
Citation: Yang, X.; Liu, J.; Zhang, D.

A Comprehensive Taxonomy for

Prediction Models in Software

Engineering. Information 2023, 14, 111.

https://doi.org/10.3390/info

14020111

Academic Editor: José J. Pazos Arias

Received: 20 December 2022

Revised: 27 January 2023

Accepted: 30 January 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Review

A Comprehensive Taxonomy for Prediction Models in
Software Engineering
Xinli Yang, Jingjing Liu and Denghui Zhang *

College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China
* Correspondence: dhzhang@zjsru.edu.cn

Abstract: Applying prediction models to software engineering is an interesting research area. There
have been many related studies which leverage prediction models to achieve good performance in
various software engineering tasks. With more and more researches in software engineering leverage
prediction models, there is a need to sort out related studies, aiming to summarize which software
engineering tasks prediction models can apply to and how to better leverage prediction models
in these tasks. This article conducts a comprehensive taxonomy on prediction models applied to
software engineering. We review 136 papers from top conference proceedings and journals in the last
decade and summarize 11 research topics prediction models can apply to. Based on the papers, we
conclude several big challenges and directions. We believe that the comprehensive taxonomy will
help us understand the research area deeper and infer several useful and practical implications.

Keywords: artificial intelligence; prediction model; software engineering; comprehensive taxonomy

1. Introduction

Software engineering is an important research area. It aims to help software developers
in terms of time and effort, and improve software quality in terms of stability, reliability
and security. There have been a large number of software engineering studies, which cover
various research topics such as defect prediction, bug report management and etc.

Prediction model is an important technique, which can be applied to many different
research areas. Specifically, a prediction model can be built based on training data for
prediction, classification, identification and detection (such as text classification, image
identification and malware detection). There are various prediction models which leverage
many different machine learning algorithms, such as naive Bayes, decision tree, support
vector machine and random forest. Different prediction models have their respective pros
and cons, and preform well in different research problems.

Applying prediction models to software engineering is an interesting area and can
help solve many difficult problems. For example, in defect prediction researchers aim to
recommend software components that are likely to be defective to developers, which can
reduce time and effort cost of developers in software debugging, improve the efficiency
of development process and guarantee software quality. In performance prediction, re-
searchers aim to predict the performance of a system, which is crucial in practice. There
have been a large number of related studies in the last decade [1]. These studies have
achieved great improvement in various software engineering tasks. Although prediction
models contribute much to software engineering, there is a lack of a systematic taxonomy
about to which software engineering tasks prediction models can apply and how to well
leverage prediction models in these tasks.

To bridge the gap, in the paper we conducted a comprehensive taxonomy on prediction
models applied in software engineering. We covered 136 papers from three top conference
proceedings (i.e., ICSE, FSE and ASE) and two top journals (i.e., TSE and TOSEM) in
the recent 10 years in total. We choose them because they are five most top and popular

Information 2023, 14, 111. https://doi.org/10.3390/info14020111 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14020111
https://doi.org/10.3390/info14020111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-8971-2877
https://doi.org/10.3390/info14020111
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14020111?type=check_update&version=1

Information 2023, 14, 111 2 of 32

conference proceedings and journals in the software engineering area and the papers in
them are representative for the state-of-the-art software engineering researches. We found
that prediction models have been applied to various software engineering tasks. Based on
the software development process, we grouped all tasks into 11 main research topics, i.e.,
software coding aid, software defect prediction, software management, software quality,
software performance prediction, software effort estimation, software testing, software
program analysis, software traceability, software bug report management, software users
and developers. All the topics play key roles in the software development process. By
leveraging prediction models, researchers have achieved good performance in the tasks in
these 11 research topics.

Based on the papers, we concluded several big challenges when applying prediction
models to software engineering tasks, to which researchers shall pay much attentions
in their later work. In addition, we also showed several promising research directions,
through which researchers may achieve great improvement.

The main contributions of the paper are:

1. We conduct a comprehensive taxonomy on prediction models applied to software
engineering. The taxonomy contains 136 primary papers from top conference pro-
ceedings and journals in the last decade.

2. We summarize the 136 papers into 11 main research topics. Based on them, we
conclude several big challenges and promising directions when applying prediction
models to software engineering tasks.

The rest of our paper is organized as follows. Section 2 introduces the basis of predic-
tion models. Section 3 presents our research method. Sections 4–14 summarize primary
studies related to prediction models applied to software engineering tasks for each of
research topics. Section 15 describes the challenges and directions of prediction models
applied to software engineering tasks. Conclusions are presented in the last section.

2. Basis of Prediction Models

In this section, we first introduce the basic concepts of prediction models in Section 2.1.
Next, we briefly introduce five most common algorithms used in prediction models in
Section 2.2. Finally, we present several common evaluation metrics for prediction models
in Section 2.3.

2.1. Overview

Prediction models have been applied to various tasks in software engineering [2]. To
build prediction models, there are several key elements, which are listed as follows:

1. Datasets. Datasets are the input of prediction models. There are various datasets
(such as code, bug reports). Different software engineering tasks usually have different
datasets which have different properties (such as scale, distribution, bias and etc).
Due to these reasons, different prediction models are needed to fit well for different
datasets.

2. Features. A dataset contains more or fewer features. Features play a crucial role in
building prediction models. A good feature set can generate a prediction model with
very good performance, while a weak feature set may lead to a useless prediction
model.

3. Algorithms. There are various prediction models and their key difference lies in the
algorithms. There are many algorithms in prediction models and different algorithms
may fit different software engineering tasks. Section 2.2 introduces several common
algorithms used in prediction models in detail.

4. Evaluation Metrics. When prediction models output their prediction results, we use
metrics evaluating their effectiveness so that we can pick up the best prediction model
for a specific software engineering task. Similarly, there are many evaluation metrics
for prediction models and different metrics may fit different software engineering

Information 2023, 14, 111 3 of 32

tasks. Section 2.3 introduces several widely-used evaluation metrics for prediction
models in detail.

2.2. Common Algorithms

There are many algorithms for prediction models. Different algorithms fit to different
problems and no one algorithm can always perform the best. In the section we introduce
five most common algorithms, i.e., naive Bayes (NB), random forest (RF), logistic regression
(LR), support vector machine (SVM) and k-nearest neighbors (KNN). We introduce these
algorithms since they are widely used in software engineering tasks and they often appear
as baselines in software engineering papers [3]. Moreover, they are very classic among all
the prediction models [3].

2.2.1. Naive Bayes

Naive Bayes (NB) is a probabilistic model based on Bayes theorem for conditional
probabilities [2,4]. Naive Bayes assumes that features are independent from one another.
Moreover, all the features are binominal. That is, each feature only has two values of 0
and 1.

Based on the above assumptions, given a feature vector V = (f1, f2, . . . , fn) (fi represents
a specific feature) and a label lj, the probability of the V given the label lj is:

p(V|L = lj) =
n

∏
i=1

p(fi|L = lj).

With Bayes’ theorem, we can compute the probability of a label lj given the V. Since
Naive Bayes assumes that features are independent from one another, the equation can be
written as:

p(L = lj|V) =
n

∏
i=1

p(fi|L = lj).

The probability of the feature fi given class lj (i.e., p(fi|L = lj)) in the above equation
can be estimated based on the training data. Next, based on the above equation, we can
compute the probability for every label given an unlabeled feature vector V, and assign the
label with the highest probability to it.

There are several variants of NB, one of which is called Naive Bayes Multinominal
(NBM) [2,4]. NBM is very similar to NB. However, in NBM the value of each feature is
not restricted to 0 or 1, rather it can be any non-negative number. NBM and NB have
different advantages. For the problems that have a large number of features, NB has much
smaller feature space than NBM. Therefore, in the case NB is often better than NBM. On
the contrary, for the problems that do not have many features, NBM often performs better
since it express features in a finer granularity.

2.2.2. Random Forest

Random Forest is an advanced bagging technique based on decision tree [2,4].
Decision tree is modeled with the use of a set of hierarchical decisions on the fea-

ture variables, arranged in a tree-like structure [2,4]. In the tree-constructing process,
Decision tree can rapidly find the feature variables that differentiate different classes the
most. In addition, it can generate explicit rules for different classes, while many other
classifiers cannot.

Bagging works best when the base learners are independent and identically distributed.
However, traditional decision trees constructed using bagging cannot meet this condition.
Random Forest solve the problem by introducing randomness into the model building
process of each decision tree. In the construction of traditional decision trees, the split of
each node are performed by considering the whole set of features, while in random forest,

Information 2023, 14, 111 4 of 32

the splits in each tree are performed by considering only a random subset of all features.
The randomized decision trees have less correlation so that bagging them performs better.

2.2.3. Logistic Regression

Logistic regression (LR) is a kind of generalized linear model [2,4]. There are two key
differences between Logistic regression and linear regression. First, Logistic regression
assumes data are in the Bernoulli distribution. Second, Logistic regression predicts the
probability of particular outcomes through the logistic distribution function. A logistic
function L is a sigmoid curve with the following equation:

L =
1

1 + e−WV .

In the equation, W is the parameter vector used to combine different features in V.

2.2.4. Support Vector Machine

Support Vector Machine (SVM) is developed from traditional linear models [2,4]. As
with all traditional linear models, it uses a separating hyperplane as the decision boundary
to differentiate two classes. Given training data (i.e., feature vectors), SVM first maps each
feature vector to a point in a high-dimensional space, in which each feature represents
a dimension. Then, SVM selects the points which have big impact for classification as
support vectors. Next, it creates a separating hyperplane as a decision boundary to classify
two classes. When an unlabeled data instance needs to be classified, SVM can assign it
a label according to the decision boundary. Compared with traditional linear models,
SVM considers structural error which includes both empirical error and confidence error.
Therefore, the separating hyperplane created by SVM has a maximum margin (i.e., it
separates the support vectors belonging to the two classes as far as possible), which makes
SVM one of the best classifiers.

2.2.5. K-Nearest Neighbors

K-nearest neighbors (KNN) is an instance-based classifier [2,4]. Its principle is intuitive:
similar instances have similar class labels. In our setting, KNN mainly contains three steps.
First, similar to SVM, KNN maps all the training data to points in a high-dimensional space.
Then, for an unlabeled feature vector V, we find k most nearest points to it based on a
specific distance metric. There are various distance metrics, such as Euclidean distance and
Manhattan distance. Finally, we determine the label of V by the labels of the majority of its
k nearest neighbors.

2.3. Evaluation Metrics

To evaluate the effectiveness of a prediction model, there are several widely-used
evaluation metrics, i.e., precision, recall, F1-score, AUC (Area Under the Receiver Oper-
ating Characteristic Curve). Many software engineering studies use them as evaluation
metrics [1,5,6].

The evaluation metrics can be derived from a confusion matrix, as shown in Table 1.
The confusion matrix lists all four possible prediction results. If a data instance is correctly
predicted as positive, it is a true positive (TP); if a data instance is wrongly predicted as
positive, it is a false positive (FP). Similarly, there are false negatives (FN) and true negatives
(TN). Based on the four numbers, the evaluation metrics can be calculated.

Table 1. Confusion Matrix.

Predicted Positive Predicted Negative

Truly Positive TP FN

Truly Negative FP TN

Information 2023, 14, 111 5 of 32

2.3.1. F1-Score

Precision is the ratio of the number of correctly predicted as positives to the total
number of predicted positives (P = TP

TP+FP). Recall is the ratio of the number of correctly
predicted as positives to the actual number of positives (R = TP

TP+FN). Finally, F1-score is a
summary measure that combines both precision and recall (F = (2× P× R)/(P + R)). F1-
score evaluates if an increase in precision (recall) outweighs a reduction in recall (precision).
The larger F1-score is, the better is the performance of a classification algorithm. F1-score
ranges from 0 to 1, with 1 representing perfect prediction performance [1,6,7].

2.3.2. AUC

To compute AUC, we first plot the Receiver Operating Characteristic Curve (ROC).
ROC is a plot of the true positive rate (TPR) versus false positive rate (FPR). TPR is the
ratio of the number of correctly predicted as positives to the actual number of positives
(TPR = TP

TP+FN). FPR is the ratio of wrongly predicted as positives to the actual number
of negatives (FPR = FP

FP+TN). With the ROC, AUC can be calculated by measuring the
area under the curve. AUC measures the ability of a classification algorithm to correctly
rank positives and negatives. The larger the AUC is, the better is the performance of a
classification algorithm. The AUC score ranges from 0 to 1, with 1 representing perfect
prediction performance. Generally, an AUC score above 0.7 is considered reasonable [1,6,7].

3. Research Methods

To conduct a comprehensive taxonomy, we follow a systematic and structured method
inspired by other reviews and taxonomies [8–12].

3.1. Paper Sources and Search Strategy

To conduct a comprehensive taxonomy, we investigate the papers in the last decade
from five datasets, which contain three top conference proceedings (i.e., ICSE (International
Conference on Software Engineering), FSE (International Symposium on the Foundations
of Software Engineering) and ASE (International Conference on Automated Software
Engineering)) and two top journals (i.e., TSE (Transactions on Software Engineering) and
TOSEM (Transactions on Software Engineering and Methodology)).

Note that the papers in the five datasets can be related to any topics in software
engineering, and in this taxonomy, we focus on the papers about prediction models. To
do so, we adopt a search strategy which mainly contains three steps, i.e., paper collection,
automated filtering, manual filtering. We will elaborate each step in the following text.

