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Abstract: Apache Spark is a high-speed computing engine for processing massive data. With its
widespread adoption, there is a growing need to analyze its correctness and temporal properties.
However, there is scarce research focused on the verification of temporal properties in Spark programs.
To address this gap, we employ the code-level runtime verification tool UMC4M based on the
Modeling, Simulation, and Verification Language (MSVL). To this end, a Spark program S has to be
translated into an MSVL program M, and the negation of the property P specified by a Propositional
Projection Temporal Logic (PPTL) formula that needs to be verified is also translated to an MSVL
program M1; then, a new MSVL program “M and M1” can be compiled and executed. Whether
program S violates the property P is determined by the existence of an acceptable execution of “M
and M1”. Thus, the key issue lies in how to formalize model Spark programs using MSVL programs.
We previously proposed a solution to this problem—using the MSVL functions to perform Resilient
Distributed Datasets (RDD) operations and converting the Spark program into an MSVL program
based on the Directed Acyclic Graph (DAG) of the Spark program. However, we only proposed this
idea. Building upon this foundation, we implement the conversion from RDD operations to MSVL
functions and propose, as well as implement, the rules for translating Spark programs to MSVL
programs based on DAG. We confirm the feasibility of this approach and provide a viable method
for verifying the temporal properties of Spark programs. Additionally, an automatic translation tool,
S2M, is developed. Finally, a case study is presented to demonstrate this conversion process.

Keywords: Spark; MSVL; translation; verification; formalization

1. Introduction

With the continuous development of the Internet, the amount of data we can collect is
also expanding. How to deal with these increasing data has aroused extensive research
and attention. Among them, Hadoop [1,2] and Spark [3,4] computing engines show their
unique advantages in data processing.

MapReduce [5,6] is a distributed parallel computing technology. The cores of Hadoop
are the MapReduce computing framework and the distributed file system HDFS [7]. In
terms of processing tasks, MapReduce segments input data, constructs Map tasks for each
segment, and submits them for processing. Data in the partition are transferred to the
Map function as key–value pairs, and processed pairs are saved as intermediate results
on disk. This characteristic results in Hadoop spending considerable time on complex
data processing. Spark is a fast, universal and scalable big data analysis and computing
engine based on memory. It is developed on the basis of Hadoop. One of its design goals is
to avoid frequent calls to disk I/O operations. For this purpose, a basic data processing
model called Resilient Distributed Datasets (RDD) is specially designed. In the process of
calculation, data are cached in memory. Only when the memory capacity is insufficient are
data are cached on a disk. Spark provides a series of operations for RDD, including not
only Map() and Reduce() operations but also filter(), flatMap(), groupBy(), sortBy() and
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other operations, which can provide developers with rich choices. It also supports APIs in
Java, Python, Scala, R and other languages, enabling developers to quickly build different
applications.

In the era of information explosion, the widespread application of big data has become
a crucial force shaping the future [8]. With the continuous growth of big data volumes,
ensuring the correctness and temporal properties of big data has become particularly
critical. Big data not only encompasses vital information across various industries, from
finance to healthcare, but also involves the processing of these data often tied to crucial
business decisions and personal privacy. Therefore, the precise validation of big data,
especially the verification of its temporal properties such as timeliness, reliability, and
consistency, becomes paramount. This paper aims to delve into the correctness validation
and temporal property verification of Spark applications, which may be the most widely
used solution among big data processing applications.

The runtime verification tool UMC4M [9,10] uses a program M written in the Mod-
eling, Simulation, and Verification Language (MSVL) [11–14] with the expected property
P specified by the Propositional Projection Temporal Logic (PPTL) [15,16] formula as in-
put. Whether M violates the property P is determined by whether there is an acceptable
execution of a new MSVL program “M and M1”, where the M1 is the negation of the
property P [17,18]. In order to use the tool UMC4M to verify the temporal properties of
Spark programs, it is necessary to use MSVL to formalize Spark programs. MSVL is a
parallel programming language, which can be easily used for parallel computing. In [19],
we merely proposed a formalization method using MSVL for Spark applications but did
not implement it. Here, we formalize Spark programs by writing MSVL functions corre-
sponding to RDD operations and extracting the execution relations of these functions based
on the Directed Acyclic Graph (DAG) of Spark programs. This transformation converts
a Spark program into a logically equivalent MSVL program, shifting the verification of
properties in the Spark program to the verification of the MSVL program.

The contributions of this paper are three-fold:

(1) For RDD operations, we write corresponding MSVL functions to realize its processing
of data. In addition, for those RDD operations with wide dependencies, we also write
specialized Shuffle functions to complete the exchange of data between the two stages.

(2) We propose an algorithm for converting Spark programs to MSVL programs based
on the DAG of Spark programs. The algorithm extracts formal relations within stages
and formal relations between stages, respectively, thus completing the transformation
of a Spark program into an MSVL program.

(3) Based on the algorithm mentioned above, we develop an automatic translation tool
S2M to convert Spark programs to MSVL programs and give a case study to show the
conversion process.

The rest of the paper is organized as follows. Section 2 provides a brief introduction to
research related to big data security and formalization and illustrates the advantages of
using UMC4M to verify timing properties. Section 3 briefly introduces MSVL and the Spark
framework. In Section 4, we describe the implementation of program translation system.
In Section 5, a case study is given. Section 6 is a technical discussion of the methodology.
Section 7 concludes the paper.

2. Related Work

The research on the validation correctness of big data applications is very important,
especially for Spark applications, but there is little relevant research on this aspect.

