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Abstract: Multiple unmanned aerial vehicle (multi-UAV) systems have gained significant attention in
applications, such as aerial surveillance and search and rescue missions. With the recent development
of state-of-the-art multiagent reinforcement learning (MARL) algorithms, it is possible to train multi-
UAV systems in collaborative and competitive environments. However, the inherent vulnerabilities
of multiagent systems pose significant privacy and security risks when deploying general and
conventional MARL algorithms. The presence of even a single Byzantine adversary within the system
can severely degrade the learning performance of UAV agents. This work proposes a Byzantine-
resilient MARL algorithm that leverages a combination of geometric median consensus and a robust
state update model to mitigate, or even eliminate, the influence of Byzantine attacks. To validate its
effectiveness and feasibility, the authors include a multi-UAV threat model, provide a guarantee of
robustness, and investigate key attack parameters for multiple UAV navigation scenarios. Results
from the experiments show that the average rewards during a Byzantine attack increased by up to
60% for the cooperative navigation scenario compared with conventional MARL techniques. The
learning rewards generated by the baseline algorithms could not converge during training under
these attacks, while the proposed method effectively converged to an optimal solution, proving its
viability and correctness.

Keywords: Byzantine attack; multiagent reinforcement learning; multi-UAV system

1. Introduction

Multi-UAV systems have emerged as an essential research field in the past decade and
are increasingly being widely used in applications like target tracking, traffic monitoring,
fire detection, crop monitoring, and search and rescue operations, which require team
formation and coordination [1–5]. The advantages of multi-UAV systems are manifold, in-
cluding but not limited to improved coverage, increased mission robustness, and enhanced
data collection capabilities. Multi-UAV systems can accomplish complex tasks within
complex environments, which are far beyond the capabilities of single-UAV solutions. Due
to the unpredictability and dynamic nature of the mentioned tasks, a predefined solution
may not always be guaranteed to perform well. Therefore, data-driven learning-based
methods are extremely useful to generate an optimal and workable solution to these tasks.
Multiagent reinforcement learning, which inherently learns from agent interactions and
handles high-dimensional continuous state spaces, offers a promising approach to tackling
complex decision-making problems. It enables UAVs to learn from interactions with the
environment, receive feedback in the form of rewards or penalties, and improve their
performance over time through trial and error.
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Unfortunately, recent studies have exposed the vulnerability of UAVs to a range of
attacks, compromising their integrity, security, and ultimately, the performance of multi-
UAV systems [6–10]. In many multi-UAV applications, agent coordination is achieved
through timely communication and data transfer, including information such as location
coordinates, velocity, and direction. If any agent is compromised by a malicious attacker,
it can transmit corrupted data to other agents within the team, influencing their actions
and manipulating group behavior. A malicious agent can strategically disrupt the task
execution of a multiagent system by relaying corrupted messages to unsuspecting agents
within its network. Such cyberattacks against multiagent systems can result in significant
financial losses, jeopardize critical missions, and damage an organization’s reputation.
Therefore, it is crucial for agent-based systems in distributed networks to ensure a sufficient
level of security for large-scale deployment. Previous research has addressed security
vulnerabilities in multiagent systems, emphasizing membership authorization, authenti-
cation, access control, trust management, and protection against security threats [11,12].
In addition, there have been instances where intruders with malicious intent intercepted
communication signals from drones and manipulated them to compromise the intended
mission. To address these security concerns, Brust et al. [13] proposed a defense UAV
system consisting of a swarm of good UAV agents that can detect a malicious UAV and
subsequently escort it outside of the flight zone. However, a malicious UAV can often evade
detection by pretending to be a good agent and subtly manipulating communication signals
with minor biases. As such, a robust and comprehensive approach is necessary to make the
multiagent system resilient to malicious agents, even when they remain undetected.

While current research primarily focuses on well-known threats to UAVs, such as
GPS jamming, spoofing, deauthentication attacks, denial of service, and data interception
attacks [14,15], the risks associated with Byzantine attacks on multi-UAV systems have
not been fully investigated. With the increasing adoption of UAV teams for security and
military applications, Byzantine attacks pose a significant threat. In a Byzantine attack,
a dishonest agent masquerades as an honest agent and compromises the integrity of
the multiagent system by disseminating inaccurate information. The classical Byzantine
general’s problem, introduced by [16], emphasizes the need for a reliable system that
can function even when some components fail. This problem inspired the development
of Byzantine fault tolerance (BFT) systems, which protect distributed networks against
such threats and enhance system resilience. The authors acknowledge that Byzantine
attacks can severely impact the learning performance of agents in multi-UAV applications,
as demonstrated by the simulated experiments. Therefore, it is imperative to address
this vulnerability and promptly mitigate the risks associated with Byzantine attacks in
multiagent reinforcement learning environments.