Paper Collection. First, we download all the papers of the five datasets based on
dblp computer science bibliography (https://dblp.org/, accessed on 6 Feburary 2023),
which is an on-line reference for bibliographic information on major computer science
publications and provides open bibliographic information on major computer science
journals (about 32,000 journal volumes) and proceedings (more than 31,000 conference or
workshop proceedings). DBLP indexes all the papers of the five datasets, and for each
paper, it has links from either IEEE Xplore (The IEEE (Institute of Electrical and Electronics
Engineers) Xplore Digital Library is a powerful resource for discovery of and access to
scientific and technical content published by the IEEE and its publishing partners. It
provides web access to more than three million full-text documents from some of the
world’s most highly cited publications in electrical engineering, computer science and
electronics. The website is: http://ieeexplore.ieee.org/Xplore/home.jsp, accessed on 6
Feburary 2023) or ACM (The ACM (Association for Computing Machinery) Digital Library
is a research, discovery and networking platform containing the full-text collection of
all ACM publications, including journals, conference proceedings, technical magazines,
newsletters and books. The website is: http://dl.acm.org/, accessed on 6 Feburary 2023)
Digital Library, or both. Therefore, we can download all the papers from IEEE Xplore or
ACM Digital Library through the links.

https://dblp.org/
http://ieeexplore.ieee.org/Xplore/home.jsp
http://dl.acm.org/

Information 2023, 14, 111 6 of 32

Automated Filtering. After we download all the papers of the five datasets from IEEE
Xplore and ACM, we filter them to select the papers leveraging prediction models. The
initial number of total papers is over 2000. If we look over all the papers in person, it will
cost too much time and effort due to the large amount. Therefore, we first use several
keywords to automatically filter all the papers. Specifically, we search whether one of the
keywords appear in the title and abstract of a paper. If so, the paper is preserved, and
otherwise it is filtered. The keywords we use are shown in Table 2. They are mainly grouped
into two categories, i.e., target-based keywords and technique-based keywords. Note that
for the search strategy the keywords are not case-sensitive and not “whole words only”,
which means that the stemmed keywords can represent all forms related to them (e.g.,
“classif” can search for “classify”, “classifying”, “classified” as well as “classification”).

Table 2. The Keywords We Use In Automated Filtering.

Target-Based Technique-Based

predict support vector machine

classif decision tree

identif Bayes

detect machine learning

regression

random forest

Manual Filtering. After automated filtering, we filter most papers and preserve
319 papers. For these papers, we browse them one by one manually to ensure that they are
truly related to prediction models. Finally, we select 136 papers which are definitely related
to prediction models.

3.2. Statistics of Selected Papers

Before we review the selected paper in detail, we first summarise them in terms of
publication distribution, authors and research topics.

Table 3 shows the journal/proceeding distribution of the selected papers we investi-
gate. From the table, we can see that ICSE occupies the biggest proportion, while TOSEM
has the least papers (i.e., only five in the last 10 years) related to prediction models. This
suggests that if researchers are studying prediction models applied to software engineering
tasks, they can look for papers in ICSE in priority.

Table 3. The Journal/Proceeding Distribution Of The Selected Papers.

Dataset Number of Papers

ICSE 49

FSE 29

ASE 24

TSE 29

TOSEM 5

Table 4 shows the top-10 co-authors on prediction models applied to software engi-
neering tasks. From the table, we can see that among the selected papers, one author does
not contribute to many papers. All the authors contribute to less than 10 papers, except
for the first one, Sunghun Kim, who has 12 papers. It suggests that the author distribution
is quite scattered, which is reasonable since prediction models can be applied to various
software engineering tasks.

Information 2023, 14, 111 7 of 32

Table 4. Top-10 Co-authors.

Author Number of Papers

Sunghun Kim 12

Ahmed E Hassan 8

Thomas Zimmermann 6

Premkumar Devanbu 6

Hongyu Zhang 5

Tim Menzies 5

David Lo 4

Foyzur Rahman 4

Jaechang Nam 4

Norbert Siegmund 4

We also classify the selected papers based on the main research topics. The result is
shown in Figure 1. From the figure, we can see there are many different research topics
that leverage prediction models and we group them to 11 main topics in total. The top-
three research topics that often leverage prediction models are “Defect Prediction”, “Bug
Report Management” and “Coding Aid”, all of which occupy over 10%, and “Defect
Prediction” even occupies near one quarter of all. The other eight research topics do not
have many papers (6–12 papers each). It suggests that these research topics may have large
improvement space by leveraging more prediction models.

Figure 1. Research Topics.

In the following eleven sections, we review the selected papers in detail based on the
above 11 research topics.

Information 2023, 14, 111 8 of 32

4. Coding Aid

In this section, we introduce four sub tasks in coding aid tasks, which are code
development, code review, code evaluation and code API.

4.1. Code Development

There are many studies that aim to aid development process and improve code
quality [13–19].

Reiss presented a system that uses machine learning to deduce the coding style from a
corpus of code and then applies this knowledge to convert arbitrary code to the learned
style [13]. They included formatting, naming, ordering, and equivalent programming
constructs. They compared the Weka system (a C4.5 decision tree learner, a support vector
machine, the K* instance-based learner, and a version of the RIPPER rule learner) and the
Mallet system (a naive Bayes learner, a Maximum Entropy learner, and a C4.5 tree learner).
Overall, the results showed that the algorithms can effectively learn ordering styles and
the Weka J48 tree learner tended to do quite well. Wang et al. proposed a novel approach
that automatically predicts the harmfulness of a code cloning operation at the point of
performing copy-and-paste [14]. They used Bayesian Networks based on history, code
and destination features. In a later work, they also used Bayesian Networks to predict
whether an intended code cloning operation requires consistency maintenance [15]. Their
insight is that whether a code cloning operation requires consistency maintenance may
relate to the characteristics of the code to be cloned and the characteristics of its context.
Therefore, they used a number of attributes extracted from the cloned code and the context
of the code cloning operation. Bruch et al. proposed an advanced code completion system
that recommends method calls as a synthesis of the method calls of the closest source
snippet found [16]. Their algorithm is called best matching neighbors (BMN), which is
based on k-nearest neighbors algorithm. They computed the distances between the current
programming context and the example codebase based on the Hamming distance on a
partial feature space. Proksch et al. proposed Pattern-based Bayesian Networks (PBN) for
intelligent code completion [17]. They extend BMN by adding more context information
and introducing Bayesian networks as an alternative underlying model. The resulting
PBN model predicts the probability of methods that may appear in a specific place of
code segment. Hassan et al. created decision trees to predict the certification result of a
build ahead of time [18]. They mined historical information (code changes and certification
results) for a large software project which is being developed at the IBM Toronto Labs. By
accurately predicting the outcome of the certification process, members of large software
teams can work more effectively in parallel. Zhu et al. proposed a framework, which aims
to provide informative guidance on logging during development for developers [19]. They
extracted structural, textual and syntactic features, used information gain to select features,
and used SMOTE and CLNI to handle noises. They compared Naive Bayes, Bayes Net,
Logistic Regression, Support Vector Machine (SVM), and Decision Tree and found that
Decision Tree is the best to decide where to log.

4.2. Code Review

There are many code segments that may have defects (i.e., bugs) so that code review is
a common task. Generally, code review cost much time and effort. To make code review
more effective, several studies propose different methods [20–22].

Kim et al. proposed a history-based warning prioritization algorithm that mines
previous fix-and-warning removal experiences that are stored in the software change
history [20]. This algorithm is inspired by the weighted majority voting and Winnow online
machine learning algorithms. If a warning instance from a warning category is eliminated
by a fix-change, they assumed that this warning category is important. Shihab et al. used
logistic regression prediction models to identify files containing high-impact defects (i.e.,
breakage and surprise defects) [21]. They found that the number of pre-release defects and
file size are good indicators of breakage defects, whereas the number of co-changed files

Information 2023, 14, 111 9 of 32

and the amount of time between the latest pre-release change and the release date are good
indicators of surprise defects. Padhye et al. presented NeedFeed, a system that models
code relevance by mining a project’s software repository and highlights changes that a
developer may need to review [22]. They used both history-based and text-based features
to improve the performance. However, they found that there is no clear winner between
the various classification techniques.

4.3. Code Evaluation

For a large amount of code, researchers measure the code quality and propose several
methods to comprehend code better [23–26].

Liu et al. presented search-based software quality models with genetic program-
ming [23]. They considered 17 different machine learners in the WEKA data mining tool.
They showed that the total cost of misclassification of their genetic programming based
models are consistently lower than those of the non-search-based models. They selected
13 primitive software metrics (i.e., three McCabe metrics, five metrics of Line Count, four
basic Halstead metrics, and one metric for Branch Count). Goues et al. measured code
quality based on seven metrics (i.e., code churn, author rank, code clones, code readability,
path feasibility, path frequency and path density) using linear regression [24]. They showed
that measuring code quality can improve specification mining. Femmer et al. proposed a
simple, yet effective approach to detect inconsistencies in wrappers [25]. They first used
lightweight static analysis for extracting source code metrics, constants, etc. to compare two
implementations, and then used KNN to automatically classify the differences and predict
whether or not the implementations are equivalent. Rigby et al. proposed to detect which
of the code elements in a document are salient or germane to the topic of the post [26].
They use decision trees to identify salient code element based on different features (TF-IDF,
Element Kind, Context and Location and text type).

4.4. Code APIs

In the software development process, APIs play an important role. Developers often
call many API classes and methods to speed coding and improve code quality. There are
many studies related to code APIs [27–30].

Thummalapenta et al. proposed a code-search-engine-based approach SpotWeb that
detects hotspots in a given framework by mining code examples gathered from open
source repositories available on the web [27]. The hotspots are API classes and methods
that are frequently reused. SpotWeb could better help developers to reuse open source
code. Wu et al. proposed an iterative mining approach, called RRFinder, to automatically
mining resource-releasing specifications for API libraries in the form of (resource-acquiring,
resource-releasing) API method pairs [28]. In RRFinder they used decision tree to identifies
resource-releasing API methods based on natural language Information, source code
information, static structural information, method behavioral information and method
relationship information. Petrosyan et al. proposed a technique for discovering API tutorial
sections that help explain API types [29]. They classified fragmented tutorial sections
using supervised text classification based on both linguistic and structural features. The
technique can help developers quickly learn a subset of an API. Treude et al. presented
a machine learning approach SISE to automatically augment API documentation with
“insight sentences” from Stack Overflow [30]. Insight sentences can provide insight to an
API type, but not contained in the API documentation of that type. SISE used as features
the sentences themselves, their formatting, their question, their answer, and their authors
(meta data available on Stack Overflow) as well as part-of-speech tags and the similarity of
a sentence to the corresponding API documentation. They compared k-nearest neighbour,
J48 decision trees, Naive Bayes, random forest, and support vector machine and found that
support vector machine has the best performance in classifying whether a sentence is an
insight sentence or not.

Information 2023, 14, 111 10 of 32

5. Defect Prediction

Defect prediction techniques are proposed to help prioritize software testing and
debugging; they can recommend software components that are likely to be defective to
developers. Rahman et al. compared static bug finders and defect prediction models [31].
They found that, in some settings, the performance of certain static bug-finders can be
enhanced using information provided by statistical defect prediction models. Therefore,
applying prediction models to defect prediction is a promising direction.

5.1. Framework

Song et al. proposed and evaluated a general framework for software defect prediction
that supports unbiased and comprehensive comparison between competing prediction
systems [32]. They first evaluated and chose a good learning scheme (which consists a data
preprocessor, an attribute selector and a learning algorithm), and then used the scheme to
build a predictor. Their framework poses three key elements for defect prediction models,
i.e., datasets, features and algorithms. There are many influential studies for each of them
and we will elaborate them in the next three sections.

5.2. Datasets

A good prediction model relies heavily on the dataset it learns from, which is also the
case for defect prediction.

There are many studies investigating the quality (such as bias and size) of datasets
for defect prediction [33–35]. Bird et al. used prediction models to investigate historical
data from several software projects (i.e., Eclipse and AspectJ), and found strong evidence
of systematic bias [33]. They concluded that bias is a critical problem that threatens both
the effectiveness of processes that rely on biased datasets to build prediction models and
the generalizability of hypotheses tested on biased data. Rahman et al. investigated the
effect of size and bias of datasetes in defect prediction using logistic regression model [34].
They investigated 12 open source projects and their results suggested that size always
matters just as much bias direction, and in fact much more than bias direction when
considering common evaluation measures such as AUC and F-score. Tantithamthavorn
et al. used random forest to investigate the impact of mislabelling on the performance
and interpretation of defect models [35]. They found that precision is rarely impacted by
mislabelling while recall is impacted much by mislabelling. In addition, the most influential
features are generally robust to mislabelling.

For the datasets which have bad quality, researchers also have proposed several
approaches to address them [36–38]. Kim et al. proposed an approach named CLNI to deal
with the noise in defect prediction [36]. CLNI could effectively identify and eliminate noises
and the noise-eliminated training sets produced by CLNI can improve the defect prediction
performance. Menzies et al. applied automated clustering tools and rule learners to defect
datasets from the PROMISE repository [37]. They indicated that the lessons learned after
combining small parts of different data sources (i.e., the clusters) were superior to either
generalizations formed over all the data or local lessons formed from particular projects.
Nam et al. proposed novel approaches CLA and CLAMI, which can work well for defect
prediction on unlabeled datasets in an automated manner without any manual effort [38].
CLA automatically clusters and labels instances, and CLAMI has two additional steps
to select features and instances. They compared CLA/CLAMI with three baselines (i.e.,
supervised learning, threshold-based and expert-based approaches) in terms of precision,
recall, F-score and AUC and demonstrated their practicability.

In addition, datasets of many projects are not totally available due to the privacy policy.
To address the privacy problem, Peters et al. studied a lot [39–41]. First, they measured the
utility of privatized datasets empirically using Random Forests, Naive Bayes and Logistic
Regression, through which they showed the usefulness of their proposed privacy algorithm
MORPH [39]. MORPH is a data mutator that moves the data a random distance, while
not across the class boundaries. In a later work, they improved MORPH by proposing

Information 2023, 14, 111 11 of 32

CLIFF+MORPH to enable effective defect prediction from shared data while preserving
privacy [40]. CLIFF is an instance pruner that deletes irrelevant examples. Recently, they
again extended MORPH to propose LACE2 [41].

5.3. Features

Features, also named as metrics or attributes, are crucial for a successful defect
prediction model. Researchers have argued a lot about feature extraction for defect
prediction [42–44].

Menzies et al. reported that code metrics are useful for defect prediction [42]. They
compared two decision trees (OneR and J48) and naive Bayes, and found naive Bayes is the
best. Moser et al. conducted a comparative analysis about the predictive power of two dif-
ferent sets of metrics (i.e., code metrics and process metrics) for defect prediction [43]. They
used three common machine learners: logistic regression, Naive Bayes, and decision tree.
They showed that process metrics are more efficient defect predictors than code metrics,
especially for cost-sensitive classification. Rahman et al. enhanced the conclusion Moser
et al. made by analyzing the applicability and efficacy of process and code metrics [44].
They built four prediction models (i.e., Logistic regression, Naive Bayes, J48 decision tree
and support vector machine) across 85 releases of 12 large open source projects to address
the performance, stability, portability and stasis of different sets of metrics. They strongly
suggested the use of process metrics instead of code metrics.