Luo et al. [20] introduced an approach to predict the performance of Spark based on
its configuration parameters using machine learning, specifically Support Vector Machine
(SVM). This research focuses on understanding the impact of Spark’s numerous configu-
ration parameters and their interactions on performance. Additionally, Artificial Neural
Network (ANN) is employed to model Spark’s performance, and the paper reports that the
SVM outperforms ANN.
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Grossman et al. [21] proposed an SMT-based technique to verify the equivalence of
interesting classes in Spark programs. By modeling Spark programs, they demonstrated the
undecidability of checking equivalence even for Spark programs with a single aggregation
operator. They also proved the completeness of the technique under certain restrictions.

Beckert et al. [22] proposed a method by dividing equivalence proof into equivalence
proof sequences between intermediate programs with small differences for equivalence
proof between imperative and MapReduce algorithms, and they verified the feasibility of
the method on k-means and PageRank algorithms.

Yin et al. [23] formalized the main components of Spark on YARN using Communicat-
ing Sequential Processes (CSP). Then, they input the model into model checker Failures
Divergence Refinement (FDR) to verify their main properties, such as Divergence Freedom,
Load-Balancing, Deadlock Freedom and Robustness.

Baresi et al. [24] proposed a method based on model checking for verifying the execu-
tion time of Spark applications, and the method has been validated on some realistic cases.

de Souza Neto et al. [25] introduced TRANSMUT-SPARK, a tool designed to automate
mutation testing for Big Data processing code within Spark programs. The complexity of
Spark code makes it susceptible to false statements that require thorough testing. They
explored the application of mutation testing, a fault-based technique, in Spark programs to
automatically evaluate and design test sets.

However, these efforts have not verified the temporal properties that Spark appli-
cations should meet. At present, there are some tools for verifying temporal properties.
Compared with the most relevant software model detection tools LTLAutomizer [26] and
T2 [27–29], UMC4M has the following advantages: (1) the input of the UMC4M tool is a
program written in the MSVL function, and the PPTL formula describes the properties to
be verified. MSVL and PPTL are subsets of the Projection Temporal Logic (PTL), which
leads to higher efficiency in program validation. (2) PPTL is capable of expressing fully
regular properties, demonstrating greater expressive power than Linear Temporary Logic
(LTL) and Computing Tree Logic (CTL).

3. Preliminaries

This section provides a brief introduction to the fundamental principles of MSVL
and Spark.

3.1. MSVL

Modeling, Simulation and Verification Language (MSVL) is developed from the
Framed Tempura [30] and is an executable subset of the Projection Temporal Logic (PTL) [12].
The arithmetic and Boolean expressions of MSVL can be summarized and defined as shown
in Equations (1) and (2), which are used in MSVL statements.

e ::= c|x| © e|� e|g(e1, · · · , em)|ext f (e1, · · · , en) (1)

b ::= true| f alse|¬b|b0 ∧ b1|e0 = e1|e0 < e1 (2)

where c is a constant, and x is a variable. ©e represents the next state of variable e,
and �e represents the previous state of variable e. g(e1, · · · , em) is the call of the state
function g. Each arithmetic operation(+|-|*|/) can be regarded as a function call g(e1, e2).
ext f (e1, · · · , en) is a call to an external function. b is a boolean expression that can be either
true (true) or false ( f alse). It may also be the negation (¬b) of another boolean expression,
the logical AND (b0 ∧ b1) of two boolean expressions, or the equality comparison (e0 = e1)
or less-than comparison (e0 < e1) between two arithmetic expressions. The MSVL language
includes the fundamental constructs as shown in Table 1, and by combining them according
to certain rules, one can generate MSVL programs.
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Table 1. The statements of MSVL

Name Syntax Semantics

1. Termination empty def
= ε

2. Assignment x := e def
= ©x = e∧ len(1)

3. Positive immediate
assignment x <== e def

= x = e ∧ px

4. State frame lbf(x) def
= ¬ af(x)→ ∃b : (�x = b ∧ x = b)

5. Interval frame frame(x) def
= � (more→© lbf(x))

6. Next next φ
def
= ©φ

7. Always always φ
def
= �φ

8. Conditional if b then φ0 else φ1
def
= (b→ φ0) ∧ (¬b→ φ1)

9. Local variable exist x : φ(x) def
= ∃x : φ(x)

10. Sequential φ0 ; φ1
def
= φ0; φ1

11. Conjunction φ0 and φ1
def
= φ0 ∧ φ1

12. While while b{φ} def
= (b ∧ φ)∗ ∧�(ε→ ¬b)

13. Selection φ0 or φ1
def
= φ0 ∨ φ1

14. Parallel φ0 ‖ φ1
def
= φ0 ∧ (φ1;true) ∨ (φ0;true) ∧ φ1 ∨ φ0 ∧ φ1

15. Projection (φ1, · · · , φm) prj φ
def
= (φ1, · · · , φm)prjφ

16. Await await(b) def
= frame(x1, x2, x3, · · · , xn) ∧�(ε↔ b)

MSVL supports not only common statements in the imperative language such as
assignment loop conditional statements, sequential statements and while statements, but
also non-deterministic and concurrent statements. For example, x <== 0 indicates that
0 is immediately assigned to variable x, while x := 0 indicates that 0 is assigned to in the
next state and the length of interval is one unit. φ0 ; φ1 represents the statement that φ1 can
only be executed after the completion of φ0 statement. await(b) means that the execution
can only be continued when condition b is satisfied [31]. In addition, in order to improve
the efficiency of programming, MSVL supports calling the library functions of C language,
such as fopen(), fgets() and other functions. The function structure of MSVL is function
f (){· · · }. The structure also allows us to write functions that are logically equal to RDD
operations [14]. At the same time, we also have the model checker UMC4M [9] for verifying
MSVL programs.

