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Abstract: Drug side effects (DSEs) or adverse drug reactions (ADRs) are a major concern in the
healthcare industry, accounting for a significant number of annual deaths in Europe alone. Identifying
and predicting DSEs early in the drug development process is crucial to mitigate their impact on
public health and reduce the time and costs associated with drug development. Objective: In this
study, our primary objective is to predict multiple drug side effects using 2D chemical structures,
especially for COVID-19, departing from the conventional approach of relying on 1D chemical
structures. We aim to develop a novel model for DSE prediction that leverages the CNN-based
transfer learning architecture of ResNet152V2. Motivation: The motivation behind this research stems
from the need to enhance the efficiency and accuracy of DSE prediction, enabling the pharmaceutical
industry to identify potential drug candidates with fewer adverse effects. By utilizing 2D chemical
structures and employing data augmentation techniques, we seek to revolutionize the field of drug
side-effect prediction. Novelty: This study introduces several novel aspects. The proposed study
is the first of its kind to use 2D chemical structures for predicting drug side effects, departing from
the conventional 1D approaches. Secondly, we employ data augmentation with both conventional
and diffusion-based models (Pix2Pix), a unique strategy in the field. These innovations set the
stage for a more advanced and accurate approach to DSE prediction. Results: Our proposed model,
named CHEM2SIDE, achieved an impressive average training accuracy of 0.78. Moreover, the
average validation and test accuracy, precision, and recall were all at 0.73. When evaluated for
COVID-19 drugs, our model exhibited an accuracy of 0.72, a precision of 0.79, a recall of 0.72, and an
F1 score of 0.73. Comparative assessments against established transfer learning and machine learning
models (VGG16, MobileNetV2, DenseNet121, and KNN) showcased the exceptional performance of
CHEM2SIDE, marking a significant advancement in drug side-effect prediction. Conclusions: Our
study introduces a groundbreaking approach to predicting drug side effects by using 2D chemical
structures and incorporating data augmentation. The CHEM2SIDE model demonstrates remarkable
accuracy and outperforms existing models, offering a promising solution to the challenges posed
by DSEs in drug development. This research holds great potential for improving drug safety and
reducing the associated time and costs.

Keywords: COVID-19; medicine; drug side effects; image classification; chemical structure images;
stable diffusion; Pix2Pix; machine learning; deep learning; transfer learning
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1. Introduction

Drugs are widely used to treat various medical conditions and diseases, and while they
can be very effective, they also carry the risk of side effects. Side effects are unintended and
usually undesired effects that can occur when a medication is used. These effects can range
from mild to severe, impacting the patient’s quality of life and, in some cases, leading to se-
rious health problems. Understanding drug side effects is essential for healthcare providers
and patients to make informed decisions about medication use. The side-effect profile of a
drug is an important consideration when prescribing or administering medication.

Side effects can occur for various reasons, such as an overdose, drug interactions,
individual susceptibility, genetic variations, and adverse drug reactions (ADRs) to the
drug’s components. Drug side effects can be categorized into different types based on their
severity, duration, and mechanism of action, e.g., typical side effects, serious side effects,
long-term side effects, and interactions with other drugs.

DSEs significantly impact public health and drug discovery costs [1,2] and can lead
to morbidity and mortality. Drug side effects are reported as one of the leading causes of
death in the United States [3].

Pharmaceutical companies must conduct clinical trials to evaluate the safety and
efficacy of their drugs before they are approved for use by regulatory agencies such as
the U.S. Food and Drug Administration (FDA) [4]. During these trials, pharmaceutical
companies monitor participants for adverse reactions or side effects that may appear in
humans due to the drug. Once a drug is approved, pharmaceutical companies continue to
monitor its safety through post-marketing surveillance. The traditional methods to predict
DSEs require several clinical trials and monitoring after drug release in the market [5]. This
involves tracking adverse event reports from healthcare providers, patients, and other
sources and investigating potential safety concerns. The computational approach can
mitigate the burden on pharmaceutical companies and public health and reduce drug
development costs with an early prediction of DSEs.

Several computational methods have been proposed to predict DSEs at different
stages of drug development [6,7]. In recent decades, proposed computational models have
evolved for the prediction of DSEs from similarity-based methods [8] to machine learning
models, e.g., support vector machines (SVMs) [9], clustering [10], more complex predictors
that are based on random forests (RFs) [10], and deep learning (DL) [11].