Except for the above two main sets of metrics (code metrics and process metrics),
some researchers have tried other kinds of metrics [45,46]. Lee et al. proposed 56 novel
micro interaction metrics (MIMs) that leverage developers’ interaction information [45].
They investigated three prediction models, i.e., Bayesian Network, J48 decision tree, and
logistic regression. Their experimental results showed that MIMs significantly improve
defect prediction. Jiang et al. proposed personalized defect prediction, in which they
leveraged developer-specific metrics (such as commit hour and cumulative change count)
to build a separate prediction model for each developer to predict software defects [46].
They found that the advantage of personalized defect prediction is not bounded to any
classification algorithm. Posnett et al. used logistic regression on defect and process data
from 18 open source projects to illustrate the risks of modeling at an aggregation level
(e.g., packages) in the context of defect prediction [47]. They found that although it is
often necessary to study phenomena based on data at aggregated levels of products,
teams, or processes, it is also possible that the resulting findings are only actionable at the
disaggregated level, such as at the level of files, individual people, or steps of a process.
In defect prediction, the studies that predicting defects at the disaggregated level indeed
achieve good results [48–50]. Hata et al. conducted fine-grained bug prediction, which
is a method-level prediction, on Java software based on historical metrics [48]. They used
random forest and found that method-level prediction is more effective than package-
level and file-level prediction when considering efforts, which is because predicted buggy
packages and files contain many non-buggy packages and files. Kim et al. introduced a new
technique for change-level defect prediction [49]. They are the first to classify file changes as
buggy or clean leveraging change information features. They used support vector machine
to determine whether a new software change is more similar to prior buggy changes or
clean changes. A big advantage of change classification is that predictions can be made
immediately upon completion of a change. Kamei et al. conducted a large-scale study of six
open source and five commercial projects from multiple domains for change-level defect
prediction [50]. They used a logistic regression model based on 14 change metrics. They
expected that change-level defect prediction can provide an effort-minimizing way to focus
on the most risky changes and thus reduce the costs of building high-quality software.

With many different features, researchers also tried to pre-process the features in
order to gain higher-quality feature sets [51]. Shivaji et al. investigated multiple feature
selection techniques that are generally applicable to classification-based bug prediction
methods [51]. They used Naive Bayes and Support Vector Machine. They found that binary

Information 2023, 14, 111 12 of 32

features are better, and between 3.12% and 25% of the total feature set yielded optimal
classification results.

Recently, deep learning, as an advanced prediction model, is more and more pop-
ular. The role of deep learning is to automatically generate features which are better
for prediction model building. Therefore, several researchers have also tried to improve
the performance of defect prediction via deep learning [52–54]. Jiang et al. proposed a
cost-sensitive discriminative dictionary learning (CDDL) approach for software defect
prediction [52]. CDDL is based on sparse coding which can transform the initial features
into more representative code. Their results showed that CDDL is superior to five repre-
sentative methods, i.e., support vector machine, Compressed C4.5 decision tree, weighted
Naive Bayes, coding based ensemble learning (CEL), and cost-sensitive boosting neural
network. Wang et al. leveraged Deep Belief Network (DBN) to automatically learn semantic
features from token vectors extracted from programs’ Abstract Syntax Trees [54]. Their
evaluation on ten open source projects showed that learned semantic features significantly
improve both within-project defect prediction and cross-project defect prediction compared
to traditional features.

5.4. Algorithms

Lessmann et al. proposed a framework for comparative software defect prediction
experiments [1]. They conducted a large-scale empirical comparison of 22 classifiers over
10 public domain data sets from the NASA Metrics Data repository (http://mdp.ivv.
nasa.gov, accessed on 29 January 2023) and the PROMISE repository (http://promise.site.
uottawa.ca/SERepository, accessed on 29 January 2023). Their results indicated that the
importance of the particular classification algorithm may be less than previously assumed
since no significant performance differences could be detected among the top 17 classifiers.
However, Ghotra et al. doubted the conclusion and they pointed that the datasets Lessmann
et al. used were both noisy and biased [55]. Therefore, they replicated the prior study with
initial datasets as well as the datasets after cleanse. They found that some classification
techniques tend to produce defect prediction models that outperform others. They showed
that Logistic Model Tree when combined with ensemble methods (i.e., bagging, random
subspace, and rotation forest) achieves top-rank performance. Furthermore, clustering
techniques (i.e., Expectation Maximization and K-means), rule-based techniques (Repeated
Incremental Pruning to Produce Error Reduction and Ripple Down Rules), and support
vector machine are worse.

Many algorithms have several tunable parameters and their values may have an
impact on the prediction performance. Tantithamthavorn et al. conducted a case study
on 18 datasets to investigate an automated parameter optimization technique, Caret, in
defect prediction [56]. They tried 26 classification techniques that require at least one
parameter setting and concluded that automated parameter optimization techniques such
as Caret yield substantially benefits in terms of performance improvement and stability,
while incurring a manageable additional computational cost.

5.5. Cross-Project Defect Prediction

Cross-project defect prediction is a rising topic. It uses data from one project to build
the prediction model and predicts defects in another project based on the trained model so
that it can solve the problem that there is no sufficient amount of data available to train
within a project (such as a new project).

Zimmermann studied cross-project defect prediction models on a large scale [57]. Their
results indicated that cross-project prediction is a serious challenge. To face the challenge,
they identified factors that do influence the success of cross-project predictions. In addition,
they derived decision trees that can provide early estimates. Rahman et al. investigated
cross-project defect prediction compared with within-project prediction using logistic
regression model [58]. They found that in terms of traditional evaluation metrics precision,
recall, F-measure and AUC, cross-project performance is significantly worse than within-

http://mdp.ivv.nasa.gov
http://mdp.ivv.nasa.gov
http://promise.site.uottawa.ca/SERepository
http://promise.site.uottawa.ca/SERepository

Information 2023, 14, 111 13 of 32

project performance. However, in terms of a cost-sensitive evaluation metric AUCEC (Area
Under the Cost-Effectiveness Curve), cross-project defect prediction performs surprisingly
well and may have a comparable performance to that of the within-project models.

To improve the performance of cross-project defect prediction, researches have tried
several techniques [59–62]. Nam et al. proposed a novel transfer defect learning approach,
TCA+, by extending a transfer learning approach Transfer Component Analysis (TCA) [59].
TCA+ can provide decision rules to select suitable normalization options for TCA of
a given source-target project pair. In a later work, they addressed the limitation that
cross-project defect prediction cannot be conducted across projects with heterogeneous
metric sets by proposing a heterogeneous defect prediction approach [61]. The approach
conducts metric selection and metric matching to build a prediction model. Jiang et al.
proposed an approach CCA+ for heterogeneous cross-company defect prediction [60].
CCA+ combines unified metric representation and canonical correlation analysis and can
achieve the best prediction results with the nearest neighbor classifier. Zhang et al. found
that connectivity-based unsupervised classifiers (via spectral clustering) offer a viable
solution for cross-project defect prediction [62]. Their spectral classifier ranks as one of
the top classifiers among five widely-used supervised classifiers (i.e., random forest, naive
Bayes, logistic regression, decision tree, and logistic model tree) and five unsupervised
classifiers (i.e., k-means, partition around medoids, fuzzy C-means, neural-gas, and spectral
clustering) in cross-project defect prediction.

6. Software Management

Software management aims to manage the whole lifetime of software. It includes
software requirement engineering, software development process, evaluate software cycle
time and forecast software evolution, in order to improve software quality and develop-
ment efficiency.

6.1. Software Requirement Engineering

Yang et al. used machine learning algorithms to determine whether an ambiguous
sentence is nocuous or innocuous, based on a set of heuristics that draw on human judg-
ments [63]. They focused on coordination ambiguity. They found that LogitBoost algorithm
performed better than other candidates including decision trees, J48, Naive Bayes, SVM,
and Logistic Regression. Anish et al. conducted a study to identify, document, and or-
ganize Probing Questions (PQs) for five different areas of functionality into structured
flows [64]. They used Naive Bayes to identify Architecturally Significant Functional Re-
quirements (ASFRs), used random k labelsets classifier to categorize ASFR by types, and
finially recommended PQ-flows.

6.2. Software Development Process

To manage software development process, Chen et al. presented a novel semi-
automated approach to software process evaluation using machine learning techniques [65].
They formulated the problem as a sequence classification task and defined a new quan-
titative indicator named process execution qualification rate to objectively evaluate the
quality and performance of a software process. They used decision tree, Naive Bayes
(NB) classifier, and Support Vector Machine (SVM), and found SVM achieves the best
performance. Blincoe et al. investigated what work dependencies should be considered
when establishing coordination needs within a development team [66]. They used their
conceptualization of work dependencies, named Proximity, and leveraged k-nearest neigh-
bor machine learning algorithm to analyze what additional task properties are indicative
of coordination needs, which are defined as those that can cause the most disruption to
task duration when left unmanaged.

Information 2023, 14, 111 14 of 32

6.3. Software Cycle Time

To evaluate software finish time, Nan et al. formalized the nonlinear effect of man-
agement pressures on project performance as U-shaped relationships using Regression
Models [67]. They found that controlling for software process, size, complexity, and con-
formance quality, budget pressure, a less researched construct, has significant U-shaped
relationships with development cycle time and development effort. Choetkiertikul et al.
proposed a novel approach to provide automated support for project managers and other
decision makers in predicting whether a subset of software tasks in a software project
have a risk of being delayed [68]. They used both local data and networked data, and
use random forest as the local classifier. In addition, they use d collective classification to
simultaneously predict the degree of delay for a group of related tasks.

6.4. Software Evolution

Chaikalis et al. attempted to model several aspects of graphs representing object-
oriented software systems as they evolve over a number of versions [69]. They developed a
prediction model by considering global phenomena such as preferential attachment, past
evolutionary trends such as the tendency of classes to create fewer relations as they age, as
well as domain knowledge in terms of principles that have to be followed in object-oriented
design. The derived models can provide insight into the future trends of software and
potentially form the basis for eliciting improved or novel laws of software evolution.

7. Software Quality

In this section, we mainly introduce three sub tasks in software quality tasks, which
are software reliability prediction, software vulnerability prediction and malware detection.

7.1. Software Reliability Prediction

To measure software quality, many studies have been conducted to predict software
reliability [70–73].

Wilson et al. presented a nonparametric software reliability model based on the order-
statistic paradigm [70]. The approach makes use of Bayesian nonparametric inference
methods and consciously eschewed the “random sampling” assumption. Cheung et al.
developed a software component reliability prediction framework [71]. They exploited
architectural models and associated analysis techniques, stochastic modeling approaches,
and information sources available early in the development lifecycle. They illustrated
the utility of their framework as an early reliability prediction approach. Torrado et
al. described statistical inference and prediction for software reliability models in the
presence of covariate information [72]. They developed a semiparametric, Bayesian model
using Gaussian processes to estimate the numbers of software failures over various time
periods when it is assumed that the software is changed after each time period and that
software metrics information is available after each update. Misirli et al. investigated the
applications of Bayesian networks in software engineering in terms of topics, structure
learning, parameter learning, and variable types [73]. They proposed a Hybrid Bayesian
network, which utilizes techniques that are widely used in other disciplines, such as
dependence analysis for structure learning and Gibbs sampling for inference, for software
reliability prediction.

There are also other studies that focus on web service reliability [74–76]. Zheng et
al. proposed a collaborative reliability prediction approach [74], which employs the past
failure data of other similar users to predict the web service reliability for the current
user, without requiring real-world web service invocations. In a later work, Zheng et
al. proposed two personalized reliability prediction approaches for web services, that
is, neighborhood-based approach and model-based approach [75]. The neighborhood-
based approach employs past failure data of similar neighbors (either service users or web
services) to predict the web service reliability. The model-based approach fits a factor model
based on the available web service failure data and uses this factor model to make further

Information 2023, 14, 111 15 of 32

reliability prediction. Silic et al. presented CLUS, a model for reliability prediction of atomic
web services [76]. They used k-means clustering to improve the accuracy of the current
state-of-the-art prediction models by considering user–, service– and environment–specific
parameters of the invocation context.

7.2. Software Vulnerability Prediction

The other aspect of software quality is software vulnerability, which is also a key mea-
sure for software quality. There are several studies about vulnerability prediction [77–79].

Shin et al. investigated whether software metrics obtained from source code and de-
velopment history are discriminative and predictive of vulnerable code locations [77]. They
used three categories of metrics: complexity, code churn, and developer activity. They tried
Logistic regression, J48 decision tree, Random forest, Naive Bayes, and Bayesian network,
among which Naive Bayes performs the best. Shar et al. proposed the use of dynamic
attributes to complement static attributes in vulnerability prediction [78]. They first applied
min-max normalization and then principle component analysis to every dataset collected.
They used a subset of principal components as attributes such that it explained at least 95%
of the data variance. They compared Logistic Regression (LR) and Multi-Layer Perceptron
(MLP) and advised the use of LR. They also used k-means clustering for unsupervised
vulnerability prediction. Scandariato et al. presented a machine learning approach to
predict which components of a software application contain security vulnerabilities [79].
The approach is based on text mining the source code of the components. They investigated
20 Android applications and explored five well-known learning techniques: Decision Trees,
k-Nearest Neighbor, Naive Bayes, Random Forest and Support Vector Machine. The best
two are Naive Bayes and Random Forest.

7.3. Malware Detection

Some software, especially mobile apps, can be malware. They implement function-
alities which contradict with user interests. Generally, malwares, which include viruses,
worms, trojans and spyware, are harmful at diverse severity scales. Malware can lead to
damages of varying severity, ranging from spurious app crashes to financial losses with
malware sending premium-rate SMS, as well as to private data leaks. There are many
studies which are aimed to detect malwares [80,81].

