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Abstract: With the proliferation of IoT devices, there has been exponential growth in data gen-
eration, placing substantial demands on both cloud computing (CC) and internet infrastructure.
CC, renowned for its scalability and virtual resource provisioning, is of paramount importance in
e-commerce applications. However, the dynamic nature of IoT and cloud services introduces unique
challenges, notably in the establishment of service-level agreements (SLAs) and the continuous moni-
toring of compliance. This paper presents a versatile framework for the adaptation of e-commerce
applications to IoT and CC environments. It introduces a comprehensive set of metrics designed
to support SLAs by enabling periodic resource assessments, ensuring alignment with service-level
objectives (SLOs). This policy-driven approach seeks to automate resource management in the era
of CC, thereby reducing the dependency on extensive human intervention in e-commerce applica-
tions. This paper culminates with a case study that demonstrates the practical utilization of metrics
and policies in the management of cloud resources. Furthermore, it provides valuable insights into
the resource requisites for deploying e-commerce applications within the realms of the IoT and CC.
This holistic approach holds the potential to streamline the monitoring and administration of CC
services, ultimately enhancing their efficiency and reliability.

Keywords: cloud computing; cloud service provider; compliance monitoring; e-commerce;
efficient resource utilization; IaaS; Internet of Things (IoT); policy-driven approach; service-level
agreements (SLAs)

1. Introduction

In today’s world, Internet of Things (IoT) devices have become increasingly pervasive,
finding applications across various domains. These devices, equipped with sensors and
communication tools, gather and transmit vast amounts of data from the physical environ-
ment to digital networks. Their uses span industrial automation, healthcare monitoring,
smart home systems, and environmental sensing. However, managing and processing
the immense data streams generated by IoT devices pose significant challenges. This is
where the integration of cloud computing (CC) comes into play. CC offers a scalable and
adaptable platform for handling and storing IoT data. By leveraging the capabilities of
the cloud, organizations can analyze these data in real time, extract actionable insights,
and make data-driven decisions. This symbiotic relationship between IoT devices and CC
underscores the synergy between cutting-edge technologies, paving the way for a plethora
of innovative solutions with substantial potential for research and development in security,
communication, and AI.

The transformative impact of Internet of Things (IoT) technologies on consumer
behaviors and enterprise operational models is increasingly evident. This phenomenon is
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catalyzed by the reduction in device deployment costs and the surging consumer demand,
as illustrated in Figure 1. According to Gartner [1], a renowned advisory and research entity,
the number of connected device installations surged from 23.14 billion units in 2018 to a
projected 30.73 billion units in 2020. Such exponential growth offers an opportune landscape
for various stakeholders, including investors and corporations, to amass extensive data.

Figure 1. IoT device adoption is expected to expand.

Financial projections indicate that businesses could invest nearly 5 trillion USD in
expanding the IoT market and developing new applications by the end of 2021. More-
over, long-term investments in this sector are expected to surpass 100 billion USD by
the mid-21st century. As the volume of devices and associated data continues to soar,
the significance of sophisticated data management infrastructures, such as CC, becomes
increasingly pivotal. The efficient orchestration of dynamic resource allocation within
the domain of CC’s Infrastructure as a Service (IaaS) is crucial for ensuring the prudent
utilization of computational assets. The continuous oversight of these assets and adherence
to service-level agreements (SLAs), evaluated through a set of defined quality indicators,
will be instrumental in realizing the potential of adaptive resource governance.

The convergence of the IoT and CC has revolutionized the accessibility and manage-
ment of resources for end users, providing unprecedented convenience and flexibility [2].
However, from the standpoint of cloud service providers (CSPs), meeting these demands
necessitates robust resource management capabilities to accommodate dynamic workloads
and evolving tasks. Consequently, contemporary CC systems must embody intelligence and
resource abundance.

IoT devices and cloud systems play a pivotal role in managing peak workloads and
facilitating the design and implementation of enterprise systems, empowering businesses
to achieve their objectives. Cloud computing (CC), in particular, fosters the creation of an
IT utilities marketplace commonly known as market-oriented cloud computing.

From an end user’s viewpoint, CC presents an illusion of infinite resource availability,
while CSPs are tasked with efficiently managing these resources while optimizing energy
consumption [3]. Achieving this balance is challenging and requires the utilization of cloud
monitoring and prediction techniques.
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Cloud monitoring is critical to the reliability and performance of cloud-based infras-
tructures. It entails systematic data gathering, analysis, and visualization for the numerous
elements of cloud services, such as resource use, network latency, and security events.
From a third-party standpoint, cloud monitoring solutions are clearly vital for enterprises
that rely on CC, as they provide critical insights into the health and effectiveness of their
cloud-based applications and services. Businesses can use this technology to proactively
identify and prevent problems, improve resource allocation, and maintain a high degree
of service availability. Third-party observers identify cloud monitoring as an essential
tool in guaranteeing the flawless functioning of cloud environments while improving the
overall security and performance in an era where digital transformation is a primary goal.
Public CC environments like Amazon Web Services (AWS) provide organizations with
the resources to host critical services and applications [4,5]. The continuous monitoring of
these cloud-hosted services is essential to ensure consistent performance throughout their
operational lifespan [6].

Cloud resource prediction is an important feature of CC, as it ensures the optimal
allocation of compute, storage, and network resources inside cloud settings. Based on
a third party, precise resource prediction enables cloud service providers and users to
optimize their infrastructure, reduce costs, and improve cloud-based applications and
services’ overall performance and dependability. Forecasting resource demand is an im-
portant aspect of cloud resource prediction. This includes forecasting the future resource
requirements of cloud workloads based on user traffic patterns, data volumes, and applica-
tion performance metrics. Advanced machine learning and data analysis techniques are
frequently used to anticipate and predict these resource demands precisely. This proactive
strategy enables cloud providers to dynamically assign resources, scaling up or down
as needed, avoiding under- or over-provisioning, which can lead to inefficiencies and
increased costs. Additionally, cloud resource prediction includes the prediction of potential
resource deviations and failures. Deviations from expected resource use patterns can be
recognized by continuously monitoring and evaluating system data. These variations may
suggest potential breakdowns or bottlenecks in performance. Third-party observers under-
stand the importance of these predictive skills in reducing service disruptions and assuring
cloud service availability. In essence, cloud resource prediction is a critical component of
intelligent cloud management, allowing both providers and customers to make informed
decisions and optimize their cloud infrastructures for increased efficiency and reliability.

The forthcoming era of CC holds promise for the technology industry, as it paves
the way for autonomous cloud infrastructure management, reducing the need for manual
intervention [7]. The properties associated with CC will accelerate future technologies,
enabling faster operations than the immediate environment.

Dynamic allocation mechanisms, such as auto-scaling techniques widely adopted by
AWS, allow resources to be provisioned and de-provisioned based on current and future
resource demands [8]. Quality of service (QoS) and service-level agreements (SLAs) vary
for different cloud environments [9]. The challenge lies in scaling resources for distributed
computational workloads worldwide.

Resource provisioning can be categorized into predictive and reactive tactics [10].
Reactive techniques respond to the system’s current state, considering VM utilization
and client requests. Predictive approaches, on the other hand, forecast future resource
requirements, leading to better resource utilization and accurate response time estimates.

1.1. Metrics and Policies in CC

Metrics and policies in CC are critical components of effectively managing and ad-
ministering cloud resources. These factors are crucial in ensuring the proper operation of
cloud environments, allowing firms to align their cloud usage with business goals, security
requirements, and cost efficiency.