The proposed method seeks to protect multi-UAV systems from a potential Byzantine
attack in a MARL environment and is based on the preliminary work published in [17].
Typical multi-UAV systems lack a consensus model that can tolerate even a single Byzantine
failure. The cybersecurity risks involved with such systems inspired us to find a solution
that can adequately handle a few malicious agents without compromising the safety and
objective of the entire multiagent system. The authors propose a three-step approach
based on a geometric median consensus model and a robust state update model based on
perceived threat in the system to provide resiliency against corrupted data from Byzantine
agents in the multiagent environment.

The key contributions in this work that underscore the distinctions from the previous
work in [17] are summarized below:

• To ensure that the proposed method will perform reliably and consistently under all
conditions, the current work provides a theoretical guarantee of robustness against
Byzantine attacks during MARL training.

• The present work includes a Byzantine threat model from a multi-UAV system per-
spective to identify the associated risks. This is particularly relevant in decentralized
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and distributed multi-UAV systems, where the assumption of malicious or faulty
agents is essential for ensuring their integrity.

• Additional studies and experiments are conducted to analyze the impact of key attack
parameters on learning performance during a Byzantine attack. The present work also
examines whether the proposed method can mitigate Byzantine attacks when attack
parameters are varied.

The rest of the paper is organized as follows: In Section 2, the authors review prior
work related to vulnerabilities in UAVs and Byzantine fault tolerance. In Section 3, the
authors discuss some background on multiagent reinforcement learning and multi-UAV
cooperative navigation. The authors then provide the problem definition in Section 4 and
introduce the threat model considered in Section 5. The work proposes a Byzantine-resilient
MARL model in Section 6, followed by Section 7, which details the implementation of
this model in multi-UAV navigation scenarios. The results are discussed in Section 8, and
finally, the findings and contribution of this paper are summarized in Section 9.

2. Literature Review
2.1. Secure Mechanisms in Multi-UAV Systems

As civilian drones continue to be integrated into the national airspace, the rising
number of cyberattacks against against UAV networks is a cause for concern [18]. Recently,
several authentication mechanisms have been proposed to address security vulnerabil-
ity [19–21]. De Melo et al. [19] proposed UAVouch to identify malicious UAVs operating
in a multi-UAV system. Their proposed method used a combination of public key au-
thentication and location validation, and identified position falsification attacks during
military surveillance with an accuracy of over 85%. Walia et al. [20] proposed a mutual
authentication technique to detect fake identities in a flying ad hoc network (FANET)
due to Sybil attacks. Similarly, the authors in [21] proposed a lightweight authentication
scheme (iTCALAS) to protect drones from traceability and stolen verifier attacks during
surveillance operations.

Trust management mechanisms have been considered by some authors to detect
malicious UAVs [22–24]. Keshavarz et al. [22] proposed a trust monitoring framework
that can detect DDoS and GPS spoofing attacks by observing task completion, path de-
viation, and energy consumption characteristics of UAVs. Similarly, the authors in [24]
proposed an algorithm based on linear regression to determine the trust value of nodes
for detecting malicious nodes in FANETs. Both authentication and trust management are
important security mechanisms, but they cannot protect protect multi-UAV systems from
more complex attacks. For example, Byzantine attacks are performed by nodes that are
fully trusted and that have already been authenticated and verified in the system. In such
instances, authentication or trust mechanisms cannot be relied upon to provide the integrity
of information.

2.2. Byzantine-Tolerant Machine Learning

Traditional distributed machine learning assumes the integrity of the training par-
ticipants and the reliability of the data used for training, lacking the capability to handle
adversarial behaviors. In recent years, a surge of research has emerged in this field that
takes into account the presence of adversaries. Some of these studies have specifically
focused on the tolerance of Byzantine failures, along with the associated complex issues [25].
Numerous Byzantine fault-tolerant (BFT) approaches in machine learning rely on filtering
schemes that necessitate robust aggregation rules. Blanchard et al. [26] investigated the
ability of a distributed stochastic gradient descent (SGD) learning model to withstand a
Byzantine adversary. Their findings revealed that no linear combination of gradients can
tolerate even a single Byzantine adversary during the learning process. As a result, they
proposed the Krum aggregation rule, which satisfies the Byzantine resilience property
for the distributed stochastic gradient descent method. However, it should be noted that
their approach does not achieve linear time complexity, unlike aggregation rules employ-
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ing the geometric median as a consensus. In a similar vein, Xie et al. [27] conducted a
comparison of three median-based aggregation rules for distributed synchronized SGD
models that exhibit Byzantine resilience under specific conditions. The notable advantage
of these median-based aggregation rules over the previous method is the ability to aggre-
gate without requiring precise knowledge of the number of Byzantine attackers present in
the distributed system. Although these techniques make significant strides in addressing
the challenges posed by adversaries, there is still room for advancements to enhance their
scalability, efficiency, and adaptability in real-world scenarios.

