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Abstract: Benchmarking different optimization algorithms is tasky, particularly for network-based
cellular communication systems. The design and management process of these systems involves
many stochastic variables and complex design parameters that demand an unbiased estimation
and analysis. Though several optimization algorithms exist for different parametric modeling and
tuning, an in-depth evaluation of their functional performance has not been adequately addressed,
especially for cellular communication systems. Firstly, in this paper, nine key numerical and global
optimization algorithms, comprising Gauss-Newton (GN), gradient descent (GD), Genetic Algorithm
(GA), Levenberg-Marguardt (LM), Quasi-Newton (QN), Trust-Region-Dog-Leg (TR), pattern search
(PAS), Simulated Annealing (SA), and particle swam (PS), have been benchmarked against measured
data. The experimental data were taken from different radio signal propagation terrains around
four eNodeB cells. In order to assist the radio frequency (RF) engineer in selecting the most suitable
optimization method for the parametric model tuning, three-fold benchmarking criteria comprising
the Accuracy Profile Benchmark (APB), Function Evaluation Benchmark (FEB), and Execution Speed
Benchmark (ESB) were employed. The APB and FEB were quantitatively compared against the
measured data for fair benchmarking. By leveraging the APB performance criteria, the QN achieved
the best results with the preferred values of 98.34, 97.31, 97.44, and 96.65% in locations 1-4. The GD
attained the worst performance with the lowest APE values of 98.25, 95.45, 96.10, and 95.70 in the
tested locations. In terms of objective function values and their evaluation count, the QN algorithm
shows the fewest function counts of 44, 44, 56, and 44, and the lowest objective values of 80.85, 37.77,
54.69, and 41.24, thus attaining the best optimization algorithm results across the study locations.
The worst performance was attained by the GD with objective values of 86.45, 39.58, 76.66, and
54.27, respectively. Though the objective values achieved with global optimization methods, PAS,
GA, PS, and SA, are relatively small compared to the QN, their function evaluation counts are high.
The PAS, GA, PS, and SA recorded 1367, 2550, 3450, and 2818 function evaluation counts, which
are relatively high. Overall, the QN algorithm achieves the best optimization, and it can serve as a
reference for RF engineers in selecting suitable optimization methods for propagation modeling and
parametric tuning.

Keywords: optimization; direct search; fair benchmarking criteria; objective function; optimal
propagation modeling; parametric tuning
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1. Introduction

In recent years, the system design, deployment, and management of wireless radio
frequency (RF) networks have become more tasking and complicated [1-3]. The intricacies
and complications may be attributed to many dynamic factors. The advancement and
constant evolution of different cellular network technologies, accompanied by different
deployment procedures and management costs, can be a prominent factor [4-6]. In addition,
frequent changes in localized environmental features such as houses, buildings, and trees,
plus the varying weather condition around these networks, can be another significant
factor [7-9].

Constant increasing traffic of mobile subscribers in the networks with different mul-
timedia service quality demands could also be a key factor [10-12]. Remarkably, cell site
acquisition is becoming more problematic due to the limited availability of suitable sites in
a built-up area and neighboring residents that generally work against such site installations,
probably because of frequently rumored electromagnetic radiations that emanate from
them [13].

In order to cope with or overcome the aforementioned key challenges, the RF engineers
must also be ready to explore techniques and efforts at the network design/deployment
phase or optimization/management phase when in operation [14-16]. The propagation loss
model is a key tool that the RF employs to estimate the cell radius and signal attenuation
losses during and after cellular system network design/deployment [17]. These signal
propagation models usually contain some unknown parameters that must be accurately
determined in correspondence with experimental data from the terrain of interest. Inaccura-
cies in RF propagation modeling and their parameter estimation can compromise effective
network planning, management, optimization, and operational activities [18-20]. The
impact can be enormous regarding poor service quality, resource input wastage, and time
costs. This key problem is often called the propagation model parameters identification
problem in the telecommunication network engineering domain.

The field of predictive analytics has revolutionized decision-making processes across
various industries by providing valuable insights and forecasts based on historical data.
It involves the application of statistical models, machine learning algorithms, and opti-
mization techniques to extract patterns and trends from data, enabling organizations to
make informed decisions and predictions. Optimization algorithms play a crucial role
in enhancing the accuracy and efficiency of predictive analytics by finding the optimal
values of model parameters. Accurate modeling and estimating parametric values for
cellular network-based propagation models is a dynamic optimization problem due to
the different nonlinearities involved [21-23]. The interaction of the transmitted waves
with different propagation mediums and terrain features around the receiver causes its
strength to attenuate and degrade, thus resulting in what is known as signal propagation
loss. During the cellular radio frequency (RF) network design or optimization phase of an
existing one, the RF engineer uses signal propagation models to estimate the characteristics
of signal attenuation losses that occur between the transmitting stations and the receiver
stations [24-26]. These signal propagation models usually contain some unknown parame-
ters that must be accurately determined in correspondence with experimental data from
the terrain of interest.

Inaccuracies in RF propagation modeling and their parameter estimation can com-
promise effective network planning, management, optimization, and operational activi-
ties [27,28]. The impact can be enormous regarding poor service quality, resource input
wastage, and time costs [29,30]. In the telecommunication network engineering domain,
this key problem is often called the propagation model parameters identification prob-
lem [31,32].