3.2. Spark Framework

The core of the Spark framework is a computing engine. On the whole, it adopts the
standard master–slave structure, in which the master node is responsible for managing
the scheduling of tasks in the whole cluster, and the slave nodes are responsible for the
actual execution of tasks. As the core model of data processing in the Spark framework,
RDD supports two types of operations: one is transformation operations, such as map(),
flatMap(), groupBy(), filter() and reduceByKey(), and the other is action operations, such
as reduce(), collect(), foreach() and take(). There are dependency relationships between
RDDs, which can be divided into narrow dependencies and wide dependencies. Spark
forms a DAG based on the dependencies between RDDs. The DAG is submitted to the
DAGScheduler, which divides the DAG into multiple stages of interdependence. When
encountering a wide dependency, a stage is generated, and each stage contains one or
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more tasks. Then, these tasks are submitted to the TaskScheduler for running in the form
of taskSet.

The running framework of Spark, as shown in Figure 1, includes the Cluster Manager,
Worker Nodes running multiple job tasks, Driver Nodes for the task control of each
application, and Executor processes on each Worker Node responsible for the specific
task execution.

Driver Program

SparkContext sCluster Manager

Worker Node

Executor Cache

Task Task

Worker Node

Executor Cache

Task Task

Figure 1. Spark running framework.

The Driver runs the main function of the Spark application and creates the Spark-
Context. The SparkContext is responsible for communication with the Cluster Manager,
handling tasks such as resource acquisition, task assignment, and monitoring.The Cluster
Manager is responsible for requesting and managing the resources needed to run the
application on Worker Nodes. The Executor is a process running on a Worker Node where
the application is executed. It is responsible for running tasks and storing data in memory
or on disk.

A Spark application is divided into jobs, stages and tasks. Their definitions are given
as follows:

(1) Application: a Spark application written by the user contains one or more jobs.
(2) Job: a set of stages executed as a result of an action operation. During the execution

of a Spark application, each action operation triggers the creation and submission of
a job.

(3) Stage: a set of tasks that perform the same computation in parallel based on partitions
of input data.

(4) Task: unit of execution in a stage. A task is a single data processing on a data partition.

In different cluster environments, the process of Spark submission is basically the same.
The driver starts to execute the main function after all the executors are registered. When
it executes an action operation, it triggers a job and starts to divide the stages according
to the wide dependencies. Each stage generates the corresponding taskSet, and then the
driver distributes tasks to the specified executors for execution.

There are two kinds of RDD operations in Spark: namely, transformation operations
and action operations. The transformation operations refer to the operation of creating
a new RDD from the existing RDD and returning the new RDD. The transformation
operations are lazily evaluated. They do not immediately trigger the execution of the actual
conversion and only records the conversion relationship between RDDs. Only when an
action operation is triggered can the transformation operations be truly executed and the
calculation result be returned. Spark submits the operator graph to the DAGScheduler
when an action operation is called. DAGScheduler divides DAG into stages according
to wide dependencies. The dependencies between RDDs can be divided into narrow
dependencies and wide dependencies, as shown in Figure 2. Narrow dependencies mean
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that a partition of each parent RDD is used by at most one partition of the child RDD.
Wide dependencies mean that each partition of the parent RDD can be used by multiple
partitions of the child RDD, which are also known as shuffle dependencies.

Narrow Dependencies: Wide Dependencies:

Map, filter

union

join with inputs 
co-partitioned

join with inputs not 
co-partitioned

groupByKey

Figure 2. Dependency types.

4. Translation from Spark to MSVL

In this section, we realize the translation from Spark programs to MSVL programs
and introduce it from the aspects of data storage, function translation and DAG-based
formalization.

4.1. Data Storage Structure

RDD is the most basic data processing model in Spark. Spark provides rich transfor-
mation and action operations for RDD. The data in the RDD can only be updated through
the transformation operations to generate a new RDD based on the original RDD. The data
set in the RDD is logically and physically divided into multiple partitions. In a stage, one
partition of the parent RDD is used by at most one partition of the child RDD, and the
partitions in an RDD execute a series of transformation operations in parallel. The data in
each partition can be executed in a separate task. The number of partitions and the number
of tasks correspond one to one.

MSVL supports multiple data types to build data structures. Based on the Spark RDD
data feature, we can use the MSVL-type struct to build special data structures for storing
data. We define two structures, ReadData and KeyValue, to process data in the read stage
and non-read stage, respectively, where the read stage refers to the stage containing the
textFile operation.
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struct ReadData
{

char *data[10] and
int value[10] and
int order

};
struct KeyValue
{

char *data and
int value and
int order

};

In the struct ReadData, data[0] is used to store a line of data read from the data file.
When data[0] is handled by the split function, data[0] is split, and the split data are saved
in data[i] (0 ≤ i < 10). Here, data[0] is used to avoid memory waste. For the key–value
pairs type in Spark, we define the array value to store the number of data occurrences. In a
stage, data are processed in a pipeline way. To this end, we define an order to represent
which function processes the data. For the non-read stage, the main task is to complete the
data operation. To achieve that, we define the structure KeyValue, where data is used to
store data, value represents the number of data occurrences, and order represents which
function processes the data. Partitions in an RDD are executed in parallel. To this end,
we define two arrays struct ReadData lineData[N] and struct KeyValue finaldata[M] for
the read stage and non-read stage, respectively. Here, N and M are both integer constants,
which are typically chosen to be slightly larger than the parallelism of the function. This
choice aims to prevent any impact on the parallelism of the function and the size of the
transformed program.