2.3. Byzantine Fault Tolerance in Multi-UAV Systems

While Byzantine fault tolerance has received significant attention in distributed ma-
chine learning research, its application to mitigate Byzantine attacks in multi-UAV systems
has been limited to only a few works [28–33]. Its practical implementation in real-world
scenarios has been relatively unexplored in the literature. Some of recent studies propose
the utilization of blockchain technologies to achieve consensus in the presence of malicious
agents. Strobel et al. [28] exploited blockchain-based smart contracts to develop a consensus
protocol that can prevent Byzantine and Sybil attacks on a swarm of robots. Although
the idea of blockchain-based consensus protocols is exciting, the energy cost for the ver-
ification of blockchain transactions is very high. Therefore, this is not ideal for message
transactions between UAVs that are limited in power supply and require a fast response
time. Furthermore, scalability and storage requirements for blockchains in multi-UAV
systems remain an issue because the addition of more agents into the multi-UAV system
increases the size of the blockchain, and this can exhaust the limited memory storage in
UAVs. Bing et al. [29] proposed a spectrum sensing method for UAVs based on isolating
cognitive radio nodes that can mitigate the influence of Byzantine attacks. Although the
proposed method can sufficiently resist Byzantine attacks, its effectiveness and application
are just limited to deception attacks in cognitive radio networks. More recently, the authors
in [31] provided proof of work for the implementation of Byzantine fault tolerance in UAV
swarm exploration tasks using a BFT consensus mechanism. However, implementation was
limited to cooperative tasks only with predefined Byzantine agents, and the performance of
their approach in multiagent competitive environments or with an undetermined number
of Byzantine agents is not known. A comparison of the related works is listed in Table 1 for
reference. With the adversarial attacks and defenses constantly evolving with time, BFT in
a multi-UAV system remains an active area of research.

Table 1. Comparison of works related to secure mechanisms in multi-UAV systems.

Related Works Application Computational
Cost

Byzantine
Attack

Detection

Byzantine
Attack

Mitigation

[19,21] Surveillance
operations High No No

[23] Cloud
computing Medium No No

[20,24] FANETs High No No

[28] Disaster
response High Yes Yes

[29] Spectrum
sensing Low Yes Yes

[30] Localization of
swarm UAVs High Yes No

[31,32]
Mission-
oriented

UAVs
High Yes Yes

[33] Swarm combat High No Yes
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3. Related Background
3.1. Multiagent Reinforcement Learning

In recent years, multiagent reinforcement learning (MARL) has emerged as a highly
successful approach for addressing decision-making problems in machine learning [34,35].
In MARL, the agents with the environment can either collaborate with each other towards
a common goal in a cooperative scenario, or compete against each other in a competitive
scenario. Advancements such as the advantage actor critic model (A2C), deep deterministic
policy gradient model (DDPG), and multiagent actor–critic model (MADDPG) have shown
significant promise in tackling various decision-making challenges [36–38].

The framework of multiagent reinforcement learning can be characterized as a Marko-
vian game between N agents operating in a configuration state space defined by S . Each
agent in the environment can choose an action from a set of actions {A1, A2, ..., AN}
based on a set of observations {O1, O2, ..., ON} through a policy defined by a policy
πθi : Oi → P(Ai), where θi is the policy parameter for agent i in the environment. The
state transition function is defined as T : S× A1 × A2 × ...× AN → S and each agent gets a
reward defined by the reward function ri : S× Ai → R on the transition to the next state.
The aim of each agent is to maximize its expected return over time which is given by

Ri =
T

∑
t=0

γtri,t, (1)

where γ is the discount factor of the agent’s reward.
Using the policy gradient theorem, the gradient of the expected return can be written as

Oθi J = Eai πiOθi logπi(ai|si)Oai Q
π
i (si, ai), (2)

where Qπ
i is an action-value function. For each agent, the Qπ

i function outputs a Q-value
based on the actions a = a1, ..., aN and observations o = o1, ..., oN of all the other agents.

The centralized action-value function (Qπ
i ) is then updated according to the policy

gradient Equation (2). The action value function is learned by minimizing the regression
loss function as given below:

L(θi) = Es,a,r,s′ [Q
π
i (si, ai)− y2], (3)

where
y = ri + γEa′ ,s′ [Q

π̃
i (s
′
i, a′ i)]. (4)

3.2. Navigation Model for Multi-UAV Systems

A multi-UAV system can be mathematically represented using the fundamentals of
graph theory. Let the information exchange within a multi-UAV system be represented by
an undirected graph G = (V , E), where the vertices V = {v1, v2, v3, ..., vn} correspond to a
team of dynamic UAVs and the edges E ⊆ {(vi, vj) | vi, vj ∈ V , vi 6= vj} correspond to the
possibility of information transmission between two UAVs.

The adjacency matrix (A) tells us whether two UAVs in the multiagent system are
adjacent enough to create a communication link between them.

Aij =

{
1, if (vi, vj) ⊆ E
0, otherwise

. (5)

The degree matrix (D) is used to represent the number of adjacent UAVs for a
given UAV

Dij =

{
deg(vi), if i = j
0, otherwise

, (6)

where deg(vi) is the number of connected links for the agent vi.
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The Laplacian matrix (L) is given by

Lij = Dij − Aij. (7)

The above Laplacian matrix associated with graph G is symmetric for undirected
graphs and relates to useful properties of multiagent networks. In many multi-UAV
systems, sensors on the UAV can only measure the relative position and velocity of adjacent
UAVs with respect to itself. In such systems, agent i can only access information about the
relative states of adjacent agents rather than the global states. The relative state of agent i
can be written as

Xrel = Xj − Xi. (8)

This relative information (Xrel) along with the associated Laplacian of the graph (L)
can then be used in a feedback control system for multiagent coordination between agents.