Several numerical and global optimization methods exist in the literature [33-36], ex-
plored and published by different authors or researchers to tackle the intricate propagation
model parameter identification problem. While various optimization algorithms in the
literature attempt to tackle this key issue, selecting the preeminent one during application
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in solving a specific problem a priori is often difficult. Particularly, a methodical-based
approach to benchmark the performance of diverse optimization algorithms to tackle the
intricate radio propagation modeling and parametric tuning problems is currently missing,
and the few studies available in the literature provided conflicting findings.

This paper identifies and provides an overview of the common existing numerical and
global optimization methods. In order to assist a practicing scientist or an RF engineer in
selecting the most suitable optimization algorithm for solving the parametric model tuning
problem, the second focus is to introduce three-fold benchmarking criteria. The third focus
is to explore benchmark criteria for the precision performance of the identified numerical
and global optimization methods with practical case studies from different radio signal
propagation terrains. Thus, the core contributions of this paper are as follows:

e  We provide a clear-cut identification and detailed overview of the common existing
numerical and global optimization algorithms.

e  Introduction of three-fold benchmarking criteria, namely the Accuracy Profile Benchmark
(APB), Function Evaluation Benchmark (FEB), and Execution Speed Benchmark (ES)

e  Using the two-fold set of benchmarking criteria, we benchmarked the precision perfor-
mance of the identified numerical and global optimization algorithms with practical
case studies from different radio signal propagation terrains.

The remaining part of this paper is described as follows. Section 2 covers the related
work. Section 3 describes the materials and methods, focusing on the identified optimiza-
tion algorithms and their experimentation. Section 3 also presents the developed three-fold
set of benchmarking criteria, while Section 4 provides the results and valuable discussions.
Finally, the conclusion is given in Section 5.

2. Related Works

Different benchmarking and comparative works exist on numerical and global op-
timization performance impacts for real-time applications but not within the domain of
intricate RF propagation modeling and parameter tuning problems. In [37], determinis-
tic local and stochastic global optimization methods were investigated and compared to
identify and estimate unknown kinetic model parameters systematically.

This paper identifies and provides an overview of the common existing numerical and
global optimization methods. The second focus is to benchmark the precision performance
of the identified numerical and global optimization methods with practical case studies
from different radio signal propagation terrains. In [34], both stochastic and deterministic
global optimization algorithms were studied for nonlinear biological modeling and param-
eter estimation. The stochastic methods provided lower processing time from their results
but with poor convergence to a global minimum under a limited iteration number. On
the contrary, the deterministic methods yielded preferred solutions regarding convergence
quality but huge computational weights.

Several global optimization algorithms are benchmarked with standard functions for
practical applications, presented in [33]. The authors discovered that the Hybrid Differential
Evolution and Adaptation Evolution Strategy Algorithm was better for complex objective
functions than the Hook-Jeeves and particle swam optimization, which attained better
global minimum convergence for less complex objective functions.

In [38], five different global optimization algorithms were investigated for benchmark-
ing to reconstruct and optimize nano-optical shape parameters. From the investigation,
the Bayesian optimization method was reported to outperform other algorithms, such
as differential evolution and particle swam, in terms of run times. A similar approach
involving different optimizers is presented in [39] for the panel data model. It found that
the computational success rate of the optimizers varies proportionally with the nature of
the problem being handled by them. In [36], the cumulative density function is explored as
an indicator to benchmark the performance of stochastic global optimization algorithms on
test data sets” analysis. The result reveals that the algorithms with the pure random search
performed preferably better.
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In [40], numerical-based optimization techniques focusing on Levenberg-Marguardt
(LM) and Gauss-Newton (GN) algorithms were investigated to compare their performance
on the propagation model parameter optimization and prediction analysis. With the ap-
plication focus on loss data taken from built-up areas, the results showed that the LM
outperformed the GN in terms of precision accuracies. In [41], Particle Swarm Optimiza-
tion (PSO) and random forest (RF) were applied comparatively to tune and identify the
parameters of the signals’ attenuation models. The authors found that the PS method
attained the most preferred precision performance by 22-25% across the study locations,
using maximum absolute error as the indicator.

In [42], neural networks, support vector machine, and random forest were bench-
marked with traditional path loss models like the COST 231-Walfisch Ikegami model and
COST 231-Hata model. The authors disclosed that random forest yielded the best precision
performance in path loss prediction.

Through the propagation modelling and benchmarking process, it was found in [43]
that the proposed LightGBM model, which is a machine learning-based developed mod-
elling algorithm, outperforms the empirical models by 65% in terms of prediction accuracy
and decreased by 13 x in prediction time when matched with ray-tracing. The notable per-
formance was achieved even with thin training data sets. Also, via detailed benchmarking
processes in [41,44], the authors developed hybrid particle swarm-random forest and vector
statistics—neural network models for propagation loss modeling and observed that their pro-
posed models attained preferred prediction accuracies compared to traditional approaches.

In [45], the predictive modelling performance of four popular machine learning meth-
ods consisting of support vector regression, neural networks, gradient tree boosting, and
random forest was compared with empirical path loss models after incorporating crossed
walls” number into them. From among the four learning-based methods engaged, the
gradient tree boosting displayed the best generalization and prediction capacities.