Stages are divided according to wide dependencies. That is to say, a shuffle occurs in
two directly connected stages. Shuffling can cause data disruption and reorganization. For
the conversion of data between directly connected stages A and B, we define structures
CollectData and PrepData, where CollectData is used to collect the processed data in
stage A and PrepData is used to preprocess the data for the next stage B.

struct CollectData
{

char *data and
int value and
int idle

};
struct PrepData
{

char *data and
int value[100] and
int idle

};

The struct CollectData is used to complete data collection. In the struct CollectData,
data is used to store data, value represents the number of data occurrences and idle
represents the status of memory, where idle = 0 means the memory is free, and idle = 1
means that the data have been stored but not used. The struct PrepData is used to complete
data preprocessing. In the struct PrepData, data is used to store data, and array value is
used to store the number of the respective occurrences of the same data. idle also indicates
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the status of the memory. We define two arrays, struct CollectData end_Data1[L] and
struct PrepData end_Data[L], to complete data collection and preprocessing separately,
where L is a constant and is usually set to the largest possible number to avoid some data
not being collected.

4.2. Translation from Spark Operations to MSVL Functions

The RDD operations are divided into two types: transformation operations and action
operations. The action operations actually calculate the dataset, which are the basis for
Spark to divide jobs. Stages are divided according to wide dependencies. In a stage, the
partitions in an RDD are processed in parallel. MSVL not only supports function definitions
and statements that are similar to imperative languages, such as assignment, condition, and
loop statements, but it also supports non-deterministic and concurrent programming, such
as selection and parallelism statements. This means that corresponding MSVL functions
can be written for Spark RDD operations. Most operational translation ideas are the same.
First, the execution condition is evaluated, and then the internal logic is executed when
the conditions are met. Due to space constraints, we briefly introduce the translations of
several operations here.

4.2.1. Translation of textFile Operation

During the execution of an MSVL program, if it encounters C language library function
calls, the MSVL interpreter automatically calls the corresponding C functions and returns
the execution result. Thus, when writing the function corresponding to textFile operation,
we can call C functions such as fopen(), fclose(), fgets(), etc. The textFile operation is a
transformation operation that reads data from a file as a collection of lines. Function 1
shows the MSVL function corresponding to textFile operation.

MSVL Function 1: ReadWords(char *data f ile)

1 frame( f p, i, brk) and
2 (
3 FILE* f p <== fopen(data f ile, “r”) and skip;
4 int i <== 0, brk <== 0 and skip;
5 while (feof( f p) = 0){
6 i := 0; brk := 0;
7 await(lineData[0].order = 1 OR · · · OR lineData[N − 1].order = 1);
8 while (i < N AND brk = 0){
9 if(lineData[i].order = 1) then {brk := 1}else {i := i + 1}
10 };
11 fgets(lineData[i].data[0], bu f f erSize, f p) and skip;
12 lineData[i].order := lineData[i].order+1
13 };
14 readOver := 1
15 )

The MSVL function ReadWords is the first function executed. The function reads data
from file data f ile. When there is an idle memory, i.e., lineData[i].order = 1 (0 ≤ i < N),
at most one line of bu f f erSize characters is read from the file data f ile and stored in
lineData[i].data[0], where bu f f erSize is a global constant, and then the lineData[i].order is
added by 1, which indicates that the data lineData[i] are ready to be executed by the second
function. This process is repeated until the file data f ile is read completely (Lines 5–13).
After reading all data, the global variable readOver is set to 1, indicating that the data f ile
has been completely read (Line 14).
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4.2.2. Translation of Shuffle

A job consists of multiple stages, and each stage has multiple transformation op-
erations. The transformation operations are categorized into two types based on their
dependencies: narrow transformations and wide transformations. Wide transformations
are the basis of stage division. It means that each partition of the parent RDD can be used
by multiple child RDD partitions, and a partition of each child RDD usually uses all parent
RDD partitions. This property of wide transformations results in shuffling, which refers to
shuffling the data between stages. For this reason, we define the shuffle function of MSVL
based on its properties to handle data shuffling between two stages. Although the data
types processed in different stages are different, the principle remains the same. We present
the shu f f le function in the read stage in Function 2.

MSVL Function 2: shuffle(int tNum, char ∗Op)

1 frame(i, brk) and
2 (
3 int i <== 0, brk <== 0 and skip;
4 while(lineData[0].order! =1 OR· · ·OR lineData[N − 1].order! = 1 OR
readOver! =1){
5 await(lineData[0].order = tNum OR · · · OR lineData[N − 1].order = tNum);
6 i := 0; brk := 0;
7 while (i < N AND brk = 0){
8 if(lineData[i].order = tNum) then {brk := 1} else {i := i + 1}
9 };
10 Collect(i);
11 lineData[i].order := 1;
12 };
13 Pretreat(Op);
14 readOver := 0;
15 read_num := 0
16 )

In Function 2, tNum indicates the number of operations in the current stage plus 1,
and Op represents the name of the first operation in the next stage. The data in lineData[i]
(0 ≤ i < N) in the current stage are collected by the Collect function after processing, and
then lineData[i].order is set to 1. This process is repeated until all data in the current stage
are processed (Lines 4–12). After collection, the collected data are preprocessd by the
function Pretreat (Line 13). The data preprocessing function Pretreat differs for different
wide transformations. For example, for the reduceByKey operation, the data are aggregated,
and these data with the same key are stored in end_Data[j] (0 ≤ j < L) . The values
corresponding to the same key are saved in array value of array end_Data[j]. Finally, we
set both readOver and read_num to 0 (Lines 14–15), where the global variable read_num
indicates the reading position of array end_Data in the next stage.