Assuming a team of n homogenous UAVs moving on a horizontal plane, the state
vector can be represented as Xi = [xi yi φi], where xi and yi are planar positional
coordinates of agent i and φi is the angle of heading direction. The motion model is then
given by

Ẋi = f (xi, ui) =

vi cos φi
vi sin φi

ωi

, (9)

where vi is the linear velocity and ωi is the angular velocity of the i-th robot and ui =
[vi, ωi] is the control input. The objective for centralized co-operative localization is to
estimate the full state vector of the system, i.e.,

X̂ = [X̂1, X̂2, X̂3, ..., X̂n]
T . (10)

Although the motion model defined is for a 2-D planar movement, a similar ap-
proach can be used to extend the model for a 6-degree-of-freedom system like a multirotor
quadcopter. To estimate the state vector using EKF, the motion Jacobian is given by

Ji =
∂ fi
∂x

0 0 −vi sin φi
0 0 vi cos φi
0 0 0

. (11)

For the cooperative navigation problem, the agents in the multi-UAV system share
their relative heading direction (θ) and range distances (r) with all the adjacent agents for
the state estimation (X̂).

The range distance (rij) between agents i and j is given by

rij =
√
(xi − xj)2 + (yi − yj)2. (12)

Furthermore, the relative bearing measurements or heading direction (θi) equation is
given by

θi = tan−1(
yj − yi

xj − xi
)− φi. (13)

4. Problem Definition

Let us consider a multiagent system of N agents with a state update model in a discrete
time step, k ∈ N. Suppose each agent has a state observation model as

yj[k] = HT
j X[k] + ηj, (14)

where yj[k] is the measurement vector, HT
j ∈ Rd is the observation matrix of agent j,

Xj[k] ∈ Rd is the state vector that needs to be estimated, and ηj is the measurement noise.
At each time step k, the current state Xj[k] of the multiagent system is approximated based



Information 2023, 14, 623 7 of 17

on the information obtained from all the other agents in the environment. If X̂j[k] denotes
the estimated state of the multiagent system, X̂j[k] should be to be as close to the true
state Xj[k] as possible for an accurate state update model. By the definition of omniscience
presented in [39], the estimated state asymptotically converges to the true state of the agents
if the following condition holds:

lim
k→∞
‖X̂j[k]− Xj[k]‖ = 0, ∀j ∈ {1, 2, ..., N}. (15)

Thus, given a set of adversaries b within a multiagent system with N agents, the
problem definition is to find a resilient algorithm for a state update such that the condition
given by Equation (15) holds. Generally, a minimizer function such as the least square
formulation is used to estimate the state vector [40]

X̂[k] = arg min
X[k]

‖y[k]−HX[k]‖2, (16)

where y = [yT
1 ...yT

N ]
T is the collective state measurement and H = [HT

1 ...HT
N ]

T is the
collective observation from N agents.

However, in the presence of a Byzantine attack, a malicious agent can modify his/her
state measurement from its true value (yj[k]) to an altered value (ỹj[k]). The attacker can
then send the altered state measurement (ỹj[k]) instead to other unsuspecting agents, in
which case, the above function (16) will not be minimized and state estimation will be
far from accurate. Consequently, a more robust approach is needed to tolerate Byzantine
adversaries in the multiagent system.

5. Threat Model

For the threat model, let the communication process within a multiagent system be
represented by a communication graph G = (V , E). Each agent relies on the exchange
of information from other agents through the set of links in E to update the state of the
multiagent system. The authors consider the possibility that there may be a set of dishonest
nodes (B ⊂ V) that are acting as Byzantine adversaries. The authors also assume that these
Byzantine adversaries can alter the information that they are sending to other nodes in V
by any arbitrary value to deceive the multiagent system.

Security threat and Byzantine agent: From a multi-UAV system perspective, the
current work defines any threat that can hinder the learning capabilities of UAVs, leading
to an inaccurate predictive model for a specific task, as a vulnerability within the system
(Figure 1). In this work, the authors focus on resolving Byzantine attacks in the multi-UAV
system. Specifically, a Byzantine attack in the multi-UAV system implies that one or more
of the UAVs act arbitrarily and deviate from the prescribed protocols. If any UAV behaves
in this manner, it is considered as a Byzantine agent, posing a security threat to the entire
multiagent system.

Figure 1. Threat model for a multi-UAV system with Byzantine agents.
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Within the multi-UAV system, the Byzantine agents will intentionally transmit cor-
rupted or false state observations to other neighboring UAVs with the goal of hindering
the learning performance of the agents. To ensure the system’s resilience against Byzan-
tine attacks, it is relied on a consensus among the participating agents. It is assumed
that the majority of the agents within the learning environment are inherently honest in
their behavior.