3. Methods

This work adopts a four-phased methodology, as shown in Figure 1. The first phase
highlights how the field test measurement campaign was conducted to acquire the relevant
signal data used for the propagation loss model tuning and parameter identification. It
also reveals the considered generic propagation model and its variables. This is followed
by defining the genetic propagation model and its specific modeling variables. Phase
three reveals the nine adopted optimization methods. Phase four provides the developed
two-fold set of benchmarking criteria and the benchmarking results. The streamlined
stepwise algorithm adopted to actualize the main goal of the paper is as follows:

i Identify the generic propagation model to be tuned and specify its key parameters,
vector h, of the model to be tuned (optimized), and the iteration number, z.

ii. Define the initial guess parameters, n = (0,0 0), and set ngey, = 0.

iii. Define the complete objective function connecting the optimization parameters.

iv. Optionally, select the optimization solver and carefully stipulate the required options.

V. Appraise the defined objective function E(h) and the possible constraints g(h) < (n);
Nfeval = Nfevar + 1.

vi. Introduce fair benchmarking criteria.

vii.  Assess the convergence and precision performance of each method base in step (vi).

viii.  If conditions are met, then stop; otherwise,

ix. Apply the search further directional of each optimization method for the parameter
update.

X. Assess the convergence and precision optimization of each method, else return to

step 1.
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Figure 1. The adopted four-phased workflow.
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3.1. Field Measurements

The signal path loss data sets were obtained using professional TEMS investigation
test tools. The TEMS tools, containing the Map info, scanner, TEMS software, compass,
TEMs pocket phones, an inverter, and a GPS, were all connected and driven inside a salon
car to perform the signal loss data collection. With the configured and connected tools
that can automatically access, verify, optimize, troubleshoot, and benchmark operational
mobile cellular networks, we drove around four different eNodeB transmitters within
the designated study locations in Port Harcourt City, Nigeria. The height of the eNodeB
transmitters ranged between 26 and 34 m above sea level. The four transmitters belong
to a commercial Long Term Evolution network service provider, and each operates at a
2600 MHz transmission frequency in the 20 MHz bandwidth.

We employed a continuous measurement procedure with the active handover, enabling
us to acquire the signal loss data around every measurement location [46]. This process first
accesses the eNodeB transmitter and carries out the physical measurements via automated
call initiations and establishments. The acquired signal data were also programmed to
be saved automatically in logfile format during the field test. After the test, the data sets
were extracted for further processing using MAP info, an Excel spreadsheet, and MATLAB
software. Data pre-preparation is a critical step toward attaining effective model tuning and
optimization; in this paper, the wavelet preprocessing tool in the MATLAB computational
environment was utilized to detect and cater to missing data and the measured channel
signal noisy components.

3.2. The Generic Propagation Loss Model

The generic propagation model, also popularly termed the log-distance or free-space
model, is designed for a free-space environment assuming no signal propagation im-
pediment between the transmitting and receiving antenna [47,48]. It is mathematically
described as

PL(dB)= —147.56 + 20log( f,) +-20log(ds) (1)

where PL(dB), ds, and f, designate the log-distance model, signal propagation distance,
and signal propagation frequency, respectively.

Therefore, to cater to other environments, such as urban, sub-urban, and rural, there
is a need for parametric model tuning. In order to accomplish this, Equation (1) can be
re-written in the form of (2):

PL(dB) = hy + halog(fr) +hslog(ds) 2

Here, it should be noted that Equation (2) is only modeled in the form of Equation (1).
The two equations are not necessarily the same. Specifically, Equation (1) assumes an
ideal scenario where there is no obstacle in the line of sight. In Equation (2), the picture
of the actual environment is depicted where path loss is expected due to the dynamic
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characteristics of the environment investigated. In practice, the values of hj, hp, and
h3, in Equation (2), are not known until they are observed via theoretical simulation or
experimentation. Depending on the environment and other dynamic environmental or
man-made conditions, the values hy, iy, and h3, in Equation (2), will differ. This work is
focused on obtaining these values for the scenarios considered as shown in the results
section. In the ideal scenario, following Equation (1), these values are h; = —147.56,
hy = 20, and h3 = 20, and these cannot be used as a benchmark for the expected values
in Equation (2). However, in Equation (2), the values of 1, hy, and h3 would show very
sharp or significant variations compared to the values in Equation (1). The values obtained
for Equation (2) depict the real conditions of the environment examined, whereas those
obtained for Equation (1) represent the ideal case, which is not possible in practice.

In this paper, Equation (2) is thus termed as a generic propagation model where
hy, hy, and h3 define parameters to be tuned for a given environment. Lastly, it should
be noted that any of the parameters, h;, hy, and h3, may be negative depending on the
scenario as observed in the results of the current study.

3.3. The Objective Function

Generally, optimization algorithms can be defined as mathematical procedures that
search for the optimal solution of a given problem based on certain criteria or objective
function. In propagation model tuning, the goal is to identify and determine the parameters
hy, hy, and h3 in correspondence with the measured signal propagation loss. This can
be attained in the least square sense, resulting in the main optimization problem. The
literature has several numerical or global algorithms or methods of solving parametric
optimization problems. The focus of this paper is to identify and provide an overview
of the common existing numerical and global optimization ones with the sole aim of
examining their propagation model parameters, identification, and tuning capabilities.
The second focus is to benchmark the precision performance of the identified numerical
and global optimization methods with practical case studies from different radio signal
propagation terrains.