Chandramohan et al. proposed and evaluated a bounded feature space behavior
modeling (BOFM) framework for scalable malware detection. They first extracted a feature
vector which is bounded by an upper limit N using BOFM, and then they tried support
vector machine and logistic regression and found support vector machine is better for mal-
ware detection [80]. Avdiienko et al. used data flow of apps to detect malwares [81]. They
first used weighted Jaccard distance metric to compute an app to its k-nearest neighbors
for each source category of the app, in which they determined weight by the mean values
of all apps within a source category. Then they formed a vector and used v-SVM one-class
classifier to detect malwares.

8. Software Performance Prediction

Among the software performance prediction models, there are mainly two categories
of models found in literature, i.e., white-box models and black-box models. White-box
models are built early in the life cycle, by studying the underlying design and architecture
of the software system in question. White-box models include Queueing networks, Petri
Nets, Stochastic Process Algebras, and etc. On the contrary, black-box models do not make
any assumption on the design and architecture, but effectively treating the system as a
black box.

8.1. White-Box Models

White-box models can identify performance bottlenecks early, so that developers can
take corrective actions.

Information 2023, 14, 111 16 of 32

Jin et al. introduced a systematic approach BMM to evaluate and predict the perfor-
mances of database-centric information systems when they are subject to an exorbitant
growth of workload [82]. BMM combines benchmarking, production system monitoring,
and performance modelling. They used layered queueing network (LQN) as the perfor-
mance modelling method. Krishnamurthy et al. introduced the Weighted Average Method
(WAM) to improve the accuracy of analytic predictive performance models for systems
with bursts of concurrent customers [83]. It is more robust with respect to the distributions
that contribute to bursty behaviour and it improves both queuing network models (QNM)
and layered queueing models (LQM). Rathfelder et al. presented an automated perfor-
mance prediction approach in the context of capacity planning for event-based systems [84].
The approach is based on the Palladio Component Model (PCM), which is a performance
meta-model for component-based systems. Koziolek et al. applied a novel, model-driven
prediction method called Q-ImPrESS on a large-scale process control system consisting
of several million lines of code from the automation domain to evaluate its evolution
scenarios [85]. For performance prediction, the Q-ImPrESS workbench creates instances
of the Palladio Component Model (PCM). Internally, it can solve a model either using
simulation or using numerical analysis based on an additional transformation into layered
queueing networks.

8.2. Black-Box Models

In general, black-box models are grouped into two categories, i.e., model-based tech-
niques and measurement-based techniques.

For the model-based techniques, Guo et al. proposed a variability-aware approach to
performance prediction via statistical learning [86]. They used decision tree CART to predict
performance of configurable systems based on randomly selected configurations. Sarkar et
al. used a combination of random sampling and feature-coverage heuristics to dynamically
build the initial sample [87]. In particular, they proposed a feature-frequency heuristic
for the initial sample generation. They build prediction models using Classification and
Regression Tree (CART), to demonstrate the superiority of their sampling approach, i.e.,
projective sampling using the feature-frequency heuristic. Zhang et al. proposed a novel
algorithm based on Fourier transform for performance prediction [88]. The algorithm is
able to make predictions of any configurable software system with theoretical guarantees
of accuracy and confidence level specified by the user, while using minimum number of
samples up to a constant factor.

For the measurement-based techniques, Westermann et al. proposed an automated,
measurement-based model inference method to derive goal-oriented performance predic-
tion functions [89]. They used adaptive selection of measurement points and investigated
four models, i.e., Multivariate Adaptive Regression Splines, Classification and Regres-
sion Trees, Genetic Programming and Kriging. Siegmund et al. presented a method that
automatically detects performance-relevant feature interactions to improve prediction
accuracy [90]. They proposed three heuristics to reduce the number of measurements
required to detect interactions. In a later work, they proposed an approach that derives
a performance-influence model for a given configurable system, describing all relevant
influences of configuration options and their interactions [91]. Their approach combines
machine-learning and sampling heuristics in a novel way.

8.3. Performance-Related Analysis

In addition to the above models for performance prediction, there are other studies
about performance-related analysis [92,93].

Acharya et al. presented a novel framework called PerfAnalyzer, a storage-efficient
and pro-active performance monitoring framework for correlating service health with
performance counters [92]. PerfAnalyzer uses three ML algorithms, i.e., Decision Tree (DT),
Naive Bayes (NB), and Dichotomous Logistic Regression (DLR) to produce health models.
Malik et al. presented and evaluated one supervised and three unsupervised approaches

Information 2023, 14, 111 17 of 32

for performance analysis [93]. They found that their wrapper-based supervised approach,
which uses a search-based technique to find the best subset of performance counters and a
logistic regression model for deviation prediction, can provide up to 89% reduction in the
set of performance counters while much accurately detecting performance deviations.

9. Effort Estimation

In this section, we mainly introduce two sub tasks in effort estimation tasks, which are
software effort estimation and web effort estimation.

9.1. Software Effort Estimation

Software effort estimation is an important activity in the software development pro-
cess. There are many studies related to effort estimation. However, in the journals and
proceedings we investigate, the related papers are not in a great amount.

In 2007, Jorgensen et al. conducted a systematic review of previous work about soft-
ware effort estimation, which provide a basis for the improvement of software estimation
research through [94]. They identified 304 software cost estimation papers in 76 journals
and classified the papers according to research topic, estimation approach, research ap-
proach, study context and data set. The estimation approaches include regression, decision
tree, neural network and Bayesian methods.

Subsequent studies proposed several more advanced techniques for software effort
estimation [95,96]. Kultur et al. proposed to use ensemble of neural networks to estimate
software effort [95]. They first used bootstrapping to train several multilayer perceptrons,
and then used ART algorithm to find the largest cluster and ensembled the results of
the multilayer perceptrons in the cluster. Whigham et al. proposed an automatically
transformed linear model (ATLM) as a suitable baseline model for comparison against
software effort estimation methods [96]. ATLM is simple yet performs well over a range of
different project types. In addition, ATLM may be used with mixed numeric and categorical
data and requires no parameter tuning.

In addition, some researchers conducted comparative studies to investigate which
estimation approach performs the best for software effort estimation [97,98]. Dejaeger et
al. conducted a comparative study of data mining techniques for software effort estima-
tion [97]. The techniques include tree/rule-based models such as M5 and CART, linear
models such as various types of linear regression, nonlinear models (MARS, multilayered
perceptron neural networks, radial basis function networks, and least squares support
vector machines), and estimation techniques that do not explicitly induce a model (e.g.,
a case-based reasoning approach). The results showed that least squares regression in
combination with a logarithmic transformation performs best. Mittas et al. proposed a
statistical framework based on a multiple comparisons algorithm in order to rank several
cost estimation models, identifying those which have significant differences in accuracy
and clustering them in non-overlapping groups [98]. They examined the predictive power
of 11 models over 6 public domain datasets. The results showed that very often a linear
model is adequate enough, but there is not a global solution.

9.2. Web Effort Estimation

Besides software effort estimation, there are several studies about other kinds of effort
estimation such as web effort estimation [99].

Mendes et al. compare, using a cross-company data set, eight Bayesian Network (BN)
models for web effort estimation as well as Manual Stepwise Regression (MSWR), Case-
Based Reasoning (CBR), and mean and median-based effort models [99]. MSWR presented
significantly better predictions than any of the BN models built herein and, in addition,
was the only technique to provide significantly superior predictions to a median-based
effort model. They suggest that the use of simpler models, such as the median effort, can
outperform more complex models, such as BNs. In addition, MSWR seemed to be the only
effective technique for web effort estimation.

Information 2023, 14, 111 18 of 32

10. Software Testing

Software testing is very important in the software development process. The better
the testing is, the fewer bugs exist.

10.1. Test Case Quality

In software testing, test case quality is the most important factor. Good test cases can
effectively improve the software quality. On the contrary, bad test cases may cost much
time and effort while still not find the defects or faults. There are many studies that are
aimed to improve the test case quality and reduce test effort [100–104].

To guarantee test case quality, Natella et al. proposed a new approach to refine the
faultload by removing faults that are not representative of residual software faults [100].
They used decision tree to classify whether a fault is representative or not based on software
complexity metrics (i.e., the number of statements and the number of paths in a component,
and the number of connections between components). Their approach can be used for
improving fault representativeness of existing software fault injection approaches. Cotroneo
et al. presented a method based on machine learning to combine testing techniques
adaptively during the testing process [101]. The method contains an offline learning phase
and an online learning phase. In offline learning, they first defined the features of a
testing session potentially related to the techniques performance, and then used several
machine learning approaches (i.e., Decision Trees, Bayesian Network, Naive Bayes, Logistic
Regression) to predict the performance of a testing technique. In online learning, they adapt
the selection of test cases to the data observed as the testing proceeds. Yu et al. proposed
a technique that can be used to distinguish failing tests that executed a single fault from
those that executed multiple faults [102]. The technique suitably combines information
from a set of fault localization ranked lists, each produced for a certain failing test, and the
distance between a failing test and the passing test that most resembles it.

To reduce test effort, Song et al. proposed a new algorithm called interaction tree
discovery (iTree) that aims to identify sets of configurations to test [103]. The sets of
configurations are smaller than those generated by CIT, while also including important
high-strength interactions missed by practical applications of CIT. They first used a fast and
effective clustering algorithm CLOPE to cluster configurations and then used decision tree
to discover commonalities among configurations in each of the clusters. In a later work,
they presented an improved iTree algorithm in greater detail [104]. The key improvements
are based on the use of composite proto-interactions, i.e., a construct that improves iTree’s
ability to correctly learn key configuration option combinations, which in turn significantly
improves iTree’s running time, without sacrificing effectiveness.

10.2. Test Application

With many good test cases, various tasks can be carried out to ensure the software
quality [105–107].

Ali et al. undertook the task of preparing a new subject program for use in fault
localization experiments, one that has naturally-occurring faults and a large pool of test
cases written by impartial human testers [105]. They investigated the performances of
five standard techniques (ConjunctiveRule, JRip, OneR, PART, and Ridor) from the data
mining tool Weka in fault localization. They found that standard classifiers suffer from
the class imbalance problem. However, they found that adding cost information improves
accuracy. Farzan et al. proposed null-pointer dereferences as a target for finding bugs
in concurrent programs using testing [106]. A null-pointer dereference prediction engine
observes an execution of a concurrent program under test and predicts alternate inter-
leavings that are likely to cause null-pointer dereferences. They used an abstraction to
the shared-communication level, took advantage of a static lock-set based pruning, and
finally, employed precise and relaxed constraint solving techniques that use an SMT solver
to predict schedules. Nori et al. described an algorithm TpT for proving termination of a
program based on information derived from testing it [107]. In TpT, linear regression is

Information 2023, 14, 111 19 of 32

used to efficiently compute a candidate loop bound for every loop in the program. If all
loop bounds are valid, then there is a proof of termination.

11. Program Analysis

There are many studies that analyse program execution data for various targets, which
can be grouped mainly into two categories, i.e., dynamic analysis and static analysis.

11.1. Dynamic Analysis

Dynamic program analysis, which analyses a program during its execution, is a
common technique. When a program is executed, it has many medium results and outputs.
With these data, many kinds of analyses can be performed [108–111].

Haran et al. presented and studied three techniques (i.e., random forests, basic asso-
ciation trees, and adaptive sampling association trees) to automatically classify program
execution data as coming from program executions with specific outcomes (i.e., passing
or failing) [108]. The techniques first build behavioral models by feeding suitably labeled
execution data to statistical learning algorithms, and then use the behavioral models to
classify new (unknown) executions. Yilmaz et al. presented a hybrid instrumentation
approach which combines hardware and software instrumentation to classify program
executions based on decision tree [109]. They used hardware performance counters to
gather program spectra at very low cost. These underlying data are further augmented with
data captured by minimal amounts of software-level instrumentation. Xiao et al. proposed
a fully automated approach TzuYu to learn stateful typestates (which are important for
program debugging and verification) from Java programs [110]. The approach extends
the classic active learning process to generate transition guards (i.e., propositions on data
states) Specifically, the approach combined the active learning algorithm L* with a random
argument generation technique, and then used support vector machine to abstract data into
propositions. Lee et al. presented a machine learning-based framework for memory leak
detection [111]. The framework observes the staleness of objects during a representative
run of an application. From the observed data, the framework generates training examples,
which also contain instances of hypothetical leaks. Based on the training examples, the
proposed framework leverages support vector machine to detect memory leak.

11.2. Static Analysis

In addition to dynamic analysis, program can be analysed statically as well [112–114].
Compared to dynamic analysis, static analysis costs less effort.

Bodden et al. presented ahead-of-time techniques that can prove the absence of
property violations on all program runs, or flag locations where violations are likely to
occur [112]. They focused on tracematches, an expressive runtime monitoring notation
for reasoning about groups of correlated objects. They described a novel flow-sensitive
static analysis for analyzing monitor states, in which they proposed a machine learning
phase to filter out likely false positives. That is, they used decision tree to classify points of
failure based on seven features, each of which is present at a point of failure if the static
analysis encounters the feature on the point of failure itself or on a “context shadow”.
Tripp et al. presented a novel approach for adaptive program parallelization [113]. The
approach permits low-overhead, input-centric runtime adaptation by shifting most of the
cost of predicting per-input parallelism to an expensive offline analysis. They used linear
regression to seek correlations between input features and parallelism levels. Sun et al.
presented a novel technique IntEQ to recognize benign IOs via equivalence checking across
multiple precisions [114]. They determined if an IO is benign by comparing the effects of
an overflowed integer arithmetic operation in the actual world (with limited precision) and
the same operation in the ideal world (with sufficient precision to evade the IO).

Information 2023, 14, 111 20 of 32

12. Traceability

Software traceability is an important element of the development process, especially
in large, complex, or safety critical software-intensive systems. It is used to capture relation-
ships between various software development artifacts (such as requirements documents,
design documents, code, bug reports, and test cases), and support critical activities such as
impact analysis, compliance verification, test-regression selection, and safety-analysis.