Colluding adversaries: Most of the existing literature makes an explicit assumption
that Byzantine adversaries act independently during malicious attacks, meaning that they
do not collude with one another. However, in reality, Byzantine agents may choose to
collaborate, increasing their chances of success in an attack. For instance, considering a
scenario where b Byzantine agents send random state vectors for a consensus, achieving
consensus in a specific direction becomes challenging due to their noncooperative strategies.
However, when colluding adversaries work together, they can influence the consensus by
sending multiple state vectors in the same direction.

For simplicity, this work assumes that attackers in the multiagent system act inde-
pendently. This means that the Byzantine adversaries (B) do not collude with each other
during an attack. Additionally, the authors assume a synchronous state update model here.
Moreover, the authors in this work adopt an f -total adversarial model [41], which means
that the multiagent graph (G) can tolerate a maximum of f -adversaries within (B).

6. Methodology

The proposed method introduces a Byzantine-resilient integrity model (Figure 2) into
the MARL framework to effectively defend against Byzantine attacks while still enabling the
agents to learn an optimal behavior. This additional model serves the purpose of achieving
consensus on the information shared among all agents. In the navigation experiments, this
shared information encompasses the states of agents observed by each UAV within the
multiagent environment. The model takes as input the agents’ state information, which
may or may not be compromised, and produces a consensus for all the states. Importantly,
this model guarantees that even if one or more agents disseminate corrupted information
about agent states, the updated agent states in the MARL model remain unbiased unless
more than half of the agents engage in malicious behavior.

Figure 2. Proposed model for Byzantine resilience in the MARL environment.

6.1. Proposed Method

In the presence Byzantine adversaries, a concise three-step approach is outlined below
to address the MARL problem.
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• Potential Byzantine estimate: Based on the average rewards and the instances of
penalties accrued in each training episode, an estimation is made for the potential
number of Byzantine agents present within the MARL environment.

• State consensus model: Each agent observes its neighboring agents and communi-
cates their states with the other agents in the environment. A consensus on all agents’
states is then derived from these observations using a geometric median aggregation
method. This consensus method ensures a resilient state estimate, maintaining its
reliability as long as the proportion of malicious agents within the MARL environment
remains below the breakdown point of α = 0.5.

• State update model: Finally, each agent adjusts the state consensus, depending on
the potential presence of Byzantine agents in the environment. In the presence of a
Byzantine threat, greater weight is attributed to an agent’s own direct observations,
signifying a higher level of self-trust compared with observations from other agents.
Conversely, when there is no suspicion of a Byzantine threat, both direct and indirect
observations are equally trusted. This allocation of weightage to direct and indirect
observations further enhances the robustness of the consensus model.

6.2. Byzantine-Resilient MARL Algorithm

As outlined above, the authors introduce an algorithm designed for robust multi-
agent learning in the presence of Byzantine agents. Algorithm 1 provides an elaborate
representation of the steps involved.

Algorithm 1 Byzantine-resilient multiagent reinforcement learning.

1: Input: States S = {s1, s2, s3, ..., sn}; Actions, A = {a1, a2, a3, ..., an}; Number of agents,
N; Reward function, R : S × A → R; Learning rate, α; Discounting rate, γ; No. of
training episodes, M; Episode length, tepisode; Minibatch sample size, S

2: Output: Set of updated agent policies, πi
3: for episode = 1 to M do
4: Initialize an action process randomly
5: while tepisode not terminal do
6: Choose an action based on current policy
7: a← π(s)
8: Calculate reward for action
9: r ← R(s, a)

10: Determine Byzantine threat based on observed rewards and penalties
11: ρ = ravg − penavg
12: Estimate number of Byzantine agents (β)
13: β = f (ρ, n) : Z× R→ R, β ∈ [0, N/2]
14: Find geometric median of observed states from (N − β) agents
15: s′σ = argmin ∑

n−β
i=1

∥∥xi − σ
∥∥

2
16: Update policy gradient using actor critic model for each agent, i
17: Oθi J = 1

S ∑Oθi πi(s′i)Oai Q
π
i (s
′, a1, ..., ai, ..., aN)

18: Update agent’s network parameters
19: θ′i ← (1− α)θi + α(θ′i)
20: Update states of agents based on direct and indirect observations (Odir, Oind)

21: ŝi = ( 1+β
N )(s′i)|Odir

i + (N−β−1
N )∑N−1

i=1 (s′i)|Oind
i

22: end while
23: end for

Let us consider a multiagent navigation scenario in which N agents are being trained
to navigate in the environment with the help of reinforcement learning. Agents can interact
with peers and choose their action in this environment based on a policy that maximizes
the agents’ total reward. However, prior to the policy gradient update, the user estimates
the potential number of Byzantine agents based on observed rewards and penalties due
to the agents’ actions (lines 10–13, Algorithm 1). This estimation, although approximate,
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operates under the assumption that remarkably low rewards and high penalties in the
MARL environment are a consequence of the actions of Byzantine agents. This simplifies
the removal of agents from the consensus model when their actions raise suspicions.
If the user suspects β agents out of N total agents to be Byzantine, the algorithm then
proceeds to determine a consensus regarding observed states, using the geometric median
convergence function among (N − β) agents (line 15, Algorithm 1). Finally, the resilience
of this algorithm is bolstered further by implementing the state update model as discussed
in Section 6.1 to give us a robust state estimation even in the presence of adversaries.