Metrics are necessary for evaluating the performance of cloud resources. These metrics
include a variety of factors, such as response times, throughput, latency, and availability.
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According to third-party observers, these indicators provide a comprehensive picture of
how well cloud services meet their service-level agreements (SLAs). Organizations may
detect bottlenecks, optimize resource allocation, and guarantee that cloud services offer
the desired level of performance to fulfill business goals by regularly monitoring and
evaluating key performance data.

Cost is an important factor in CC, and cost indicators are critical for keeping track
of cloud spending. These metrics monitor resource utilization, pricing structures, and
usage trends. According to third-party experts, cost optimization policies driven by these
indicators enable firms to decrease wasteful spending by detecting idle resources, setting
budget constraints, and choosing cost-effective cloud service models. Businesses may make
educated decisions regarding resource provisioning and consumption by matching cost
indicators with cloud regulations.

Cloud security is critical, and security metrics are used to assess the effectiveness
of security measures. These metrics include intrusion detection, access controls, and
vulnerability evaluations. According to third-party assessments, security policies specify
the rules and processes for protecting data and applications in the cloud. Organizations
can assure compliance with industry rules and best practices by aligning security metrics
with security policies, reducing the risks associated with data breaches and cyber-attacks.

Scalability is a crucial feature of cloud computing, and resource scaling measures
are critical for reacting to changing workloads. Resource utilization, auto-scaling triggers,
and capacity planning are examples of these measures. According to third-party experts,
scalability rules drive resource allocation decisions, dictating when and how resources can
be scaled up or down to meet demand while controlling costs. Properly aligned policies
ensure that cloud resources can handle fluctuating workloads efficiently and without
service interruptions.

Monitoring and enforcing compliance with organizational policies, industry stan-
dards, and legal requirements is part of CC governance. Governance metrics evaluate
adherence to these laws and regulations, ensuring accountability and openness. Third-
party viewpoints emphasize the significance of governance policies, which offer guidelines
for data access, data preservation, and auditing methods. Organizations may maintain
control over their cloud resources, enforce compliance, and show stakeholders and regu-
lators their commitment to responsible cloud usage by aligning governance metrics with
governance principles.

Furthermore, measurements and policies in CC are inextricably linked components
of good cloud administration. These components enable businesses to assess and manage
cloud performance, costs, security, scalability, and governance. Businesses can employ
cloud resources strategically by aligning these KPIs with well-defined rules, ensuring
that cloud computing corresponds with their objectives, regulatory requirements, and
best practices.

Implementing auto-scaling techniques in the cloud involves using various metrics
alongside policies that align with QoS parameters and SLAs, including performance metrics
and thresholds [11]. Defining these parameters without human intervention presents
challenges in comprehending their impact on cloud utility performance. Autonomic
techniques, requiring minimal human intervention, are essential in such environments,
enabling the system to make decisions based on specified metrics and policies.

The failure to define metrics can result in several issues, including the following:

• An inability to measure client resource requirements [12].
• The over- or under-provisioning of resources [13].
• Ambiguity in describing delivered work [14].
• Tedious resource monitoring and management [15].
• An inability to impose penalties for non-compliance [16].
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1.2. Motivation

Efficient resource allocation and management in dynamic IoT and cloud environments
are essential for optimizing system performance and minimizing resource wastage. With
the proliferation of IoT devices and data, scalability becomes a critical factor, leading to
the development of scalable architectures and advanced load-balancing techniques. This
research article aims to address the exponential growth of IoT devices and data, ensuring
optimal resource utilization while preventing performance bottlenecks. The contributions
of this work provide valuable insights and solutions for researchers and practitioners
focused on enhancing resource efficiency in the IoT and cloud computing.

• Efficient resource allocation in dynamic IoT and cloud environments by
SLA management optimization.

• The primary aim is minimizing resource wastage while enhancing system performance.
• The need for scalability in IoT and cloud systems has spurred the development of

scalable architectures and advanced load-balancing techniques.
• This research article discusses a significant role in addressing the exponential surge

of IoT devices and data, guaranteeing optimal resource utilization while preventing
performance bottlenecks.

1.3. Contribution

Service-level agreements (SLAs) play a pivotal role in cloud computing, shaping con-
tract terms, negotiations, and performance metrics. This article makes several
significant contributions:

• Discussion of Various SLAs: We provide a comprehensive exploration of diverse
service-level agreements (SLAs) and their associated parameters. These discussions
shed light on the intricate aspects of SLAs and their integral role in cloud service
contracts and negotiations.

• Linking SLAs to Quality of Service (QoS): Recognizing the crucial relationship between
SLAs and quality of service (QoS), we emphasize how SLAs directly impact the quality
of the services provided. This linkage underscores the paramount importance of SLAs
in delivering satisfactory user experiences.

• Exploration of SLA Metrics: We conduct an in-depth examination of SLA metrics and
their profound significance in the realm of IT resource management. These metrics
serve as indispensable tools for assessing service quality, enabling providers and users
to maintain agreed-upon service standards.

• Utilization of Metrics for CC Monitoring and Management: We shed light on the
practical applications of metrics in cloud computing (CC) monitoring and management
techniques. These metrics play a pivotal role in ensuring the efficient utilization of
resources and the fulfillment of SLAs.

• Case Study on IoT-based Cloud Resource Utilization: This article culminates with a
detailed case study showcasing the application of metrics to maintain CPU utilization
in an Internet of Things (IoT)-based cloud environment. This real-world example
highlights the practical relevance of the concepts discussed throughout this article.

Cloud monitoring and prediction are fundamental components of modern cloud
computing (CC), providing crucial insights into the performance, availability, and re-
source utilization of cloud-based services and infrastructures. These practices are essential
not only for optimizing cloud operations but also for improving security and ensuring
cost efficiency.

Cloud monitoring involves the continuous collection and analysis of various data
points within a cloud environment, including system performance metrics, application
logs, network traffic, and security events. Real-time visibility into these aspects is vital for
detecting abnormalities, identifying performance bottlenecks, and proactively addressing
issues that may affect service quality and availability.
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Predictive analytics in cloud monitoring goes beyond real-time insights, utilizing
historical data and complex algorithms to estimate future patterns and potential issues. This
predictive capability is critical in cloud management, enabling organizations to anticipate
resource requirements, prepare for scalability, and minimize security threats before they
manifest. Predictive analytics empowers cloud providers and consumers to optimize
resource allocation and reduce the risk of service outages.

Cloud security monitoring is essential for detecting and preventing security risks
and breaches. Security Information and Event Management (SIEM) solutions correlate
security data across cloud services and applications. Predictive analytics can help identify
suspicious trends and predict potential security attacks, allowing for timely actions and an
overall improvement in cloud security posture.

Given the pay-as-you-go model of CC, effective cost control is crucial. Cloud cost
monitoring and forecasting track resource usage and project future cost trends. Predictive
insights enable organizations to make informed decisions about resource provisioning,
scalability, and consumption, thereby reducing wasteful costs. These practices also assist in
capacity planning, ensuring that cloud resources can meet rising demand by forecasting
future resource requirements based on past consumption trends.

Cloud monitoring and prediction are invaluable tools for modern cloud management,
offering real-time insights, enabling a proactive issue response, improving security, lower-
ing costs, and facilitating effective capacity planning. Organizations can ensure the reliable
and cost-effective delivery of cloud-based services by integrating monitoring and predictive
analytics into cloud operations, aligning their cloud resources with business objectives and
user expectations.

2. Relationship between Monitoring, Prediction, and Policies

Monitoring plays a crucial role in identifying the current status of the cloud, en-
compassing metrics, such as CPU utilization in MHz and disk read throughput in KB/s.
The application of policies [17] becomes apparent as monitored values cross predefined
thresholds. With access to monitored data logs and insights into task behavior affecting
cloud resource utilization, predictive techniques, such as supervised learning, become
indispensable for managing such scenarios.

