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Abstract: In the face of increasing flood risks intensified by climate change, accurate flood inundation
mapping is pivotal for effective disaster management. This study introduces a novel explainable
deep learning architecture designed to generate precise flood inundation maps from diverse satellite
data sources. A comprehensive evaluation of the proposed model is conducted, comparing it with
state-of-the-art models across various fusion configurations of Multispectral Optical and Synthetic
Aperture Radar (SAR) images. The proposed model consistently outperforms other models across
both Sentinel-1 and Sentinel-2 images, achieving an Intersection Over Union (IOU) of 0.5862 and
0.7031, respectively. Furthermore, analysis of the different fusion combinations reveals that the
use of Sentinel-1 in combination with RGB, NIR, and SWIR achieves the highest IOU of 0.7053
and that the inclusion of the SWIR band has the greatest positive impact on the results. Gradient-
weighted class activation mapping is employed to provide insights into its decision-making processes,
enhancing transparency and interpretability. This research contributes significantly to the field
of flood inundation mapping, offering an efficient model suitable for diverse applications. This
study not only advances flood inundation mapping but also provides a valuable tool for improved
understanding of deep learning decision-making in this area, ultimately contributing to improved
disaster management strategies.

Keywords: deep learning; Explainable Artificial Intelligence; semantic segmentation; flood inundation
mapping; synthetic aperture radar; multispectral; satellite imagery; remote sensing

1. Introduction

Climate change is increasingly manifesting in the forms of higher temperatures and
more intense storms, leading to a rise in both the frequency and severity of flooding [1].
These climate-induced events underline the imperative need to develop effective flood-
resilience measures, with a focus on early detection for managing and mitigating associated
risks [2]. Flood management holds a critical role in achieving Sustainable Development
Goals (SDGs) related to clean water and sanitation (SDG 6); sustainable cities and commu-
nities (SDG 11); and climate action (SDG 13).

Recent data from the Centre for Research on the Epidemiology of Disasters revealed
that floods accounted for over 47% of weather-related disasters between 1995 and 2015. This
alarming statistic underscores the urgency of transitioning to a resilience-based approach
to flood risk management [3]. This approach, in line with SDG 6, recognizes that floods
can have a direct impact on water quality and sanitation by causing contamination and
damaging infrastructure. Effectively managing floods becomes integral to achieving the
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goal of clean water and sanitation, ensuring that flooding does not jeopardize the well-being
and health of affected communities.

In recent years, uncontrolled urban expansion and unplanned development have
encroached upon floodplains, obstructing natural water flows and escalating flood risks,
leading to extensive financial losses. Accurate flood inundation mapping plays a crucial
role in guiding urban planning to mitigate these challenges [4]. This aligns directly with
SDG 11, emphasizing the need for sustainable and resilient human settlements. Planning
developments in a way that prevents the encroachment of settlements onto flood-prone
areas is essential for ensuring the safety, resilience, and sustainability of communities and
urban environments, which are crucial for achieving SDG 11 and its focus on building
resilient and inclusive cities.

A common approach to generating flood inundation maps is the pixel-level segmenta-
tion of satellite images. Two primary satellite sensors commonly used in generating flood
inundation maps are synthetic aperture radar (SAR) and optical sensors. SAR sensors are
capable of functioning regardless of the time of day and can penetrate cloud cover, making
them ideal for regions prone to climate-induced cloud cover [5]. However, they come with
the challenge of speckle noise, which can affect the accuracy of flood inundation mapping
models. On the other hand, optical sensors provide a wealth of spectral information, allow-
ing models to distinguish various features, such as vegetation and water. This can enhance
the models’ ability to delineate floodwaters from other features when trained with optical
imagery; however, they are unable to penetrate through cloud.

Alternatively, sub-pixel-level processing allows for the analysis of images with finer
spatial detail, capturing information beyond the scale of individual pixels. This method
involves estimating the fractional cover of specific features, such as water within a sin-
gle pixel. Sub-pixel processing has proven to be a promising technique, particularly in
developing more accurate flood inundation maps [6]. An associated approach, known
as super-resolution mapping, further refines this concept. In super-resolution mapping,
pixels are deconstructed into sub-pixels, and each sub-pixel is assigned a class label. This
technique addresses the challenge of mixed pixels, common in low-resolution images where
a single pixel may contain more than one type of land cover [7]. Although this has been
shown to provide high levels of accuracy, it has a high computational cost, and can also be
sensitive to noise, limiting its practical applicability.

The transition from traditional flood modeling techniques to advanced artificial intel-
ligence, particularly machine and deep learning, is driven by the need for more accurate
and efficient flood predictions [8]. These advances enable models to make quicker and
more precise predictions. Deep learning, with its ability to learn complex relationships, is
particularly suited for flood inundation mapping due to the complexity and widespread
availability of satellite data. However, deep learning models are often considered “black
boxes”, posing challenges regarding transparency and potential ethical biases, which can be
addressed through the use of Explainable Artificial Intelligence (XAI). This study is focused
on the application of XAI to flood inundation mapping, an area that is largely unexplored
as far as the authors are aware, with only two existing works [9,10]. This approach offers
enhanced insight into the behavior of the proposed deep learning model, as well as how
this is impacted by varying input-data types [11].

1.1. Previous Work
1.1.1. Traditional Flood Inundation Mapping

Numerous techniques have been employed to map flood inundation from diverse
satellite images. In the case of SAR images, the most common practice involves backscatter
thresholding. Backscatter thresholding classifies a pixel as containing water if its backscat-
ter value falls below a specified threshold [12]. In the context of optical imagery, flood
inundation mapping involves techniques such as thresholding bands sensitive to water, like
near-infrared (NIR) and shortwave-infrared (SWIR), or computing normalized difference
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indices like NDWI [13], MNDWI [14], and NDVI [15], where the normalized difference is
found between NIR and SWIR; NIR and green; and NIR and red bands, respectively.

1.1.2. Artificial Intelligence for Flood Inundation Mapping

Recent advancements in machine learning and computer vision, coupled with in-
creased computing power and extensive satellite data from programs like Copernicus,
have spurred research into artificial intelligence’s application in flood inundation mapping.
Although SAR images are commonly used due to their all-weather capability, some studies
highlight the better performance of optical imagery. For instance, Bonafilia et al. [16] ob-
served higher mean IOU values for Sentinel-2 compared to Sentinel-1. Similarly, Konapala
et al. [17] reported higher F1 scores for Sentinel-2.

Traditional machine learning models have yielded accuracies ranging from 70% to
90%, but deep learning has demonstrated superior performance [18–22]. Deep learning
models, particularly Convolutional Neural Networks (CNN), have been widely adopted
for flood inundation mapping due to their ability to learn complex, non-linear relationships
directly from raw data. They eliminate the need for extensive preprocessing, such as feature
engineering. Models based on fully convolutional networks (FCN) have outperformed
classical machine learning and traditional techniques [23].