12.1. Software Traceability

There are various studies about software traceability [115–117].
Asuncion et al. proposed an automated technique that combines traceability with a

machine learning technique known as topic modeling [115]. They automatically records
traceability links during the software development process and learns a probabilistic
topic model over artifacts. Wu et al. developed an automatic link recovery algorithm,
ReLink, which automatically learns criteria of features from explicit links to recover missing
links [116]. They used decision tree to build classification model based on the identification
of features of the links between bugs and changes. They showed that ReLink is better
than traditional heuristics in software maintainability measurement and defect prediction.
Nguyen et al. introduced MLink, a multi-layered approach that takes into account not only
textual features but also source code features of the changed code corresponding to the
commit logs [117]. MLink combined patch-based, name-based, text-based and association-
based detector as well as a filtering layer. MLink is also capable of learning the association
relations between the terms in bug reports and the names of entities/components in the
changed source code of the commits from the established bug-to-fix links, and uses them
for link recovery between the reports and commits that do not share much similar texts.

In addition to the above traditional software traceability tasks, there are other novel
ones [118–120].

Grechanik et al. proposed a novel approach for automating part of the process of
recovering traceability links between types and variables in Java programs and elements
of use case diagrams [118]. They used Naive Bayes classifier (compute the probability)
to recover traceability links. The results suggested that our approach can recover many
TLs with a high degree of automation and precision. Mirakhorli et al. presented a novel
approach for automating the construction of traceability links for architectural tactics [119].
They investigated five tactics and utilized machine learning methods and lightweight
structural analysis to detect tactic-related classes. Specifically, they utilized an algorithm
that they had previously developed to detect non-functional requirements (NFRs). The
algorithm matched or outperformed standard classification techniques including the naive
bayes classifier, standard decision tree algorithm (J48), feature subset selection (FSS), cor-
relation based feature subset selection (CFS), and various combinations of the above for
the specific task of classifying NFRs. In a later work, Mirakhorli et al. went further by
investigating 10 tactics [120]. They used the same algorithm above for discovering and
visualizing architectural tactics in code, mapping these code segments to tactic traceability
patterns, and monitoring sensitive areas of the code for modification events in order to
provide users with up-to-date information about underlying architectural concerns. They
compared the performance of their algorithm with six off-the-shelf classifiers (support
vector machine (SVM), C.45 decision tree (DT) (implemented as J48 in Weka), Bayesian
logistic regression (BLR), AdaBoost, rule learning with SLIPPER, and bagging).

12.2. Traceability Quality

To guarantee the traceability quality, Lohar et al. presented a novel approach to trace
retrieval in which the underlying infrastructure is configured at runtime to optimize trace
quality [121]. They used Genetic Algorithm to search for the best configuration given an
initial training set of validated trace links, a set of available tracing techniques specified
in a feature model, and an architecture capable of instantiating all valid configurations
of features.

Information 2023, 14, 111 21 of 32

13. Bug Report Management

Bugs are inevitable in the software development process. When a bug is found, a
corresponding bug report will be generated. To better handle so many software bugs, bug
reports should be managed carefully.

13.1. Bug Report Quality

In bug report management, the first concern is the quality of bug reports. Good bug
reports can help developers fix the bugs efficiently, while bad bug reports may waste
developers much time and effort.

Bettenburg et al. investigated what makes a good bug report [122]. They measured the
quality of a bug report based on seven features (i.e., itemizations, keyword completeness,
code samples, stack traces, patches, screenshots and readability), and built three supervised
learning models (i.e., support vector machine, generalized linear regression, and stepwise
linear regression). Their results suggested that steps to reproduce and stack traces are
most useful in bug reports. Zanetti et al. proposed an efficient and practical method to
identify valid bug reports (i.e., the bug reports that refer to an actual software bug, are not
duplicates and contain enough information to be processed right away) [123]. They used
support vector machine to identify valid bug reports based on nine network measures using
a comprehensive data set of more than 700,000 bug reports obtained from the BUGZILLA
installation of four major OSS communities.

To reduce redundant effort, there are many researches about identification of dupli-
cate bug reports [124–128]. Runeson et al. proposed to use Natural Language Processing
techniques to support the duplicate bug report identification [124]. They only used cosine
similarity to rank and identify duplicates. Wang et al. leveraged additional execution in-
formation [125]. Although their additional features improve the performance of duplicate
bug report identification, their algorithm is the same as Runeson et al.’s (i.e., cosine simi-
larity). Sun et al. used discriminative models to identify duplicates more accurately [126].
They used support vector machine with linear kernel based on 54 text features. In a later
work, they proposed a retrieval function REP to measure the similarity between two bug
reports [127]. They fully utilized the information available in a bug report including not
only the similarity of textual content in summary and description fields, but also similarity
of non-textual fields such as product, component, version, etc, and they used a two-round
stochastic gradient descent to automatically optimize REP in a supervised learning manner.
Liu et al. leveraged ranking SVM, a Learning to Rank technique to construct a ranking
model for effective (i.e., non-duplicate) bug report search [128]. They used textual, semantic
and other categorical and numerical features.

To effectively analyze anomaly bug reports, Lucia et al. proposed an approach to
automatically refine bug reports by the incorporation of user feedback [129]. They first
presented top few anomaly reports from the list of reports generated by a tool in its default
ordering. Users then either accepted or rejected each of the reports. Based on the feedback,
their system automatically and iteratively refined a classification model for anomalies
and resorted the rest of the reports. They used a variant of nearest neighbor classification
scheme, namely nearest neighbor with non-nested generalization (NNGe).

13.2. Bug Report Assignment and Categorization

For the bug reports that are valid, how to make a proper and effective assignment is
an important task since it may affect the efficiency of development process. Proper bug
report assignment can save much time and effort on bug-fixing activity.

Anvik et al. presented a semi-automated approach intended to ease the assignment of
reports to a developer [130]. They used the one-line summary and full text description to
characterize each bug report. They chose support vector machine as the final algorithm after
comparing it with Naive Bayes and C4.5 decision tree. In a later work, Anvik et al. presented
a machine learning approach to create recommenders that assist with a variety of decisions
aimed at streamlining the development process [3]. They used the approach to create three

Information 2023, 14, 111 22 of 32

different kinds of development-oriented recommenders: a developer recommender that
suggests which developers might fix a report, a component recommender that suggests
to which product component a report might pertain, and an interest recommender that
suggests which developers on the project might be interested in following the report. For
the developer recommender, they investigated Naive Bayes, Support Vector Machines,
C4.5 decision tree, Expectation Maximization, conjunctive rules, and nearest neighbour.
Jeong et al. introduced a graph model based on Markov chains, which captures bug tossing
history [131]. They showed that the accuracy of bug assignment prediction is improved
using naive Bayes with tossing graph.

Proper bug report assignment also relies on proper bug report categorization. There
are a number of studies that propose techniques to categorize bug reports. Among them a
popular research area is reopened bug prediction [132,133].

Zimmermann et al. characterized and predicted which bugs are reopened [132]. They
first qualitatively identified causes for bug reopens, and then built logistic regression
model to predict the probability that a bug will be reopened. Xia et al. proposed a novel
approach ReopenPredictor which extract more textual features from the bug reports [133].
ReopenPredictor combines decision tree and multinomial Naive Bayes to yield better
performance in reopened bug prediction.

In addition, Xuan et al. leveraged the developer prioritization to improve three
predicted tasks in bug repositories, i.e., bug triage, severity identification, and reopened
bug prediction [134]. For bug triage, they used SVM and NB. For severity identification,
they used NB. For reopened bug prediction, they used Adaboost.

13.3. Bug Fix Related Task

Based on bug reports, there are also many other studies which are related to bug
fixes [135–137].

Kim et al. proposed a two-phase prediction model that uses bug reports’ contents
to suggest the files likely to be fixed [135]. In the first phase, they checked whether the
given bug report contains sufficient information for prediction (predictable or deficient).
In the second phase, they proceeded to predict files to be fixed for the predictable bug
report. Zhang et al. proposed a Markov-based method for predicting the number of bugs
that will be fixed in future [136]. For a given bug report, they also constructed a KNN
classification model to predict slow or quick fix (e.g., below or above a time threshold),
which is based on the assumption that the similar bugs could require similar bug-fixing
effort. The features they used are submitter, owner, severity, ESC (which indicates whether
the bug is an externally discovered bug reported by end users or an internally discovered
bug reported by the QA team), priority, category and summary. Guo et al. performed an
empirical study to characterize factors that affect which bugs are fixed in Windows Vista
and Windows 7 [137]. They focused on factors related to bug report edits and relationships
between people involved in handling the bug, and built a statistical model using logistic
regression to predict the probability that a new bug will be fixed.

14. Developers and Users

Developers and users play the key role in the software development process. Research-
ing on the developer-related and user-related data has a great value [138–147].

14.1. Developer Related Task

Meneely et al. examined the structure of developer collaboration with the developer
network derived from code churn information to predict software failures at the file
level [138]. They tried three generalized linear regressions previously used for predicting
failure count data, i.e., negative binomial regression, Poisson regression, and logistic
regression, and they used logistic regression as the final model. Later, Meneely et al.
performed an empirical and longitudinal case study of a large Cisco networking product
over a five year history [139]. They examined statistical correlations between monthly

Information 2023, 14, 111 23 of 32

team-level metrics and monthly product-level metrics. Their linear regression prediction
model based on team metrics was able to predict the product’s post-release failure rate
within a 95% prediction interval for 38 out of 40 months.

Müller et al. investigated developers’ emotions, progress and the use of biometric
measures to classify them in the context of software change tasks [142]. They used J48
decision tree to distinguish between positive and negative emotions based on biometric
measurements, i.e., electro-dermal activity, electroencephalography, skin temperature, heart
rate, blood volume pulse and various eye-related measurements, such as pupil size. Later,
Müller et al. investigated the use of biometrics to determine code quality concerns with
ten professional developers [143]. They used random forest and their results showed that
biometrics are indeed able to predict quality concerns of parts of the code while a developer
is working on, improving upon a naive classifier by more than 26% and outperforming
classifiers based on traditional metrics.

Bacchelli et al. presented an approach to classify email content at line level [144]. Their
technique fuses an automated supervised machine learning approach (i.e., naive Bayes)
with island parsing to perform automatic classification of the content of development
emails into five language categories: natural language text, source code fragments, stack
traces, code patches, and junk. Their technique can help one to subsequently apply ad
hoc analysis techniques for each category. Later, Sorbo et al. proposed a semi-supervised
approach named DECA (Development Emails Content Analyzer) to mine intention from
developer emails [145]. DECA uses Natural Language Parsing to classify the content
of development emails according to their purpose (e.g., feature request, opinion asking,
problem discovery, solution proposal, and information giving), identifying email elements
that can be used for specific tasks. They showed the superiority of DECA to traditional
machine learning techniques (i.e., naive Bayes classifier, the Logistic Regression, Simple
Logistic, J48, the alternating decision tree (ADTree), Random Forest, FT, Ninge).

14.2. User Related Task

Murukannaiah et al. proposed the Platys framework as a way to address the special
challenges of place-aware application development [147]. They collected place labels and
Android phone sensor readings from 10 users, and applied Platys to learn each user’s
places. Platys combines active learning and semi-supervised learning. In active learning, it
prompts the user to label the place for an instance predicted with the least confidence. In
semi-supervised learning, it uses the predicted label with the biggest confidence.

15. Discussion

Based on the reviewed papers, we propose several research questions (RQ) and
conclude several challenges and directions from this taxonomy.

15.1. RQ1: What Features Are Appropriate to Build Prediction Models in Software
Engineering Researches?

Challenge: good feature extractor
For various research topics, researchers extract many different features. Although

many features are extracted by experts, not all of them are good for building prediction
models. First, the features may be correlative or dependent, which are not proper for build
some prediction models. Second, the number of features may be too much, and even more
than the number of training instances, which will cause overfitting in building prediction
models. Therefore, feature extraction becomes a big challenge.

A good feature extractor should meet two main conditions. First, it should be au-
tomatic so that it will not cost too much manual effort. Second, it can reduce feature
dimension while keep feature quality. That is, given a specific task, the feature extractor
can identify and preserve relevant features and remove irrelevant features to improve the
performance of prediction models.

Direction: deep learning

Information 2023, 14, 111 24 of 32

Studies that apply prediction models to software engineering tasks have last for over
ten years. Although researchers have achieved significant improvement from simple linear
regression to complex ensemble learning, they have been close to bottlenecks for many
software engineering tasks. Recently, deep learning, as an advanced prediction model,
has been more and more popular. Some studies that tried to leverage deep learning
to software engineering tasks have achieved even better performance than start-of-the-
art techniques [52–54]. However, till now the application of deep learning to software
engineering tasks is still limited in number.

Actually, the biggest advantage of deep learning is that it can automatically generate
more expressive features that are better for learning prediction models, which cannot
be accomplished by traditional prediction models. As mentioned above, many software
engineering tasks face the feature extraction challenge, i.e., either it is hard to manually infer
proper features or there are too much features needing to carefully selected for learning
prediction models. Therefore, leveraging deep learning to various software engineering
tasks to improve their performances is a promising direction. In 2015, we tried deep
learning in just-in-time defect prediction and have achieved better performance than start-
of-the-art techniques [53]. In the paper, we generate a set of more expressive features from
a set of initial features by leveraging a deep belief network.

15.2. RQ2: What Datasets Are Appropriate to Build Prediction Models in Software
Engineering Researches?

Challenge: dataset quality and scale
A good prediction model heavily relies on the datasets it learns from. With various

research topics, there are a large number of datasets that can be used for experiments.
However, the datasets vary much in quality (such as bias, noise, size and imbalance), which
will influence the effectiveness of prediction models. For example, a dataset with much
noise may cause underfitting in building prediction models, a dataset with small size may
cause overfitting in building prediction models, and a heavily imbalanced dataset may
even fail to build prediction models.

The above problem lead to three major challenges. First of all, there should be formal
indicators to quantitively evaluate the quality of datasets. The indicators should consider
both the bias, noise, imbalance, size of datasets and the characteristics of the corresponding
tasks. Second, based on those indicators, we should pick up some benchmark datasets for
each of the research topics. These datasets should be well preprocessed and representative
so that various prediction models can be fairly compared based on them. Last but not
least, for the datasets that have bad quality but need to be investigated, we should have a
step–by–step process to preprocess them so that they can reach the acceptable quality.

In addition, datasets of many projects are not totally available due to the privacy
policy, which may influence the generality of the study results. Building effective prediction
models from shared data while preserving privacy is also a big challenge.