As depicted in Figure 2, the monitoring mechanism interacts with the rule engine,
facilitated by the optimization engine. The primary role of the optimization system lies
in determining when migration scenarios should be initiated based on policies and their
associated activation functions.

The optimization objective may involve minimizing virtual machine migrations [18] or
mitigating the impact on physical machines during migration. With the data finalized by the
optimization engine, the provisioning engine assigns cloud resources to ensure optimized
allocation. It is worth noting that the performance of the cloud system can be significantly
affected by the selection of policies and their associated threshold settings, potentially
leading to service degradation in the cloud computing (CC) environment [19–22].
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Figure 2. Policy-Based System.

3. Policies and SLA Management

Let us delve into how policies play a pivotal role in SLA management. Figure 3
illustrates the four phases through which SLAs govern applications hosted in the cloud:
feasibility, on-boarding, pre-production/production, and termination [23].

Figure 3. SLA Layers.

As previously discussed, policies are instrumental in making auto-scaling decisions,
and it becomes evident that efficient resource utilization hinges on the criteria set by
policies [24], which are chosen based on the metrics in use.

In the realm of cloud computing (CC), service-level agreements (SLAs) and policy
management are closely related and play pivotal roles in ensuring the effective and reliable
delivery of cloud services. Firstly, SLAs are the written contracts that specify the terms
and conditions under which cloud services are provided. These agreements cover a wide
range of topics, including data security, response times, performance, and availability. In
contrast, policy management is responsible for establishing and upholding the guidelines
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that control how cloud resources are used. SLAs frequently include policies that specify
how services should be provided, what resources can be assigned, and when specific
actions should be taken in a CC environment. For instance, to ensure the service complies
with the established performance standards, a cloud provider may set up a policy that
directs resource allocation based on particular SLA parameters.

Second, to guarantee that cloud services comply with customer expectations and
legal requirements, SLAs and policy management work closely together. SLAs establish
performance standards, and policies direct cloud infrastructure behavior to achieve those
standards. For example, a policy can specify that when the system performance drops
below a certain SLA-specified level, more resources have to be allocated automatically.
This proactive resource management, based on defined policies, ensures that the SLAs are
satisfied when conditions change, like abrupt spikes in user demand.

Finally, due to the dynamic nature of CC, both SLAs and policies must be continuously
monitored and adjusted. Policies must adapt to these changing requirements, and SLAs
may change as a result of changing client needs. Together, the two offer the responsiveness
and flexibility needed in a cloud setting. Effective policy management guarantees resource
allocation in accordance with SLAs, and the feedback loop between SLAs and policies
enables the continuous optimization of cloud services to meet changing demands while
upholding compliance and service quality. As a result, in cloud computing, SLAs and
policy management go hand in hand. SLAs establish performance standards, while policies
direct resource allocation and service behavior to fulfill those standards. When combined,
they empower cloud service providers to offer excellent, adaptable, and flexible services
while maintaining compliance with industry norms and client demands.

In Figure 4, we provide a detailed breakdown of the four phases of the SLA and
policy management:

• Feasibility Analysis: This phase involves three types of feasibility analysis: technical,
infrastructure, and financial. It aims to determine the suitability of resources to ensure
that the projected demands of the applications can be met.

• On-boarding: On-boarding refers to the process of migrating an application to the
cloud, accompanied by the use of corresponding SLAs. This phase also involves
the creation of the policies (comprising various rules and operational policies) nec-
essary to ensure the fulfillment of service-level objectives (SLOs) specified in the
application’s SLAs.

• Pre-Production and Production: In the pre-production phase, the application operates
in a simulated environment to test its adherence to the specified SLAs. If this phase
proceeds smoothly, the application moves on to the production phase, where it runs
in the actual cloud environment.

• Termination: When a customer decides to withdraw an application running in the
cloud, the termination phase is initiated, leading to the cessation of the application.
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Figure 4. SLA and policy management.
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4. Metrics Identified in Cloud Computing and Policy-Making Criteria

The approach for extracting data is designed to be a systematic framework, a detailed
guide, that aids in identifying, categorizing, and sorting various metrics or measurements.
This is meticulously laid out in Table 1, where all the criteria that are used for this data
extraction are compiled and summarized. The overarching aim of this methodological
setup is to ensure a consistent and uniform way of analyzing, evaluating, and comparing
the existing quality indicators, specifically those related to the quality of service (QoS) in
the domain of cloud services. By doing so, the strategy aspires to provide a comprehensive
and authoritative snapshot of the current advancements and standards in the field.

Table 1. Different cloud criteria and their QoS.

Different Criteria Possible Outcomes Related to QoS Reference

Characteristics of QoS Usability, maintainability, reliability,
compatibility, suitability, security [25]

Type of Metric

Indicator—analysis of the model,
base—baseline measurement method,

derived—functions of the various
measurements

[26]

Measurement Unit The corresponding metric unit [27]

Associated Cloud Lifecycle Phases

• Step 1: Requirements gathering
• Step 2: Acquisition
• Step 3: Development process
• Step 4: Integration
• Step 5: Operation
• Step 6: Termination

[28]

Cloud Artifact and Its Measurement
Specifications of the cloud services, the
cloud design and architecture, various

types of cloud services
[29]

Three Main Services of the Cloud
IaaS—Infrastructure as a Service,

PaaS—Platform as a Service,
SaaS—Software as a Service

[30]

Viewpoints of Various
Users/Stakeholders of the Cloud

Cloud user, broker, developer, service
provider, service request brokers [31]

Support-based Tools Automated and manual tools [32]

Results of the Measurement Quantitative, qualitative, hybrid [33]

Function of the Measurement Formula for calculation and explanation
of how the metrics are calculated [34]

Table 2 provides an overview of the different quality attributes as defined by the
ISO/IEC 25010 [35] standard and the corresponding references from the primary studies.
Each quality attribute, such as performance efficiency, reliability, security, operational policy-
based functions, maintainability, usability, portability, and compatibility, is associated with
multiple references indicating the focus of the research in the respective areas. These
quality attributes are crucial for assessing the effectiveness and reliability of cloud services.
Additionally, the references showcase the diverse perspectives and approaches adopted by
researchers to address various aspects of quality in cloud computing. The comprehensive
exploration of these quality attributes and their associated references provides valuable
insights into the current trends and advancements in the field, offering a holistic view of
the multifaceted nature of cloud service quality evaluation.
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Table 2. Quality attributes of cloud.

Quality Attributes References

Performance Efficiency [34,34,36,37,37–46]

Reliability [47–50,50–57]

Security [58–73]

Operational Policy-Based Functions [74–90]

Maintainability [91–100]

Usability [101–112]

Portability [113–121]

Compatibility [122–126]

In the domain of cloud computing (CC), a diverse set of metrics assumes critical roles
in assessing performance, optimizing resource utilization, and guiding policy-making
decisions. These metrics collectively ensure the effective and seamless operation of cloud-
based systems and services. Notably, the key metrics identified in CC include the following:

• The performance gain in scheduling techniques is typically quantified as the disparity
between the current execution time and the baseline execution time, with the latter
computed through task execution during idle scenarios [127,128].

• Computing performance often centers on response time, a crucial factor in determining
system efficiency and user satisfaction.

• Quality of service (QoS) is upheld when the resources consumed remain below the
total available resources in the computing environment, ensuring optimal service
delivery and user experience [129].

• Cost efficiency, specifically in terms of energy consumption, significantly impacts
overall performance, with an emphasis on maintaining lower operational costs and
environmental impact [130].