To address resolution limitations introduced by convolutional layers, encoder–decoder
architectures have been proposed. The U-Net model, a popular choice, features in several
studies [5,17,24–28]. U-Net++ is a further state-of-the-art model that expands on U-Net, and
it has been shown to achieve impressive performance in flood inundation mapping [29,30];
however, Helleis et al. [27] found that the standard U-Net performed better. Several
studies have improved the performance of this architecture by incorporating attention
mechanisms [31,32], demonstrably providing superior accuracy and efficiency.

Other architectures, like DeepLabV3 and DeepLabV3+, introduce innovative features
such as atrous convolution, spatial pyramid pooling, and separable convolution, and they
have been shown to outperform U-Net [27]. The choice of architecture and encoder module
plays a critical role in model performance.

For SAR imagery, novel architectures have been introduced to improve performance.
FWENet [33] combines aspects of U-Net and DeepLab, incorporating atrous convolution for
enhanced results. Siam-DWENet [34], a Siamese network, learns differences between SAR
images at various time intervals, outperforming other architectures. In optical imagery,
H2O-Net [35] leverages generative adversarial networks to map RGB bands to SWIR
signals, outperforming existing architectures trained with the original RGB bands.

One challenge in utilizing deep learning for flood inundation mapping is the need for
large, labeled datasets, which can be time-consuming and costly to obtain. Efforts have
been made to curate datasets like the Sen1Floods11 dataset. This paper aims to develop a
deep learning semantic-segmentation model suitable for flood inundation mapping. The
model’s appropriateness for this task as well as its performance are assessed by leveraging
the Sen1Floods11 dataset.

The contributions of this paper are as follows:

1. Presenting a novel deep learning semantic-segmentation model capable of producing
high quality flood inundation maps from both SAR and optical images, demonstrated
through comparative analysis with state-of-the-art models.

2. Investigating various combinations of fusion of SAR and optical spectral bands and
indices, providing insight into the optimal combinations for accurate flood inundation
maps in both clear and cloud-covered conditions.

3. Integrating XAI to interpret the behavior of the deep learning models, providing a
more comprehensive understanding of their capacity to learn effectively. This not
only enhances the trustworthiness of the models, but also provides deeper insight
into the influence of each input-data type on the models’ decision-making process.
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2. Materials and Methods
2.1. Dataset

The dataset employed in this research [16] comprises 446 images from Sentinel-1 and
446 images from Sentinel-2 satellites, both integral components of the European Space
Agency’s Copernicus program, which is facilitating open access to satellite data. This
dataset encompasses imagery from 11 distinct global flood events, occurring in Bolivia,
Ghana, India, Cambodia, Nigeria, Pakistan, Paraguay, Somalia, Spain, Sri Lanka, and the
USA, as depicted in Figure 1.
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Figure 1. Map showing the locations of the flood events sampled in the dataset.

Sentinel-1 satellites employ C-band SAR instruments, characterized by longer wave-
lengths compared to optical sensors. This feature enables them to penetrate through
challenging conditions such as clouds, storms, and dense vegetation. Additionally, SAR
sensors provide their own source of illumination, rendering them operational at any time
of the day. Nonetheless, SAR imagery is susceptible to speckle, involving random signal
variations, which can potentially impede the ability of deep learning models to discern
authentic signals. The images selected for this study were captured in the interferometric
wide swath (IW) mode, offering extensive coverage with an enhanced swath width of
approximately 250 km. This mode is particularly well-suited for large-scale applications,
including flood inundation mapping. The ground resolution in this imaging mode ranges
between 5 and 20 m, and the images utilized in our study feature a ground resolution
of 10 m. This moderate resolution strikes a balance between high- and low-level detail,
ensuring visibility of smaller water bodies while adequately covering larger areas. The
Sentinel-1 satellite offers various polarization modes, with the selected images featuring
dual polarization, comprising vertical transmit and vertical-horizontal receive (VV + VH).
This dual polarization mode enriches information for enhanced water detection while
maintaining computational efficiency.

Conversely, Sentinel-2 satellites capture optical imagery using a multispectral in-
strument (MSI) with a 290 km field of view. This instrument records 13 spectral bands
encompassing visible light, near-infrared, and shortwave-infrared spectra, offering detailed
insights into vegetation, land cover, and water bodies. Such detailed information proves
instrumental in distinguishing flooded areas from other land types. Among the 13 spectral
bands, 4 feature a 10 m ground resolution, 6 have a 20 m ground resolution, and 3 exhibit a
60 m ground resolution. For the sake of consistency and improved analysis, the images
were resampled to a uniform 10 m ground resolution for each band. A visual representation
of the spectral bands from both satellites is illustrated in Figure 2.

The dataset comprises flood events for which both Sentinel-1 and coincident Sentinel-2
images were available within a maximum time frame of two days. Specifically, five events
featured imagery captured on the same day, four within a one-day interval, and two with a
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two-day difference. Variations exist in the orbit direction, denoted as ascending (moving
from the Southern to the Northern Hemisphere) or descending (moving from the Northern
to the Southern Hemisphere), as well as in relative orbit values, signifying the satellite’s
position and movement relative to other satellites in the constellation. An overview of this
information for each event is provided in Table 1.
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Figure 2. Visualization of the two polarizations from a Sentinel-1 image, and the 13 spectral bands
from a Sentinel-2 image taken from the flood event in India. Here the speckle in the Sentinel-1 images
and the cloud coverage in the Sentinel-2 image can be clearly observed, highlighting the differences
between the images from these two satellites.

Table 1. The dates, orbit direction and relative orbit value for each flood event.

Flood Event S1 Date S2 Date Orbit Rel. Orbit

Bolivia 15 February 2018 15 February 2018 Descending 156
Ghana 18 September 2018 19 September 2018 Ascending 147
India 12 August 2016 12 August 2016 Descending 77

Cambodia 5 August 2018 4 August 2018 Ascending 26
Nigeria 21 September 2018 20 September 2018 Ascending 103
Pakistan 28 June 2017 28 June 2017 Descending 5
Paraguay 31 October 2018 31 October 2018 Ascending 68
Somalia 7 May 2018 5 May 2018 Ascending 116

Spain 17 September 2019 18 September 2019 Descending 110
Sri Lanka 30 May 2017 28 May 2017 Descending 19

USA 22 May 2019 22 May 2019 Ascending 136

2.1.1. Dataset Preparation

For the creation of ground truth labels, computation of NDVI and MNDWI values
were performed using the Sentinel-2 images, followed by the application of predefined
expert-defined thresholds: 0.2 for NDVI and 0.3 for MNDWI. These thresholds served to
identify flooded and non-flooded pixels. Furthermore, analysts were granted access to the
images and the initial labels obtained from Sentinel-2 data. They meticulously reviewed
these labels and adjusted areas where water classifications required modification to non-
water or vice versa. This meticulous review process enriched the quality of the labels, thus
enhancing their utility in model training and evaluation.