Direction: big data and cross-project prediction
The above challenges and problems lead to big data. That is, studies tend to be large-

scale. The biggest advantage of big data is that it generally leads to robust prediction
models. Many software engineering tasks value on practicability and generality. If a study
only use several small datasets to build prediction models, the results are more likely to
have occasionality and the generated prediction models cannot be generalized and are not
practical. On the contrary, results achieved from big data are more convincing and more
likely to have generality. In addition, deep learning mentioned above also require a large
amount of data to learn prediction models, since in deep learning there are much more
parameters to learn than traditional prediction models. Note that with the trend of big data,
reducing the time and space cost for data computing can also become challenging.

In addition, we can see that many software engineering tasks make analysis and
prediction based on project data from the taxonomy. Most of them are in a within-project
setting, in which they build prediction models based on historical data in the same project.

Information 2023, 14, 111 25 of 32

However, with the rapid development of software engineering, many new projects are built
everyday. When a new project needs to be analyzed, there is no sufficient amount of data
available to train within the project. Cross-project prediction can well solve the problem.
There have been several studies about cross-project defect prediction [59–62]. For many
other research topics, cross-project prediction may show its superiority and attract more
and more attention.

15.3. RQ3: What Prediction Models Are Appropriate in Different Software
Engineering Researches?

Challenge: good prediction models
From the taxonomy, we can see that there are various software engineering tasks

leveraging prediction models. However, different prediction models fit well in different
tasks. With various tasks and various prediction models, there is a need to have reliable
guidelines for how to select a good prediction model for a specific task.

Direction: theoretical guidelines
Among the reviewed papers, some studies have proposed frameworks for specific

tasks to make comparison of various prediction models [1,55,97–99]. However, almost all
of them are based on experiments, which always has threats to validity. There should be
theoretical guidelines that can provide how to select proper prediction models according to
the characteristic of the specific task.

15.4. Threats to Validity

Threats to internal validity relate to errors in our taxonomy. We have double checked
our search strategy implementation. Still, there could be related papers that we did
not notice.

Threats to external validity relate to the generalizability of our conclusions. We have
selected three top conference proceedings and two top journals, which can be representative
for the state-of-the-art software engineering researches.

In the future, we plan to reduce these threats further by investigating more papers.

16. Conclusions

In the paper, we conducted a comprehensive taxonomy on prediction models applied
in software engineering. With our search strategy (paper collection, automated filtering
and manual filtering), we selected 136 papers from three top conference proceedings (i.e.,
ICSE, FSE and ASE) and two top journals (i.e., TSE and TOSEM) in the recent 10 years
in total.

We found that prediction models have been applied to various software engineering
tasks. Based on the software development process, we grouped all tasks into 11 main
research topics, i.e., software coding aid, software defect prediction, software management,
software quality, software performance prediction, software effort estimation, software
testing, software program analysis, software traceability, software bug report management,
software users and developers. All the topics play key roles in the software development
process. By leveraging prediction models, researchers have achieved good performance in
the tasks in these 11 research topics.

Based on the papers, we concluded several big challenges when applying prediction
models to software engineering tasks. To achieve better performance in the tasks, we need
better datasets, features and methods to select the best prediction models. Researchers shall
pay much attentions to these challenges in their later work.

We also showed several promising research directions, some of which are derived
by the above challenges. First of all, we can try more deep learning algorithms in the
software engineering tasks, since deep learning can extract better features and have shown
big potential in many research areas. Second, since deep learning needs large-scale data
to train prediction models to achieve better performance, we need to collect more data in
every research. In addition, we can try to build more cross-project prediction models to

Information 2023, 14, 111 26 of 32

exploit more data in different projects. We believe that these directions can lead researchers
to achieve great improvement in software engineering tasks.

Author Contributions: Conceptualization, X.Y. and D.Z.; methodology, X.Y.; investigation, X.Y., J.L.
and D.Z.; formal analysis, X.Y.; writing—original draft preparation, X.Y.; writing—review and editing,
J.L. and D.Z.; supervision, D.Z.; project administration, D.Z.; funding acquisition, X.Y., J.L. and D.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the Natural Science Fundation of Zhejiang Province, China
(Grant No.LQ21F020025) and the Basic Public Welfare Research Project of Zhejiang Province (Grant
No. LGG21F020008 and Grant No. LGF21F020024).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lessmann, S.; Baesens, B.; Mues, C.; Pietsch, S. Benchmarking classification models for software defect prediction: A proposed

framework and novel findings. IEEE Trans. Softw. Eng. 2008, 34, 485–496. [CrossRef]
2. Aggarwal, C. Data Mining: The Textbook; Springer International Publishing: Cham, Switzerland, 2015.
3. Anvik, J.; Murphy, G.C. Reducing the effort of bug report triage: Recommenders for development-oriented decisions. ACM

Trans. Softw. Eng. Methodol. (TOSEM) 2011, 20, 10. [CrossRef]
4. Han, J.; Kamber, M. Data Mining: Concepts and Techniques; Morgan kaufmann: Burlington, MA, USA, 2006.
5. Lamkanfi, A.; Demeyer, S.; Giger, E.; Goethals, B. Predicting the severity of a reported bug. In Proceedings of the 2010 7th IEEE

Working Conference on Mining Software Repositories (MSR), Cape Town, South Africa, 2–3 May 2010; pp. 1–10.
6. Romano, D.; Pinzger, M. Using source code metrics to predict change-prone java interfaces. In Proceedings of the 2011 27th IEEE

International Conference on Software Maintenance (ICSM), Williamsburg, VA, USA, 25–30 September 2011; pp. 303–312.
7. Giger, E.; Pinzger, M.; Gall, H.C. Comparing fine-grained source code changes and code churn for bug prediction. In Proceedings

of the 8th Working Conference on Mining Software Repositories, Waikiki, Honolulu, HI, USA, 21–28 May 2011; pp. 83–92.
8. Webster, J.; Watson, R.T. Analyzing the past to prepare for the future: Writing a literature review. Mis Q. 2002, 26, xiii–xxiii.
9. Keele, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Technical report, Ver. 2.3 EBSE Technical

Report; IEEE Computer Society: Washington, DC, USA, 2007.
10. Avizienis, A. Basic concept and taxonomy of dependable and secure computing. IEEE Tran. Dependable Secur. Comput. 2004, 1,

11–33. [CrossRef]
11. Calderon, A.; Ruiz, M. A systematic literature review on serious games evaluation. Comput. Educ. 2015, 87, 396–422. [CrossRef]
12. Salvador-Ullauri, L.; Acosta-Vargas, P.; Luján-Mora, S. Web-based Serious Games Systematic literature review. Appl. Sci. 2020,

10, 7859. [CrossRef]
13. Reiss, S.P. Automatic code stylizing. In Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated

Software Engineering, Atlanta, GA, USA, 5–9 November 2007; pp. 74–83.
14. Wang, X.; Dang, Y.; Zhang, L.; Zhang, D.; Lan, E.; Mei, H. Can I clone this piece of code here? In Proceedings of the 27th

IEEE/ACM International Conference on Automated Software Engineering, Essen, Germany, 3–7 September 2012; pp. 170–179.
15. Wang, X.; Dang, Y.; Zhang, L.; Zhang, D.; Lan, E.; Mei, H. Predicting Consistency-Maintenance Requirement of Code Clonesat

Copy-and-Paste Time. IEEE Trans. Softw. Eng. 2014, 40, 773–794. [CrossRef]
16. Bruch, M.; Monperrus, M.; Mezini, M. Learning from examples to improve code completion systems. In Proceedings of the 7th

Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, Amsterdam, The Netherland, 26–30 August 2009; pp. 213–222.

17. Proksch, S.; Lerch, J.; Mezini, M. Intelligent code completion with Bayesian networks. ACM Trans. Softw. Eng. Methodol. (TOSEM)
2015, 25, 3. [CrossRef]

18. Hassan, A.E.; Zhang, K. Using decision trees to predict the certification result of a build. In Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE’06), Tokyo, Japan, 18–22 September 2006; pp. 189–198.

19. Zhu, J.; He, P.; Fu, Q.; Zhang, H.; Lyu, M.R.; Zhang, D. Learning to log: Helping developers make informed logging decisions. In
Proceedings of the 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Florence, Italy, 16–24 May 2015;
Volume 1, pp. 415–425.

20. Kim, S.; Ernst, M.D. Which warnings should I fix first? In Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, Athens, Greece, 23–28
August 2007; pp. 45–54.

http://doi.org/10.1109/TSE.2008.35
http://dx.doi.org/10.1145/2000791.2000794
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1016/j.compedu.2015.07.011
http://dx.doi.org/10.3390/app10217859
http://dx.doi.org/10.1109/TSE.2014.2323972
http://dx.doi.org/10.1145/2744200

Information 2023, 14, 111 27 of 32

21. Shihab, E.; Mockus, A.; Kamei, Y.; Adams, B.; Hassan, A.E. High-impact defects: A study of breakage and surprise defects. In
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering,
Szeged, Hungary, 5–9 September 2011; pp. 300–310.

22. Padhye, R.; Mani, S.; Sinha, V.S. NeedFeed: Taming change notifications by modeling code relevance. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, Vasteras, Sweden, 15–19 September 2014; pp. 665–676.

23. Liu, Y.; Khoshgoftaar, T.M.; Seliya, N. Evolutionary optimization of software quality modeling with multiple repositories. IEEE
Trans. Softw. Eng. 2010, 36, 852–864. [CrossRef]

24. Le Goues, C.; Weimer, W. Measuring code quality to improve specification mining. IEEE Trans. Softw. Eng. 2012, 38, 175–190.
[CrossRef]

25. Femmer, H.; Ganesan, D.; Lindvall, M.; McComas, D. Detecting inconsistencies in wrappers: A case study. In Proceedings of the
2013 International Conference on Software Engineering, San Francisco, CA, USA, 18–26 May 2013; pp. 1022–1031.

26. Rigby, P.C.; Robillard, M.P. Discovering essential code elements in informal documentation. In Proceedings of the 2013
International Conference on Software Engineering, San Francisco, CA, USA, 18–26 May 2013; pp. 832–841.

27. Thummalapenta, S.; Xie, T. SpotWeb: Detecting framework hotspots and coldspots via mining open source code on the web. In
Proceedings of the ASE 2008 23rd IEEE/ACM International Conference on Automated Software Engineering, L’aquila, Italy,
15–19 September 2008; pp. 327–336.

28. Wu, Q.; Liang, G.; Wang, Q.; Xie, T.; Mei, H. Iterative mining of resource-releasing specifications. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE), Lawrence, KS, USA, 6–10 November 2011;
pp. 233–242.

29. Petrosyan, G.; Robillard, M.P.; De Mori, R. Discovering information explaining API types using text classification. In Proceedings
of the 37th International Conference on Software Engineering-Volume 1, Florence, Italy, 16–24 May 2015; pp. 869–879.

30. Treude, C.; Robillard, M.P. Augmenting API documentation with insights from Stack Overflow. In Proceedings of the 38th
International Conference on Software Engineering, Austin, TX, USA, 14–22 May 2016; pp. 392–403.

31. Rahman, F.; Khatri, S.; Barr, E.T.; Devanbu, P. Comparing static bug finders and statistical prediction. In Proceedings of the 36th
International Conference on Software Engineering, Hyderabad, India, 31 May–7 June 2014; pp. 424–434.

32. Song, Q.; Jia, Z.; Shepperd, M.; Ying, S.; Liu, J. A general software defect-proneness prediction framework. IEEE Trans. Softw. Eng.
2011, 37, 356–370. [CrossRef]

33. Bird, C.; Bachmann, A.; Aune, E.; Duffy, J.; Bernstein, A.; Filkov, V.; Devanbu, P. Fair and balanced?: Bias in bug-fix datasets. In
Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, Amsterdam, The Netherlands, 24–28 August 2009; pp. 121–130.

34. Rahman, F.; Posnett, D.; Herraiz, I.; Devanbu, P. Sample size vs. bias in defect prediction. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, Saint Petersburg, Russia, 18–26 August 2013; pp. 147–157.

35. Tantithamthavorn, C.; McIntosh, S.; Hassan, A.E.; Ihara, A.; Matsumoto, K. The impact of mislabelling on the performance
and interpretation of defect prediction models. In Proceedings of the 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Florence, Italy, 16–24 May 2015; Volume 1, pp. 812–823.

36. Kim, S.; Zhang, H.; Wu, R.; Gong, L. Dealing with noise in defect prediction. In Proceedings of the 2011 33rd International
Conference on Software Engineering (ICSE), Waikiki, HI, USA, 21–28 May 2011; pp. 481–490.

37. Menzies, T.; Butcher, A.; Cok, D.; Marcus, A.; Layman, L.; Shull, F.; Turhan, B.; Zimmermann, T. Local versus global lessons for
defect prediction and effort estimation. IEEE Trans. Softw. Eng. 2013, 39, 822–834. [CrossRef]

38. Nam, J.; Kim, S. CLAMI: Defect Prediction on Unlabeled Datasets (T). In Proceedings of the 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Lincoln, NE, USA, 9–15 November 2015; pp. 452–463.

39. Peters, F.; Menzies, T. Privacy and utility for defect prediction: Experiments with morph. In Proceedings of the 34th International
Conference on Software Engineering, Zurich, Switzerland, 2–9 June 2012; pp. 189–199.

40. Peters, F.; Menzies, T.; Gong, L.; Zhang, H. Balancing privacy and utility in cross-company defect prediction. IEEE Trans. Softw.
Eng. 2013, 39, 1054–1068. [CrossRef]

41. Peters, F.; Menzies, T.; Layman, L. LACE2: Better privacy-preserving data sharing for cross project defect prediction. In
Proceedings of the 37th International Conference on Software Engineering-Volume 1, Florence, Italy, 16–24 May 2015; pp. 801–811.

42. Menzies, T.; Greenwald, J.; Frank, A. Data mining static code attributes to learn defect predictors. IEEE Trans. Softw. Eng. 2007,
33, 2–13. [CrossRef]

43. Moser, R.; Pedrycz, W.; Succi, G. A comparative analysis of the efficiency of change metrics and static code attributes for defect
prediction. In Proceedings of the 2008 ACM/IEEE 30th International Conference on Software Engineering, Leipzig, Germany,
10–18 May 2008; pp. 181–190.