• The overall effectiveness of a task in the cloud environment is evaluated based on
the lowest total execution time, a metric that reflects the system’s responsiveness
and efficiency.

A variety of other circumstances in the cloud computing (CC) environment and their
associated usages of the metrics [131] are presented in Table 3.

Table 3. Metrics and their usages.

Scheme Circumstances Usages of Metrics

Microservices

New services deployment
Percentage of the average time the
request servicing thread has been

found busy

The percentage of the time the service
will be reachable Enqueued requests number

The number of requests that are
enqueued

Percentage of time the services were
reachable

Databases quick response, the
messages queues are faster

The frequency of query execution,
failure rate, response time
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Table 3. Cont.

Scheme Circumstances Usages of Metrics

Container

Responsiveness of the processes in the
container Time for CPU throttled

The images that have been deployed Disk I/O of container, memory usages

Did containers are associated with
over-utilization because of the hosts

Network (dropped packets and its
volume)

Host
Changes in the utilization and

problem with the application or
process

Memory capacity (percentage of
usage), CPU utilization (percentage of

usage)

Infrastructure

Cost of running services or
deployments The traffic of the network

The ratio of microservices and/or
container per instance

Database utilization, shared services,
storage

End User Average web response time practiced
by the end user per region

Response time, percentage of user
actions failed

5. Relationship between the Metrics and Policies

The relationship between the metrics and policies in cloud computing (CC) is depicted
in Figure 5. This relationship is a critical aspect of the effective management and opti-
mization of cloud resources [132]. The monitoring mechanism in the cloud environment is
classified into proactive, reactive, and contractual methods:

• Proactive: Proactive monitoring involves making decisions based on predefined rules
before tasks are allocated to the cloud environment.

• Reactive: Reactive monitoring entails making decisions by observing the current
requests and their response parameters.

• Contractual: Contractual monitoring relies on decisions based on service-level agree-
ments (SLAs).

In the monitoring process, the current state is observed, and subsequently, the metrics
collector is triggered, which then activates the metrics analyzer. The metrics analyzer
identifies the appropriate policies and parameters necessary to fulfill the requirements
of the end users’ requests. Finally, the request is transmitted to the resource manager, as
illustrated in Figure 5.

Tables 4–6 present the various metrics [133] used in CC environments, along with
the associated policies and descriptions for each metric. The terminology for identifying
threshold values and creating policies is crucial, and dynamic threshold mechanisms are
utilized to adapt to varying workloads.

The formulation of these policies hinges upon the precise determination of threshold
values. This determination process, involving conditions such as “X should be less than or
equal to” or “greater than,” assumes a pivotal role in policy creation. The complexity of
this task necessitates the use of dynamic threshold mechanisms.

Notably, cloud environments are dynamic and subject to evolving workloads. Conse-
quently, the application of static thresholds, which remain constant over time, may prove
to be inadequate in effectively managing the performance of cloud resources. To address
this challenge, dynamic or adaptive thresholds are introduced. These adaptive thresholds
are established based on the observed behavior of the cloud environment and the specific
metrics under consideration. This dynamic approach ensures that performance policies
remain relevant and responsive to the ever-changing demands and conditions within the
cloud infrastructure.
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Figure 5. The relationship between monitoring, prediction, and policies.

Table 4. Various metrics of cloud computing.

Measurable Quantities Circumstances Usages of Metrics

Communication Data communication in the cloud
environment

• The frequency of packet loss
• The rate of connection error
• Bit transfer speed (MPI)
• Delay in MPI transfer

Computation Computing data or job processing
in the cloud environment

• CPU load (%)
• OP benchmark (FLOP) rate
• Instance efficiency (% peak

CPU)
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Table 4. Cont.

Measurable Quantities Circumstances Usages of Metrics

Memory Memory management-related

• Average hit timing (sec)
• Memory bit and byte speed

(MB/s, GB/s)
• Rate of updated random

memory
• Time of response (ms)

Time Task completion time
• Time of computation
• Time of communication

Table 5. Economic features and policies.

Features Description Policies

Elasticity Addition and removal of cloud resources
automatically

• Task size (n) and resource level (X)
• Boot time (in seconds)
• Suspend time (in seconds)

Table 6. Economic features of cloud computing.

Features Description Related Policies Metrics

Elasticity
The addition and removal

of cloud resources
automatically

Task size (n) and the level
of resources (X) required

at the IaaS level
Boot time (in seconds)

Depends on the
downtime of the cloud,

mean time to failure,
mean time to repair

Suspend time (in seconds)

Percentage of the
availability of the

resources (server, CPU,
memory, etc.) on an

hourly basis and
provisioning time (in

seconds) or uptime for an
instance of the virtual

server; virtual
infrastructure server starts

and stops date;
cumulative and

continuous frequency
over a predefined period

USD0.15/hour small
instances, USD0.90/hour

large instances,
USD0.20/hour medium

instances
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Table 6. Cont.

Features Description Related Policies Metrics

Percentage of the
availability of the

resources, for
example, network

usage

Total acquisition time
(in seconds); the

outbound network
traffic in terms of

bytes, cumulative and
continuous frequency
over a pre-specified
period for the cloud
service, such as IaaS,
PaaS, SaaS; example:

up to 400 MB free
daily and

USD0.02/GB
thereafter,

USD0.005/GB after
the 1TB per month

Dynamic thresholds indeed play a crucial role in adjusting to the changing conditions
and demands within a cloud environment. These thresholds are designed based on the
statistical analyses of the goal line metrics, which are akin to the benchmarks established
during the baseline period. The baseline period is determined under ideal environmental
conditions and serves as the reference point for evaluating the system’s performance over a
specific time frame. The concept of moving the window baseline phases involves assessing
the performance based on the variance from a certain number of days preceding the present
date. This approach enables a more responsive and adaptive mechanism for regulating the
system’s performance in dynamic cloud environments.

Not all metrics within the context of cloud computing require the implementation of
dynamic thresholds; rather, their necessity is contingent upon the specific criteria outlined
in the research. These criteria include factors such as the magnitude of the load the system
is handling, the specific types of load being processed, the overall utilization of system
resources, and the responsiveness of the system, as indicated by its response time. These key
considerations play a crucial role in determining whether a particular metric would benefit
from the adoption of dynamic thresholds, thereby ensuring an adaptive and responsive
approach to managing the performance of cloud resources. Such insights are discussed in
detail in various research papers within the domain.

Figure 6 visually presents the diverse kinds of threshold values employed within a
cloud environment. The significance level of these thresholds is crucial in determining the
statistical implications, enabling the identification of present values that deviate signifi-
cantly from the norm. Additionally, the percentage of the maximum threshold is utilized to
gauge the proportion of the highest practical value attainable within a specified time frame,
thereby aiding in the assessment of the performance bounds.

Figure 6. Types of thresholds.

Clear thresholds indicate a state where no alert will be generated, and historical data
are not removed. Occurrences thresholds check the successive quantity of occurrences



Information 2023, 14, 619 16 of 39

before raising an alert. Based on the discussions above, threshold values can be generated
and used for setting policies for the respective metrics. These metrics and policies can serve
market-oriented cloud computing.

Tables 4–7 provide a comprehensive overview of the various metrics and policies,
and their descriptions, encompassing a wide array of features and aspects in cloud
computing environments.

Table 7. Other general features of cloud services.