The existing models are based on the assumption that similar drugs have the same
properties in terms of their biological and chemical features. For the prediction of DSEs,
Pauwels et al. [12] proposed a chemical structure-based model using sparse-canonical
correlation analysis (SCCA), and Yamanishi et al. proposed a method based on the target
protein and chemical structure [13]. The biological activities of drugs with similar chemical
structures are frequently comparable [14]. Common drug targets that produce relative
therapeutic effects will also have comparable signaling cascades and, as a result, comparable
side effects.

After focusing on biological and chemical properties, DSE prediction research was
extended to phenotypic traits [15]. Zheng et al. [16] used therapeutic data, drug substitutes,
targets, and chemical structures. Their study was based on the idea that drugs may have
similar side effects due to similar therapeutic effects.

Scheiber et al. [17] predict DSEs in their study through the association of DSEs with
chemical structures. Their analysis considered the PharmaPendium [18] database, which
consists of 1842 drugs and 4210 side effects. To associate the DSEs with chemical features,
the Laplacian-based Naïve Bayes (NB) classifier was proposed in their study. The logistic
regression (LR) model was used in the study [17] to predict the side effects events after
considering the Lexicom website [19] for the extraction of drug side effect association. In
their research, experiments were based on 809 drugs and 852 side effects events, and as a
result, an AUROC score of 87% was achieved with the LR model.

Huang et al. [20] identified drug cardiotoxicity side effects with LR and an SVM. To
obtain drug targets, protein–protein interactions (PPIs), and side effects, they considered
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DrugBank, human protein–protein interactions (HAPPIs), and SIDER, respectively, in their
study. Fisher’s exact test (FET) and the Wilcoxon rank-sum test (WRST) were used to reduce
the data dimension and, in their study, the class imbalance problems were handled with
the sample-balancing method. They achieved an accuracy score of 67.50% with the SVM.

In the proposed study of Jiang and Zheng [21], potential side effects were predicted
with supervised ML algorithms, including an SVM, maximum entropy (ME), and NB from
Twitter posts. Their experiments comprised 6829 tweets for five drugs and achieved an F1
score of 84.8% with the ME classifier, whereas Ginn et al. [22] studied experiments based
on 10,822 tweets for 76 drugs, and the SVM outperformed the NB with an accuracy of
76.6%. Zhang et al. [23] proposed an effective model named Feature Selection-Based Multi-
Label KNN (FS-MLKNN) based on drug chemical information and drug targets for the
prediction of DSEs. The 2260 side effects and 1080 drugs were considered for experiments
and achieved an area under the precision–recall (AUPR) score of 48.02%, 40.04% and 42.86%
for three benchmark datasets ([24–26], respectively) in their proposed study.

Different drug information was integrated into the study of Zhang et al. [8] to predict
DSEs with the proposed Linear Neighborhood Similarity Method. Further, the LNSM
extended and proposed two approaches (Cost Minimization Integration and Similarity
Interaction) and their proposed model outperformed [24–26], with an AUC score of 90.91%.
The study of Jamal et al. [27] predicted neurological side effects from the combination
of chemical, biological, and phenotypic information. In their research, feature extraction
and synthetic minority oversampling techniques (SMOTEs) were used for dimensionality
reduction and class imbalance problems, and they achieved an accuracy of 94.18%.

The study by De et al. [28] explored the importance of machine learning and deep
learning to identify the relationship between side effects and chemical substructures via
distinct fingerprint extraction from the compound with DL methodology. Their experiment
dataset consisted of 6123 DSEs and 1420 drugs, and they were able to achieve an accuracy
of 97.70% for skin striae DSEs. Wang et al. [29] proposed a DL-based model to analyze
the DSEs using drug descriptors. In their study, textual information was collected from
MEDLINE, the biological properties (e.g., target and enzymes) were collected from Drug-
Bank, and 17 drug properties were collected from PubChem. Furthermore, to integrate
drug properties, a multi-layer perception (MLP) model with an extension of two hidden
layers was considered in their research to achieve an effective AUC of 84.40%. Lee et al. [30]
proposed a DL model that can predict drug adverse events (DAEs) using preclinical data.
Their study used a dataset of over 5000 compounds with preclinical data, including the
chemical structure and in vitro assay results, to train and test the model. The deep learning
model was based on a multi-task neural network architecture that was designed to predict
both drug efficacy and AEs. The model achieved an accuracy of 0.857, a precision of 0.891,
a recall of 0.702, and an F1 score of 0.785, demonstrating its effectiveness in predicting
drug AEs.

Zhou et al. [31] proposed a boosted random forest approach to predict DSEs from
chemical structures, protein targets, transporters, treatments, pathways, and enzymes. The
number of side effects and drugs in their study was 4251 and 1426, respectively, and they
were able to achieve an effective precision score of 78% with the proposed model compared
to KNN and MLP.

