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Abstract: Video object detection is an important research direction of computer vision. The task of
video object detection is to detect and classify moving objects in a sequence of images. Based on
the static image object detector, most of the existing video object detection methods use the unique
temporal correlation of video to solve the problem of missed detection and false detection caused
by moving object occlusion and blur. Another video object detection model guided by an optical
flow network is widely used. Feature aggregation of adjacent frames is performed by estimating
the optical flow field. However, there are many redundant computations for feature aggregation of
adjacent frames. To begin with, this paper improved Faster RCNN by Feature Pyramid and Dynamic
Region Aware Convolution. Then the S-SELSA module is proposed from the perspective of semantic
and feature similarity. Feature similarity is obtained by a modified SSIM algorithm. The module can
aggregate the features of frames globally to avoid redundancy. Finally, the experimental results on
the ImageNet VID and DET datasets show that the mAP of the method proposed in this paper is
83.55%, which is higher than the existing methods.

Keywords: video object detection; faster RCNN; feature pyramid; similarity algorithms; dynamic
region aware convolution

1. Introduction

Recently, many scholars began to pay attention to video object detection. Video
object detection has many applications in real scenarios, such as security monitoring,
unmanned driving, the internet of things, and intelligent navigation [1,2]. Different from
the good progress of image object detection and a lot of applications [3,4], video object
detection remains to be studied. Traditional detection methods are mainly divided into
Region proposals extraction, feature extraction, classification and other steps. Firstly, the
traditional methods select the proposal regions by sliding windows and other methods.
Then, feature extraction and classification of region proposals are carried out. Common
features include Histogram of Oriented Gradient, Local Binary Pattern, etc. Common
classifiers include Support Vector Machine, Naive Bayesian Classifier. Deep learning has
shown a strong ability to represent image illumination and other features, leading the
research in the field of computer vision. At present, there are two object detection methods,
which are two-stage and one-stage models. The R-CNN series is a typical representative of
two-stage detection models with high accuracy. In the first stage of the detection process,
the region proposal is extracted and the object and background are initially divided. In
the second stage, the features of the corresponding region proposals are extracted, and the
object location is corrected and the category is predicted. Region Proposal Network was
proposed by Faster RCNN to integrate the network structure, which further improved the
accuracy and efficiency. Compared with the two-stage model, the one-stage detection is
completed in one stage, which has the characteristics of simple structure and high detection
efficiency. Compared to images, videos have a high degree of redundancy. There are
many problems when the static image detection model is directly applied to video object
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detection. Because the objects in the video are constantly changing, and these changes have
an impact on the performance of the detection. It is the key point to solving the problem
of video object detection. At present, slow-moving objects are relatively easy to detect,
but fast-moving objects are difficult to detect accurately. Moving objects are fuzzy and
anamorphic. Therefore, it is necessary to aggregate the features of multiple frames. There
are many methods for video object detection, mainly including algorithms based on motion
information and algorithms based on detection and tracking [5–9]. Deep feature flow for
video recognition (DEF) is the first paper to use the concept of key frame in the field of video
object detection [10]. It is considered that adjacent frames have similar features, which
leads to a large number of features being calculated repeatedly. Kang proposed a tubelet
proposal network (TPN), which uses static image object detection combined with a long
short-term memory network (LSTM) for video object detection [11]. Zhao trained the model
with an SSD object detection frame combined with adjacent frames [12]. Deep learning
has made great progress in the application of video object detection, including renewed
detection paradigms, datasets, and so on [13–17]. Wu proposed the SELSA module, which
aggregates features based on semantics [18]. Only using semantic similarity to cluster
images is not comprehensive, so this paper uses the modified SSIM algorithm and feature
maps to improve the similarity algorithm and proposes an improved S-SELSA module.
The proposed method can compare the similarity more comprehensively and reduce the
risk of clustering error without increasing too many redundant calculations. This paper
also uses feature pyramid and Dynamic Region Aware Convolution (DRConv) to enhance
the feature extraction ability of Faster RCNN. Finally, ImageNet VID and DET datasets
were used in the experiment. The method proposed in this paper achieves an mAP of 83.55.
Experimental results show that the proposed method has better performance.