Features Description Policies Metrics

Availability Anywhere and anytime access
to services provided

Quantifiable and its
performance at an average

load

Flexibility: percentage of
uptime of the service. Total

uptime/total time. Example:
99% uptime (minimum)

Data rate X at which the data
are being transferred Accuracy

Normal operational threshold Response time

Scalability
The expansion of the

infrastructure to handle the
amplified load

Normal operational threshold Average resources assigned
and requested resources

Reliability
The services should be

functional with time and no
cases of malfunction

Normal operational threshold

The accuracy of the services.
Under predefined conditions,

identify the percentage of
successful service outcomes,

i.e., operational (normal)
period duration/failures

number. Example: average 90
days (with the frequency:

yearly or monthly)

Fault tolerance: mean time
between failures, for monthly

or yearly

Calculation: (date/time of
recovery-date/time of

failure)/sum of number of
failures. Another calculation:

identify the normal period
duration of the

operational/numbers of
failures. Example: an average
of 90 days, 120 min average

Average time in the ideal
scenario for repairing the

failure, to reduce the
downtime

Recoverability:
(date/switchover completion
time-date/failure time)/total
failures number. Example: 10

min average
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Table 7. Cont.

Features Description Policies Metrics

Efficiency and achieving
maximum productivity and

average utilization

Utilization of the resources,
such as measurable

characteristics, capacity of the
storage device with

continuous frequency

Assume the threshold is 60
GB, and if the demand rises
and crosses the 60 GB of the

utility, then add another 80 GB
of storage from the resource

pool

80 GB storage max

The total percentage of
successful services outcomes

under pre-specified conditions

Downtime management:
calculation—successful

responses (total)/number of
requests; with the frequency

as yearly, monthly, and
weekly. Example: minimum

downtime acceptable 98%

Sustainability Not be detrimental to the
environment

Average performance in peak
and non-peak hour

Data center performance:
calculation—date/time of

request-date/time of
response/number of requests
(total), with the frequency of
monthly, weekly, and daily.
Example: −5 milliseconds

average

Average power consumption
in the ideal scenario

Power usage efficiency; power
usages effectiveness (PUE) =

total power of data
center/power required or
used by the IT equipment

6. Market-Oriented Architecture for the Data Centers

An application of SLA management and policies is the implementation of a market-
oriented architecture (MOA). MOA is a pioneering approach to data center manage-
ment that incorporates service-level agreements (SLAs) and operational standards. MOA
emerges as a fundamental paradigm in the constantly evolving world of cloud computing
(CC) and data center management, supporting the optimization of resource allocation, cost
effectiveness, and customer satisfaction.

MOA makes use of a market-based system in which resources are treated as commodi-
ties, and allocation is governed by dynamic pricing models. By including SLAs in this
architecture, data center operators may provide predictable performance assurances to
clients, increasing trust and reliability. Operational policies are critical components of this
architecture because they specify the rules that govern resource allocation, provisioning,
and de-provisioning. These policies are crucial in balancing cost optimization and achieving
SLAs, ensuring that the data center works in accordance with the business objectives.

MOA is further supported by significant data analytics and machine learning algo-
rithms that examine historical data as well as real-time performance measurements. These
analytics help not only estimate resource demands but also fine-tune pricing techniques
to optimize resource utilization. MOA emerges as a powerful framework to address the
complexities of modern data center management, contributing significantly to both cost ef-
ficiency and customer satisfaction, with its emphasis on market-driven resource allocation,
SLA adherence, and data-driven decision making.

Data centers serve as the foundational infrastructure for cloud computing (CC) ser-
vices. They are the backbone that supports the delivery of cloud services to users. Figure 7
provides an overview of the key components supporting MOA (market-oriented archi-
tecture) in the context of CC data center management [134]. These components work
together to optimize resource allocation, ensure adherence to service-level agreements
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(SLAs), and enhance overall data center efficiency. This reference architecture illustrates
how MOA integrates SLAs, operational policies, and dynamic resource allocation into the
data center environment, contributing to the effective and market-driven management of
cloud resources.

Figure 7. Cloud data center: reference architecture.

Here are the descriptions of the significant components within this architecture:

• Users and Brokers: These entities play a crucial role in initiating workloads that the
data center will manage. They are responsible for interacting with the data center and
making requests for various cloud services.

• SLA Resource Allocation Mechanism: This component serves as the vital interface
between the cloud service provider and the data center [135]. Its primary objective is
to ensure that the services provided align with the service-level agreements (SLAs)
agreed upon with the clients. It facilitates the allocation of resources in accordance
with these SLAs.

• Admission Control Module and Service Request Examiner: This module evaluates the
current state of the data center, including the availability of resources. It is responsible
for scheduling and allocating requests for execution based on the available resources
and the defined SLAs.
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• Module for Pricing: This component is responsible for determining the charges for
users based on the terms specified in their SLAs. It considers parameters, such as
virtual machines, memory, computing capacity, disk size, and usage time.

• Accounting Module: This module generates billing data based on the actual resource
usage by the users. It plays a critical role in maintaining transparency and accuracy in
billing processes.

• Dispatcher: The dispatcher is responsible for instructing the infrastructure to deploy
the necessary machines to fulfill user requests. It plays a significant role, particularly in
the case of Infrastructure as a Service (IaaS), by managing the allocation of resources.

• Resource Monitor: This component is continuously engaged in monitoring the status
of computing resources, including both physical and virtual resources. It plays a criti-
cal role in ensuring the optimal utilization and performance of the
available resources.

• Services of Request Monitor: This component tracks the progress of service requests,
providing valuable insights into the system’s performance and offering quality feed-
back on the provider’s capabilities. It helps in maintaining a high level of service
quality and user satisfaction.

• Virtual Machines (VMs): VMs are fundamental units within the cloud computing
(CC) infrastructure. They serve as the building blocks for addressing various user
requirements and enabling the provisioning of different cloud services.

• Physical Machines: At the lowest level of the architecture, the physical machines
constitute the core physical infrastructure, which can encompass one or more data
centers. This layer provides the necessary physical resources required to meet the
demands of the users and the services they request.

In [23], an analysis and the taxonomy of the schedulers were presented, as depicted in
Figure 8. These schedulers were classified based on their allocation decisions, market
models, objectives, participant focus, and application models. Notably, the market model
plays a critical role in facilitating trade between providers and users within the cloud
computing environment. The classification of market models was outlined as follows:

• Game Theory: Users engage in a provision game with various payoffs based on specific
actions and different strategies. Game theory provides a framework for understanding
strategic interactions among rational decision-makers.

• Proportional Share: This approach aims to allocate tasks fairly across a set of resources,
with shares directly related to the user’s bid. It ensures proportional distribution
based on user demands and resource availability.

• Market Commodity: Cloud data center providers charge consumers based on their
resource usage, and these charges may vary over time. This model allows for flexible
pricing that can adapt to changes in demand and resource availability.

• Posted Price: Similar to the market commodity model, the posted price approach may
include special discounts and offers for specific users. It offers transparency in pricing
and allows users to make informed decisions based on the available options.

• Contract Net: End users advertise their requirements and invite resource owners
to submit bids. Resource owners respond based on their resource availability and
capabilities. The end user then consolidates the bids and selects the most favorable
one, creating a contractual agreement.

• Bargaining: Negotiations between providers and resource consumers determine the
final resource price. This model allows for flexibility and mutual agreement between
the parties involved, ensuring that both parties benefit from the transaction.

• Auction: Initially, resource prices are unknown, and competitive bids, regulated by a
third party (the auctioneer), determine the final price. Auctions provide a competitive
environment where users can bid based on their willingness to pay, resulting in
optimal resource allocation and fair pricing.
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Figure 8. Classification of the market-oriented model.

Service-level agreements (SLAs) are integral to the operation of e-commerce cloud-
hosted applications and market-oriented cloud design architectures. These agreements,
coupled with cloud metrics and policies, ensure that cloud services meet performance and
reliability standards. Comprehensive details regarding SLAs, including specific metrics
and economic considerations, are elaborated in Tables 3 and 6. These tables provide a
structured framework for understanding the relationships between SLAs, metrics, and
policies within the context of cloud computing.