To ensure the fidelity of the dataset, measures were implemented to remove cloud
shadows that can exhibit a spectral signature similar to that of floodwater, potentially
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impeding the accurate classification of flooded pixels. This process involved identifying
clouds by applying a threshold to the blue band, setting the threshold at 0.2, with values
falling below this threshold being designated as indicative of clouds. Subsequently, the
removal of cloud shadows was executed by projecting the cloud shadow based on factors
such as potential cloud height, solar azimuth angle, and solar zenith angle.

2.1.2. Spectral Bands and Indices

The Sentinel-1 satellite is equipped with different polarization modes, encompassing
both vertical and horizontal transmission and reception. Within this dataset, the satellite
imagery features dual polarization, specifically vertical transmit and vertical/horizontal
receive (VV + VH). This configuration provides enhanced information, contributing to the
improved detection of water while simultaneously maintaining computational efficiency.

On the other hand, Sentinel-2 comprises a total of 13 spectral bands, offering a com-
prehensive range of information, as detailed in Table 2. Additionally, Figure 2 presents a
visual representation of each spectral band for both Sentinel satellites.

Table 2. Descriptions of each spectral band of Sentinel-2.

Band Resolution Central Wavelength Description

Band 1—Coastal 60 m 443 nm Band 1 captures the aerosol properties in coastal zones,
which aids in assessing water quality.

Band 2—Blue (B) 10 m 490 nm
Band 2 captures the blue light in the visible spectrum

and is useful for soil and vegetation discrimination and
identifying land-cover types.

Band 3—Green (G) 10 m 560 nm

Band 3 captures the green light in the visible spectrum,
which provides good contrast between muddy and clear
water, and is useful for detecting oil on water surfaces

and vegetation.

Band 4—Red (R) 10 m 665 nm
Band 4 captures the red light in the visible spectrum,

which is useful for identifying vegetation and soil types,
and differentiating between land-cover types.

Band 5—RedEdge-1
Band 6—RedEdge-2
Band 7—RedEdge-3

20 m
20 m
20 m

705 nm
740 nm
783 nm

Bands 5, 6, and 7 capture the spectral region within the
red edge where vegetation has increased reflectance and

are useful for classifying vegetation.

Band 8—Near-Infrared (NIR) 10 m 842 nm
Band 8 captures light in the near-infrared spectrum and
captures the reflectance properties of water, so is useful

for discriminating between land and water bodies.

Band 8a—Narrow
Near-Infrared 20 m 865 nm

Band 8a captures light in the near-infrared spectrum at a
longer wavelength, providing additional sensitivity to

vegetation reflectance, so is useful for vegetation
classification.

Band 9—Water Vapor 60 m 945 nm
Band 9 captures light in the shortwave-infrared

spectrum and is useful for detecting atmospheric water
vapor.

Band 10—Cirrus 60 m 1375 nm
Band 10 captures light in the shortwave-infrared

spectrum and is sensitive to cirrus clouds, so can be
useful for cloud removal.

Band 11—Shortwave-
Infrared-1 (SWIR-1)

Band 12—Shortwave-
Infrared-2 (SWIR-2)

20 m
20 m

1610 nm
2190 nm

Bands 11 and 12 capture light in the shortwave-infrared
spectrum, and are sensitive to surface moisture, so are
useful for measuring the moisture content of soil and
vegetation, as well as discriminating between water

bodies and other land types.

For flood inundation mapping, certain spectral bands are especially preferred. Notably,
the visible light bands (RGB) are highly favored for their sensitivity to surface reflectance,
rendering them effective in distinguishing various land-cover types, including water bodies.
Furthermore, the near-infrared (NIR) band is frequently employed, as water bodies exhibit
strong absorption of near-infrared light, facilitating a pronounced contrast between water
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and non-water regions. The shortwave-infrared (SWIR) bands are instrumental in capturing
substantial information pertaining to surface moisture and are attuned to variations in
water content.

The methodology for flood inundation mapping often relies on spectral indices, which
are mathematical formulations combining pixel values from two or more spectral bands,
designed to extract specific characteristics of the Earth’s surface based on reflectance values
from diverse spectral bands, showing the relative abundance or lack of a specific land-
cover type, for example, the Normalized Difference Water Index (NDWI), which extracts
information about the presence of water bodies and the Normalized Difference Vegetation
Index (NDVI), which extracts information about vegetation cover.

The NDWI is a fundamental index used in flood inundation mapping, due to its
design for water detection, relying on the contrast in the reflectance between the green
and NIR bands. The use of this index can be limited by noise emanating from built-up
areas, vegetation, and soil, reducing the accuracy of resulting flood inundation maps. To
address this challenge, the modified NDWI (MNDWI), shown in Equation (1), incorporates
the SWIR band, which enhances the open water features, while diminishing the features
of built-up areas, which are often correlated with open water when the NIR band is used.
The NDVI, shown in Equation (2), finds utility in both vegetation detection and flood
assessment, facilitated by its ability to distinguish between vegetation and water.

MNDWI =
Green − SWIR1
Green + SWIR1

(1)

NDVI =
NIR − Red
NIR + Red

(2)

Considering the diverse strengths and limitations inherent to each satellite sensor, this
study will assess the images from each satellite, alongside several distinct band-fusion
configurations involving data from both satellites. The configurations that will be evaluated
are as follows:

1. Sentinel-1 (VV + VH)
2. Sentinel-2 (All bands)
3. VV + VH + Sentinel-2 (All bands)
4. VV + VH + NIR
5. VV + VH + SWIR
6. VV + VH + NIR + SWIR
7. VV + VH + RGB
8. VV + VH + RGB + NIR
9. VV + VH + RGB + SWIR
10. VV + VH + RGB + NIR + SWIR
11. VV + VH + NDVI
12. VV + VH + MNDWI

2.2. Proposed Model Architecture

Encoder–decoder architectures are powerful methods of semantic segmentation. In
this type of architecture, a fully convolutional CNN serves as the encoder module, re-
sponsible for extracting feature maps that capture high-level semantic information. A
decoder module is employed to gradually up-sample the CNN’s output, thereby recover-
ing the spatial information. The proposed model takes inspiration from this concept and
incorporates two encoder and two decoder modules. The outputs from each are fused
through a weighted average, utilizing two trainable weight parameters, W1 and W2, which
are learned from the input data and optimized through the training process, where W1
is multiplied by the output of the powerful model and W2 is multiplied by the output
of the lightweight model, and the resulting values are combined through element-wise
addition. This combined output is subsequently processed through a fully connected layer
and a sigmoid-activation function, leading to the final pixel-wise classification. This novel
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approach increases the input for the final classification task, thus enhancing performance,
particularly given the constraints of a relatively small dataset. Furthermore, both encoder
modules in our architecture are CNNs that have been pre-trained on ImageNet, then
subsequently fine-tuned with the Sen1Floods11 dataset. A visual representation of this
architecture is presented in Figure 3.
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each model before being combined to obtain the final prediction. Gradient-weighted class activation
mapping is then applied: the water class score is obtained, and the gradients are set to one before
being backpropagated through global average pooling. A weighted combination of the resulting
activation maps is computed and passed through ReLU to provide a heatmap showing the pixels
with a positive impact on the prediction.