2. Faster RCNN

Faster RCNN consists of four main modules. The first module is conv layers, which
can output a feature map. Faster RCNN object detection model proposes an RPN network
model that is different from RCNN, SPPNet, and Fast RCNN [19]. The RPN is the second
module, which can share convolutional layers with the detection models and generate
proposals. The third module is ROI Pooling. It collects the input feature maps and proposals
from RPN to extract the proposal feature maps, which are sent to the subsequent fully
connected layer to classify. It implements end-to-end detection and improves the accuracy
of the model. The structure of Faster RCNN is shown in Figure 1. The last module is used
for classification and regression. The input is the proposal feature map obtained from the
previous layer. The output is the class of the object and the exact location in the image.
First, it proposes RPN, which achieves object detection performance with high accuracy. In
addition, compared with other one-stage networks, two-stage networks are more accurate.
Especially for high-precision, multi-scale and small object problems, the advantages of
a two-stage network are more obvious. Faster RCNN works well on multiple datasets
and object tasks and often achieves better results after fine-tuning. Finally, there are many
points that can be optimized in the whole algorithm framework of Faster RCNN, which
provides a broad space for algorithm optimization.
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Figure 1. The structure of Faster RCNN.

3. Improved Faster RCNN

Faster RCNN has a large number of parameters. Furthermore, it is prone to overfitting.
In the convolution process, small objects are easy to be lost and the recognition effect is bad.
Thus, this paper fuses Feature Pyramid (FPN) and ResNet101 as the backbone network
and replaces all 3 × 3 standard convolutions in the last three stages of ResNet101 with
DRConv [20–22]. The improved ResNet101 is shown in Figure 2.

Figure 2. Improved ResNet101.
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The current mainstream convolution operations are performed across spatial domains
in a filter-shared manner, so more effective information can only be captured when these
convolution operations are repeatedly applied. DRConv uses learnable guided masks
to transfer the increased filters to the spatial dimension, which not only improves the
expressiveness of convolutions but also maintains the computational cost and translation
invariance of standard convolutions. M = {S0, . . . Sm−1} is a guided mask that expresses
the spatial regions. W = [W0, . . . , Wm−1] are the filters of regions. The filter Wt ∈ RC is
corresponding to the region St. The o-th channel of the out feature map is defined as

Yu,v,g =
C

∑
c=1

Xu,v,c ∗W(o)
t,c (u, v) ∈ St, (1)

where X ∈ RU×V×C is the input of standard convolution and Y ∈ RU×V×C is the output.
W(o)

t,c is the c-th channel of W(o)
t . The distribution is decided by a learnable guided mask

which is a significant module. Mu,v can be calculated by

Mu,v = argmax
(

F̂0
u,v, . . . F̂m−1

u,v

)
, (2)

where Fu,v represents the guided feature of each position (u, v). argmax(.) can calculate
the maximum value’s subscript.

4. Motivation and Method
4.1. Motivation

Fast-moving objects are difficult to be accurately detected due to defocus and occlusion.
Furthermore, the adjacent frames in a short period of time are redundant, the calculation is
large and the effect of the feature aggregation is not ideal. While aggregating features from
multiple frames is an effective approach, aggregating features from just adjacent frames is
redundant. From the perspective of similarity algorithms, it is more effective to aggregate
features globally. In this paper, the similarity algorithm is considered from two aspects:
semantic similarity and SSIM. The semantic similarity and SSIM of each frame in the video
are compared, and several frames with the highest similarity are selected to aggregate
features instead of temporally adjacent frames.