7. Case Study: Utilizing Metrics, Policies, and Machine Learning for IoT-Based
Cloud Monitoring

This case study outlines the pivotal role of metrics, policies, and machine learning
in the context of IoT-based cloud monitoring. The integration of these elements is vital
for ensuring the seamless operation, performance optimization, and reliability of IoT
applications within cloud computing ecosystems. By leveraging metrics and service-
level agreement (SLA) management, organizations can achieve comprehensive monitoring
capabilities, enabling the real-time analysis of IoT device and cloud service performance.
This capability is crucial for timely issue detection and resolution, preventing disruptions
that could impact the functionality of IoT applications.

Furthermore, the dynamic scaling of cloud resources, facilitated by these systems,
allows for efficient resource allocation and optimization in response to fluctuating demands
from IoT devices. This dynamic resource allocation not only enhances the overall system
efficiency but also contributes to cost effectiveness, a critical aspect of resource manage-
ment. Additionally, metrics and SLA management serve as guardians of the quality of
service (QoS) standards, defining, monitoring, and ensuring compliance with stringent
performance and reliability criteria that are essential for high-quality IoT applications.

In terms of security and privacy, these systems play a significant role by integrating
security and privacy provisions into SLAs, safeguarding sensitive IoT data from unau-
thorized access or breaches. They also facilitate cost control by providing accurate usage
statistics and cost metrics, allowing organizations to monitor and regulate cloud expendi-
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ture effectively. The architecture incorporates fault detection and recovery mechanisms,
swiftly identifying performance deviations and implementing recovery protocols in the
event of service outages, thereby minimizing downtime and interruptions.

Moreover, these systems facilitate continuous improvement by analyzing performance
data, identifying areas of weakness, and enabling informed decisions and adjustments
to enhance the scalability, reliability, and performance of IoT and cloud services over
time. Lastly, metrics and SLA management support capacity planning by offering valuable
insights into usage patterns and resource requirements, enabling organizations to ensure
that their IoT applications and cloud services are equipped to handle future growth and
evolving needs.

Cloud monitoring is a vital component in the effective management of cloud-based
systems, enabling the efficient handling of dynamic scheduling, cross-layer monitoring, and
the identification of diverse fault scenarios [136]. The case study presented here highlights
the significant role of metrics and policies within cloud computing, specifically focusing
on their application in addressing the challenge of monitoring overhead. By leveraging
these metrics and implementing effective policies, organizations can enhance their ability
to ensure optimal performance, reliability, and security within their cloud environments.

The visual depiction in Figure 9 effectively highlights critical open issues in cloud
monitoring, such as pattern and root cause analysis, workload generation, intelligent agents,
and the reduction in monitoring overhead. These challenges underscore the importance
of implementing efficient metrics and policies to effectively address these concerns and
optimize the overall performance of cloud-based systems.

Figure 9. Cloud monitoring open issues.

7.1. Dataset

The dataset mentioned represents a cloud environment comprising 750 virtual ma-
chines (VMs) that are utilized by a cloud service provider for hosting diverse analytical
strategies. These strategies leverage data collected through IoT devices used by patients,
with applications including the adjustment of medication dosages, monitoring recovery
stages, and other health-related analyses. In this case study, resource utilization metrics
such as CPU usage (as a percentage), memory usage (as a percentage), and network-
transmitted throughput (measured in KB/s) are the primary focus. These metrics serve
as essential indicators for evaluating the performance and efficiency of the cloud-based
infrastructure, ensuring optimal service delivery and resource management.
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7.2. Hardware Setup

The experimental configuration was established using the OpenStack private cloud,
employing three virtual machines (VMs) dedicated to conducting forecasting analytics.
The initial two VMs, M1 and M2, were primarily utilized for the modeling process, while
the subsequent two VMs, M3, were employed for the modeling phase. The hardware setup
incorporated specific components, including a PDL380 10th-generation SFF rackmount
server, an MS Windows Server Standard Core 2019 with a single OLP 16 license-ae, an
Intel XEON Silver 4110 processor, 128 GB of DDR4-2666 MHz memory (32 GB in each
of the four modules), a 2.4 TB SAS 12 G 10 k SFF HDD, and an HPE Smart Array 8161-
a SR 10th Gen Controller. This robust hardware configuration facilitated the efficient
and effective execution of the forecasting analytics tasks within the cloud environment,
ensuring the timely and accurate processing of the collected data. This system has been
implemented within the university campus laboratory and was sourced from a local vendor
in Ahmedabad, India.

7.3. Monitoring IoT-Based Cloud Resources

Monitoring a real-world cloud environment is a complex yet crucial task. In this
case study, the cloud ecosystem comprises 750 virtual machines (VMs) that are overseen
and utilized by a cloud service provider. These VMs are instrumental in hosting various
analytical strategies that leverage data collected from IoT devices employed for patient
monitoring. The following resources are specifically targeted for monitoring and analysis
within this context:

• CPU Usage: This metric reflects the percentage of CPU utilization, offering insights
into the processing load and performance demands on the virtualized
computing resources.

• Memory Usage: Representing the percentage of memory utilization, this metric pro-
vides essential information about the memory requirements and allocation efficiency
within the cloud environment.

• Network-Transmitted Throughput: Measured in kilobytes per second (KB/s), this
metric is indicative of the data transmission rate through the network, which is critical
for evaluating the efficiency of data communication and network performance.

By closely monitoring and analyzing these key metrics, we can gain valuable insights
into the performance and resource utilization of the cloud-based infrastructure, enabling
effective decision-making and optimization strategies.

7.4. Solution Approach

The ubiquity of the Internet of Things (IoT) has revolutionized the way in which
everyday activities are interconnected. IoT devices, equipped with sensors, software, and
embedded electronics, seamlessly gather, transmit, and process large volumes of data, often
referred to as “big data.” However, this data deluge presents a significant challenge for both
internet infrastructure and cloud computing (CC) systems. To effectively manage this surge
in data, CC systems must navigate the complexities of handling substantial network traffic
while upholding stringent quality of service (QoS) standards. Consequently, the efficient
management of resources becomes a critical priority. In this context, the various parameters
of Infrastructure as a Service (IaaS) cloud systems have been meticulously considered to
devise a comprehensive solution approach.

7.4.1. Metrics and Policies

Metrics and policies play a crucial role in managing cloud resources effectively. In
Figure 10, we provide an illustrative example of the metrics and policies related to CPU
utilization in the cloud ecosystem, as detailed in the dataset content mentioned above.
These metrics and policies play a crucial role in reducing the overhead of monitoring data.
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Figure 10. Metrics and policies example.

The monitoring process retrieves data from the cloud data center, as depicted in
Figure 11. The CPU utilization graph, based on the Public Cloud dataset, monitors the
real-time status of cloud resources, specifically CPU utilization. When the CPU utilization
falls below a certain threshold, such as 50%, monitoring mechanisms are triggered. Corre-
sponding metrics, in this case, CPU utilization, and policies are applied to optimize the
resource management.

Figure 11. CPU Utilization Graph: x-axis—time stamp in ms; y-axis—percentage of utilization.

7.4.2. Machine Learning Predictions

Workload Utility Levels and Metrics: The identification of workload utility levels,
including low utility, moderate utility, or high utility, in the context of CC, involves a
complex process influenced by various metrics and policies. These components form the
basis for cloud resource allocation and optimization strategies, taking into consideration
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resource utilization factors, such as CPU, network bandwidth, and other Infrastructure as
a Service (IaaS) resources. Cloud providers rely on a wide range of resource utilization
metrics to accurately classify workloads. CPU utilization serves as a critical metric in
these measurements, delineating the differences between low-utility tasks with occasional,
minor CPU demands and high-utility workloads that necessitate persistent and substantial
CPU resources. Similarly, network bandwidth consumption is an essential indicator, with
high-utility applications consistently requiring more network throughput than their
low-utility counterparts.