6.3. Robustness Guarantee

To guarantee robustness against a Byzantine adversary during training, the agents
in the MARL environment must be able to reach a consensus for observed states even in
the presence of Byzantine observations. The agents use a geometric median consensus for
agreement on observations from other agents in the environment. The geometric median
is a robust estimator used in many aggregation methods. Let us consider a set of multidi-
mensional vectors {y1, y2, ..., yn} ⊆ R. Then its geometric median can be mathematically
defined as

y∗ = GeoMed{y1, y2, ..., yn} = arg min
y∈R

n

∑
i=1
‖y− yi‖, (17)

where ‖ · ‖ denotes the Euclidean norm. For a noncollinear set of vectors {y1, y2, ..., yn},
their geometric median y∗ is always unique.

The robustness property of the geometric median estimator has been stated in a few
previous works [42,43] and can be validated through the following lemma from [42].

Lemma 1. Suppose we consider a set of n points in a Hilbert space defined by {y1, y2, ..., yn} ∈ H
and their geometric median is y∗. For any α ∈ (0, 1/2) and z ∈ H, if ‖y∗ − z‖ > Cαr for
r > 0, where

Cα = (1− α)

√
1

1− 2α
, (18)

then a subset J ⊆ {1, 2, ..., n} exists with |J| > αn such that ‖yj − z‖ > r, ∀j ∈ J.

The above lemma suggests that for a given set of points {y1, y2, ..., yn}, if any arbitrary
Byzantine point (z) is at a far distance from their geometric median y∗ = GeoMed{y1, y2, ..., yn},
then that Byzantine point (z) is also at a far distance from a constant fraction of the given
set of points. A complete proof for Lemma 1 can be found in [42] and included here for
completeness.

Proof. Let us denote F(y) := ∑n
j=1 ‖y− yi‖. For the sake of argument, suppose that the

converse is true. This means that ‖yj − z‖ < r. Let DF(y∗; z − y∗) be the directional
derivative at the point y∗ in the direction z− y∗.

Since the point y∗ minimizes F over H, DF(y∗; z− y∗) ≥ 0. Additionally,

DF(y∗; z− y∗)
‖z− y∗‖

= − ∑
j:yj 6=y∗

〈yj − y∗, z− y∗〉
‖yj − y∗‖‖z− y∗‖

+
n

∑
j=1

I{yj = y∗}. (19)

Now, if γj = argcos(
〈yj−y∗ ,z−y∗〉
‖yj−y∗‖‖z−y∗‖ ), then we have

〈yj − y∗, z− y∗〉
‖yj − y∗‖‖z− y∗‖

= cos(γj) >

√
1− 1

C2
α

(20)
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If Cα ≥ (1− α)
√

1
1−2α , then

DF(y∗; z− y∗)
‖z− y∗‖

< −(1− α)n

√
1− 1

C2
α
+ αn ≤ 0 (21)

which leads to a contradiction. Hence, the assumption cannot be true, and this concludes
the proof.

7. Experimental Scenarios

For demonstrating the effectiveness of Algorithm 1, two distinct navigation tasks are
considered as illustrated in Figure 3. The two tasks are carried out in 2-D environments
having continuous observations and discrete action spaces.

1. Cooperative navigation: In this task, each UAV collaborates with other agents to
navigate toward a designated landmark, ensuring that all landmarks are covered.
Agents receive collective rewards based on their proximity to any landmark (building)
during each step. Penalties are incurred for collisions with other agents or landmarks.
With sufficient training, the agents acquire the ability to reach their respective target
landmarks by coordinating with one another.

2. Predator–prey navigation: In this task, the MARL environment comprises a set of
UAVs working in unison to capture an adversary with superior speed. Agents are
rewarded for successfully intercepting the suspect (adversary) while facing penalties
for collisions with one another. With sufficient training, agents learn to cooperate with
other predator agents to navigate the environment and capture the prey agent.

Figure 3. Navigation scenarios with Byzantine agents.

The experiments with the proposed method use a 2-layered MLP (64 units, rectified
linear unit activation) for the policy training, and the learning performance is compared
with baseline methods [36–38]. Two kinds of attacks, namely, position bias and replacement
in position [17], were considered during the evaluation.