Mohsen et al. [32] proposed a DL-based approach to predict adverse drug reactions
(ADRs) using two large-scale databases: Open TG-GATEs and FAERS. They developed a
deep neural network that takes the input of drug molecular descriptors and gene expression
data and outputs the probability of adverse reactions (ADRs) for each drug. The model was
trained on a large dataset of drug–gene–ADR associations and evaluated on an independent
test set. Their results showed that the proposed approach achieved high performance in
predicting ADRs, outperforming several baseline methods. The authors also conducted
extensive experiments to investigate the importance of different input features and showed
that the gene expression data significantly improved the performance of the model.
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Jiang et al. [33] proposed a method based on the assumption that drugs with similar
structures are likely to have similar side effects. They constructed a network representation
of drug structures and side effects and use a path-based algorithm to identify significant
associations between drugs and side effects.

Liang et al. [34] proposed an approach that utilizes two sources of data: drug–drug
similarities and drug–side effect similarities. The drug–drug similarities were calculated
based on the similarities of their chemical structures, while the drug–side effect similarities
were calculated based on their occurrence in clinical trials. They applied a transductive
matrix co-completion algorithm to the constructed matrix to predict the missing entries,
i.e., potential side effects. The algorithm leverages the similarities between drugs and side
effects to predict the missing entries in the matrix.

Computer vision is a field of study in computer science and artificial intelligence that
focuses on enabling machines to interpret and understand visual information from the
world around them. It involves developing algorithms and techniques that can analyze
and interpret images and videos in a way that is similar to how humans perceive the
world. Computer vision has many practical applications, such as object recognition, facial
recognition, motion detection, and image segmentation. It is used in a variety of fields,
including healthcare, the automotive sector, entertainment, security, and robotics.

The development of deep learning techniques, such as convolutional neural networks,
has greatly advanced the field of computer vision in recent years. These techniques enable
computers to recognize and classify images with high accuracy, and they have led to
significant advances in areas such as medical imaging, where computer vision is used
to diagnose diseases from medical images. Owing to recent progress in computational
methodologies, our research has successfully pinpointed various side effects associated
with drugs using 2D chemical structure images. To the best of our knowledge, this study
stands as a pioneering effort in this domain. The major contributions of this study are
listed below:

• We compiled a comprehensive dataset by gathering information from reputable
sources such as SIDER and PubChem;

• We converted our problem from a multi-label to a multi-class format, employing
effective techniques for enhanced clarity and precision;

• We opted for the reliable diffusion method and traditional augmentation techniques
to produce synthetic data;

• Our study introduces a novel model designed for predicting multiple drug side effects
(DSEs) by leveraging 2D chemical structures of drugs;

• In an effort to streamline the training process, we incorporated a transfer learning
approach, thereby minimizing the required training time;

• Our proposed model streamlines the intricate transformation process, in contrast to
the NLP domain’s approach, which involves converting smiles into fingerprints and
extracting features.

The remainder of this paper is divided as follows: Section 2 outlines the methodology
of the proposed model, while the experimental results and comparison are presented in
Section 3, and Section 4 provides the conclusion of the proposed study.

2. Proposed Methodology

This section outlines and presents the methodologies utilized and proposed to accurately
predict multiple side effects of drugs using 2D drug chemical structures. These methods are
carefully designed to enhance the precision and effectiveness of side-effect detection.

2.1. Dataset

We have retrieved the information of drugs and their associated side effects from the
publicly available SIDER database (Version 4.1) [35], maintained by the European Molecular
Biology Laboratory (EMBL). SIDER provides details about marketed medicines and their
corresponding side effects. Our dataset includes information on 1430 drugs (excluding any
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data related to the drug named ‘x’, resulting in a consideration of 1429 drugs). Additionally,
this database is linked with PubChem [36]. In this study, we considered fever and vomiting
as multiple side effects of drugs. Furthermore, we obtained COVID-19 drug information,
i.e., drug names from DrugBank [37], specifically those indicating fever and vomiting
as side effects. This step was crucial to assess the generalization and robustness of our
proposed model. In the initial phase, we collected and categorized the data in a multi-label
binary form, assigning labels of 0 and 1. Here, 0 signifies the absence of the specific side
effect, while 1 indicates the presence of the particular side effect; see Table 1.

Table 1. Prepared dataset labeling as multi-label side effects ([35,36]).