4.2.3. Translation of reduceByKey Operation

The reduceByKey is a wide transformation operation, and its function signature is
de f reduceByKey ( f unc : (V, V) => V) : RDD [(K, V)]. The operation aggregates
values with the same key based on the anonymous function f unc passed in and returns
a new RDD. We use MSVL statements to write the corresponding ReduceByKey function
based on the characteristics of the reduceByKey operation. The function is not executed
until the shu f f le function completes data preprocessing.
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MSVL Function 3: ReduceByKey(int n)

1 frame(i, brk) and
2 (
3 int i <== 0, brk <== 0 and skip;
4 while (readOver = 0){
5 Bakery(n, number, choose);
6 await( f inaldata[0].order = 1 OR · · · OR f inaldata[M − 1].order = 1 OR
readOver=1);
7 i := 0; brk := 0;
8 while (i < M AND brk = 0){
9 if( f inaldata[i].order = 1 AND parallel[i] = 0) then {brk := 1}else {i := i + 1}
10 };
11 parallel[i] := 1;
12 reduceImplicit(i, n);
13 f inaldata[i].order:= f inaldata[i].order+1;
14 parallel[i] := 0
15 };
16 )

The code for the function is shown in Function 3. As this operation has wide depen-
dencies, the function is executed first in the current stage. When the reduceBykey functions
are executed in parallel, in order to prevent the same functions from performing the same
processing on f inaldata[i] (0 ≤ i < M) and obtain mutually exclusive access to global
variable read_num, we use the Bakery algorithm and array parallel to implement it. The
Bakery(n, number, choose) is used for locking, where n represents the function ID, array
number is a global variable that represents the queue number, and array choose is also
the global variable that represents whether the number is being retrieved (Line 5). When
there is a free memory block ( f inaldata[i].order=1 (0 ≤ i < M)) and the data block is not
locked by a function (parallel[i] = 0), the data block is locked by the function (Line 11)
and data processing is performed through the function reduceImplicit. After processing
is completed, we add 1 to f inaldata[i].order and unlock the locked data f inaldata[i]. This
process is repeated until array end_Data is fully read (Lines 4–15).

MSVL Function 4: reduceImplicit(int sign, int n)

1 frame(k, num) and
2 (
3 int k <== 0, num <==0 and skip;
4 num :== read_num;
5 read_num := read_num + 1;
6 number[n] :=0;
7 if(end_Data[num].idle=1)then{
8 f inaldata[sign].data:=end_Data[num].data;
9 while(end_Data[num].value[k]! = 0){
10 f inaldata[sign].value := f inaldata[sign].value + end_Data[num].value[k];
11 k := k + 1
12 };
13 end_Data[num].idle := 0
14 }else{
15 readOver :=1
16 }
17 )
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For different anonymous functions, we automatically generate corresponding redu-
ceImplicit functions. Taking the anonymous function (_+_) as an example, we generate
reduceImplicit as shown in Function 4. In Function 4, the parameter sign represents which
data are processed, and the parameter n represents the ID of the function. We use num
to save the value of read_num, where read_num is a global variable representing which
element in array end_Data is read (Lines 4–5). Then, we unlock these resources (Line 6). If
the data to be read from array end_Data exist, the data in end_Data[num].data are saved in
f inaldata[sign].data, and values are aggregated and saved in f inaldata[sign].value. Then,
the idle of the data is set to 0 (Lines 7–13). If the data to be read from array end_Data do
not exist, the global variable readOver is set to 1, indicating that array end_Data has been
completely read (Lines 14–16).

4.3. DAG-Based Formalization

When an action operation is performed, a new DAG is generated. Each operation
generates a new RDD. The original RDD forms a DAG after a series of transformations.
According to the different dependency relationships between RDDs, the DAG can be
divided into different stages. To formalize Spark programs based on the DAG, we have
developed a tool called S2M, whose architecture is shown in Figure 3. The formalization
process for Spark programs based on the DAG consists of four main steps: extraction of
required information, formalization of operations within stages, formalization between
stages, and function replacement and supplementation.

Spark program prDAG prData Extraction

pr
Formalization of 

Operations in Stage

pr
Formalization 

between Stages

prFunction replacement 

and supplementation
MSVL programC function 

library

MSVL function 

library

Figure 3. Architecture of S2M.

4.3.1. Data Extraction

This section is mainly about extracting the information between RDD operations in
stages and the information between stages from the DAG of a Spark application. We use
Python to implement the extraction for obtaining the required information from the SVG
tag in the DAG UI interface of the application.

In a DAG, each blue rectangle corresponds to a Spark operation, and the nodes in each
rectangle represent the RDDs created under the corresponding operation. The RDDs are
connected by arrows. For each stage in a DAG, we need to extract the name of operation and
nodes in each blue rectangle as well as the nodes connected by the arrows connecting blue
rectangles (operations). Each blue rectangle may have one or more nodes. For each stage,
we define an array Opandnode where each element holds a blue rectangle information,
and the element is stored in tuple (name, {node1, node2, · · · }), where the first element in
the tuple is the name of the operation and the second element called nodeset is the set
of nodes. For arrows in a stage, we construct an array instage_arrow to store the nodes
connected by the arrows connecting blue rectangles. The elements are stored in tuples
(startnode, endnode). For information extraction between stages, we construct an array
stage_stage to store the connecting nodes of the arrows connected between stages. The
elements are also stored in the format of (startnode, endnode). In addition, we create an
array Op_position to save the number of lines in the code file for each operation in the
DAG. This allows us to extract the anonymous functions in each incoming operation.
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4.3.2. Formalization of Operations in Stages

To extract the formalization of operations within a stage, we first obtain the execution
paths in the stage, where a path refers to the order of operations execution directly connected
by arrows. Then, we process these paths to complete the formalization of RDD operations
in the stage.