Simulation Environment

The simulation environment used for these tasks are based on a set of communication-
oriented environments adopted from the multiparticle environments (MPEs) [38]. It is
dependent on OpenAI’s open-source Python library, Gym [44], for the implementation of
reinforcement learning algorithms. Agents in the simulated environment are UAVs that
have the ability to navigate, communicate, observe, and interact with each other. Targets
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are static locations that act as the goal position for an agent to reach, whereas landmarks
are the static entities that the agents have to navigate around to reach their target. Each
agent’s observation space consists of a vector consisting of the position and velocity of the
agent, relative positions and velocities of other agents, relative positions of the landmarks,
and received communications from cooperative agents. The action space is discrete, where
agents are able to select any action to move left, right, up, or down with a specified velocity
between 0.0 and 1.0 in any of the four directions. All the agents (benign and malicious)
can transmit continuous values through various communication channels available in the
environment.

The number of agents considered in simulation varied from a minimum of 3 to a
maximum of 9 agents across all the scenarios. The agents were rewarded both globally and
locally based on the task assigned. The ratio between the relative weights of the local and
the global rewards was set to a value of 0.5. Initially, the agents were randomly placed
at multiple locations across the map at the start of an episode. Each episode ran for a
maximum number of steps for an agent specified by the maximum cycles parameter. The
maximum cycles parameter was set to 25 for each episode. The simulation was run in a
Python 3.8 environment using an Ubuntu 18.04 LTS operating system.

8. Results Analysis

The results of the MARL simulation experiments are presented below, wherein the
learning performance of the proposed algorithm was analyzed during a Byzantine at-
tack and compared against the baseline algorithms. Performance evaluation metrics for
MARL depend on the specific objectives and characteristics of the multiagent system. The
following performance metrics were used for the analysis of the results.

• Average reward: The average cumulative reward obtained by all agents over a set of
episodes. It provides a measure of the overall performance of the agents.

• Individual agent reward: The reward achieved by each individual agent. This helps
assess the contribution of each agent to the collective goal.

• Learning curve: Plots of cumulative reward over time or episodes, providing insights
into how well agents learn and adapt.

8.1. Learning Performance
8.1.1. Cooperative Navigation

The first task examined a cooperative navigation scenario involving 9 agents and
9 landmarks. Three of the agents acted as Byzantine agents, transmitting corrupted posi-
tional data to their peers. In this attack, the relative positions of other agents and landmarks
were compromised through the addition of a bias value drawn from a normal distribution
(µ = 500, σ = 1000). To assess the learning performance in the training phase, the mean
episode reward was calculated over 1000 iterations, and the average was plotted against
the total no. of episodes trained. Figure 4a demonstrates the learning performance of the
proposed algorithm. While the learning performance of the baselines (A2C, DDPG, and
MADDPG) deteriorated over time due to the actions of Byzantine agents, the proposed
algorithm achieved convergence to an optimal solution. The mean episode rewards in
the proposed algorithm closely approximated those of a learning environment without
any malicious agents. During the Byzantine attack, the average value of the reward for
the proposed method taken over 5000 training episodes was −48, whereas the same for
the baselines were −74 ([36]), −100 ([37]), and −121 ([38]). Thus, the proposed method
showed an improvement of 35%, 52%, and 60% over the algorithms in [36–38], respectively.

It is noteworthy that the baseline algorithms, lacking resiliency mechanisms, struggled
to maintain a consistently high reward and exhibited significant variance in performance
between episodes. This was caused by false positional information from the malicious
agent making benign agents choose actions that were detrimental to their cooperative
strategies. This led to collisions between agents, resulting in them moving farther away
from their expected target. On the other hand, the reward curve for the proposed algorithm
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with Byzantine resiliency followed close to the reward curve with no attack, suggesting
that the effect of a Byzantine attack can be considerably mitigated.

(a) (b)
Figure 4. MARL performance in multi-UAV navigation scenarios. (a) Cooperative navigation
environment (no. of agents, N = 9; no. of malicious agents, β = 3; bias in corrupted data
(µ = 500, σ = 1000)) (b). Predator–prey environment (3 predators, 1 prey, 1 malicious predator
agent, bias in corrupted data (µ = 500, σ = 1000)).

8.1.2. Predator–Prey Navigation

The second task explored a predator–prey scenario featuring three predator agents
and one prey. Among the predators, one agent was malicious and sending corrupted
positional data to other agents. Just like the first scenario, the relative positions of other
agents and landmarks were compromised through the addition of a bias value drawn from
a normal distribution (µ = 500, σ = 1000). Figure 4b illustrates the learning performance
of the proposed algorithm. Unlike the previous task, there is no clear convergence in this
plot. Here, the predator agents and the prey learn from each other’s actions and adapt
their learning policies continuously over time. Nonetheless, in the presence of Byzantine
agents, the proposed algorithm outperformed the baselines with a higher episode reward.
The average reward obtained by the agents for the proposed algorithm was 11, while that
of [36–38] was −2, 1, and 3, respectively, during the predator–prey navigation training.

An interesting observation is the reduced variance in episode rewards compared with
the cooperative navigation scenario. This can be attributed to the prey agent learning a
suboptimal policy, leading it to move farther away from the predator agents. Consequently,
it became challenging for the predators to catch up with the prey, resulting in relatively
lower reward values.