The architecture leverages two distinct CNN models as encoder modules. One of
these models is a high-performance CNN with robust computational accuracy, whereas
the other is a more lightweight CNN, designed for greater computational efficiency. This
strategic combination ensures that the two encoder modules complement each other,
resulting in an overall model with higher accuracy while maintaining efficient training and
prediction times.

The more robust encoder module employs repetitive convolutional and identity
blocks [36], each consisting of 3 convolutional layers: a 1 × 1 convolution, a 3 × 3 con-
volution, and an additional 1 × 1 convolution. An identity block, functioning as a skip-
connection, feeds the activation function from the final convolutional layer into a deeper
network layer, effectively mitigating the vanishing-gradient problem often encountered in
deep neural networks. The lighter encoder module comprises 17 recurring blocks, each en-
compassing 3 layers: a 1 × 1 convolution featuring Rectified Linear Unit (ReLU) activation,
a depthwise convolution, and an additional 1 × 1 convolution.

The decoder modules within the proposed architecture perform up-sampling, where
transposed convolution is applied to the feature maps originating from the encoder CNNs,
producing a high-resolution output that recovers the spatial information lost by the encoder
module. To achieve this effectively, each decoder module employs a range of performance-
enhancing features. The first decoder includes dense skip pathways and deep supervision,
whereas the second involves atrous convolution, spatial pyramid pooling, and depthwise
separable convolution.

Dense skip pathways serve to minimize the semantic gap between the encoder and
decoder modules, facilitating a dense convolution on the feature maps from the encoder
module. This reduces the complexity of the optimizer’s task, resulting in more efficient
optimization. Deep supervision introduces supervision into the neural network’s hidden
layers to directly influence their parameters in favor of highly discriminative features [37].
To achieve this, two loss functions, Cross Entropy Loss and Dice Loss, are combined for
each of the four semantic labels [38].

Atrous convolution effectively enables feature maps to be computed at the desired
resolution without significantly increasing computational costs. It achieves this by utilizing
a kernel with spaces between values, as defined by the dilation rate, offering an increased
field of view without added computational expenses [39].

Spatial pyramid pooling is a type of pooling layer that can accommodate input images
of varying sizes, by pooling the features into a fixed-length representation of the initial
input vector in spatial bins. The bins’ outputs are kM-dimensional, where k represents
the number of filters in the final convolutional layer, and M denotes the number of spatial
bins [40]. To alleviate any potential increase in computational complexity associated
with spatial pyramid pooling, atrous convolution is integrated into the approach [41].
Four parallel atrous convolutional layers of varying dilation rates capture multi-scale
information. As the dilation rate increases, the number of valid filter weights diminishes,
and global average pooling is employed on the last feature map of the model. The resulting
features are subsequently fed into a 1 × 1 convolution. Finally, depthwise separable
convolution encompasses depthwise convolution, performing a spatial convolution for each
input channel, followed by pointwise convolution, where the outputs from the depthwise
convolution are combined. In the proposed model, atrous convolution is incorporated into
depthwise convolution, effectively reducing computational complexity while maintaining
performance levels.
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To provide interpretation of the behavior of the deep learning models, gradient-
weighted class activation mapping [42], a visual XAI method, is employed, as illustrated in
the architecture diagram in Figure 3. This method leverages the gradients of a specific class,
in this case, the water class, as they flow into a target layer to generate a heatmap where
the regions of the input image that were most influential in the model’s decision-making
are highlighted.

The heatmap Lc is generated by first determining the target class c with respect to the
feature map activations Ak of the target layer ∂yc

∂Ak . Global average pooling is then applied
over the width i and height j of the image, to provide the weight of importance for each
neuron, as in Equation (3).

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(3)

ReLU is then applied to a weighted combination of the activation maps computed
from the forward pass of the model, so that the highlighted pixels are only those that have
a positive influence on the prediction of the target class, resulting in the final heatmap as
shown in Equation (4).

Lc = ReLU

(
∑
k

αc
k Ak

)
(4)

2.3. Preprocessing

To reduce the likelihood of overfitting, augmentation is applied to the training data
before fitting to the model to increase the variation of the training dataset. The augmentation
measures employed include random cropping, from 512 × 512 to 256 × 256, random vertical
flipping of half of the images, and random horizontal flipping of half of the images, where
the images to be flipped are selected at random.

The validation and testing images are cropped from 512 × 512 to 256 × 256 at a
fixed point to ensure that they fit the dimensions of the model but remain consistent for
visual comparison. All three datasets are normalized by the mean and standard deviation,
ensuring that the values are within the same scale.

2.4. Experimental Settings

The work is implemented in Python using the Pytorch deep learning framework,
accelerated with the NVIDIA A100 graphics processing unit (GPU), accessed through the
cloud. An overview of the experimental process is shown in Figure 4.

The 446 Sentinel-1 and Sentinel-2 images are split into training, validation, and testing
sets with sample sizes of 251, 89, and 90, respectively. The data are loaded with a batch size
of 16 to accommodate processing limitations, and are shuffled for each epoch, aiding in the
reduction of the possibility of overfitting. The Cross Entropy Loss function is employed,
which is a measure of the difference between the probability distributions of the true and
predicted values, calculated as shown in Equation (5), where ti is the true value and pi is
the predicted value, with i being the target class.

L = −
2
∑

i=1
tilog(pi) = −t1log(p1)− t2log(p2)

= −[t1log(p1) + (1 − t1)log(1 − p1)]
(5)

As in most flood image data, there is a significant imbalance of water to background
pixels, with water making up the minority class. Weighting is employed within the loss
function in order to overcome this, where the water class is given 8 times the importance of
the background class.
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Adaptive Moment Estimation with Decoupled Weight Decay (AdamW) is utilized;
this is an optimization technique based on stochastic gradient descent. It dynamically
estimates first-order and second-order moments, offering adaptive adjustments during
training. In AdamW the weight decay method is enhanced through decoupling it from the
optimization steps [43]. The learning rate is set to 0.0005, scheduled with Cosine Annealing
Warm Restarts, where the learning rate is decreased from a high value to a low value,
and then restarts from the previously found ‘good’ value [44]. The model is trained and
validated over 250 epochs, while being evaluated on the accuracy, loss, F1 score, and
Intersection Over Union (IOU) every 10 epochs, which are calculated as follows:

accuracy =
correct predictions
total predictions

(6)

F1 score = 2 · precision · recall
precision + recall

(7)

IOU =
area o f intersection

area o f union
(8)

IOU is typically considered to be the most valuable metric for evaluating semantic-
segmentation models, as it is able to quantify how effectively the predicted mask overlaps
with the ground truth. Therefore, the version of the model with the highest validation IOU
is saved for testing.