After we obtain the name and nodes of each operation (blue rectangle) in a stage,
as well as the nodes connected by the arrows connecting RDDs, we determine the two
operations that are directly connected by determining which operation the startnode and
endnode of an arrow are in. The acquisition of execution paths during a stage is presented
in Algorithm 1, where each element in instage_path is an execution path in a stage. If there
is only one operation in a stage, this operation is added to a path (Lines 1–3). Then, we
access each arrow of connection operations (Line 4) and look for the operations where
the startnode and endnode of the arrows are located (Lines 5–8). There are three situations
at this time: the first is if the operation (operation1) where startnode is located is the last
element in a path; then, the operation (operation2) where endnode is located is directly
added to that path (Lines 9–11). The second is if operation1 is not the last element in a path;
then, we copy the path from the beginning to operation1 to a new path and add operation2
to the new path (Lines 12–16). The third is if operation1 is not in any paths; then, a new
path is added and we add both operation1 and operation2 to this path (Lines 17–21).

Algorithm 1: Execution paths of RDD operations in a stage
Input: instage_arrow, Opandnode
Output: instage_path

1 if Opandnode has only an element then
2 instage_path[0][0]← Opandnode[0];
3 end
4 for arrow in instage_arrow do
5 for operation1 in Opandnode do
6 if arrow.startnode ∈ operation1.nodeset then
7 for operation2 in Opandnode do
8 if arrow.endnode ∈ operation2.nodeset then
9 if operation1 is the last element of one path: instage_path[i][k] then

10 instage_path[i][k + 1]← operation2;
11 end
12 if operation1 is non-last element of one path:instage_path[i][l] then
13 add a new path:instage_path[j]← instage_path[i][0tol];
14 insatge_path[j][l + 1]← operation2;
15 end
16 if operation1 is not the elements of all paths then
17 add a new path: instage_path[m];
18 instage_path[m][0− 1]← operation1 and operation2;
19 end
20 end
21 end
22 end
23 end
24 end

To formalize operations within a stage, we process the execution paths in that stage.
Algorithm 2 outlines this process, where path is the first path of instage_path, instage_path
stores all paths obtained through Algorithm 1, and stage stores the formalization of opera-
tions in a stage. Firstly, we assign the name of the first operation in the first path(path) to
the stage, and if there is only one operation in path, we exit the function directly (Lines 1–4).
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Then, we sequentially access the remaining operations (operation1) in path (Line 5). For
each operation1 accessed, we access other paths to find the path (path1) containing this
operation1, and these two paths are different in the part before operation1. If such a path
exists, we remove it from all paths (instage_path) and perform the same processing on the
parts of the path before operation1. After processing is completed, these two paths are
parallel in the parts before operation1 (Lines 7–14), and operation1 is executed only after
these paths are executed (Lines 15–17). If such a path does not exist, operation1 and the
previous operations are executed in parallel (Lines 18–20). After visiting the first path, we
obtain the formal relationships within the stage.

Algorithm 2: FormInStage(path, insatge_path)
Input: path,instage_path
Output: stage

1 stage← path[0].name;
2 if path has only an operation then
3 return stage;
4 end
// n is is the length of path

5 for operation1← path[1] to path[n− 1] do
6 sign← 0;

// m is the length of instage_path
7 for path1← instage_path[1] to instage_path[m− 1] do
8 if path1 contains operation1 and the operations before operation1 in path and

path1 are different then
9 sign← 1;

10 delete path1 from instage_path;
11 path1← delete the last operation from path1;
12 stage← stage + “‖” + FormInStage(path1, instage_path);
13 end
14 end
15 if sign == 1 then
16 stage← “(“ + stage + ”)” + “;” + operation1.name;
17 end
18 else
19 stage← “(“ + stage + ”)” + “‖” + operation1.name;
20 end
21 end
22 Delete excess “(“ and ”)”;

4.3.3. Formalization between Stages

The formalization between stages is similar to the formalization of operations in a
stage. First, we need to obtain the paths between directly connected stages and then process
these paths to achieve formalization between stages. For obtaining paths between stages,
we first define an array stage_path to hold the execution paths between stages, where
each element in stage_path is an array representing a sequential execution path between
stages. Then, we process the connecting arrows between stages stored in stage_stage,
where each element connects two directly connected stages. The process is similar to
Algorithm 1, which sequentially traverses each arrow in stage_stage. For the two stages of
arrow connection (stage1, stage2), if there is a path in stage_path that contains stage1 and
stage1 is the last element of the path, stage2 is added to the end of the path. If there is a path
in stage_path that contains stage2 and stage2 is the first element of the path, stage1 is added
to the first element of the path. For other situations, we add a new path and sequentially
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add stage1 and stage2. After processing all arrows between stages, we obtain the sequential
execution paths between stages and store it in stage_path.

After we obtain the execution paths between stages, we process them to achieve
formalization between stages, as shown in Algorithm 3, where path is the first path in
stage_path. Firstly, we assign the first stage in path to the output M_stage (Line 1). Then,
we sequentially access each stage (stage1) in path (Line 2). For each stage1, we search for
other paths that also contain stage1. If such paths exist, paths before stage1 are parallel, and
we also perform recursive operations on paths (Lines 3–9). After processing paths contain-
ing stage1, the execution relationship between stage1 and the previous one is sequential
(Line 10). Finally, we remove parentheses that do not affect the execution order (Line 12).