44. Rahman, F.; Devanbu, P. How, and why, process metrics are better. In Proceedings of the 2013 International Conference on
Software Engineering, San Francisco, CA, USA, 18–26 May 2013; pp. 432–441.

45. Lee, T.; Nam, J.; Han, D.; Kim, S.; In, H.P. Micro interaction metrics for defect prediction. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engineering, Szeged, Hungary, 5–9 September 2011;
pp. 311–321.

46. Jiang, T.; Tan, L.; Kim, S. Personalized defect prediction. In Proceedings of the 2013 IEEE/ACM 28th International Conference on
Automated Software Engineering (ASE), Silicon Valley, CA, USA, 11–15 November 2013; pp. 279–289.

http://dx.doi.org/10.1109/TSE.2010.51
http://dx.doi.org/10.1109/TSE.2011.5
http://dx.doi.org/10.1109/TSE.2010.90
http://dx.doi.org/10.1109/TSE.2012.83
http://dx.doi.org/10.1109/TSE.2013.6
http://dx.doi.org/10.1109/TSE.2007.256941

Information 2023, 14, 111 28 of 32

47. Posnett, D.; Filkov, V.; Devanbu, P. Ecological inference in empirical software engineering. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, Lawrence, KS, USA, 6–10 November 2011; pp. 362–371.

48. Hata, H.; Mizuno, O.; Kikuno, T. Bug prediction based on fine-grained module histories. In Proceedings of the 34th International
Conference on Software Engineering, Zurich, Switzerland, 2–9 June 2012; pp. 200–210.

49. Kim, S.; Whitehead Jr, E.J.; Zhang, Y. Classifying software changes: Clean or buggy? IEEE Trans. Softw. Eng. 2008, 34, 181–196.
[CrossRef]

50. Kamei, Y.; Shihab, E.; Adams, B.; Hassan, A.E.; Mockus, A.; Sinha, A.; Ubayashi, N. A large-scale empirical study of just-in-time
quality assurance. IEEE Trans. Softw. Eng. 2013, 39, 757–773. [CrossRef]

51. Shivaji, S.; Whitehead, E.J.; Akella, R.; Kim, S. Reducing features to improve code change-based bug prediction. IEEE Trans.
Softw. Eng. 2013, 39, 552–569. [CrossRef]

52. Jing, X.Y.; Ying, S.; Zhang, Z.W.; Wu, S.S.; Liu, J. Dictionary learning based software defect prediction. In Proceedings of the 36th
International Conference on Software Engineering, Hyderabad, India, 31 May–7 June 2014; pp. 414–423.

53. Yang, X.; Lo, D.; Xia, X.; Yun, Z.; Sun, J. Deep Learning for Just-in-Time Defect Prediction. In Proceedings of the IEEE International
Conference on Software Quality, Vancouver, BC, Canada, 3–5 August 2015.

54. Wang, S.; Liu, T.; Tan, L. Automatically learning semantic features for defect prediction. In Proceedings of the 38th International
Conference on Software Engineering, Austin, TX, USA, 14–22 May 2016; pp. 297–308.

55. Ghotra, B.; McIntosh, S.; Hassan, A.E. Revisiting the impact of classification techniques on the performance of defect prediction
models. In Proceedings of the 37th International Conference on Software Engineering-Volume 1, Florence, Italy, 16–24 May 2015;
pp. 789–800.

56. Tantithamthavorn, C.; McIntosh, S.; Hassan, A.E.; Matsumoto, K. Automated parameter optimization of classification techniques
for defect prediction models. In Proceedings of the 38th International Conference on Software Engineering, Austin, TX, USA,
14–22 May 2016; pp. 321–332.

57. Zimmermann, T.; Nagappan, N.; Gall, H.; Giger, E.; Murphy, B. Cross-project defect prediction: A large scale experiment on
data vs. domain vs. process. In Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineering, Amsterdam, The Netherlands, 24–28 August 2009;
pp. 91–100.

58. Rahman, F.; Posnett, D.; Devanbu, P. Recalling the imprecision of cross-project defect prediction. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering, Cary, NC, USA, 11–16 November 2012;
p. 61.

59. Nam, J.; Pan, S.J.; Kim, S. Transfer defect learning. In Proceedings of the 2013 International Conference on Software Engineering,
San Francisco, CA, USA, 18–26 May 2013; pp. 382–391.

60. Jing, X.; Wu, F.; Dong, X.; Qi, F.; Xu, B. Heterogeneous cross-company defect prediction by unified metric representation and
cca-based transfer learning. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, New York,
NY, USA, 30 August–4 September 2015; pp. 496–507.

61. Nam, J.; Kim, S. Heterogeneous defect prediction. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, New York, NY, USA, 30 August–4 September 2015; pp. 508–519.

62. Zhang, F.; Zheng, Q.; Zou, Y.; Hassan, A.E. Cross-project defect prediction using a connectivity-based unsupervised classifier. In
Proceedings of the 38th International Conference on Software Engineering, Austin, TX, USA, 14–22 May 2016; pp. 309–320.

63. Yang, H.; Willis, A.; De Roeck, A.; Nuseibeh, B. Automatic detection of nocuous coordination ambiguities in natural language
requirements. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, Antwerp,
Belgium, 20–24 September 2010; pp. 53–62.

64. Anish, P.R.; Balasubramaniam, B.; Sainani, A.; Cleland-Huang, J.; Daneva, M.; Wieringa, R.J.; Ghaisas, S. Probing for requirements
knowledge to stimulate architectural thinking. In Proceedings of the 38th International Conference on Software Engineering,
Austin, TX, USA, 14–22 May 2016; pp. 843–854.

65. Chen, N.; Hoi, S.C.; Xiao, X. Software process evaluation: A machine learning approach. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, Lawrence, KS, USA, 6–10 November 2011; pp. 333–342.

66. Blincoe, K.; Valetto, G.; Damian, D. Do all task dependencies require coordination? the role of task properties in identifying critical
coordination needs in software projects. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
Singapore, 18–26 August 2013; pp. 213–223.

67. Nan, N.; Harter, D.E. Impact of budget and schedule pressure on software development cycle time and effort. IEEE Trans. Softw.
Eng. 2009, 35, 624–637.

68. Choetkiertikul, M.; Dam, H.K.; Tran, T.; Ghose, A. Predicting Delays in Software Projects Using Networked Classification (T). In
Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), Lincoln, NE, USA,
9–13 November 2015; pp. 353–364.

69. Chaikalis, T.; Chatzigeorgiou, A. Forecasting Java Software Evolution Trends employing Network Models. IEEE Trans. Softw.
Eng. 2015, 41, 582–602. [CrossRef]

70. Wilson, S.P.; Samaniego, F.J. Nonparametric analysis of the order-statistic model in software reliability. IEEE Trans. Softw. Eng.
2007, 33, 198–208. [CrossRef]

http://dx.doi.org/10.1109/TSE.2007.70773
http://dx.doi.org/10.1109/TSE.2012.70
http://dx.doi.org/10.1109/TSE.2012.43
http://dx.doi.org/10.1109/TSE.2014.2381249
http://dx.doi.org/10.1109/TSE.2007.27

Information 2023, 14, 111 29 of 32

71. Cheung, L.; Roshandel, R.; Medvidovic, N.; Golubchik, L. Early prediction of software component reliability. In Proceedings of
the 30th International Conference on Software Engineering, Leipzig, Germany, 10–18 May 2008; pp. 111–120.

72. Torrado, N.; Wiper, M.P.; Lillo, R.E. Software reliability modeling with software metrics data via gaussian processes. IEEE Trans.
Softw. Eng. 2013, 39, 1179–1186. [CrossRef]

73. Misirli, A.T.; Bener, A.B. Bayesian networks for evidence-based decision-making in software engineering. IEEE Trans. Softw. Eng.
2014, 40, 533–554. [CrossRef]

74. Zheng, Z.; Lyu, M.R. Collaborative reliability prediction of service-oriented systems. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, Cape Town, South Africa, 1–8 May 2010; pp. 35–44.

75. Zheng, Z.; Lyu, M.R. Personalized reliability prediction of web services. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2013, 22, 12.
[CrossRef]

76. Silic, M.; Delac, G.; Srbljic, S. Prediction of atomic web services reliability based on k-means clustering. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, Singapore, 18–26 August 2013; pp. 70–80.

77. Shin, Y.; Meneely, A.; Williams, L.; Osborne, J.A. Evaluating complexity, code churn, and developer activity metrics as indicators
of software vulnerabilities. IEEE Trans. Softw. Eng. 2011, 37, 772–787. [CrossRef]

78. Shar, L.K.; Tan, H.B.K.; Briand, L.C. Mining SQL injection and cross site scripting vulnerabilities using hybrid program analysis.
In Proceedings of the 2013 International Conference on Software Engineering, San Francisco, CA, USA, 18–26 May 2013; pp.
642–651.

79. Scandariato, R.; Walden, J.; Hovsepyan, A.; Joosen, W. Predicting vulnerable software components via text mining. IEEE Trans.
Softw. Eng. 2014, 40, 993–1006. [CrossRef]

80. Chandramohan, M.; Tan, H.B.K.; Briand, L.C.; Shar, L.K.; Padmanabhuni, B.M. A scalable approach for malware detection
through bounded feature space behavior modeling. In Proceedings of the 2013 IEEE/ACM 28th International Conference on
Automated Software Engineering (ASE), Silicon Valley, CA, USA, 11–15 November 2013; pp. 312–322.

81. Avdiienko, V.; Kuznetsov, K.; Gorla, A.; Zeller, A.; Arzt, S.; Rasthofer, S.; Bodden, E. Mining apps for abnormal usage of sensitive
data. In Proceedings of the 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Firenze/Florence,
Italy, 16–24 May 2015; Volume 1, pp. 426–436.

82. Jin, Y.; Tang, A.; Han, J.; Liu, Y. Performance evaluation and prediction for legacy information systems. In Proceedings of the 29th
International Conference on Software Engineering (ICSE’07), Minneapolis, MN, USA, 20–26 May 2007; pp. 540–549.

83. Krishnamurthy, D.; Rolia, J.; Xu, M. WAM¡ªThe Weighted Average Method for Predicting the Performance of Systems with Bursts
of Customer Sessions. IEEE Trans. Softw. Eng. 2011, 37, 718–735. [CrossRef]

84. Rathfelder, C.; Kounev, S.; Evans, D. Capacity planning for event-based systems using automated performance predictions. In
Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering, Lawrence, KS, USA,
6–10 November 2011; pp. 352–361.

85. Koziolek, H.; Schlich, B.; Bilich, C.; Weiss, R.; Becker, S.; Krogmann, K.; Trifu, M.; Mirandola, R.; Koziolek, A. An industrial case
study on quality impact prediction for evolving service-oriented software. In Proceedings of the 33rd International Conference
on Software Engineering, Waikiki, Honolulu, HI, USA, 21–28 May 2011; pp. 776–785.

86. Guo, J.; Czarnecki, K.; Apel, S.; Siegmund, N.; Wasowski, A. Variability-aware performance prediction: A statistical learning
approach. In Proceedings of the 2013 IEEE/ACM 28th International Conference on Automated Software Engineering (ASE),
Silicon Valley, CA, USA, 11–15 November 2013; pp. 301–311.

87. Sarkar, A.; Guo, J.; Siegmund, N.; Apel, S.; Czarnecki, K. Cost-efficient sampling for performance prediction of configurable
systems (t). In Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE),
Lincoln, NE, USA, 9–13 November 2015; pp. 342–352.

88. Zhang, Y.; Guo, J.; Blais, E.; Czarnecki, K. Performance prediction of configurable software systems by fourier learning (T). In
Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), Lincoln, NE, USA,
9–13 November 2015; pp. 365–373.

89. Westermann, D.; Happe, J.; Krebs, R.; Farahbod, R. Automated inference of goal-oriented performance prediction functions.
In Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering, Essen, Germany, 3–7
September 2012; pp. 190–199.

90. Siegmund, N.; Kolesnikov, S.S.; Kästner, C.; Apel, S.; Batory, D.; Rosenmüller, M.; Saake, G. Predicting performance via automated
feature-interaction detection. In Proceedings of the 34th International Conference on Software Engineering, Zurich, Switzerland,
2–9 June 2012; pp. 167–177.

91. Siegmund, N.; Grebhahn, A.; Apel, S.; Kästner, C. Performance-influence models for highly configurable systems. In Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering, Istanbul, Turkey, 30 August–4 September 2015;
pp. 284–294.

92. Acharya, M.; Kommineni, V. Mining health models for performance monitoring of services. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering, Auckland, New Zealand, 16–20 November 2009; pp.
409–420.

93. Malik, H.; Hemmati, H.; Hassan, A.E. Automatic detection of performance deviations in the load testing of large scale systems.
In Proceedings of the 2013 35th International Conference on Software Engineering (ICSE), San Francisco, CA, USA, 18–26 May
2013; pp. 1012–1021.

http://dx.doi.org/10.1109/TSE.2012.87
http://dx.doi.org/10.1109/TSE.2014.2321179
http://dx.doi.org/10.1145/2430545.2430548
http://dx.doi.org/10.1109/TSE.2010.81
http://dx.doi.org/10.1109/TSE.2014.2340398
http://dx.doi.org/10.1109/TSE.2011.65

Information 2023, 14, 111 30 of 32

94. Jorgensen, M.; Shepperd, M. A systematic review of software development cost estimation studies. IEEE Trans. Softw. Eng. 2007,
33, 33–53. [CrossRef]

95. Kultur, Y.; Turhan, B.; Bener, A.B. ENNA: Software effort estimation using ensemble of neural networks with associative
memory. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Lausanne,
Switzerland, 9–14 November 2008; pp. 330–338.