4.2. Improved Similarity Algorithm

RPN can produce the proposals X f =
{

X f
1 , X f

2 , . . .
}

of each frame f . From a semantic

point of view, the similarity between two proposals
(

Xk
i , X j

l

)
can be calculated by

ωkl
ij = φ

(
Xk

i

)T
ψ
(

Xl
j

)
. (3)

φ(.) and ψ(.) are two transformation functions. After the ROIPooling of Faster-RCNN,
the similarity between two proposal feature maps can be calculated by modified SSIM
which is expressed as

Sk,l
i,j (SSIM) = SSIM

(
Fk

i , Fl
j

)
=

(
2µiµj + k2

1D2)(2σij + k2
2D2)(

µ2
i + µ2

j + k2
1D2

)(
σ2

i + σ2
j + k2

2D2
) . (4)

The original SSIM mainly compares pixels of the original image, while the modified
SSIM compares pixels of the feature maps. µi and µj are the averages of all pixes in Fk

i

and Fl
j . Fk =

{
Fk

1 , Fk
2 , . . .

}
are the proposal feature maps of the frame k. σ2

i and σ2
j are

the variances of all pixels. σij is the covariance. k1 and k2 are often set to 0.01 and 0.03
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according to [23]. The value of D can be obtained by subtracting the smallest pixels from
the largest pixels [24]. The final similarity can be expressed as

vkl
ij = φ

(
Xk

i

)T
ψ
(

Xl
j

) (
2µiµj + k2

1D2)(2σij + k2
2D2)(

µ2
i + µ2

j + k2
1D2

)(
σ2

i + σ2
j + k2

2D2
) . (5)

The similarity algorithm can guide the feature aggregation across different propos-
als. The aggregated feature includes more information. The softmax function is used to
normalize the similarity across different proposals. The new feature is expressed as

−
X

k

i = ∑
l∈Ω

N

∑
j=1

vkl
ij Xl

j . (6)

where Ω includes all frames used to aggregate features. Figure 3 reveals the architecture
with S-SELSA.

Figure 3. The architecture with S-SELSA. Firstly, some approximate frames are selected from the
global perspective through the similarity algorithm proposed in this paper. The module then aggre-
gates the features of these frames.

4.3. A Spectral Clustering Viewpoint

The work process of S-SELSA is closely related to the spectral clustering algorithm.
G = (X, W) is a similarity graph on the proposals, where X are nodes and W are
edges. Normalizing each row in W to sum 1 can generate the stochastic matrix T. It
controls the random walk on G. The transition probability from proposal i and to j is
expressed by Tij. Proposals of the same class form a subgraph. The probability of false
feature aggregation should be as minimal as possible. The transition probability P−

AA
from

subgraph
−
A = X− A to subgraph A is expressed as

PĀA =
∑i∈Ā,j∈A πiTij

∑i∈Ā πi
, (7)

where πi denotes the degree of correlation proposals. According to [25], the transition
probability is equivalent to the normalized minimum cut,

NCut
(

A,
−
A
)
= P

A
−
A
+ P−

AA
. (8)

If the optimal partition A is found, T is minimized. The optimization of T is further
propagated to the proposal features.
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5. Experiments

All experiments used the same environment with 32 GB RAM, GPU NVIDIA GeForce
2080, and a 2 TB hard drive. The experiments use ImageNet VID and DET datasets to train
and test different models or methods.

5.1. Datasets

In this paper, the training sets of ImageNet VID and ImageNet DET datasets are used
to jointly train the model. ImageNet VID is a video object detection dataset. The training
set includes 3862 video clips and the validation set has 555 video clips. The frame rate
of each video clip is either 25 or 30 frames per second. Each image frame in the video is
annotated and the whole dataset is annotated with 30 object categories. The ImageNet DET
dataset is an image object detection dataset whose training set contains 456,567 images and
200 categories. The categories in the ImageNet VID dataset are subsets of the ImageNet
DET dataset. Therefore, the images in the ImageNet DET dataset corresponding to the
categories of the ImageNetVID dataset were used for training.