8.2. Analysis of Key Attack Parameters

Further simulations were conducted to investigate the impact of various key compo-
nents during a Byzantine attack. By systematically modifying specific parameters of an
attack, this analysis aimed to assess their individual contributions to the overall perfor-
mance of the proposed algorithm. The results of these studies provide insights into the
significance of these components and help us understand their roles in achieving robustness
against Byzantine attacks.

8.2.1. Number of Agents

Figure 5 shows a side-by-side learning comparison of the proposed algorithm with
the baseline during the cooperative navigation scenario when the total number of agents
was varied (N = 3, 5, 7, 9). In each case, 40% of the total agents were malicious and sending
corrupted data to other agents. During the Byzantine attack, the average reward obtained
by the agents with the proposed algorithm (−6 for N = 3, −21 for N = 5, −33 for N = 7,
−64 for N = 9) was consistently higher than that of the baseline algorithm (−41 for N = 3,
−62 for N = 5, −93 for N = 7, −122 for N = 9). Since the simulations considered the
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same action space for all cases, the mean episode reward decreases as N increased due to
more collisions in the action space. From the plot, it is evident that the proposed algorithm
outperformed the baseline algorithm for all the four values of N considered.

Figure 5. Variation of total no. of agents: MARL performance in a cooperative navigation environment
during an attack (40% malicious agents, bias in corrupted data (µ = 500, σ = 1000)).

8.2.2. Position Bias during Attack

The learning performance of the baseline algorithm degraded significantly during
a position bias attack as the value of added bias was increased. A low positional bias
(µ = 0, σ = 1) added by a malicious attacker may still cause the rewards to converge with
degraded performance. On the other hand, the mean episode reward failed to converge
entirely when a very high positional bias (µ = 500, σ = 1000) was added by the attacker.
With the baseline algorithm, the average reward obtained by the agents degraded from a
value of −15 to values of −81, −93, −102, and −159 when the added position bias was
increased gradually. However, it is clear from the plots in Figure 6 that the proposed
algorithm was able to achieve convergence with a higher average reward value (−15) than
the baseline for any added positional bias.

Figure 6. Variation of position bias: MARL performance in a cooperative navigation environment
(total no. of agents, N = 5; malicious agents, β = 2).

8.2.3. Number of Malicious Agents

In this experiment, the number of malicious attackers in the MARL environment was
varied, and the performance of the proposed algorithm was evaluated during an attack
scenario. The results, as depicted in Figure 7, showcase a side-by-side comparison with
the baseline algorithm. Specifically, the simulation focused on a cooperative navigation
scenario with N = 5 agents and introduced a position replacement attack. The simulated
attacks varied the percentage of malicious agents, examining cases where it was 20%,
40%, and 60% of the total number of agents, respectively. For the baseline algorithm,
the average reward obtained by the agents degraded from a value of −17 without any
malicious agent to values of −72, −85, and −59 with 20%, 40%, and 60% of the agents
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acting maliciously, respectively. However, with the exception of the case where 60% of the
agents were malicious, the proposed algorithm consistently outperformed the baseline and
demonstrated superior performance, with average rewards converging to an optimal value
of −17. This outcome was anticipated since the proposed algorithm relies on a geometric
median consensus model with a breakdown point of 0.5. This indicates that the algorithm
achieves optimal convergence of mean episode rewards as long as fewer than 50% of the
agents within the MARL environment are malicious.

Figure 7. Variation of the number of malicious agents: MARL performance in a cooperative navigation
environment (total no. of agents, N = 5, bias in corrupted data (µ = 500, σ = 1000)).

9. Conclusions and Future Work

With the increasing integration of UAVs into multiagent systems for critical coordi-
nated tasks, the vulnerability of UAVs to malicious threats, particularly Byzantine attacks,
has become a significant concern. While multiagent reinforcement learning methods have
been employed to tackle coordinated tasks, the presence of a Byzantine agent can severely
disrupt the learning process. This paper proposed a resilient algorithm for multiagent rein-
forcement learning that effectively mitigates Byzantine attacks against the agents present
in the environment. This resiliency is based on a geometric median consensus model that
can sufficiently tolerate corrupted information from up to 50% of the total agents in the
MARL environment. To demonstrate the practicality of the algorithm, the authors specif-
ically focus on two multi-UAV use case scenarios based on cooperative navigation and
predator–prey navigation, respectively. The results from the experiments illustrate how a
Byzantine adversary can potentially result in the nonconvergence of agent rewards during
the learning process. The learning rewards obtained by the agents during the simulated
Byzantine attack show that the performance of the proposed algorithm surpassed the
baseline MARL techniques by as much as 60% for the cooperative navigation scenario.

As cyber threats continue to evolve and attacks become more sophisticated, the current
work can be extended in the future to handle complex scenarios and different types of
attacks. For example, most of the Byzantine-resilient techniques assume that adversaries
do not collude with each other during an attack. This is a very strong assumption to make
because there is no such guarantee in real-world adversarial attacks. Colluding adversaries
not only can degrade learning performance more severely, but also are very difficult to
detect and identify in a multi-UAV system. In the future, addressing these challenges can
further enhance the resiliency of multi-UAV systems against evolving cyber threats.
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