Drug Name Drug Structure Fever Vomiting

18F-FDG
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2.2. Transformation of Multi-Label Problem to Multi-Class

Our research dives into the tricky challenges of dealing with multi-label classification.
This is a bit more complicated than sorting things into just two or a few categories. Some
of the big issues we tackle include labels depending on each other, having lots of possible
labels, some labels showing up much more than others, and the need for careful ways
to figure out how well our models are performing. To make things more manageable,
we took a smart approach, transforming our multi-label problem into something simpler
called multi-class classification. We used an equation (Equation (1)) that looks at whether
fever and vomit are present or not, similar to checking boxes with “yes” or “no” to make
things easier. Our goal is to make classifying things less complicated, reduce how much
computing power we need, and make our models easier to understand. We know there are
still challenges in designing the computer programs for this, so we picked our methods
carefully to make sure we dealt well with the unique problems that come with multi-
label classification.

T( f , v) = f × (21) + v × (20) : f ∈ {0, 1} & v ∈ {0, 1} (1)
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Table 2 presents the classes along with their associated labels, derived from the trans-
formation process.

Table 2. Problem transformation to multi-class from multi-label.

Drug Fever Vomit Class
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In the initial phase of data processing, we identified a subset of images that solely
featured the names of elements without relevant chemical structure information. Conse-
quently, we deemed these images unsuitable for analysis and opted to exclude them from
the dataset. Refer to Figure 1 for dataset counts post initial preprocessing.

2.3. Data Augmentation with Diffusion and Conventional Augmentation Techniques

In this study, we harnessed the potent capabilities of the Pix2Pix model, an advanced
framework introduced by Brooks et al. [38]. Designed to emulate stable diffusion tech-
niques, this model serves as a powerful tool to artificially expand our dataset, mitigating
the common challenge of data scarcity in image-related tasks. By generating synthetic
images, Pix2Pix significantly broadens the scope and diversity of our dataset, bolstering
the comprehensiveness of our research samples. Operating as a conditional Generative
Adversarial Network (GAN) [39], Pix2Pix learns to produce images based on specified
conditions or input data. This conditioning mechanism ensures that the generated images
align precisely with the attributes outlined in the stable diffusion technique, promising to
enhance the robustness and generalizability of our research outcomes. The augmentation
process involves resizing the original Pix2Pix-based generated images of 1024 × 1024 pixels,
followed by saving the generated images in 300 × 300 pixels. For transparency, Table 3
presents the empirically determined hyperparameters crucial for the effectiveness of the
Pix2Pix model in our artificial image creation process.
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Figure 1. DSE’s Samples Counts after Preprocessing and Transformation.

Table 3. Hyperparameter configurations for Pix2Pix model.

Hyperparameter Value

Image Guidance Scale 2.0

Number of Inference Steps 20

Mode RGB

Input Image Size 300 × 300

Generated Image Size 1024 × 1024

Save Size 300 × 300

Furthermore, to enhance the model’s ability to generalize effectively, we integrated
traditional augmentation techniques on the images produced by the Pix2Pix model. For
these conventional augmentation processes, we carefully selected and applied specific
parameters, as outlined in Table 4.

Table 4. Hyperparameters of conventional augmentation method.

Hyperparameter Value

Rotation Range 10–30

Shear Range 0.1–0.2

Zoom Range 0.1–0.2

Brightness Range 0.8–1.2

Horizontal Flip True

Fill Mode Nearest

As far as we are aware, this marks the first implementation of augmentation methods
to artificially broaden the dataset through two distinct techniques, as depicted in Figure 2.
After this augmentation process, we obtained a balanced dataset of 1000 samples of each
class excluding the COVID-19 test samples.
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2.4. Proposed Model Based on Transfer Learning and Fine-Tuning

The proposed model, CHEM2SIDE, is based on the ResNet152V2 architecture [40]
that is the most recent progression within the ResNet series, encompassing a grand total
of 152 layers that incorporate improved skip connections and batch normalization. These
enhancements contribute significantly to the facilitation of gradient flow and the preser-
vation of key features. The process of fine-tuning this model is a meticulous endeavor.
It involves freezing all layers of the ResNet152V2 architecture to harness the knowledge
contained in the pre-existing ImageNet weights. Specifically, the uppermost layers are
deliberately excluded from this approach, leading to the creation of a tailored architecture.
This personalized structure begins with the introduction of a flattening layer, followed by
the deliberate addition of six subsequent layers. These six layers include a dense layer
with 512 units, dropout with a rate of 0.2, a 256-unit dense layer, another dropout layer
with a rate of 0.2, a 128-unit dense layer, and ultimately, a fully connected layer comprising
four units. These four units align seamlessly with the four distinct classes relevant to our
classification task, as depicted in Figure 3 of the proposed framework architecture.
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Activation functions play a crucial role in determining the performance of a model.
ReLU is used in hidden layers to introduce non-linearity, and SoftMax is used in the output
layer for class probability generation in multi-class prediction. The model is optimized for
multi-class prediction using categorical cross-entropy as the loss function and the Adam
optimizer (lr = 0.001). Strategies like learning rate reduction and early stopping are used to
ensure robustness and prevent overfitting; see Table 5 for the hyperparameters and their
optimized values.
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Table 5. Hyperparameters and values for proposed model training.