Objective functions play a fundamental role in parametric optimization and predictive
modeling, providing a quantitative measure of the performance or quality of a solution.
They are essential in predictive modeling as they drive the process of model optimization.
They also serve as the guiding principle for optimization algorithms, helping to identify
the optimal solution that satisfies specific constraints and maximizes desired objectives.
In general, the choice of objective function depends on the problem at hand. In this
paper, the parametric minimization objective function [44,46] is engaged. The objective
function defines and houses the nonlinear path loss model we seek to minimize by means of
numerical and global optimization algorithms. In general, our goal is driven by solving the
vital parametric propagation modelling problem using the parametric optimization-based
objective function [44,46], as shown in Figure 2, and it can be articulated mathematically as

2

h € mingS(h)=Y " [y — f(xi, )] ®)
f(xi,h) :]’ll +h2+h310g10 (x,') i= 1,2,...,71 (4)
where h = (h,, hy,h3) represents the parameters of the targeted generic propagation

model, Y f-

In Equation (3), x;, y;, Y and n express the measured propagation loss variables, the
target responses, generic propagation model, and measurement data points. The objective
function in (3) is also engaged to harmonize the different components of the optimization
problem, helping us to achieve the optimal outcome. By evaluating the objective function,
we can compare candidate solutions and determine which ones are better or worse.
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Figure 2. Workflow for the numerical approach.

3.4. Numerical Method

Numerical optimization algorithms are like a diverse group of superheroes, each with
their own superpowers to conquer specific problems. There is the trusty gradient descent,
who relentlessly searches for the steepest downhill path. The numerical method applied
is briefed in this section. First, the gradient descent is considered, and the direct search
is described.

3.4.1. Gradient Descent (GD)

The gradient (g), Hessian (H), and Jacobian (J) of the optimization function in Equation (1)
can be described using

_ [3S(E)aS(E)  3S(E)\" )
8=\ Ton, om 7 oy

9S(E)>  9S(E)? 9S(E)>
ahlz ah18h2 ahﬁhN

H= (6)
9S(E)>  9S(E)? 9S(E)>
ahNahl ahNahz ath
3S(E;)  3S(SE,) 3(Ey)
ohy ohy o

J= . : : 7)
OS(En)  9ES(y AS(E y
ohy ohy ohN

By means of | and H, the respective Gauss—Newton (GN), gradient descent (GD),
Levenberg-Marquardt (LM), and Trust-Region-Dog-Leg (TR) solution to the optimization

problem can be expressed as

GN = (') "YTS(E)

®)
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GD = JTS(E) ©)

LM = (]T] + Iw) " YTS(E) (10)

TR = uTJTS(E) + %uT]T] (11)

where w and [ denote the LM damping factor and identity matrix. The trial step,
u € P, |lull < A, A > 0 defines the TR radius, with P, expressing the Dog Leg path
that connects h to the Cauchy point.

Instead of the Hessian matrix in Equation (4), the Quasi-Newton (QN) method uses
an approximate Hessian B~! and it is given with

QN = aB~'JT(E) (12)

The propagation model parameters are determined from each of the methods and
their iterative updates as follows:

Yo = 72— (DL (E) (13)
Y241 =72~ ] (E) (14)

Yorr =72 = (JJT +10) I (E) (15)
TR = u’JTS(E) + %uT]T] (16)
Yo =72 = (LI (E) (17)
Yor1 =7z —a(B:) L (E) (18)

where z indicates the iteration number, and the QN approximate Hessian, B, is given with

T r. B.KI
By1 =V, B:V: +4z5,5:— (19)
qz Sz
1
= — 20
Qtz qg"sz ( )
VoVI=1, 4 g.sls, (21)

All of the parametric update is iteratively realized by employing the various algorithms
in correspondence with the objective function, which houses the generic propagation model
and the measured propagation loss values sequentially until a convergence termination
is reached.

3.4.2. Direct Search

Here, the pattern search is considered. Pattern search (PAS) is the direct search
algorithm for solving optimization problems. Unlike the numerical optimization algorithms
that use higher derivatives or gradient information to search for the desired optimal point,
the PAS does not require such information to drive the objective function. Rather, the PAS
engages a set of point or rational basis vectors to probe or search the desired direction in
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the corresponding target objective function with the current mesh size. To implement the
PAS algorithm in MATLAB, we use the solver caller technique, which is given with (22).

Solpas = pattersearch(objFun,nvars,lob,upb,[],options) (22)

where objFun designates the objective function in Equation (1), Nvars indicate the model
parameter number, and lob and upb define the lower and upper bound implementation
constraints. The options constitute mesh size, accelerator, tolerance, and search method.
The mesh tolerance controls the mesh size. For example, the solver stops if the mesh size
exceeds the tolerance level.

Set the mesh tolerance to 1 x 10~7, 10 times smaller than the default value. This
setting can increase the number of function evaluations and iterations and lead to a more
accurate solution.