Resource Allocation Policies: The thorough assessment of workload utility levels
encompasses metrics for storage, memory, and I/O activities, providing a comprehensive
understanding of resource requirements. Cloud resource allocation policies are meticu-
lously designed to align with workload utility levels. Low-utility workloads often favor
resource consolidation and cost reduction, promoting resource sharing and dynamic al-
location. On the other hand, average-utility workloads are met with balanced resource
allocations, ensuring optimal performance while optimizing costs. High-utility workloads,
which demand continuous and high-performance delivery, typically receive dedicated and
premium resource allocations.

Role of Machine Learning and Predictive Analytics: Machine learning and predictive
analytics play a crucial role in forecasting workload utility levels with a degree of accuracy.
By analyzing historical data, cloud providers can identify consumption trends, enabling
automated resource allocation decisions. This data-driven approach ensures that the cloud
ecosystem can swiftly respond to changes in workload utility levels. The inherent agility of
the cloud allows for real-time adjustments in resource allocation, which is invaluable for
adapting to fluctuations in workload utility levels.

Dynamic Resource Scaling: When workloads display indications of transitioning
across utility categories, policies can be established to trigger resource scaling. For instance,
if a typical utility application experiences sudden spikes in the CPU or network demand,
automated scaling mechanisms are activated to ensure uninterrupted resource provision.
These mechanisms guarantee that the application continues to receive the necessary re-
sources without interruption, maintaining performance levels.

Customer-Centric Utility Levels: The classification of workload utility levels within
a user-centric paradigm is closely linked to customer-defined service-level agreements
(SLAs). Users define their desired utility levels based on resource performance and avail-
ability, directly influencing how the cloud manages workloads. This approach ensures that
consumers receive the promised utility level, aligning with their operational requirements
and resource investment preferences.

Optimizing Resource Allocation: To summarize, defining workload utility levels
within the cloud ecosystem is a multifaceted process supported by measurements, policies,
and advanced analytics. It represents an ongoing effort aimed at enhancing resource
allocation while maintaining a balance between cost effectiveness and performance, all
while remaining responsive to the evolving demands and expectations of cloud customers.

Incorporating a diverse range of machine learning (ML) algorithms is crucial for accu-
rate workload prediction. The utilization of various algorithms such as Linear Regression
(LiR), Support Vector Regression (SVR), Decision Tree (DT), Random Forest (RF), Logis-
tic Regression (LoR), and Artificial Neural Network (ANN) enables the comprehensive
analysis and forecasting of the workload. These algorithms, when applied to the dataset,
facilitate precise and robust workload predictions, ensuring the effective management and
allocation of resources within the cloud ecosystem.

Figure 12 illustrates the predictions for CPU utilization using a range of machine
learning techniques, including Linear Regression (LiR), Support Vector Regression (SVR),
Decision Tree (DT), Random Forest (RF), Logistic Regression (LoR), and Artificial Neural
Network (ANN). These predictive models enable accurate forecasting of the CPU utilization,
providing valuable insights into the resource demands and usage patterns within the
cloud environment.
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(a) LiR (b) SVR

(c) DT (d) RF

(e) LoR (f) ANN

Figure 12. Prediction of CPU utilization.

Figure 13 demonstrates the predictions for memory usage using various machine learn-
ing techniques, including Linear Regression (LiR), Support Vector Regression (SVR), Deci-
sion Tree (DT), Random Forest (RF), Logistic Regression (LoR), and Artificial
Neural Network (ANN). These predictive models enable the accurate forecasting of mem-
ory utilization, providing insights into the memory usage trends and patterns within the
cloud infrastructure.
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(a) LiR (b) SVR

(c) DT (d) RF

(e) LoR (f) ANN

Figure 13. Memory utilization prediction.

Figure 14 presents the memory utilization data, demonstrating the patterns and trends
in memory usage over a specific period. The visualization offers valuable insights into
how memory resources are being utilized within the cloud environment, aiding in the
assessment of memory allocation and requirements. Understanding memory utilization
is critical for optimizing resource allocation and ensuring the efficient performance of
cloud-based applications and services.



Information 2023, 14, 619 27 of 39

Figure 14. Memory utilization.

Figure 15 presents the predictions for the network-transmitted throughput, utilizing
various machine learning techniques, including Linear Regression (LiR), Support Vector
Regression (SVR), Decision Tree (DT), Random Forest (RF), Logistic Regression (LoR),
and Artificial Neural Network (ANN). These predictions offer valuable insights into the
anticipated network throughput trends and patterns within the cloud infrastructure, aiding
in the proactive management and optimization of network resources.

(a) LiR (b) SVR

(c) DT (d) RF

Figure 15. Cont.
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(e) LoR (f) ANN

Figure 15. Network-transmitted throughput prediction.

Figure 16 depicts the network-transmitted throughput within the cloud environment,
illustrating the dynamic changes and fluctuations in the network data transmission rates
over a specific time period. The graph serves as a visual representation of the actual
network throughput data, providing insights into the overall network performance and
data transmission patterns, which are crucial for understanding the network’s efficiency
and capacity utilization.

Figure 16. Network-transmitted throughput.

7.5. Algorithm: Effective Resource Monitoring Using Metrics and Policies

In this section, we introduce Algorithm 1, designed for efficient resource monitoring
and management by utilizing metrics and policies. This algorithm systematically defines
the steps involved in monitoring cloud resources while effectively mitigating the challenges
posed by extensive monitoring logs. Additionally, it offers valuable insights into predicting
the behavior of the cloud environment using diverse parameters. It is worth noting that this
analytical approach can readily extend its applicability to address other crucial parameters,
like disk read-and-write throughput and network-received throughput.

This algorithm showcases the effective utilization of metrics and policies to dynami-
cally adapt the monitoring frequency in response to the prevailing performance parameter,
such as CPU utilization. This intelligent adjustment minimizes the accumulation of su-
perfluous monitoring data and logs, consequently enhancing resource management and
optimization within the cloud environment.



Information 2023, 14, 619 29 of 39

Algorithm 1 Steps for effective resource monitoring using metrics and policies

1: Set a monitoring interval for any instance at which it is being monitored for any interval

= m1 seconds for CPU Utilization

2: Let performance parameters be CPU utilization, denoted as P1

3: Define a policy: Let the upper threshold of the performance parameter for CPU

utilization be t1

4: Define a policy: Let the lower threshold of the performance parameter for CPU

utilization be t2

5: Create a log of performance parameter monitoring for every job in the cloud

6: Let nt1 be the performance parameter (e.g., CPU utilization) of a new job

7: if nt1 > t1 then

8: Increase the frequency of monitoring

9: end if

10: if t1 > nt1 > t2 then

11: Decrease the frequency of monitoring

12: end if

7.6. Evaluation of Machine Learning Predictions

Evaluating the prediction accuracy of machine learning models is essential in ensuring
the reliability and effectiveness of the proposed approach. By assessing metrics such as
the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), this study can
effectively quantify the extent of the prediction errors, thus providing valuable insights into
the performance of various machine learning algorithms in forecasting resource parameters.
Lower values of the RMSE and MAE signify improved predictive accuracy and model
performance, thereby establishing the credibility of the predictive models in the context of
resource monitoring and management in cloud environments.