Parameters Values

Batch Size 32

Epochs 100

Learning Rate 0.0001

Reduced Learning Rate Yes

Patience for Reduced Learning Rate 3

Early-Stopping Patience 5

Stratified K-Fold K Value 3

Optimizer Adam

FC-Layer Activation Function ReLU

FC-Layer Neurons 512, 256, 128

Output-Layer Neurons 4

Output Activation Function SoftMax

Dropout between FC Layers 0.2, 0.2

Compile Loss Categorical Cross-Entropy

3. Experiment Results and Discussion

In this section, we present a comprehensive discussion of the evaluation measures,
experimental details, and the results obtained through the proposed methodology. We
delve into the assessment criteria used to gauge the performance of our approach, provide
insights into the experimental setup and configurations, and present the outcomes achieved
during our evaluation process.

3.1. Evaluation Metrics

In the realm of machine learning and deep learning, evaluation metrics play a vital role in
gauging model performance. These measures are fundamental to statistical research and are
essential in assessing the effectiveness of our proposed model. In this study, we emphasized
the following key assessment measures to evaluate the efficacy of our approach.

• Accuracy: Accuracy is a metric that assesses the overall correctness of a model’s
predictions. It calculates the proportion of correctly classified samples out of the total
samples. While accuracy is a crucial evaluation measure, it may not be sufficient
in certain scenarios, such as imbalanced datasets or cases where different types of
errors have varying consequences. In such situations, additional evaluation metrics
may be necessary to provide a more comprehensive understanding of the model’s
performance and capabilities. In Equations (2)–(4), TP, TN, FP, and FN represent true
positive, true negative, false positive, and false negative, respectively.

Accuracy = (TP + TN)
/
(TP + FP + TN + FN) (2)

• Precision: Precision is a metric that evaluates a model’s capability to correctly identify
positive samples among the predicted positive samples. It calculates the proportion of
true-positive predictions to the total number of positive predictions (which includes
both true positives and false positives). Precision provides valuable insights into how
accurately the model detects and classifies positive instances, making it an essential
measure in many classification tasks.

P = TP
/
(TP + FP) (3)
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• Recall: Recall, also known as sensitivity or the true-positive rate, measures the model’s
capacity to correctly identify positive samples among all actual positive samples. It
calculates the ratio of true positives to the sum of true positives and false negatives.
Recall reflects the model’s ability to be comprehensive in capturing positive instances,
making it a critical evaluation metric in classification tasks.

R = TP
/
(TP + FN) (4)

• Score: The F1 score is computed as the harmonic mean of precision and recall, provid-
ing a single statistic that balances the two metrics. This makes it particularly useful
when dealing with imbalanced class distributions or scenarios where equal emphasis
is placed on both types of errors. The F1 score ranges from 0 to 1, with 1 representing
the best possible performance of the model. By incorporating both precision and recall,
the F1 score offers a comprehensive evaluation of the model’s overall effectiveness in
classification tasks.

F1 = (2 × P × R)
/
(P + R) (5)

3.2. Stratified K-Fold (Train, Validation, Test)

In the context of this particular study, we turned from the conventional method of
Stratified K-Fold by introducing a more granular division in the validation set. Specifically,
we subdivided the validation set further, allocating 70% of its samples for traditional
validation purposes and keeping the remaining 30% for testing. This departure from the
standard practice is motivated by the need for a more effective evaluation, allowing us to
assess model performance on a separate subset within the validation data; see Algorithm 1.

Algorithm 1: Stratified K-Fold Approach for the Proposed Study

Input: Drug 2D Chemical Structures Dataset
Step 1: Split the dataset into 3 folds.
Repeat
For fold i = 1 to 3 do
Step 2: Select fold i as the validation and the remaining folds as the training set.
Step 3: Divide the validation set with ratio 70:30, 30% used for testing.
Step 4: Fit the model on training set.
Step 5: Evaluate for validation set during training.
Step 6: At the end of the fold i, evaluate the model for test set.
Step 7: Store the evaluation scores in list S.
End-for
Step 8: Find the average performance with S.
Output: Average Performance of the Model

The foundation behind this approach is to enhance the robustness of the model
evaluation process. By having a dedicated testing subset within the validation set, we aim
to obtain a more comprehensive understanding of how the model generalizes to unseen
data. For model training, we utilized the following software: Jupyter Notebook (6.4.12)
and Python (3.11.5) with updated TensorFlow and Keras. As for hardware, we employed
an RTX-3080 GPU with 20 GB of memory.