3.5. Global Optimization Methods

Generally, global optimization methods play a crucial role in predictive analytics by
enabling the discovery of optimal models, parameters, or configurations. They help in
maximizing the accuracy of predictive models, minimizing error rates, and optimizing
performance metrics. By efficiently exploring the entire solution space, these algorithms
ensure that the best possible solution is achieved, leading to more accurate predictions and
better decision making. While the numerical-based algorithms are driven by derivative or
differential gradient and Hessian functions, the global optimization method depends on
population sets [49,50]. Also, unlike local optimization algorithms that rely on starting from
an initial solution and making incremental improvements, global optimization algorithms
explore multiple solutions simultaneously to find the best outcome. Particularly, the
global algorithms come in where exact numerical algorithms fail. The following global
optimization methods consisting of Genetic Algorithm (GA), particle swam (PS), and
Simulated Annealing (SA) are also considered in this paper. The Genetic Algorithms mimic
the process of natural selection to find the fittest solution. These algorithms, along with
others like Simulated Annealing and Particle Swarm Optimization, bring a touch of magic
to the world of optimization.

3.5.1. Genetic Algorithms (GAs)

The GA is a classic global-search and evolutionary computation-based algorithm
developed by Holland [51-53] to solve optimization problems regarding objective function
maximization or minimization using the concept of natural selection in genetics. Particu-
larly, in GA, a population or pool of possible candidate solutions made to undergo selection,
recombination, and mutation are engaged to produce new ones [19,54]. In this process, each
candidate solution (or individual) is allocated a fitness value in correspondence with the
given objective function value, and the process is repeated over a generation of individuals
until a global optimum solution is attained or a stopping convergence criterion is reached.

Unlike the numerical techniques, the GA does not use any derivative information to
solve real-world optimization problems. However, one key problem with GA is that it
might not converge to the desired or near-usable optimum solution if the implementation
process is not done properly. To implement the GA algorithm in MATLAB, we use the
solver caller technique, which is given with (23).

solga = ga(objFun,nvars,lob,upb,[],options) (23)

where objFun designates the objective function, Nvars indicate the model parameter
number, and lob and upb define the lower and upper bound implementation constraints.
The options constitute the population size, generation number, crossover value, Elite count,
and selection function.
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3.5.2. Particle Swarm (PS)

The PS is a bio-inspired computational algorithm proposed by the authors of [52,55]
to provide distinctive solutions to optimization problems through iterative search space. It
was specifically developed to mimic a flock of birds or a school of fish that moves together
in a group while flying or swimming randomly to receive the best hunt as they search
for food. To implement the PS algorithm in MATLAB, we use the solver caller technique,
which is given with (24).

Soly,s = particleswarm(objFun,Nvars,lob,upb,options) (24)

where objFun designates the objective function in Equation (24), Nvars indicate the model
parameter number, and lob and upb define the lower and upper bound implementation
constraints. The options constitute the swarm size, the iteration number, the Inertial range,
the Social Adjustment Weight, and the maximum iteration number.

3.5.3. Simulated Annealing

The SA is another global search-based optimization algorithm that uses how metals
cool and anneal in metallurgy to solve diverse optimization problems. SA can be applied
iteratively to resolve hard, unconstrained, or constrained computational optimization
problems, particularly when exact numerical algorithms fail. At each iteration process, the
SA algorithm generates a new random. Then, a distance of the trial point is selected from
the present or earlier point using a probability distribution whose scale is dependent upon
temperature in connection with the objective function, and by accepting the new points,
the algorithm circumvents and skirts being stuck in local minima. As the temperature is
lowered, the SA algorithm reduces the range and copes with its global search space to
converge and attain a global minimum. To implement the SA algorithm in MATLAB, we
use the solver caller technique, which is given with

solgp = simulannealbnd(objFun, po,lob,upb, options) (25)

where objFun designates the objective function in Equation (25), Po indicates the initial
guess parameters, and lob and upb define the lower and upper bound implementation
constraints. The options constitute the temperature information, simulannealbnd, the
iteration number, and the plotting function. Table 1 gives the numerical/global model
parameter optimization algorithms.

Table 1. Numerical /Global Model Parameter Optimization Algorithms.

Methods Algorithms

Gradient descent (1st order) search Gradient Descent (GD)
Quasi-Newton (QN)

Gradient and Hessian Gauss—Newton (GN)

(2nd order) search Trust-Region-Dog-Leg (TR)
Levenberg-Marguardt (LM)

Direct search Pattern Search (PAS)
Particle Swarm (PS)

Global search Genetic Algorithm (GA)

Simulated Annealing (SA)

3.6. Accuracy Profile Benchmark

It is crucial to establish an Accuracy Profile Benchmark (APB) to examine the objective
tuning space optimality and accuracy of the respective optimization parametric tuning
method. The APB can help profile the accuracy attained with each optimization method in
reaching the desired performance while minimizing every relative error. Additionally, APB
is needed to provide or reflect the performance index attained in evaluating the objective
function toward reaching the parametric model tuning goal.
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Here, the APB can be computed via

100% k Ai — Pi
MAPE = ——=3 ., A (26)
APB =100 — MAPE (27)

where MAPE defines the mean percentage error (or relative error) to be minimized during
the parametric model tuning process. A;, k, and P; express the actual and the predicted
values of ith quantity, with k being the quantity number in the parametric tuning model.

3.7. Function Evaluation Benchmark

Besides engaging the APB to profile the accuracy attained, each tuning method is
involved in reaching the desired global or local solution. Thus, the total function evaluations
achieved, which can help reveal the total search trials or mock-ups performed until the
optimization tuning process is completed, are also crucial to be looked into. In order to
benchmark using this technique, the total function evaluation number targeted is kept in
the respective optimization method during the parametric tuning process. Informatively,
we defined the Function Evaluation Benchmark (FEB) as

FEB = {300 kz} (28)

where k reveals the quantity number in the parametric model being tuned with the respec-
tive optimization method.