96. Whigham, P.A.; Owen, C.A.; Macdonell, S.G. A baseline model for software effort estimation. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 2015, 24, 20. [CrossRef]

97. Dejaeger, K.; Verbeke, W.; Martens, D.; Baesens, B. Data mining techniques for software effort estimation: A comparative study.
IEEE Trans. Softw. Eng. 2012, 38, 375–397. [CrossRef]

98. Mittas, N.; Angelis, L. Ranking and clustering software cost estimation models through a multiple comparisons algorithm. IEEE
Trans. Softw. Eng. 2013, 39, 537–551. [CrossRef]

99. Mendes, E.; Mosley, N. Bayesian network models for web effort prediction: A comparative study. IEEE Trans. Softw. Eng. 2008,
34, 723–737. [CrossRef]

100. Natella, R.; Cotroneo, D.; Duraes, J.A.; Madeira, H.S. On fault representativeness of software fault injection. IEEE Trans. Softw.
Eng. 2013, 39, 80–96. [CrossRef]

101. Cotroneo, D.; Pietrantuono, R.; Russo, S. A learning-based method for combining testing techniques. In Proceedings of the 2013
35th International Conference on Software Engineering (ICSE), San Francisco, CA, USA, 18–26 May 2013; pp. 142–151.

102. Yu, Z.; Bai, C.; Cai, K.Y. Does the failing test execute a single or multiple faults? An approach to classifying failing tests. In
Proceedings of the 37th International Conference on Software Engineering-Volume 1, Firenze/Florence, Italy, 23–30 August 2015;
pp. 924–935.

103. Song, C.; Porter, A.; Foster, J.S. iTree: Efficiently discovering high-coverage configurations using interaction trees. In Proceedings
of the 2012 34th International Conference on Software Engineering (ICSE), Zurich, Switzerland, 2–9 June 2012; pp. 903–913.

104. Song, C.; Porter, A.; Foster, J.S. iTree: Efficiently discovering high-coverage configurations using interaction trees. IEEE Trans.
Softw. Eng. 2014, 40, 251–265. [CrossRef]

105. Ali, S.; Andrews, J.H.; Dhandapani, T.; Wang, W. Evaluating the accuracy of fault localization techniques. In Proceedings of the
2009 IEEE/ACM International Conference on Automated Software Engineering, Auckland, New Zealand, 16–20 November 2009;
pp. 76–87.

106. Farzan, A.; Madhusudan, P.; Razavi, N.; Sorrentino, F. Predicting null-pointer dereferences in concurrent programs. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, Washington, DC,
USA, 11–16 November 2012; p. 47.

107. Nori, A.V.; Sharma, R. Termination proofs from tests. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, Singapore, 18–26 August 2013; pp. 246–256.

108. Haran, M.; Karr, A.; Last, M.; Orso, A.; Porter, A.A.; Sanil, A.; Fouche, S. Techniques for classifying executions of deployed
software to support software engineering tasks. IEEE Trans. Softw. Eng. 2007, 33, 287–304. [CrossRef]

109. Yilmaz, C.; Porter, A. Combining hardware and software instrumentation to classify program executions. In Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of Software Engineering, Seoul, Korea, 7–11 November
2010; pp. 67–76.

110. Xiao, H.; Sun, J.; Liu, Y.; Lin, S.W.; Sun, C. Tzuyu: Learning stateful typestates. In Proceedings of the 2013 IEEE/ACM 28th
International Conference on Automated Software Engineering (ASE), Silicon Valley, CA, USA, 11–15 November 2013; pp. 432–442.

111. Lee, S.; Jung, C.; Pande, S. Detecting memory leaks through introspective dynamic behavior modelling using machine learning.
In Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May–7 June 2014; pp. 814–824.

112. Bodden, E.; Lam, P.; Hendren, L. Finding programming errors earlier by evaluating runtime monitors ahead-of-time. In
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Lausanne, Switzerland,
9–14 November 2008; pp. 36–47.

113. Tripp, O.; Rinetzky, N. Tightfit: Adaptive parallelization with foresight. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, Singapore, 18–26 August 2013; pp. 169–179.

114. Sun, H.; Zhang, X.; Zheng, Y.; Zeng, Q. IntEQ: Recognizing benign integer overflows via equivalence checking across multiple
precisions. In Proceedings of the 38th International Conference on Software Engineering, Austin, TX, USA, 14–22 May 2016; pp.
1051–1062.

115. Asuncion, H.U.; Asuncion, A.U.; Taylor, R.N. Software traceability with topic modeling. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, Cape Town, South Africa, 1–8 May 2010; pp. 95–104.

116. Wu, R.; Zhang, H.; Kim, S.; Cheung, S.C. Relink: Recovering links between bugs and changes. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, Lyngby, Denmark, 5–9
September 2011; pp. 15–25.

117. Nguyen, A.T.; Nguyen, T.T.; Nguyen, H.A.; Nguyen, T.N. Multi-layered approach for recovering links between bug reports
and fixes. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering,
Washington, DC, USA, 11–16 November 2012; p. 63.

http://dx.doi.org/10.1109/TSE.2007.256943
http://dx.doi.org/10.1145/2738037
http://dx.doi.org/10.1109/TSE.2011.55
http://dx.doi.org/10.1109/TSE.2012.45
http://dx.doi.org/10.1109/TSE.2008.64
http://dx.doi.org/10.1109/TSE.2011.124
http://dx.doi.org/10.1109/TSE.2013.55
http://dx.doi.org/10.1109/TSE.2007.1004

Information 2023, 14, 111 31 of 32

118. Grechanik, M.; McKinley, K.S.; Perry, D.E. Recovering and using use-case-diagram-to-source-code traceability links. In
Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, Luxembourg, 23–28 August 2007; pp. 95–104.

119. Mirakhorli, M.; Shin, Y.; Cleland-Huang, J.; Cinar, M. A tactic-centric approach for automating traceability of quality concerns. In
Proceedings of the 34th International Conference on Software Engineering, Zurich, Switzerland, 2–9 June 2012; pp. 639–649.

120. Mirakhorli, M.; Cleland-Huang, J. Detecting, tracing, and monitoring architectural tactics in code. IEEE Trans. Softw. Eng. 2016,
42, 205–220. [CrossRef]

121. Lohar, S.; Amornborvornwong, S.; Zisman, A.; Cleland-Huang, J. Improving trace accuracy through data-driven configuration
and composition of tracing features. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
Singapore, 18–26 August 2013; pp. 378–388.

122. Bettenburg, N.; Just, S.; Schröter, A.; Weiss, C.; Premraj, R.; Zimmermann, T. What makes a good bug report? In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Lausanne, Switzerland, 9–14
November 2008; pp. 308–318.

123. Zanetti, M.S.; Scholtes, I.; Tessone, C.J.; Schweitzer, F. Categorizing bugs with social networks: A case study on four open source
software communities. In Proceedings of the 2013 International Conference on Software Engineering, San Francisco, CA, USA,
18–26 May 2013; pp. 1032–1041.

124. Runeson, P.; Alexandersson, M.; Nyholm, O. Detection of duplicate defect reports using natural language processing. In
Proceedings of the 29th International Conference on Software Engineering (ICSE’07), Minneapolis, MN, USA, 20–26 May 2007;
pp. 499–510.

125. Wang, X.; Zhang, L.; Xie, T.; Anvik, J.; Sun, J. An approach to detecting duplicate bug reports using natural language and
execution information. In Proceedings of the 30th International Conference on Software Engineering, Leipzig, Germany, 10–18
May 2008; pp. 461–470.

126. Sun, C.; Lo, D.; Wang, X.; Jiang, J.; Khoo, S.C. A discriminative model approach for accurate duplicate bug report retrieval. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1, Cape Town, South Africa, 1–8
May 2010; pp. 45–54.

127. Sun, C.; Lo, D.; Khoo, S.C.; Jiang, J. Towards more accurate retrieval of duplicate bug reports. In Proceedings of the 2011
26th IEEE/ACM International Conference on Automated Software Engineering, Lawrence, KS, USA, 6–10 November 2011; pp.
253–262.

128. Liu, K.; Tan, H.B.K.; Chandramohan, M. Has this bug been reported? In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software E ngineering, Washington, DC, USA, 11–16 November 2012; p. 28.

129. Lo, D.; Jiang, L.; Budi, A. Active refinement of clone anomaly reports. In Proceedings of the 2012 34th International Conference
on Software Engineering (ICSE), Zurich, Switzerland, 2–9 June 2012; pp. 397–407.

130. Anvik, J.; Hiew, L.; Murphy, G.C. Who should fix this bug? In Proceedings of the 28th International Conference on Software
Engineering, Shanghai, China, 20–28 May 2006; pp. 361–370.

131. Jeong, G.; Kim, S.; Zimmermann, T. Improving bug triage with bug tossing graphs. In Proceedings of the the 7TH joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering,
Leuven, Belgium, 23–28 August 2009; pp. 111–120.

132. Zimmermann, T.; Nagappan, N.; Guo, P.J.; Murphy, B. Characterizing and predicting which bugs get reopened. In Proceedings
of the 2012 34th International Conference on Software Engineering (ICSE), Zurich, Switzerland, 2–9 June 2012; pp. 1074–1083.

133. Xia, X.; Lo, D.; Shihab, E.; Wang, X.; Zhou, B. Automatic, high accuracy prediction of reopened bugs. Autom. Softw. Eng. 2015,
22, 75–109. [CrossRef]

134. Xuan, J.; Jiang, H.; Ren, Z.; Zou, W. Developer prioritization in bug repositories. In Proceedings of the 2012 34th International
Conference on Software Engineering (ICSE), Zurich, Switzerland, 2–9 June 2012; pp. 25–35.

135. Kim, D.; Tao, Y.; Kim, S.; Zeller, A. Where should we fix this bug? a two-phase recommendation model. IEEE Trans. Softw. Eng.
2013, 39, 1597–1610.

136. Zhang, H.; Gong, L.; Versteeg, S. Predicting bug-fixing time: An empirical study of commercial software projects. In Proceedings
of the 2013 International Conference on Software Engineering, San Francisco, CA, USA, 18–26 May 2013; pp. 1042–1051.

137. Guo, P.J.; Zimmermann, T.; Nagappan, N.; Murphy, B. Characterizing and predicting which bugs get fixed: An empirical study of
Microsoft Windows. In Proceedings of the 2010 ACM/IEEE 32nd International Conference on Software Engineering, Cape Town,
South Africa, 1–8 May 2010; Volume 1, pp. 495–504.

138. Meneely, A.; Williams, L.; Snipes, W.; Osborne, J. Predicting failures with developer networks and social network analysis. In
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Lausanne, Switzerland,
9–14 November 2008; pp. 13–23.

139. Meneely, A.; Rotella, P.; Williams, L. Does adding manpower also affect quality?: An empirical, longitudinal analysis. In
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering,
Lyngby, Denmark, 5–9 September 2011; pp. 81–90.

140. Canfora, G.; Di Penta, M.; Oliveto, R.; Panichella, S. Who is going to mentor newcomers in open source projects? In Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, Washington, DC, USA, 11–16
November 2012; p. 44.

http://dx.doi.org/10.1109/TSE.2015.2479217
http://dx.doi.org/10.1007/s10515-014-0162-2

Information 2023, 14, 111 32 of 32

141. Fritz, T.; Begel, A.; Müller, S.C.; Yigit-Elliott, S.; Züger, M. Using psycho-physiological measures to assess task difficulty in
software development. In Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31
May–7 June 2014; pp. 402–413.

142. Müller, S.C.; Fritz, T. Stuck and frustrated or in flow and happy: Sensing developers’ emotions and progress. In Proceedings of
the 37th International Conference on Software Engineering-Volume 1, Firenze/Florence, Italy, 23–30 August 2015; pp. 688–699.

143. Müller, S.C.; Fritz, T. Using (bio) metrics to predict code quality online. In Proceedings of the 38th International Conference on
Software Engineering, Austin, Texas, USA, 14–22 May 2016; pp. 452–463.

144. Bacchelli, A.; Dal Sasso, T.; D’Ambros, M.; Lanza, M. Content classification of development emails. In Proceedings of the 34th
International Conference on Software Engineering, Zurich, Switzerland, 2–9 June 2012; pp. 375–385.

145. Di Sorbo, A.; Panichella, S.; Visaggio, C.A.; Di Penta, M.; Canfora, G.; Gall, H.C. Development emails content analyzer: Intention
mining in developer discussions (T). In Proceedings of the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), Lincoln, NE, USA, 9–13 November 2015; pp. 12–23.

146. Zhou, M.; Mockus, A. Who will stay in the floss community? Modeling participant’s initial behavior. IEEE Trans. Softw. Eng.
2015, 41, 82–99. [CrossRef]

147. Murukannaiah, P.K.; Singh, M.P. Platys: An active learning framework for place-aware application development and its
evaluation. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2015, 24, 19. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSE.2014.2349496
http://dx.doi.org/10.1145/2729976

	Introduction
	Basis of Prediction Models
	Overview
	Common Algorithms
	Naive Bayes
	Random Forest
	Logistic Regression
	Support Vector Machine
	K-Nearest Neighbors

	Evaluation Metrics
	F1-Score
	AUC

	Research Methods
	Paper Sources and Search Strategy
	Statistics of Selected Papers

	Coding Aid
	Code Development
	Code Review
	Code Evaluation
	Code APIs

	Defect Prediction
	Framework
	Datasets
	Features
	Algorithms
	Cross-Project Defect Prediction

	Software Management
	Software Requirement Engineering
	Software Development Process
	Software Cycle Time
	Software Evolution

	Software Quality
	Software Reliability Prediction
	Software Vulnerability Prediction
	Malware Detection

	Software Performance Prediction
	White-Box Models
	Black-Box Models
	Performance-Related Analysis

	Effort Estimation
	Software Effort Estimation
	Web Effort Estimation

	Software Testing
	Test Case Quality
	Test Application

	Program Analysis
	Dynamic Analysis
	Static Analysis

	Traceability
	Software Traceability
	Traceability Quality

	Bug Report Management
	Bug Report Quality
	Bug Report Assignment and Categorization
	Bug Fix Related Task

	Developers and Users
	Developer Related Task
	User Related Task

	Discussion
	RQ1: What Features Are Appropriate to Build Prediction Models in Software Engineering Researches?
	RQ2: What Datasets Are Appropriate to Build Prediction Models in Software Engineering Researches?
	RQ3: What Prediction Models Are Appropriate in Different Software Engineering Researches?
	Threats to Validity

	Conclusions
	References