3.3. Results of Proposed CHEM2SIDE Model and Discussion

For assessing the model’s performance, we employed the proposed CHEM2SIDE
based on a fine-tuned ResNet152V2 architecture for 300 × 300-sized 2D structure images.
We selected the full size of the images so as to not remove any necessary information.
Employing a Stratified K-Fold cross-validation technique with a fold value of three, we
ensured rigorous validation. This approach minimizes bias by segmenting the dataset into
homogeneous subsets for both training and evaluation.
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The proposed model underwent training for a total of 100 epochs. To mitigate overfit-
ting, we implemented early stopping with a patience level of five, coupled with the reduced
learning rate technique featuring a patience level of three. The outcomes presented in
Figures 4–6 unmistakably indicate that the model training concluded prior to reaching the
100-epoch mark. This conclusion arose as the early-stopping criteria were met consistently
across all folds—namely, Fold 1, Fold 2, and Fold 3. This strategic approach ensures that
the model’s training halts when optimal performance is achieved to prevent overfitting
and enhance generalization across the dataset.

Information 2023, 14, 663 11 of 19 
 

 

obtain a more comprehensive understanding of how the model generalizes to unseen 

data. For model training, we utilized the following software: Jupyter Notebook (6.4.12) 

and Python (3.11.5) with updated TensorFlow and Keras. As for hardware, we employed 

an RTX-3080 GPU with 20 GB of memory. 

3.3. Results of Proposed CHEM2SIDE Model and Discussion 

For assessing the model’s performance, we employed the proposed CHEM2SIDE 

based on a fine-tuned ResNet152V2 architecture for 300 × 300-sized 2D structure images. 

We selected the full size of the images so as to not remove any necessary information. 

Employing a Stratified K-Fold cross-validation technique with a fold value of three, we 

ensured rigorous validation. This approach minimizes bias by segmenting the dataset into 

homogeneous subsets for both training and evaluation.  

The proposed model underwent training for a total of 100 epochs. To mitigate over-

fitting, we implemented early stopping with a patience level of five, coupled with the re-

duced learning rate technique featuring a patience level of three. The outcomes presented 

in Figures 4–6 unmistakably indicate that the model training concluded prior to reaching 

the 100-epoch mark. This conclusion arose as the early-stopping criteria were met consist-

ently across all folds—namely, Fold 1, Fold 2, and Fold 3. This strategic approach ensures 

that the model’s training halts when optimal performance is achieved to prevent overfit-

ting and enhance generalization across the dataset. 

  
(a) (b) 

Figure 4. Model accuracies and losses graph for Fold 1. 

  
(a) (b) 

Figure 5. Model accuracies and losses graph for Fold 2. 

Figure 4. Model accuracies and losses graph for Fold 1.

Information 2023, 14, 663 11 of 19 
 

 

obtain a more comprehensive understanding of how the model generalizes to unseen 

data. For model training, we utilized the following software: Jupyter Notebook (6.4.12) 

and Python (3.11.5) with updated TensorFlow and Keras. As for hardware, we employed 

an RTX-3080 GPU with 20 GB of memory. 

3.3. Results of Proposed CHEM2SIDE Model and Discussion 

For assessing the model’s performance, we employed the proposed CHEM2SIDE 

based on a fine-tuned ResNet152V2 architecture for 300 × 300-sized 2D structure images. 

We selected the full size of the images so as to not remove any necessary information. 

Employing a Stratified K-Fold cross-validation technique with a fold value of three, we 

ensured rigorous validation. This approach minimizes bias by segmenting the dataset into 

homogeneous subsets for both training and evaluation.  

The proposed model underwent training for a total of 100 epochs. To mitigate over-

fitting, we implemented early stopping with a patience level of five, coupled with the re-

duced learning rate technique featuring a patience level of three. The outcomes presented 

in Figures 4–6 unmistakably indicate that the model training concluded prior to reaching 

the 100-epoch mark. This conclusion arose as the early-stopping criteria were met consist-

ently across all folds—namely, Fold 1, Fold 2, and Fold 3. This strategic approach ensures 

that the model’s training halts when optimal performance is achieved to prevent overfit-

ting and enhance generalization across the dataset. 

  
(a) (b) 

Figure 4. Model accuracies and losses graph for Fold 1. 

  
(a) (b) 

Figure 5. Model accuracies and losses graph for Fold 2. Figure 5. Model accuracies and losses graph for Fold 2.