3. Results
3.1. Comparison of Models

To contextualize the performance of the proposed model outlined in Section 2.2,
comparative analysis was conducted against three state-of-the-art models, U-Net++ [38],
DeepLabV3+ [45] and Multi-Scale Attention Network (MA-Net) [46], each with a backbone
of ResNet50 [47] and MobileNet_V2 [48]. U-Net++ leverages dense skip connections
and deep supervision, whereas DeepLabV3+ incorporates atrous convolution and spatial
pyramid pooling and MA-Net introduces self-attention mechanisms to adaptively integrate
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local features with their global dependencies; these consist of a position-wise attention block
and a multi-scale fusion attention block, which capture the spatial dependencies between
feature maps and the rich multi-scale semantic information of feature maps, respectively.
ResNet50 is made up of residual blocks, which each consist of 3 × 3 convolution, batch
normalization, and ReLU activation, as well as skip connections; MobileNet_V2 leverages
low-dimensional compressed representations as input, then filters through lightweight
depthwise separable convolution in order to reduce the memory requirements of training
the model.

3.1.1. Quantitative Evaluation

In Tables 3–5 the mean accuracy, loss, F1 Score, and IOU are shown for each of the
compared models during training, validation, and testing, respectively, with Sentinel-1
images being employed. These results show that the proposed model was able to con-
sistently outperform each of the state-of-the-art models, showcasing its effectiveness in
handling Sentinel-1 imagery, and its superior robustness and ability to generalize to un-
seen data, making it the most suitable for practical flood mapping applications with
Sentinel-1 imagery.

Table 3. Training scores with Sentinel-1 images.

Model Accuracy Loss F1 Score IOU

U-Net++ ResNet50 0.9387 0.1763 0.7098 0.5509
U-Net++ MobileNet_V2 0.9242 0.2108 0.6623 0.5345
DeepLabV3+ ResNet50 0.9237 0.1882 0.6502 0.5272

DeepLabV3+ MobileNet_V2 0.9389 0.1784 0.6962 0.5491
MA-Net ResNet50 0.9206 0.2349 0.6565 0.5201

MA-Net MobileNet_V2 0.9398 0.2249 0.6739 0.5425
Proposed 0.9478 0.1342 0.7425 0.5997

Table 4. Validation scores with Sentinel-1 images.

Model Accuracy Loss F1 Score IOU

U-Net++ ResNet50 0.9301 0.2086 0.6921 0.5422
U-Net++ MobileNet_V2 0.9185 0.2213 0.6537 0.5234
DeepLabV3+ ResNet50 0.9196 0.2146 0.6448 0.5207

DeepLabV3+ MobileNet_V2 0.9205 0.2093 0.6829 0.5401
MA-Net ResNet50 0.9201 0.2431 0.6351 0.4819

MA-Net MobileNet_V2 0.9101 0.2733 0.6056 0.4723
Proposed 0.9436 0.1724 0.7376 0.5908

Table 5. Testing scores with Sentinel-1 images.

Model Accuracy Loss F1 Score IOU

U-Net++ ResNet50 0.9298 0.2743 0.6764 0.5404
U-Net++ MobileNet_V2 0.9127 0.2884 0.6509 0.5218
DeepLabV3+ ResNet50 0.9124 0.2789 0.6249 0.5197

DeepLabV3+ MobileNet_V2 0.9196 0.2752 0.6789 0.5388
MA-Net ResNet50 0.9078 0.2825 0.6037 0.4727

MA-Net MobileNet_V2 0.9008 0.2852 0.5956 0.4590
Proposed 0.9432 0.2237 0.7176 0.5862

Tables 6–8 show the mean accuracy, loss, F1 Score, and IOU during the training,
validation, and testing of the models trained with Sentinel-2 images, where the superiority
of the proposed model was further emphasized. Of the state-of-the-art models, U-Net++
with ResNet50 was the best performing with Sentinel-1 images; however, with Sentinel-
2 images U-Net++ with MobileNet_V2 exhibits superior performance, suggesting that
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each state-of-the-art model is better suited to a particular data type. The proposed model,
however, outperformed each of the state-of-the-art models across both image types. This
demonstrates its ability to adapt to both SAR and optical image sources, further reinforcing
its suitability for practical applications, as it will provide consistently high performance
regardless of available data.

Table 6. Training scores with Sentinel-2 images.

Model Accuracy Loss F1 Score IOU

U-Net++ ResNet50 0.9643 0.1123 0.7921 0.6827
U-Net++ MobileNet_V2 0.9756 0.0934 0.8237 0.7246
DeepLabV3+ ResNet50 0.9689 0.0952 0.8109 0.6983

DeepLabV3+ MobileNet_V2 0.9462 0.1028 0.7827 0.6828
MA-Net ResNet50 0.9622 0.1137 0.7202 0.6331

MA-Net MobileNet_V2 0.9635 0.1167 0.7536 0.6402
Proposed 0.9789 0.0883 0.8396 0.7307

Table 7. Validation scores with Sentinel-2 images.

Model Accuracy Loss F1 Score IOU

U-Net++ ResNet50 0.9638 0.1197 0.7892 0.6643
U-Net++ MobileNet_V2 0.9721 0.0968 0.8074 0.7121
DeepLabV3+ ResNet50 0.9642 0.1007 0.7986 0.6912

DeepLabV3+ MobileNet_V2 0.9409 0.1095 0.7774 0.6784
MA-Net ResNet50 0.9448 0.1557 0.7043 0.5901

MA-Net MobileNet_V2 0.9552 0.1242 0.7553 0.6273
Proposed 0.9763 0.0906 0.8238 0.7241

Table 8. Testing scores with Sentinel-2 images.

Model Accuracy Loss F1 Score IOU

U-Net++ ResNet50 0.9583 0.1346 0.7762 0.6529
U-Net++ MobileNet_V2 0.9702 0.1209 0.7980 0.6832
DeepLabV3+ ResNet50 0.9573 0.1254 0.7923 0.6804

DeepLabV3+ MobileNet_V2 0.9364 0.1317 0.7705 0.6715
MA-Net ResNet50 0.9218 0.2147 0.6889 0.5696

MA-Net MobileNet_V2 0.9307 0.2277 0.7048 0.5810
Proposed 0.9718 0.1143 0.8054 0.7031

3.1.2. Computational Complexity

Table 9 shows the time taken to train the model for each epoch, and the time taken
for inference of an image with both Sentinel-1 and Sentinel-2 in addition to the number of
trainable parameters of each model. The state-of-the-art models trained with ResNet50
backbones demonstrated longer training and inference times and a greater number of
trainable parameters than their MobileNet_V2 counterparts, with the MA-Net models
containing the greatest number of trainable parameters, and the U-Net++ models demon-
strating a higher level of computational complexity than the DeepLabV3+ models. The
proposed model fell between DeepLabV3+ and U-Net++ with ResNet50 backbones, similar
to both MA-Net models in terms of both computation time and number of parameters,
providing reduced training and inference time over the MA-Net models and the U-Net++
with ResNet50 backbone. When considered alongside its superior performance, this further
emphasizes the suitability of the proposed model for practical use.
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Table 9. Computation time for training and testing with Sentinel-1 images.