Algorithm 3: FormStage(path, stage_path)
Input: path, stage_path
Output: M_stage

1 M_stage← path[0];
// n is the length of path

2 for stage1← path[1] to path[n− 1] do
// m is the length of stage_path

3 for path1← stage_path[1] to stage_path[m− 1] do
4 if path1 contains stage1 then
5 delete path1 from stage_path;
6 path1← delete the last stage from path1;
7 M_stage← M_stage + “‖” + FormStage(path1, satge_path);
8 end
9 end

10 M_stage← “(“ + “(“ + M_stage + ”)”+ “;” + stage1 + ”)”;
11 end
12 Delete excess “(“ and ”)”;

4.3.4. Function Replacement and Supplementation

Because the same operation may occur multiple times, the internal processing logic
may also differ. Therefore, we need to differentiate them by assigning different names to
operations that may occur multiple times. In addition, operations in the same stage are
executed in parallel, so we need to parallelize the transformed MSVL function and set its ID.
One example is the MSVL function Map() corresponding to the map operation: we process
it as Map(1) ‖ · · · ‖Map(n), where n represents the ID of the function. Additionally, for
each wide transformation operation, we add a shu f f le function before the MSVL function
to complete data collection and preprocessing, as shown in Algorithm 4.

In Algorithm 4, stage_num is the number of stages. Seq_Op stores the operation
names and anonymous functions for each stage after formalization. instage_Op stores the
formalization of operations in each stage. M_stage stores formalization between stages.
The array para stores the parallelism of all stages. The format method is used to format
strings. We process the formalized operations in each stage (Lines 1–2). If this operation is
textFile, we add it to the array visit_Op, which records the processed operations. Then, we
check the number of times the operation has already occurred, change the MSVL function
corresponding to the textFile operation based on the number of occurrences, and replace
the textFile operation in the formalization of operations of this stage (Lines 3–8). If this
operation is reduceByKey, the reduceByKey is added to the array visit_Op and the number of
occurrences is recorded. Then, we perform parallel processing on the corresponding MSVL
function based on the parallelism of this stage, replacing the reduceBykey operation with
parallelized MSVL function in the formalization of operations of this stage (Lines 9–21).
After formalizing a stage, we add the corresponding shuffle function based on the wide
dependency operation of the next stage connected to it (Lines 24–26), and we replace the



Information 2023, 14, 658 15 of 20

corresponding stage in the formalization of the stage with the formal operations of this
stage after processing (Line 27).

Algorithm 4: Formalization of Spark programs
Input: stage_num, Seq_Op, instage_Op, M_stage, para
Output: M_stage

1 for i← 0 to stage_num - 1 do
2 for OpandImplicit in Seq_Op[i] do
3 if OpandImplicit[0] is “textFile” then
4 add “textFile” to array visitOp;
5 Op_num← the number of occurrences of “textFile” in visitOp;
6 MFunction← “ReadWords()”.format(Op_num);
7 replace the first occurrence of “textFile” in instage_Op[i] with

MFunction;
8 end
9 if OpandImplicit[0] is “reduceByKey” then

10 add “reduceByKey” to array visisOp;
11 Op_num← the number of occurrences of “reduceByKey” in visitOp;
12 for k← 1 to para[i] do
13 if k == 1 then
14 MFunction← “ReduceBykey{0}({1})”.format(Op_num, k);
15 end
16 else
17 MFunction← MFunction + “‖” +

“ReduceByKey{0}({1})”.format(Op_num, k);
18 end
19 end
20 replace the first occurrence of “reduceByKey” in instage_Op[i] with

MFunction;
21 end
22 · · ·
23 end
24 if i 6= stage_num - 1 then
25 instage_Op[i]← instage_Op[i] + “‖” + shuffle function;
26 end
27 replace the “stage{}”.format(i) in M_stage with instage_Op[i];
28 end

When an action operation is encountered, a job submission is triggered, and the
Driver program submits the job to the DAGScheduler, which constructs the job into a DAG.
However, in a program, two action operations may occur in succession, and we need to
specifically handle such cases. To address this, we need to determine where the action
operations in the DAG are located in the program. For subsequent action operations, we use
sequential construction to formalize them, as shown in Algorithm 5. The variable moreOp
stores action operations that have not yet been added to DAGs, where each element stores
the name and anonymous function of an action operation. Take(num) and Foreach() are
MSVL functions corresponding to the action operations take and foreach, respectively.
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Algorithm 5: Supplement to the MSVL
Input: moreOp, stage_seq[0]
Output: stage_seq[0]

1 stage_seq[0]← “(" + stage_seq[0] + “)";
2 for actionOp in moreOp do
3 if actionOp[0] is “take” then
4 num← actionOp[1];
5 stage_seq[0]← stage_seq[0] + “;” + “Take(num)”;
6 end
7 if actionOp[0] is “foreach” then
8 stage_seq[0]← stage_seq[0] + “;” + “Foreach()”;
9 end

10 · · ·
11 end

5. Case Study: TopN

In this section, we demonstrate our work by implementing the analysis of click stream
log data using Spark. Subsequent sections provide a detailed description of the translation
process. We established a Spark cluster environment with five cores using virtual machines.
By executing a TopN case, we obtained its Directed Acyclic Graph (DAG). The SVG label
information of the DAG was input into the S2M tool to formalize the TopN program.

5.1. Application Programs

The aim of this case study is to analyze clickstream log data using Spark and find the
top five URLs with the most visits. Figure 4 displays the Scala code for the TopN application.

Figure 4. Code of TopN application.

The application begins by reading data from the hdfs text file. The variable dataRDD
stores multiple lines of text content after the textFile operation is executed. Next, we
filter out any dirty data in dataRDD using dataRDD. f ilter(x => x.split(“ ′′).length > 10),
where x => x.split(“ ′′).length > 10 is a lambda expression where the left side is the param-
eter and the right side is the function to be executed by the lambda. x.split(“ ′′).length > 10
means that the data are divided according to spaces, and when the length of the divided
data is greater than 10, it is retained in the f ilterRDD. We then use f ilterRDD.map(x =>
x.split(“ ′′)(10)) to traverse every data item in f ilterRDD and retain only the eleventh data
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item because it represents the URL address. Further, we map the data to the form of a tuple
(x, 1) using the lambda expression x => (x, 1), where x is the key and 1 indicates that x
appears once. Next, we perform the reduceByKey(_ + _) operation on the resulting RDD,
which aggregates the value of the same key. Finally, we sort the RDD in descending order
using sortBy(_.2, f alse) and take the top five items using the take(5) operation.