In the proposed study, we achieved average maximum training accuracy, maximum
average training loss, average minimum training accuracy, and average minimum training
loss scores of 0.7832, 2.7820, 0.2466, and 0.5284, respectively. Whereas, the average maxi-
mum validation accuracy, maximum validation training loss, average mini-mum validation
accuracy, and average minimum validation loss scores achieved were 0.7377, 1.5051, 0.3139,
and 0.6391, respectively, with the proposed model.

Furthermore, we designated 30% of the data for each fold as the test set. Specifically,
three distinct test sets correspond to Fold 1, Fold 2, and Fold 3; the classification report of
30% test data of each fold can be seen in Table 6. Approximately in each fold, the training
set consists of 2666 samples, validated with 933–934 and 400–401 test samples. The total
test samples for each fold are mentioned in the support column of Table 6.
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Table 6. Test accuracies of each fold’s test data of Stratified K-Fold.

Test Set
Fold

Per-Class
Samples Accuracy Weighted

Precision
Weighted

Recall
Weighted

F1 Support

Fold 1

Class 0: 97,
Class 1: 90,
Class 2: 106,
Class 3: 108

0.72 0.73 0.72 0.72 401

Fold 2

Class 0: 95,
Class 1: 90,
Class 2: 106,
Class 3: 109

0.73 0.73 0.73 0.73 400

Fold 3

Class 0: 95,
Class 1: 91,
Class 2: 106,
Class 3: 108,

0.74 0.74 0.74 0.74 400

Average 0.73 0.73 0.73 0.73 400

In scenarios involving imbalanced classes or substantial discrepancies in the misclassi-
fication between different classes, the utilization of a confusion matrix becomes pivotal for
evaluating the effectiveness of a classification model. The confusion matrix of each fold’s
test data can be seen in Figures 7–9.
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3.4. Comparison with the Literature Contributions

In our proposed study, there is a notable absence of prior studies focusing on the
prediction of multiple drug side effects solely relying on 2D chemical structure images.
While certain research has explored predictions based on canonical SMILES, primarily
within the domain of natural language processing (NLP), our study stands out as pioneer-
ing. To the best of our knowledge, our research marks the first instance of employing a
deep learning approach for this purpose. This is why a direct comparison may not be
feasible due to the pioneering nature of our study. However, we conducted a comparative
analysis by benchmarking our proposed model against established state-of-the-art mod-
els, i.e., MobileNetV2 and KNN, to assess its performance and efficacy in comparison to
well-established frameworks; see Table 7.

Table 7. Proposed CHEM2SIDE model comparison with state-of-the-art models.

Model Average Scores (Stratified K-Fold = 3, Validation → 70% Validation and 30% Testing)

Train
Accuracy

Validation
Accuracy

Test
Accuracy

Weighted
Precision

Weighted
Recall

Weighted
F1

Proposed CHEM2SIDE 0.78 0.73 0.73 0.73 0.73 0.73

MobileNetV2 0.68 0.66 0.66 0.67 0.66 0.65



Information 2023, 14, 663 14 of 19

Table 7. Cont.

Model Average Scores (Stratified K-Fold = 3, Validation → 70% Validation and 30% Testing)

Train
Accuracy

Validation
Accuracy

Test
Accuracy

Weighted
Precision

Weighted
Recall

Weighted
F1

VGG16 0.51 0.51 0.51 0.51 0.51 0.50

DenseNet121 0.62 0.62 0.61 0.62 0.61 0.61

KNN 0.38 0.33 0.32 0.32 0.33 0.25

3.5. Robustness of Proposed CHEM2SIDE

COVID-19, or coronavirus disease 2019, is a global viral respiratory illness caused by
the SARS-CoV-2 virus. Drug discovery has been vital in combating this pandemic. Medica-
tions like remdesivir, dexamethasone, and monoclonal antibodies have been repurposed or
developed to treat COVID-19. These drugs target different aspects of the virus or the body’s
response. However, they can have side effects, such as fever with ritonavir and increased
blood sugar, weight gain, and mood changes with dexamethasone. Careful consideration
of benefits versus side effects is crucial, and ongoing research seeks new treatments and
strategies to minimize the impact on public health. Our study tested a model’s performance
using COVID-19 drug 2D chemical structures, extracted from DrugBank [37], to evaluate
their potential side effect of fever; see Table 8.

Table 8. COVID-19 Drugs.