5.2. Index of Evaluation

The experiment uses mean average precision(mAP) as an evaluation index to analyze
different models or methods. Average precision (AP) is based on the recall ratio and
precision ratio. When the degree of confidence is greater than the threshold, the example is
positive. Otherwise, it is a negative example. Recall ratio r is the proportion of the number
of positive examples correctly detected to the actual total number of positive examples and
is expressed as

r =
TP

TP + FN
(9)

where TP represents the number of positive examples correctly detected. FN denotes the
number of examples that are actually positive but detected as negative. The sum of TP
and FN represents the total number of actual positive examples. Precision ratio p denotes
the proportion of positive examples to total positive examples in test results, it is can be
calculated by

p =
TP

TP + FP
(10)

where FP denotes the number of actually negative examples but detected as positive
examples. The total number of examples is n. The accuracy ratio is defined as

AP =
n

∑
k=1

pk(rk+1 − rk). (11)

The mAP is defined as

mAP =
1
Q

Q

∑
q=1

APq, (12)

where Q is the total Categories.

5.3. Implementation Details and Sampling Strategies for Feature Aggregation

The backbone network is improved ResNet101 proposed in this paper. RPN is utilized
on the output of conv4. Anchors of 3 scales and 3 aspect ratios are used. Then the input
of Fast RCNN is the output of conv5. Two S-SELSA modules are inserted after each fully
connected layer. Then there are the classification and boundary box regression modules.
φ(.) and ψ(.) are instantiated as one fully-connected layer. ROIPooling is used to generate
proposal feature maps. SSIM algorithm can calculate the degree of similarity by features.
Finally, the degree of similarity can be measured by semantics and features. The batch size
is 4. The strategy of learning rate decay is adopted. SGD training has 220 k iterations. The
learning rate is set to 2.5× 10−4. The learning rate is divided by 10 at 110 k and 165 k.
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Two random frames in the video are sampled with the corresponding training frame. The
images are all adjusted to the shorter side of 600 pixels. It is important for video detection
to sample the frames. Better results can be produced by feature aggregation with more
frames. Furthermore, the improvements in testing performance need an even stride to
sample frames. 21 frames are the number of aggregated frames. The sampling stride is
10. Other methods which use an optical flow or RNN do not work well when the stride
is large.

5.4. Ablation Study

As shown in Table 1, the difference of overlap threshold has an impact on the mAP
of the models. a 50% overlap threshold provides good performance of different models.
In order to better analyze the results, all objects are divided into slow, medium, and fast
objects. The moving speed of the object is divided according to the average intersection-
over-union(IoU) of the current object and its corresponding object in the neighbouring
frames. The smaller the average value of IoU is, the faster the object moves. The average
IoU is greater than 0.9 for slow objects and less than 0.7 for fast objects. As shown in
Table 2, the experiments test the performance of different models including the model
proposed in this paper. The model improved by FPN and DRConv achieves an mAP of
74.21. Compared with the original ResNet101, the performance of the model in this paper
has a bit improvements in all experiments. The improvements are mainly due to the better
feature extraction capability. The last three experiments show that the S-SELSA module
leads to a large 9.93 mAP improvement compared with the baseline. It should be noticed
that the mAP (fast) receives the biggest improvements over the baseline. Therefore, the
model proposed in this paper has better detection capability for fast-moving objects and
has a little boost of 2.33 mAP compared to the model with the SELSA module.

Table 1. Precision of each model with different thresholds.

Positive Overlap
Threshold (%) 50 60 70 80

ResNet101 73.62 71.58 68.64 65.69
ResNet101 + FPN 73.88 71.52 67.59 64.33

ResNet101 + DRConv 73.71 70.11 67.58 63.49
ResNet101 +

DRConv + FPN 74.21 71.31 69.39 64.98

ResNet101 + SELSA 80.25 77.89 72.54 70.12
ResNet101 + DRConv +

FPN + SELSA 81.22 76.99 72.55 70.11

ResNet101 + DRConv +
FPN + S-SELSA 83.55 80.08 75.37 71.04

Table 2. The experiment results on the Image VID dataset.