Model
Training Time
per Epoch (s)

Sentinel-1

Inference Time
per Image (ms)

Sentinel-1

Training Time
per Epoch (s)

Sentinel-2

Inference Time
per Image (ms)

Sentinel-2

Number of
Parameters

U-Net++ ResNet50 23 318 27 346 48,982,754
U-Net++ MobileNet_V2 8 104 9 124 6,824,578
DeepLabV3+ ResNet50 11 136 16 192 26,674,706

DeepLabV3+ MobileNet_V2 3 72 8 108 4,378,482
MA-Net ResNet50 31 352 34 374 147,471,498

MA-Net MobileNet_V2 19 304 25 339 48,891,766
Proposed 17 287 22 312 42,745,693

3.1.3. Qualitative Evaluation

Visualizations of the flood inundation maps produced by each model for each im-
age type are provided in Figures 5–8, with Figures 5 and 7 depicting an example image
taken in clear conditions by Sentinel-1 and Sentinel-2, respectively, and Figures 6 and 8
depicting images taken in cloud-covered conditions, providing further insight into how
well each model was able to handle different weather conditions present in the imagery.
These visualizations revealed that the models exhibiting superior performance against the
evaluation metrics tended to produce more refined segmentation masks, resulting in more
detailed maps. Conversely, models with weaker performance tended to generate coarser
masks, characterized by a higher incidence of false-positive pixel classifications. Notably,
the inundation maps produced by the proposed model consistently aligned more closely
with the ground truth than did other models.
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In Figure 8, depicting an image sourced from Sentinel-2 under cloudy conditions, the
sensor’s visibility was limited, introducing noise into the image. However, even under
such challenging circumstances, the proposed model managed to create the most accurate
inundation map. This model, in particular, exhibited fewer false-negative areas, which
is a crucial factor as it reduces the risk of missing instances of flooding in real-world
applications.

To shed light on the decision-making process of the models, the heatmaps generated
through gradient-weighted class activation mapping highlighted the areas of the image
where the model placed the most importance when making predictions. The color-coded
heatmap provided valuable insights into the extent of the model’s attention, where red
areas received the highest focus, and dark blue areas received the least. This feature offered
more informative data compared to the binary ground truth, as it quantified the presence
and significance of the identified features.

The heatmaps for models trained with Sentinel-1 are displayed in Figures 9 and 10,
while Figures 11 and 12 illustrate the heatmaps for models trained with Sentinel-2. In gen-
eral, heatmaps from high-performing models exhibited closer alignment with the ground
truth and assigned a higher magnitude of importance to relevant pixels. An exception
to this pattern was observed in the case of U-Net++ with the ResNet50 backbone trained
with Sentinel-1 images, where the heatmaps revealed the model’s attention to a significant
number of irrelevant pixels. Nevertheless, the magnitude of importance attributed to these
pixels is minimal, and the areas of higher importance closely corresponded to the ground
truth. These heatmaps further emphasize the superior quality of the proposed model,
as not only is it able to provide the most accurate flood inundation map, but it is also
demonstrably making the most appropriate decisions, applying the highest magnitude of
importance to the most relevant pixels of each of the compared models.
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3.1.4. Ablation Study

To better understand the impact of each module of the proposed model, an ablation
study was performed, wherein the model was systematically retrained with one module
disabled for each of the modules incorporated in the model. The testing performance of the
model with each module removed is shown in Table 10, using the Sentinel-1 images.

Table 10. Ablation study demonstrating the impact of each module on the performance of the
proposed model.

Module Removed Accuracy Loss F1 Score IOU

Dense Skip Connections 0.9219 0.2269 0.6565 0.5361
Deep Supervision 0.9406 0.2731 0.7053 0.5714

Atrous Convolution 0.9323 0.2255 0.6882 0.5480
Spatial Pyramid Pooling 0.9226 0.2348 0.6632 0.5291

Weighting 0.9348 0.2317 0.6924 0.5706

Proposed Model 0.9432 0.2237 0.7176 0.5862

From these results it can be observed that the deep supervision and weighting had the
most modest impact on performance, with the model achieving an IOU of 0.5714 and 0.5706,
respectively, where the proposed model achieved 0.5862. Conversely, the spatial pyramid
pooling and dense skip connections had the most significant influence on the performance
of the model, resulting in a reduction of the IOU to 0.5291 and 0.5361, respectively. The
atrous convolution had a moderate impact on the performance, where its removal resulted
in an IOU of 0.5480.

3.2. Comparison of Sentinel-1 and Sentinel-2 Combinations
3.2.1. Quantitative Evaluation

In Tables 11–13 the accuracy, loss, F1 score, and IOU are shown for the proposed model
when trained with Sentinel-1, Sentinel-2, and each fusion–configuration of the two satellite
image types. It is evident from these tables that in most cases, the fusion of Sentinel-1 and
Sentinel-2 bands improved the performance over Sentinel-1 alone but were not able to
surpass the performance of Sentinel-2 alone. During training, the only exception to this was
where Sentinel-1 was fused with the RGB bands of Sentinel-2, where the performance was
weaker than for Sentinel-1 alone. During validation and testing, the fusion of Sentinel-1
with both NDVI and MNDWI also underperformed in comparison to Sentinel-1 alone,
which given their superior performance in training suggests potential overfitting and lack
of ability to generalize to unseen data. Moreover, the fusion of Sentinel-1 with the RGB,
NIR, and SWIR bands of Sentinel-2 provided performance comparable to that of Sentinel-2
alone, and in some cases, such as the training loss and testing IOU was able to outperform
Sentinel-2.

Table 11. Training scores for each combination.

Model Accuracy Loss F1 Score IOU

Sentinel-1 (VV + VH) 0.9478 0.1342 0.7425 0.5997
Sentinel-2 (All Bands) 0.9789 0.0883 0.8396 0.7307

VV + VH + Sentinel-2 0.9607 0.0953 0.7882 0.6651
VV + VH + NIR 0.9551 0.1146 0.7722 0.6395

VV + VH + SWIR 0.9531 0.1157 0.7602 0.6253
VV + VH + NIR + SWIR 0.9614 0.0934 0.7925 0.6662

VV + VH + RGB 0.9373 0.1687 0.6965 0.5473
VV + VH + RGB + NIR 0.9611 0.0955 0.7898 0.6640

VV + VH + RGB + SWIR 0.9569 0.1072 0.7701 0.6421
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Table 11. Cont.

Model Accuracy Loss F1 Score IOU

VV + VH + RGB + NIR + SWIR 0.9684 0.0764 0.8232 0.7064
VV + VH + NDVI 0.9509 0.1275 0.7444 0.6068

VV + VH + MNDWI 0.9536 0.1224 0.7585 0.6215

Table 12. Validation scores for each combination.