3.8. Execution Speed Benchmark

The speed with which each optimizer takes to achieve a reasonably swift converging
solution with minimal error is tagged as the execution speed (ES). The ES, which can also
be termed convergence speed, is related to the number of evaluations (NumEval) using

_ NumEval

ES = CPUtime

(29)
where CPU time defines the time used to run each optimizer code.

4. Results and Discussion

Objective functions are the driving force behind predictive modeling. They define
what we are trying to predict and how we measure the accuracy of our predictions. By
optimizing the objective function, we can fine-tune our models to improve their predictive
power. Whether it is minimizing mean squared error or maximizing area under the curve,
the objective function guides us toward building better models. The optimization algo-
rithms drive the predictive mathematical procedures that search for the optimal solution
of a given problem based on certain criteria or objectives. These algorithms help us find
the best possible solutions in a vast search space. However, the strength of the respective
optimization algorithms lies in their specific ability to save time, resources, and effort by
finding the most efficient solutions. Whether it is maximizing profits, minimizing costs, or
achieving optimal performance, these algorithms are like superheroes that can transform
messy problems into elegant solutions. Therefore, benchmarking these algorithms arises
when there is a clear need to compare the performance of algorithms fairly against certain
standards during or after being applied to solve specific optimization problems or a partic-
ular set of problems. Thus, benchmarking is carried out here to appraise the respective nine
algorithms’ capacity to solve the parametric propagation loss modeling and tuning problem
in correspondence with the practical loss data from different terrains. To actualize this
specific task, we explore the three-fold benchmarking criteria that can help reveal predic-
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tion accuracy and the objective function value described in Sections 3.6 and 3.7. A smaller
precision error and objective function value are preferred for a more precise solution.

4.1. Accuracy Profile Benchmark Analysis Using MAPE and APB

First is each optimization, and precision accuracy with the Mean Absolute Percentage
Error (MAPE). In connection with the APB, as in Equations (27) and (28), the MAPE
quantifies how close the attained prediction model values are to the observed or measured
values. Accordingly, a smaller MAPE value indicates that the predicted values are very close
to the measured field values. Similarly, a higher MAPE value indicates the predicted values
are far apart from the measured field values. Accordingly, based on the benchmarking
expressions in Equations (26) and (27), a smaller MAPE value or higher APB would indicate
the most preferred optimization method concerning prediction parametric tuning.

The importance of optimization algorithms lies in their ability to save time, resources,
and effort by finding the most efficient solutions toward achieving optimal accuracy.
Whether it is maximizing profits, minimizing costs, or achieving optimal performance,
these algorithms are like superheroes that can transform messy problems into elegant solu-
tions. Figures 3—6 show the prediction tuning accuracy with computed MAPE performance
values attained with the GD, LM, GN, QN, TR, PAS, GA, PS, and SA when applied for
the prediction modeling and parametric tuning of the generic propagation model. The
results show the QN achieved the best results over other algorithms with the lowest MAPE
values of 1.6319, 2.6909, 2.5676, and 2.6560 in locations 1-4. This was followed by the PS
method with 1.6319, 2.7615, 2.5775, and 3.6558 in locations 1-4. The SA and PAS methods
attained MAPE values 1.6321, 2.7731, 2.5793, 3.6590, 1.6336, 2.9592, and 2.5843 at the same
locations, 1-4. The GD attained the worst performance with the highest MAPE values of
1.7482, 4.5987, 3.8946, and 4.2051 in the same four locations.
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Figure 3. Benchmarked optimization error analysis with MAPE in location 1.
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Figure 5. Benchmarked optimization error analysis with MAPE in location 3.
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Figure 6. Benchmarked optimization error analysis with MAPE in location 4.

Similarly, the QN method also accomplishes the preferred APB values of 98.34, 97.31,
97.44, and 96.64% at the same locations. The best parametric precision tuning results
recorded with the proposed QN optimization method may imply that it can iteratively
adjust the standard propagation loss values against the measured data more accurately
than others. It may also clearly point out that the QN method owns better global convergent
capacity during the parametric tuning process in correspondence with MAPE minimization,
irrespective of the initial choices when starting to guess parameters. As mentioned earlier,
the QN algorithm works by approximating the Hessian matrix, which represents the second-
order derivatives of the objective function. It uses an iterative process to update the solution
and converge toward the optimal values. The algorithm calculates gradients, adjusts the
step sizes, and updates the solution based on the calculated increments. This iterative
process continues until the algorithm reaches the convergence criteria or a maximum
number of iterations. This efficiency allows analysts to quickly train and update predictive
models, saving valuable time and resources.

4.2. Benchmarking with Objective Function Value Analysis

This subsection provides the objective function value analysis of the resultant solution
attained when determining the propagation loss model parameters with the respective
optimization method. A smaller objective function value is the most preferred solution and
optimization algorithm. Figures 7-10 and Tables 2-5 display the objective function value
results achieved with each optimization method versus the function evaluation count.
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Figure 7. Benchmarked algorithms with FVal analysis in location 1.
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Figure 8. Benchmarked algorithms with FVal analysis in location 2.
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Figure 9. Benchmarked algorithms with FVal analysis in location 3.
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Attained FVal VS NumEval by each Optimiser
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Figure 10. Benchmarked algorithms with FVal analysis in location 4.