Models mAP (%) mAP (%) (Slow) mAP (%) (Medium) mAP (%) (Fast)

ResNet101 73.62 82.12 70.96 51.53
ResNet101 + FPN 73.88 82.52 71.41 52.07

ResNet101 + DRConv 73.71 82.58 71.63 52.15
ResNet101 +

DRConv + FPN 74.21 82.94 72.05 52.68

ResNet101 + SELSA 80.25 86.91 78.94 61.38
ResNet101 + DRConv +

FPN + SELSA 81.22 87.78 79.76 62.15

ResNet101 + DRConv +
FPN + S-SELSA 83.55 90.17 82.39 64.78
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The experiments use semantic similarity and feature similarity instead of temporal
neighbours. Therefore, the experiments sample evenly from a complete video sequence.
The method proposed in this paper is useful because it does not rely on any time information
(such as optical flow) and does not perform cross-frame feature alignment operations. The
method proposed in this paper does not need inaccurate time information to predict and
can aggregate features from the entire video sequence.

5.5. Comparison with other Popular Methods

In this paper, other methods have their experiments. Batch gradient descent with
added momentum term is used to train the models. The momentum coefficient is set to
0.9. In the experiment, the thresholds of the distance between the nearest frame and the
current frame are set as T1 = 3 and T2 = 10. Complete training of the model with all the
data of the training set is called epoch training. In the first stage of model training, the
training sets of ImageNetDET and ImageNet VID are used for training. The experiments
set the data size of each batch as 2 images, and the initial learning rate was 5.0× 10−4. The
model consists of four iterations. After the first 2 iterations, the learning rate is reduced to
5.0× 10−5, and the model parameters are saved. Then stage 2 model training is performed.
For the training of FlowNet-SD, the amount of data in each batch is set to 2 images, and the
initial learning rate is 4.0× 10−5. After 1.333 iterations of the model, the learning rate was
reduced to 4.0× 10−6. There are two iterations, and then the model parameters are saved.
For the training of FlowNetS, the amount of data in each batch is set to 2 images, and the
initial learning rate is 2.0× 10−5. After 1.333 iterations of the model, the learning rate was
reduced to 2.0× 10−6. There are two iterations, and then the model parameters are saved.
The experiment results are shown in Table 3.

The proposed model is compared with TCN, TPN + LSTM, D(&T loss), and FGFA on
the ImageNet VID validation set [26,27]. Among them, the results of TCN, TPN + LSTM,
and D((&T loss) are directly provided by the original authors, and the results of FGFA
are obtained by rerunning the code provided by the authors under the same training and
validation set Settings. As shown in Table 3, the average precision (AP) and mAP of each
model on each class of objects include 30 categories such as airplanes, antelope, and bear.
The mAP of the proposed model reaches 83.55%, which is 36.05%, 15.15%, 7.35%, and 7.75%
higher than that of the TCN, TPN + LSTM, D(&T loss), and FGFA, respectively. Among
them, TCN and TPN + LSTM belong to post-processing methods. Compared with these
methods, the proposed method clusters frames based on semantic and feature similarity,
and each frame is selected from a global perspective. There is a lot of redundancy in frames
that are in short succession. The proposed method can fully aggregate the features of each
similar frame, and then improve the detection accuracy. The runtime of the method in this
paper is 25.6 fps, which is faster than FGFA. The runtime of FGFA is 1.08 fps. Table 4 shows
that the mAP of the proposed method on slow, medium, and fast objects is increased by
4.86%, 6.53%, and 9.06%, respectively, compared with the FGFA model. Therefore, the
performance of the proposed method is stronger, especially for fast object detection.

Figure 4 shows one result of the object detection in the video by the method in this
paper. The results show the blur and occlusion when the object is moving, and the method
in this paper can aggregate the features of multiple frames, and finally accurately detect
the object.