Model Accuracy Loss F1 Score IOU

Sentinel-1 (VV + VH) 0.9436 0.1724 0.7376 0.5908
Sentinel-2 (All Bands) 0.9763 0.0906 0.8238 0.7241

VV + VH + Sentinel-2 0.9662 0.1019 0.7673 0.6620
VV + VH + NIR 0.9610 0.1776 0.7510 0.6417

VV + VH + SWIR 0.9537 0.1629 0.6581 0.5963
VV + VH + NIR + SWIR 0.9564 0.1184 0.7153 0.5991

VV + VH + RGB 0.9311 0.2201 0.6521 0.5416
VV + VH + RGB + NIR 0.9590 0.1103 0.7179 0.6496

VV + VH + RGB + SWIR 0.9672 0.1019 0.8012 0.6943
VV + VH + RGB + NIR + SWIR 0.9708 0.0915 0.8216 0.7225

VV + VH + NDVI 0.9368 0.1588 0.6901 0.5704
VV + VH + MNDWI 0.9470 0.1875 0.6872 0.5676

Table 13. Testing scores for each combination.

Model Accuracy Loss F1 Score IOU

Sentinel-1 0.9432 0.2237 0.7176 0.5862
Sentinel-2 0.9718 0.1143 0.8054 0.7031

VV + VH + Sentinel-2 0.9632 0.2442 0.7582 0.6425
VV + VH + NIR 0.9550 0.2980 0.7155 0.6125

VV + VH + SWIR 0.9620 0.2808 0.7509 0.6310
VV + VH + NIR + SWIR 0.9588 0.2793 0.7495 0.6385

VV + VH + RGB 0.9353 0.3849 0.6011 0.4769
VV + VH + RGB + NIR 0.9513 0.1821 0.7584 0.6318

VV + VH + RGB + SWIR 0.9636 0.2180 0.7854 0.6760
VV + VH + RGB + NIR + SWIR 0.9641 0.1833 0.8019 0.7053

VV + VH + NDVI 0.9464 0.2612 0.6983 0.5734
VV + VH + MNDWI 0.9464 0.3270 0.6950 0.5638

3.2.2. Qualitative Evaluation

Figures 13 and 14 display the predicted flood inundation maps from each combination
of input data in clear and cloud-covered conditions. From Figure 13 it is evident that in
clear conditions Sentinel-1 provided a coarser prediction of the flooded area. However,
in the Sentinel-2 image, the area in the upper left was falsely identified as a flooded area.
In the majority of the combinations, the flooded area prediction was slightly coarser than
in the Sentinel-2 image, and the upper left area was falsely identified as flooded. There
are, however, some exceptional cases. For instance, from the combinations of VV, VH and
RGB; VV, VH, RGB and SWIR; VV, VH and NDVI; and VV, VH and MNDWI, the area
in the upper left identified as flooded was significantly reduced. Additionally, from the
combinations of VV, VH, RGB and SWIR; and VV, VH, RGB, NIR and SWIR, the predicted
maps were at least as finely detailed as the map generated from the Sentinel-2 image.
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From Figure 14, the weakness of Sentinel-2 in cloud-covered conditions can clearly
be observed. Here the Sentinel-1 image significantly outperformed any combination
that includes Sentinel-2 information. This issue was much more pronounced for the
combinations that included the RGB bands, especially where no supplementary information
from NIR and SWIR was provided. The combination of Sentinel-1 with SWIR performed
better than any other combination, suggesting that this band is able to penetrate cloud
more effectively than the RGB or NIR bands. The combinations with the spectral indices
NDVI and MNDWI were also able to produce comparatively accurate maps, suggesting
that the extraction of these indices also aids in alleviating the problem of cloud penetration.

Figures 15 and 16 depict the heatmap explanations for the above flood inundation
maps, where the magnitude of importance the model placed on each pixel can be observed.
From Figure 15, it is evident that in clear conditions, the Sentinel-1 image and the combina-
tions of VV, VH and NIR; VV, VH and SWIR; VV, VH and RGB; VV and VH; and VV, VH
and NDVI all resulted in the model having much less confidence in its decision-making,
as exemplified by the inconsistency and low magnitude of the heatmaps. Conversely, the
models trained with Sentinel-2 or with combinations of Sentinel-1 and Sentinel-2, that is,
VV, VH, RGB and SWIR; and VV, VH, RGB, NIR and SWIR, all demonstrated much more
appropriate and consistent focus. Notably, in these examples the areas in the upper left
which were falsely identified as flooded in the inundation maps had a very low magnitude
of importance.
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The heatmaps shown in Figure 16 show that in cloud-covered conditions, Sentinel-
1 was the only image to provide the model with a reasonable level of confidence in its
prediction, although the magnitude here was still relatively inconsistent. Although the
map generated by the combination of VV, VH and NDVI was less accurate than when
the combinations of VV, VH and SWIR; or VV, VH and MNDWI were used, the heatmap
showed that this combination was actually placing more consistent and higher magnitude
of important on the more relevant areas.

4. Discussion

The proposed model stands out for its capacity to produce flood inundation maps
using data from both Sentinel-1 and Sentinel-2 satellites, consistently surpassing the per-
formance of the state-of-the-art segmentation models that were assessed. Notably, the
comparative analysis revealed that the U-Net++ with ResNet50 and DeepLabV3+ with Mo-
bileNet_V2 models performed better than their counterparts with Sentinel-1 data, whereas
U-Net++ with MobileNet_V2 and DeepLabV3+ with ResNet50 performed better with
Sentinel-2 data. This presents a challenge when selecting a model for use in a practical
setting, as this limits the choice of data. The proposed model, however, consistently demon-
strated superior performance across both types of images, making it much more flexible in
its practical application. The MA-Net model performed consistently poorly across both
data types. It was found in Section 3.1.2 that the computational complexity of this model
was significantly higher than the other evaluated models, which given the limited size
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of the dataset can be attributed to its weak performance. The MA-Net model with the
MobileNet_V2 backbone achieved superior performance to its ResNet50 counterpart, and
its number of parameters was closer to U-Net++ with ResNet50 and the proposed model,
which further emphasizes that this model is too complex to perform well with the small
dataset that was employed in this study.

The visualizations of the flood inundation maps further emphasized the quality of the
proposed model, as it was consistently able to distinguish the water from the background
pixels more accurately than any other assessed model. This is crucial for demonstrating its
real-world suitability, as inaccuracies in the flood inundation maps can have significant
impact. In the event of false-positive predictions, resources would be needlessly allocated
to areas where there is no flood present. False-negative predictions, on the other hand,
have more critical implications, as no measures would be put in place to manage the risk of
flooding, which could have perilous consequences on human lives and infrastructure.