Table 2. Estimated Parameters and the Attained FVal in Location 1.

Optimization Parameters Objective
S/No. Algorithm hy hy hs Value (Fval) NumEval
1 GD 10 20 23.60 86.45 601
2 LM 8.64 19.09 25.36 82.25 603
3 GN 8.21 21.20 23.91 81.38 300
4 QN 7.66 24.02 22.01 80.95 44
5 TR 8.81 18.23 25.91 82.74 301
6 PAS —13.25 21.47 30.00 81.30 1367
7 GA —4.83 24.12 25.60 80.95 2550
8 PS —9.84 24.02 27.14 80.96 3450
9 SA —1.78 23.83 24.74 80.96 2818
Table 3. Estimated Parameters and the Attained FVal in Location 2.
Optimization Parameters Objective
S/No. Algorithm hy hy hs Value (Fval) NumEval
1 GD 10 20 26.54 39.58 601
2 LM 9.31 19.25 27.66 38.15 601
3 GN 9.04 20.48 26.71 37.78 300
4 QN 8.97 20.77 26.49 37.77 44
5 TR 9.39 18.89 27.94 38.34 301
6 PAS —1.88 20.38 30.00 37.79 1384
7 GA —1.63 18.29 31.58 38.80 2550
8 PS 8.19 20.76 26.72 37.77 3600
9 SA —9.03 20.89 31.67 37.77 2343

A key challenge in numerical and global optimization is the issue of convergence and
local optima. Convergence refers to the point at which an algorithm stops searching and
determines that it has found the best solution possible. However, algorithms can converge
to local optima, which are good solutions within a limited region of the search space.
Here, the function evaluation is engaged to count and reveals the number of evaluations
(NumEval) that each optimization method iteratively underwent to reach their respective
local or global solution after initiation. We can infer from the tables and the figures that
the QN method owns the fewest function evaluation counts of 44, 44, 56, and 44, and the
lowest objective value of 80.85, 37.77, 54.69, and 41.24, thus attaining the best optimization
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method across the study locations. This also implies the QN finds the best solutions by
attaining the lowest objective function values across the study locations after iteratively
tuning propagation loss model loss parameters. GA takes many more function evaluations
than pattern searches. By chance, it arrives at a better solution.

Table 4. Estimated Parameters and the Attained FVal in Location 3.

Optimization Parameters Objective
S/No. Algorithm hy hy hs Value (Fval) NumEval
1 GD 10 20 23.40 79.66 601
2 LM 8.45 24.80 24.73 55.09 602
3 GN 9.32 20.74 27.69 57.69 300
4 ON 6.41 34.64 17.74 54.23 56
5 TR 9.02 22.17 26.67 56.67 303
6 PAS —5.91 23.50 30.00 55.80 1371
7 GA 7.76 29.99 20.95 52.88 2550
8 PS 2.86 30.00 22.39 52.87 2200
9 SA —6.08 29.95 25.02 52.89 4333
Table 5. Estimated Parameters and the Attained FVal in Location 4.
S/No. Ogilgn;izt;t;?n Parameters VOlb ) ei;.l vel) NumEval
hy hy hs alue (Fva
1 GD 10 20 26.68 54.27 601
2 LM 9.93 17.98 29.76 41.24 449
3 GN 9.73 18.84 29.11 41.31 300
4 ON 9.99 17.72 29.98 41.24 44
5 TR 9.87 18.23 29.58 41.26 302
6 PAS 6.09 19.03 30.00 41.33 1292
7 GA 6.26 17.77 31.03 41.24 2550
8 PS 2.28 17.72 32.23 41.24 3450
9 SA —6.59 27.74 34.80 42.25 2892

Again, the worst performance is attained with GD with objective values 86.45, 39.58,
76.66, and 54.27, respectively, in the four study locations. Though the objective values
achieved with global optimization algorithms such as PAS, GA, PS, and SA are relatively
small, like the QN, their function evaluation counts are quite high. For example, in Table 1,
the PAS, GA, PS, and SA recorded 1367, 2550, 3450, and 2818 function evaluation counts,
which are quite high. Remarkably, the PS and GA took a higher order of magnitude in func-
tion evaluations to find the global optimum and arrived at good solutions of 80.96 objective
values each, the same as the one attained with the QN method. Most global optimization
algorithms are stochastic, population-based controlled ones, and their results change fre-
quently or intermittently with every run. So, it takes those extra steps and time to run to
completion, thus leading to higher objective function evaluation values. Compared to the
gradient descent, the QN algorithm achieved a faster convergence rate, making it more
suitable for large-scale data sets and time-sensitive tasks, and ideal for scenarios where time
is a critical factor. This efficiency allows analysts to quickly train and update predictive
models, saving valuable time and resources.

