },
H3 = {{µn

1 , µn
n−1, (µn

n−1)
n
1 , ((µn

n−1)
n
1 )

2
1}}.

Let H = H1 ∪ H2 ∪ H3. Then, |H| = n−2
2 + n−4

4 + 1 = 3(n−4)
4 + 2. Since N(µ) ⊂ V(H),

BSn − V(H) is disconnected and µ is a component of BSn − V(H). For each Hi in H is
isomorphic to K1,3, we have κ(BSn; K1,3) ≤ 3(n−4)

4 + 2 and κs(BSn; K1,3) ≤ 3(n−4)
4 + 2. See

Figure 4 for an illustration.

According to the proof, we give an algorithm for calculating the upper bounds of
the K1,3-(sub)structure connectivity of BSn (see Algorithm 1). We performed a simulation
based on this algorithm to get the upper bounds of the K1,3-(sub)structure connectivity
when the dimension was n ≤ 9. The results obtained from the algorithm are consistent
with those of Lemma 12, please see Table 1 for reference.
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Algorithm 1: Calculate the upper bounds of K1,3-(sub)structure connectivity
Input: node µ, dimension n
Output: upper bounds of K1,3-(sub)structure connectivity

1 switch n%4 do
2 case 0:
3 for i← 1 to n−2

2 do
4 construct K1,3 with {µ2i

1 , µ2i+1
1 , µ2i+1

2i , (µ2i
1 )

2i+1
1 } ;

5 for i← 1 to n−4
4 do

6 construct K1,3 with {µ4i
4i−1, µ4i+2

4i+1, (µ4i
4i−1)

4i+2
4i+1, ((µ4i

4i−1)
4i+2
4i+1)

2
1} ;

7 construct K1,3 with {µn
1 , µn

n−1, (µn
n−1)

n
1 , ((µn

n−1)
n
1 )

2
1}} ;

8 case 1:
9 for i← 1 to n−1

2 do
10 construct K1,3 with {µ2i

1 , µ2i+1
1 , µ2i+1

2i , (µ2i
1 )

2i+1
1 } ;

11 for i← 1 to n−5
4 do

12 construct K1,3 with {µ4i
4i−1, µ4i+2

4i+1, (µ4i
4i−1)

4i+2
4i+1, ((µ4i

4i−1)
4i+2
4i+1)

2
1} ;

13 construct K1,3 with {µn−1
n−2, (µn−1

n−2)
2
1, (µn−1

n−2)
3
1, (µn−1

n−2)
4
1} ;

14 case 2:
15 for i← 1 to n−2

2 do
16 construct K1,3 with {µ2i

1 , µ2i+1
1 , µ2i+1

2i , (µ2i
1 )

2i+1
1 } ;

17 for i← 1 to n−2
4 do

18 construct K1,3 with {µ4i
4i−1, µ4i+2

4i+1, (µ4i
4i−1)

4i+2
4i+1, ((µ4i

4i−1)
4i+2
4i+1)

2
1} ;

19 construct K1,3 with {µn
1 , (µn

1 )
2
1, (µn

1 )
3
1, (µn

1 )
4
1} ;

20 case 3:
21 for i← 1 to n−1

2 do
22 construct K1,3 with {µ2i

1 , µ2i+1
1 , µ2i+1

2i , (µ2i
1 )

2i+1
1 } ;

23 for i← 1 to n−3
4 do

24 construct K1,3 with {µ4i
4i−1, µ4i+2

4i+1, (µ4i
4i−1)

4i+2
4i+1, ((µ4i

4i−1)
4i+2
4i+1)

2
1} ;

25 end

Figure 4. An example of κ(BSn; K1,3) ≤
3(n−4)

4 + 2 and κs(BSn; K1,3) ≤
3(n−4)

4 + 2 where n = 4.
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Table 1. The upper bounds of K1,3-(sub)structure connectivity.

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

κ(BSn, K1,3) ≤ 2 3 4 4 5 6
κs(BSn; K1,3) ≤ 2 3 4 4 5 6

4. Conclusions

The connectivity of a network is a significant indicator for measuring that network’s
fault tolerance properties. In order to assess the impact of structure failure, structure connec-
tivity and substructure connectivity are presented. In this paper, we find the upper bounds
of κ(BSn; K1,3) and κs(BSn; K1,3). Furthermore, we establish κ(BSn; H) and κs(BSn; H) of
BSn, where H ∈ {K1, K1,1, K1,2}.

A hypercube Qn is an efficient symmetric network that has been used for commercial
high-performance computers. The star graph Sn and bubble-sort graph Bn are two alterna-
tives to the hypercube. BSn, which is generated by merging Bn and Sn, has the advantages
of both Bn and Sn. Here, we compare the H-(sub)structure connectivity of Qn, Bn, Sn, and
BSn for H ∈ {K1, K1,1, K1,2}. As shown in Table 2, BSn has the highest K1-(sub)structure
connectivity and K1,1-(sub)structure connectivity among these four networks. In addition,
BSn has the same K1,2-(sub)structure connectivity as that of Sn, which is larger than those
of Qn and Bn. The comparison shows that BSn is more stable than Qn, Sn, and Bn, when
structure faults occur.

Table 2. Comparison of {K1, K1,1, K1,2}-(sub)structure connectivity.

Dimension K1 K1,1 K1,2

Qn 7 7 6 4
Sn 7 6 6 6
Bn 7 6 6 3

BSn 7 11 11 6

Qn 8 8 7 4
Sn 8 7 7 7
Bn 8 7 7 4

BSn 8 13 13 7

Qn 9 9 8 5
Sn 9 8 8 8
Bn 9 8 8 4

BSn 9 15 15 8

Qn 10 10 9 5
Sn 10 9 9 9
Bn 10 9 9 5

BSn 10 17 17 9
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