5.2. Formalization

We first extract the formalization of RDD operations within stages and the formaliza-
tion between stages according to the DAG. To execute the application, we built a Spark
cluster environment and obtained the DAG of the application, which is shown in Figure 5.
This figure illustrates how Spark executes the application, where each blue rectangle in the
stage represents an RDD generated by an association operation and arrows indicate the
relationships between RDDs.

Figure 5. DAG of TopN application.

Based on the steps described in Section 3, we extract the name of the operation and
nodes from each blue rectangle in each stage. Then, we extract the location of each RDD
operation in the code file to facilitate the extraction of anonymous function in each RDD
operation. Next, we process the execution order of RDD operations within each stage. The
formalizations of RDD operations within Stage0 and Stage1 are as follows:

Stage0 = textFile|| f ilter||map||map

Stage1 = reduceByKey||sortBy

After processing the formalizations of RDD operations within stages, we begin to
process the execution relationship between stages. We extract the start and end nodes of the
connecting arrows between stages and then obtain the formalization between Stage0 and
Stage1 based on the node relationship in stage_stage. The formalization between stages is
shown below:

TopN = Stage0; Stage1

Once we obtain the formalization between RDD operations within stages and between
stages, we formalize the entire application using Algorithm 4 to replace function names and
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Algorithm 5 to add action operations that are not displayed in the DAG. The formalized
result is shown in Figure 6.

MSVL functions: 
(ReadWords1(“TopN.txt”)||Filter1(2,1)||Filter1(2,2)||Filter1(2,3)||Filter1(2,4)||Filter
1(2,5)||Map1(3,1)||Map1(3,2)||Map1(3,3)||Map1(3,4)||Map1(3,5)||Map2(4,1)||
Map2(4,2)||Map2(4,3)||Map2(4,4)||Map2(4,5)||shuffle1(5,“reduceByKey”));(Reduc
eByKey1(1)||ReduceByKey(2)||ReduceByKey1(3)||ReduceByKey1(4)||ReduceByKey1
(5)||SortBy(2));Take(5);Foreach()

Figure 6. The formalized result.

The parallelism depends on the default configuration of the Spark framework. In
our simulated environment, the number of cores is set to five. Therefore, we configure
the parallelism of the functions Filter, Map1, Map2 and ReduceByKey1 to be 5, meaning
that each of them can process five data pieces in parallel. Map1 and Map2 distinguish
between two different execution logics. For instance, Map1 is used to process (_*2), while
Map2 is used to process (_2). Since the take and foreach operations are not displayed in
the DAG, they are handled specifically through Algorithm 5 and added to the translated
MSVL program.

6. Technical Discussion

MSVL is a framework temporal logic language, constituting an executable subset of
PTL. Programs written in MSVL can be utilized for modeling, simulation, and property
verification. PPTL, the propositional part of PTL, is capable of expressing fully regular
properties, demonstrating greater expressive power than LTL and CTL. The code-level
runtime verification tool UMC4M is employed to verify systems written in MSVL and to
perform verification based on properties described in PPTL. Due to the unified framework
logic of MSVL and PPTL, property verification significantly reduces time overhead.

In previous research on the validation of Spark programs, there has been a greater
emphasis on the correctness verification of Spark programs with limited attention given to
the verification of their temporal properties. To employ UMC4M for formal verification
of Spark programs, particularly focusing on verifying the temporal properties of Spark
programs, the key lies in the conversion of Spark programs into MSVL programs. This
paper, based on the DAG of Spark programs, transforms them into MSVL programs,
presenting a novel approach for the verification of temporal properties in Spark programs.

7. Conclusions

Spark, as a pivotal technology in big data processing, necessitates the validation
of its temporal properties. To facilitate the verification of the temporal characteristics
of Spark programs using the runtime verification tool UMC4M, the formal modeling of
Spark programs through MSVL programs becomes imperative. In this paper, we present a
translator, S2M, designed to convert Spark programs into MSVL programs. Consequently,
by translating Spark programs into MSVL programs, existing tools can be employed to
validate the temporal properties of Spark programs. This transformation effectively shifts
the problem of checking the satisfiability of a Spark program to the problem of checking
the satisfiability of an MSVL program. However, our current implementation addresses the
fundamental transformation from Spark programs to MSVL programs. Further research
is required to handle intricate transformations. In the future, we plan to refine the S2M
tool for implementing complex transformations and validating the temporal properties of
Spark programs using the verification tool UMC4M.
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Abbreviations
The list of abbreviations and symbols is shown below.

Symbols Definition
c Constant
x Variable
e Arithmetic expressions
�e The previous state of variable e
©e The next state of variable e
g(e1, · · · , em) The call of the state function g
ext f (e1, · · · , en) The call to an external function
b Boolean expression
<== Positive immediate assignment
:= Next-state assignment
and Conjunction
skip One unit of time over an interval
; Sequential execution
|| Parallel execution
await(b) Execution upon satisfaction of boolean expression b
N Constant
M Constant
L Constant
bu f f erSize Constant
readOver Global variable
Acronyms Full Form
MSVL Modeling, Simulation and Verification Language
PPTL Propositional Projection Temporal Logic
RDD Resilient Distributed Datasets
DAG Directed Acyclic Graph
PTL Projection Temporal Logic
CTL Computing Tree Logic
LTL Linear-time Temporal Logic
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