COVID-19 Drugs

bromhexine ivermectin budesonide

chloroquine losartan celecoxib

colchicine montelukast chlorpromazine

dipyridamole nitazoxanide darunavir

methylprednisolone quetiapine dexamethasone

rivaroxaban ribavirin famotidine

tranexamic acid ritonavir fondaparinux

argatroban ruxolitinib heparin

azithromycin simvastatin hydroxychloroquine

bicalutamide sofosbuvir ibuprofen

Table 9 reveals inconsistencies in the number of samples for the 30 COVID-19 drugs
across different classes; insufficient samples are particularly evident for classes 0 and 2.

Table 9. COVID-19 drugs’ class-wise ratio.

Class Label Class Samples

0 2
1 5
2 1
3 22

We achieved an accuracy of 0.57, a precision of 0.61, a recall of 0.57, and an F1 score of
0.58 with these insufficient data of COVID-19 with the proposed model. We addressed the
issue of insufficient samples by utilizing a diffusion-based model, Pix2Pix, in conjunction
with conventional augmentation techniques discussed in Section 3.3; see Table 10.
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Table 10. COVID-19 drugs’ class-wise ratio after augmentation process.

Class Label Class Samples

0 22
1 22
2 22
3 22

We have evaluated our proposed model with the augmented COVID-19 drugs and
achieved an accuracy of 0.72, a precision of 0.79, a recall of 0.72, and an F1 score of 0.73
with these sufficient data of COVID-19 drugs. The class-wise scores can be seen in Table 11
as a classification report. For a better visualization, the confusion matrix can be seen
in Figure 10. From the confusion matrix, it is observable that our proposed model is
generalized as effectively predicting all the classes rather than exhibiting bias.

Table 11. Classification report of COVID-19 drugs (original + augmented).

Precision Recall F1 Support

0 1.00 0.68 0.81 22
1 0.55 0.82 0.65 22
2 1.00 0.68 0.81 22
3 0.60 0.68 0.64 22

Accuracy 0.72 88
Macro Average 0.79 0.72 0.73 88

Weighted Average 0.79 0.72 0.73 88
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This study employs a critical assessment of the proposed framework that includes
the receiver operating characteristics curve (ROC) and a confusion matrix. The ROC
curve serves as a valuable visual representation of the balance between true-positive and
false-positive rates. Subsequently, the model was assessed by testing it with samples of
COVID-19 drugs that were not part of the initial training dataset; see Figure 11.

To the best of our knowledge, this study represents the first of its kind in predicting
multiple drug side effects using 2D chemical structure images. Prior to this, side effects were
predicted using 1D chemical structures, which are based on the NLP domain. Consequently,
a direct comparison of our proposed model with existing studies is not feasible. However,
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we have also conducted comparisons of our models for COVID-19 drugs to demonstrate
the robustness of our proposed model; see Table 12.
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Table 12. Comparison of proposed model with state-of-the-art models for COVID-19 drugs
(original + augmented).

COVID-19
Accuracy

COVID-19
Weighted
Precision

COVID-19
Weighted

Recall

COVID-19
Weighted

F1

Proposed
CHEM2SIDE 0.72 0.79 0.72 0.73

MobileNetV2 0.45 0.47 0.45 0.39

VGG16 0.43 0.51 0.43 0.33

DenseNet121 0.34 0.16 0.34 0.22

KNN 0.35 0.17 0.35 0.23

4. Conclusions

To overcome the hefty process of 1D chemical structure transformation, we have
introduced a model to predict drug side effects directly from 2D chemical structure images
due to the advancement in the image-processing models, i.e., transfer learning. The
proposed CHEM2SIDE model is based on the ResNet152V2 architecture and transfer
learning approach. To create our dataset, we utilized ground-truth labels from SIDER and
2D structures from PubChem. Although the 2D chemical images are sparse, the ensemble
augmentation and transfer learning approach were considered in this study to mitigate
this problem. Our model exhibited promising results, with an average training accuracy of
0.78, alongside commendable average validation and test accuracy, precision, and recall, all
consistently at 0.73 for multiple drug side-effect prediction, i.e., fever and vomit.

Moreover, when assessing our model’s performance in predicting side effects for
COVID-19 drugs, we achieved an accuracy of 0.72, a precision of 0.79, a recall of 0.72, and
an F1 score of 0.73. In comparative evaluations against established transfer learning and
ML models such as VGG16, MobileNetV2, DenseNet121, and KNN, our CHEM2SIDE
model outperformed them all, underlining a substantial advancement in the field of drug
side-effect prediction. This research not only streamlines the prediction process but also
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underscores the potential for a transformative impact in drug development and safety.
Future work may involve expanding the dataset for the drug side-effect prediction model to
enhance its real-world effectiveness. Consequently, exploring multi-modal data integration
for improved accuracy, along with collaboration with industry and regulatory agencies, is
undertaken for practical adoption.
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