In examining the impact of the removal of each module of the proposed model, it was
found that both deep supervision and weighting exhibited relatively modest effects on per-
formance, suggesting the model’s adaptability to the absence of intermediate supervision
signals and the shift from weighted to simple averaging in output fusion, respectively. In
contrast, dense skip connections and spatial pyramid pooling, which are crucial for con-
textual information and multi-scale feature capture, showed more pronounced influences
on model performance when removed. The absence of dense skip connections disrupted
efficient feature transfer, diminishing contextual awareness and detail capture, resulting in
a notable reduction in IOU. Similarly, spatial pyramid pooling’s removal hindered adapt-
ability to diverse object scales, impacting versatility in recognizing spatial dependencies
and leading to a decrease in IOU. Atrous convolution demonstrated a moderate impact,
indicating its role in balancing spatial context and resolution. These findings underscore the
nuanced interplay of architectural elements and their varied contributions to the model’s
proficiency in semantic segmentation.

Through the quantitative analysis, it was demonstrated that Sentinel-2 images pro-
vided a better-performing model; however, the qualitative analysis revealed more nuance
which further emphasizes the importance of the versatility of a flood inundation mapping
model. In clear conditions, the flood inundation maps generated from Sentinel-2 images
followed expectations of exhibiting greater detail and accuracy than those from Sentinel-1
images; however, in cloud-covered conditions, the Sentinel-2 images had a clear weakness.
This contrast means that in a real-world flood inundation mapping system, it may depend
on the weather conditions as to which image type is more appropriate, so it is vital that a
model is able to adapt well to various types of images.

The heatmap explanations reveal that the proposed model places a more consistent
and higher magnitude of importance on the most relevant pixels than any of the other
assessed models. This demonstrates that, not only is the model able to make more accurate
predictions, but it is also learning more effectively than any of the state-of-the-art models,
so can be more easily trusted to make correct decisions in the future.

According to overall model performance, fusion of Sentinel-1 with Sentinel-2 bands
and indices is largely unable to match the performance using Sentinel-2 alone, with the
exception of the fusion of VV, VH, RGB, NIR and SWIR, which achieves a marginally higher
IOU value in testing. The fusion results are, however, generally superior to using Sentinel-1
alone, except where only the RGB bands from Sentinel-2 and the extracted spectral indices
NDVI and MNDWI are used. Although this seems to indicate that Sentinel-2 should
be the chosen input source for practical applications, the visualizations of the generated
flood inundation maps and the heatmap explanations underscore the need for further
consideration.

In clear conditions, the accuracy of the flood inundation maps largely follows the
expectations given by the overall performance metrics. The magnitude of the heatmaps
also exemplifies that the input data that provides better performance also makes the most
appropriate decisions, as the magnitude of importance demonstrated in these instances is
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much more consistent, being higher in the relevant areas and lower in the falsely identified
areas. However, in cloud-covered conditions, the results are much more varied. It is evident
that Sentinel-1 provides the best map in these cases, with the most appropriate magnitude
of importance demonstrated by the heatmaps; however, there are other instances where
the accuracy of the inundation maps is still reasonable, but the overall performance of the
model is improved over Sentinel-1 alone, in particular the combination of VV, VH and
SWIR. In a practical setting, there may be limitations that make it unreasonable to change
the input-data type depending on weather conditions, so utilization of this combination
may provide a suitable compromise providing better overall performance than Sentinel-1,
while still maintaining a reasonable ability to penetrate through cloud.

Previous work involving the fusion of Sentinel-1 and Sentinel-2 images has often
focused on using RGB and NIR as the Sentinel-2 bands [49–53] or extracting spectral indices.
However, the findings of this study emphasize that the inclusion of SWIR has a more
positive impact on the resulting maps than NIR. SWIR, with its longer wavelengths, is better
suited to penetrating clouds, which primarily absorb shorter wavelengths. Additionally, it is
less affected by atmospheric absorption and exhibits clearer contrast between water bodies
and surrounding land, enabling more effective delineation of flooded areas. Deep learning
models are highly capable of directly extracting relevant features from raw input data.
Therefore, the extraction of spectral indices can introduce redundant features, potentially
diminishing the wealth of spectral information available for the model to capture.

5. Conclusions

This study has presented a comprehensive analysis of flood inundation mapping using
data from the Sentinel-1 and Sentinel-2 satellites. The proposed model has demonstrated re-
markable versatility by consistently outperforming state-of-the-art models when provided
with both Sentinel-1 and Sentinel-2 data, affirming its suitability for practical applications.

This study has highlighted the importance of considering various aspects in flood in-
undation mapping. While quantitative metrics favor Sentinel-2 images, qualitative analysis
reveals that the choice of input data is highly dependent on weather conditions. Sentinel-1
excels in cloud-covered conditions. When used in combination with SWIR, it is able to
retain reasonable cloud penetration ability, while improving its overall accuracy. On the
other hand, Sentinel-2 images outperform Sentinel-1 in clear conditions, providing detailed
and accurate flood inundation maps, where the model places a higher magnitude of impor-
tance in the most relevant regions of the image. These nuances underscore the significance
of a model’s ability to adapt to different data types and environmental conditions.

The extraction of spectral indices, such as NDVI and MNDWI, appears to hinder model
performance. Deep learning models excel at feature extraction from raw data, rendering
spectral indices redundant and potentially limiting the range of spectral information
available for effective modeling.

In practical terms, the results from this study hold significant implications for flood
management and disaster response. The ability to accurately predict and map flood inun-
dation in various conditions is essential for timely decision-making and resource allocation.
The model proposed in this study is able to generate more accurate flood inundation maps
than the state-of-the-art model, and, importantly, its ability to make appropriate decisions
has been demonstrated, ensuring that it can be trusted in its application, which is crucial
given the direct impact on human lives and infrastructure.

For future work, investigation of the performance of the proposed model when pro-
vided with a larger set of input images should be conducted, as larger datasets allow deep
learning models to learn complex feature representations more effectively, typically result-
ing in superior performance, as well as reducing the likelihood of overfitting. Additionally,
different types of input data should be further explored. Sentinel-1 and Sentinel-2 are freely
available, so represent a clear choice for initial study; however, satellites such as Radarsat-2
provide higher resolution SAR data, which may improve the performance of the model.
In optical imaging, hyperspectral images contain a much richer spectral profile, which
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may aid in improved delineation of flooded areas, so determining the model’s ability to
adapt to these images is an important avenue for future research. The incorporation of
additional data sources such as Digital Elevation Models (DEM) and Light Detection and
Ranging (LiDAR) would also provide more detailed information about the terrain and
topography of the area, so will enable the model to generate flood inundation maps with
more precision. This detailed information can also enable more detailed and actionable
insights through the use of XAI, by providing a deeper understanding of how specific
terrain and topographic features influence flood inundation. While the performance of the
proposed model is relatively strong, it could be further enhanced through more rigorous
hyperparameter tuning as well as postprocessing of the maps generated by the proposed
model, with the use of conditional random fields, which can refine the output of a segmen-
tation model. Finally, it was found that the speckle noise of the Sentinel-1 images had a
significant negative impact on model performance where these images were employed, so
incorporating deep learning-based methods to reduce the noise while preserving object
boundaries is another promising area of future research.
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