Figure 4. The detection result of the proposed method.
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Table 3. Comparison of AP and mAP of each method on the ImageNet VID dataset.

Object AP of TCN (%) AP of TCN +
LSTM (%) AP of FGFA (%) AP of D

(&T Loss) (%)
AP of Our

Method

airplane 72.7 84.6 88.1 89.4 90.3
antelope 75.5 78.1 85.0 80.4 88.4

bear 42.2 72.0 82.5 83.8 89.8
bicycle 39.5 67.2 68.1 70.0 76.6

bird 25.0 68.0 72.8 71.8 73.8
bus 64.1 80.1 82.3 82.6 84.2
car 36.3 54.7 58.6 56.8 75.8

cattle 51.1 61.2 71.7 71.0 84.1
dog 24.4 61.6 73.3 71.8 81.2

domestic cat 48.6 78.9 81.5 76.6 83.5
elephant 65.6 71.6 78.0 79.3 82.1

fox 73.9 83.2 90.6 89.9 92.1
giant panda 61.7 78.1 82.3 83.3 91.2

hamster 82.4 91.5 92.4 91.9 93.8
horse 30.8 66.8 70.3 76.8 85.2
lion 34.4 21.6 66.9 57.3 79.2

lizard 54.2 74.4 79.3 79.0 82.3
monkey 1.6 36.6 53.9 54.1 69.6

motorbike 61.0 76.3 84.3 80.3 85.1
rabbit 36.6 51.4 66.7 65.3 78.1

red panda 19.7 70.6 82.2 85.3 87.3
sheep 55.0 64.2 57.2 56.9 74.8
snake 38.9 61.2 74.7 74.1 82.1

squirrel 2.6 42.3 56.5 59.9 76.5
tiger 42.8 84.8 91.0 91.3 92.3
train 54.6 78.1 82.4 84.9 85.7
turtle 66.1 77.2 80.2 81.9 83.2

watercraft 69.2 61.5 65.7 68.3 82.3
whale 26.5 66.9 75.6 68.9 82.2
zebra 68.6 88.5 91.3 90.9 93.7
mAP 47.5 68.4 76.3 75.8 83.55

Table 4. Comparison between FGFA and the proposed method.

Method mAP(%)(Slow) mAP(%)(Medium) mAP(%)(Fast)

FGFA 85.31% 75.86% 55.72%
Our method 90.17% 82.39% 64.78%

6. Conclusions

This paper improves the method of feature extraction model and similarity algorithm
to detect objects in videos. The improved method involves replacing all the 3× 3 traditional
convolutions in the last three stages of ResNet101 with DRConv and incorporating feature
pyramids. In terms of similarity algorithm, frames are clustered by considering both
semantic and feature similarity. Compared with the method of adjacent frames such as
optical flow, this paper uses the modified SSIM algorithm to calculate the feature similarity
through the proposal feature maps. Then S-SELSA was proposed from a global perspective
to extract the features of frames across time and space by combining semantics and feature
similarity to reduce redundancy. Compared with the SELSA module which only clusters
from the semantic perspective, the clustering error rate is less and the detection accuracy is
higher. Finally, the experimental results on the ImageNet VID dataset show that the mAP
of the method proposed in this paper is 83.55%. The mAP of the proposed model reaches
83.55%, which is 36.05%, 15.15%, 7.35%, and 7.75% higher than that of TCN, TPN + LSTM,
D(&T loss), and FGFA, respectively. The following research will focus on the improvement
of the clustering algorithm to improve the accuracy and detection speed.
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S-SELSA Structural Similarity SELSA
DEF Deep Feature Flow for Video Recognition
TCN Temporal Convolutional Network
TPN Tubelet Proposal Network
LSTM Long Short Term Memory Network
FGFA Flow-Guided Feature Aggregation for Video Object Detection
D&T Detect to Track and Track to Detect
SSD Single Shot MultiBox Detector
DRConv Dynamic Region Aware Convolution
FPN Feature Pyramid Network
RPN RegionProposal Network
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