In general, each optimization method iterates to find an optimum. Each algorithm kick-
starts with the initial value h,, then performs some relevant intermediary computations
that ultimately lead to the new tuned point #;. The iterative tuning process continues
repeatedly until the remaining parametric estimates /1, and h3 are determined after some
z iteration number. The values of the parametric estimates attained with the studied nine
optimization methods are shown in Tables 2-5.
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4.3. Benchmarking with Execution Speed

While the convergence speed quantifies how quickly the algorithm reaches an optimal
solution, the executing speed (ES) expresses the rate taken for an optimizer to achieve
a reasonably swift converging solution with minimal error and is used to evaluate the
convergence speed attained with the benchmarking optimization methods. ES also helps
reveal the rapt required to run the iterations and computational complexity in engaging
during the parametric modeling and prediction algorithms in connection with the function
evaluation number and the CPU time defined in Equation (29). Here, the reached execution
speed (ES) engaged in assessing the convergence solution pace attained with each opti-
mization algorithm is presented. The attained ES values displayed in Figure 11 reveal that
the numerical-based optimization tuning methods achieved the fasted convergence over
the global method, but again clearly showing that the QN method provides the best perfor-
mance. While the GD, LM, TR, and GA maintained a constant level, GN, QN, PAS, PS, and
SA algorithms displayed varied speeds across the study locations during optimization. The
optimal performance of the QN may be ascribed to its ability to handle large-scale data sets,
converge quickly, and adapt to noisy data, making it a suitable choice for many predictive
analytics tasks. Therefore, compared to other optimization techniques, the Quasi-Newton
algorithm offers a balance between efficiency and accuracy.

~

Execution Speed (ES)

The ES attained by optimisation method the study locations

~

2

17

12

7 |

. 1 1 | .—l

% "6 [ oN | M ON | TR | PAS | GA | Ps | sa
mLocation1| 296 | 297 | 148 | 022 | 149 | 674 | 1258 | 17.02 | 13.91
Location2| 296 | 296 | 148 | 021 | 148 | 6.83 | 1258 | 17.76 | 11.56
Location3| 296 | 297 | 148 | 028 | 149 | 676 | 12.58 | 10.858 | 21.38
Leoation4| 296 | 222 | 148 | 021 | 148 | 637 | 1258 | 17.02 | 1427 | |

Figure 11. Benchmarked algorithms with FVal analysis in locations 1-4.

While the numerical optimization focuses on finding the optimal solution to achieve
minimal estimation error for a given problem within a defined range or domain, the global
optimization algorithms explore the entire solution space to identify the optimal solution,
taking into account potential multiple local optima that may exist to achieve the desired
estimation error. Figure 12 reveals the channel-estimation error (averaged over the three
h-parameters) versus data points for all estimation methods. In terms of maximum residual
estimation error, the QN, GD, LM, TR, GA, GN, QN, PAS, PS, and SA algorithms attained
7.94,7.92,797,790,7.99, 795,796,791, and 7.92, respectively. These estimated error
values also indicate the QN method narrowly outperforming others, particularly the PS,
LM, and SA methods.
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Figure 12. Channel-estimation error (averaged over the three h-parameters) versus data points for all
estimation methods.

5. Conclusions

This paper benchmarked nine numerical- and global-based optimization algorithms
by comparing their precision performance on an intricate, multidimensional objective
function involving the generic propagation model parameters and measured data. The
optimization error (precision error) and the objective function value were critically assessed
for fair performance benchmarking. A smaller optimization error and objective function
value are most preferred for an optimal solution. Thus, in terms of precision error and
the objective function value, the results show that the QN method achieved the least
optimization error with MAPE values of 3.6319 in location 1, 2.6909 in location 2, 2.676
in location 3, and 3.6560 in location 4, providing the best prediction accuracies over other
algorithms. But in terms of objective function values and their evaluation count, the QN
algorithm attained the best values of 44, 44, 56, and 44, and the lowest objective value of
80.85, 37.77, 54.69, and 41.24, thus showing it as the best optimization algorithm for optimal
propagation modeling and parametric tuning across the investigated locations. The robust
performance of the QN can be traced to its capability to converge with few iterations and
still easily find globally optimal solutions. The global optimization method keenly displays
similar precision performance but at the cost of higher iteration update steps or counts. The
gradient descent method displays the worst precision performance due to its poor scaled
direction. Also, the gradient descent method is very sensitive to initial quest parameter
choice. If the iteration step is large, it usually converges prematurely, thus leading to a
suboptimal set of parameter identification, as seen in all results.

From our key findings, the worst performance is attained with the GD with objective
values of 86.45, 39.58, 76.66, and 54.27, respectively. Though the objective values achieved
with global optimization methods, PAS, GA, PS, and SA, are relatively small compared to
the QN, their function evaluation counts are high. The PAS, GA, PS, and SA recorded 1367,
2550, 3450, and 2818 function evaluation counts, which are relatively high. Overall, the QN
algorithm achieves the best optimization, and it can serve as a reference for RF engineers in
selecting suitable optimization methods for propagation modeling and parametric tuning.
Future work could focus on enhancing the signal predictability features of the presented
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models for optimal performance. Particularly, emerging technologies like 5G, Internet of
Things (IoT), and massive Multiple Input Multiple Output (mMIMO) systems pose new
challenges and opportunities for radio propagation modeling. These technologies require
more accurate and efficient modeling techniques to handle the increased complexity of
wireless networks and their interactions with various environments. The integration of
machine learning and artificial intelligence techniques in radio propagation modeling can
revolutionize the field. In addition, future work could engage the power of neural networks,
deep learning, and reinforcement learning, as means to develop more sophisticated models
that can adapt and learn from data, leading to more highly accurate and efficient predictions.
Future work could also include the integration meta heuristic algorithms to tackle complex
problems, and the development of adaptive and self-learning objective functions. Finally,
embracing these future trends and directions would pave the way for enhanced wireless
communication systems and a connected future.
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