Table 8 evaluates the prediction accuracy of different ML approaches for CPU uti-
lization. The evaluation metrics used are the Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE). These metrics help us understand how close the predicted values are
to the actual values, with lower values indicating better prediction accuracy. In this table,
we observe that SVR (Support Vector Regression) has the lowest RMSE and MAE values
compared to the other ML models. This indicates that SVR provides the most accurate
predictions for CPU utilization among the models evaluated. Lower RMSE and MAE
values mean that the predicted values closely match the actual CPU utilization, which is
crucial for efficient resource management in a cloud environment.

Table 8. RMSE and MAE for CPU utilization predictions using various ML approaches.

ML Model RMSE MAE

LiR 2.63 1.43
SVR 0.99 0.80
DT 1.37 1.28
RF 1.53 1.14

LoR 39.42 32.36
ANN 2.15 1.36

Table 9 assesses the prediction accuracy of the different ML models for memory usage,
similar to Table 8. Again, the RMSE and MAE are used as the evaluation metrics, with lower
values indicating better prediction accuracy. In this table, we can see that SVR (Support
Vector Regression) has the lowest RMSE and MAE values for the memory usage predictions.
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This suggests that SVR is the most accurate model for predicting memory usage, providing
predictions that closely align with the actual values.

Table 9. RMSE and MAE for memory usage predictions using various ML approaches.

ML Model RMSE MAE

LiR 2.01 1.42
SVR 3.65 2.79
DT 3.86 2.85
RF 1.58 1.12

LoR 73.67 56.56
ANN 2.53 1.55

Similar to Tables 8 and 9, Table 10 evaluates the prediction accuracy of the various ML
models but this time for network-transmitted throughput. The RMSE and MAE are once
again used as metrics to assess the accuracy. In Table 10, SVR (Support Vector Regression)
consistently stands out as the model with the lowest RMSE and MAE values for the
network-transmitted throughput predictions. This means that SVR excels in accurately
predicting the network-transmitted throughput values, which is critical for maintaining
efficient network resource management.

Table 10. RMSE and MAE for network-transmitted throughput predictions using various
ML approaches.

ML Model RMSE MAE

LiR 0.48 0.28
SVR 0.52 0.29
DT 0.50 0.30
RF 0.47 0.29

LoR 5.66 3.64
ANN 0.49 0.30

In summary, across all three tables, SVR consistently demonstrates the highest pre-
diction accuracy among the evaluated ML approaches. This indicates that SVR is a robust
choice for predicting CPU utilization, memory usage, and network-transmitted throughput
in cloud environments, making it a valuable tool for optimizing resource allocation and
reducing monitoring overhead.

Figure 17 offers an overall comparison of the entire parameter set, encompassing CPU
usage, memory usage, and network-transmitted throughput, across various ML techniques.
It is evident that ANN, RF, and SVR consistently outperform the other ML techniques in
terms of prediction accuracy. These predicted values, reflecting cloud resource parame-
ters—CPU usage (in percentage), memory usage (in percentage), and network-transmitted
throughput (in KB/s)—serve as input for the metrics, guiding resource management actions
within the cloud.

Forecast accuracy and reliability are critical in the field of cloud workload prediction.
To do this, we use a diverse set of machine learning (ML) algorithms, each chosen for its
own capabilities and adaptability to distinct data features. Linear Regression (LiR), Support
Vector Regression (SVR), Decision Tree (DT), Random Forest (RF), Logistic Regression
(LoR), and Artificial Neural Network (ANN) are examples of these algorithms. Support
Vector Regression, for example, captures non-linear patterns, while Linear Regression
establishes a linear link between input characteristics and workload. Logistic Regression
can be modified for probabilistic workload prediction, while Decision Trees provide in-
terpretability. Random Forest mixes many trees for increased accuracy. Finally, Artificial
Neural Networks are very good at capturing complex data patterns. Our research is built
on the systematic application of these techniques to the workload dataset. The decision on
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which algorithm to use for a certain prediction task is data-driven, informed by statistical
analysis and insights gained from previous conversations and research in the fields of
cloud computing and machine learning. This entire method seeks to provide a strong
and scalable framework for workload prediction, guaranteeing that our conclusions are
technically sound as well as statistically rigorous.

Figure 17. Comparative analysis of various ML approaches.

The reduction in the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)
values across these machine learning (ML) algorithms underscores their ability to achieve
precise Infrastructure as a Service (IaaS) resource prediction. This crucial feature is aligned
with the overarching objective of ensuring accurate workload predictions, ultimately
enabling the provisioning of an optimal amount of resources. The effective alignment of
workloads and resources is vital for sustaining the reliable availability of cloud services,
contributing to the overall efficiency and effectiveness of cloud-based operations.

Consequently, a diverse array of ML models has been employed in this domain,
trained to cater to a variety of scenarios pertinent to the utility of diverse cloud resources
and their predictive applications. To further bolster the predictive capabilities and resource
management, tailored to the specific workloads, the machine learning model that furnishes
the most precise forecasts will be selected for deployment.

7.7. E-Commerce Benefits for Running in IoT and Cloud Computing

E-commerce businesses can reap various advantages by operating on Internet of
Things (IoT) and cloud computing (CC) platforms [137]. Some of these benefits include the
following:

• Reduced Investment Costs: Leveraging cloud infrastructure allows businesses to lower
upfront investment costs by procuring IT resources in a cost-effective
manner [138].

• Operational Cost Reduction: Cloud platforms enable businesses to scale IT resources,
such as CPU, memory, and storage, according to demand, leading to cost savings
over time.

• On-Demand Service Provisioning: Cloud services provide on-demand access and
agility for end users, allowing businesses to quickly adapt to changing market
demands [139].

• Improved Service Quality: Cloud-based e-commerce platforms can enforce critical
service-level agreements (SLAs) and enhance computational resilience, resulting in
heightened service quality for end users [140].
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The interrelationship between cloud characteristics and cloud mechanisms is depicted
in Figure 18, highlighting how the implementation of cloud computing mechanisms aligns
with the achievement of the desired cloud characteristics. Each cloud mechanism can be
thoroughly evaluated based on its specific policies and metrics, as discussed earlier.

Figure 18. Mapping of cloud mechanisms to cloud characteristics.

7.8. Proposals to Improve New Application Challenges for E-Commerce Deployment Using IoT in
Cloud Computing

To navigate the challenges and leverage the opportunities of deploying e-commerce
applications using the IoT and cloud computing, businesses can consider implementing
the following proposals:

• Develop New IT Practices: Establish innovative IT practices that align with evolving
market demands, focusing on IT earnings, technology lifecycle management, and data
center management to adapt to changing business landscapes [23].

• ROI Identification and Planning: Invest in continuous training and monitoring to
accurately identify the return on investment (ROI) and effectively plan the capacity
to meet the demands of e-commerce applications powered by the IoT and cloud
computing [11].

• Virtualization Platform Selection: Choose the most suitable virtualization platform
to facilitate efficient provisioning and de-provisioning of IT resources, ensuring op-
timal SLA monitoring, billing, and resource management to support e-commerce
operations [12].

• Governance and Resiliency: Implement governance and organizational strategies to
effectively manage and control large-scale resiliency, negotiate cloud-based agreements
with clients, and foster trust in cloud services, which are essential for a successful
e-commerce ecosystem [13].
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• Mobile Business Expansion: Embrace the growing influence of mobile access to cloud
services and ensure that cloud offerings are well aligned with the evolving mobile
business landscape to support e-commerce operations efficiently [14].

These proposals provide a framework for businesses to address the unique challenges
and seize the opportunities presented by the integration of the IoT and cloud computing in
e-commerce applications, ultimately contributing to their success in this
dynamic environment.

8. Conclusions and Future Work

The convergence of the Internet of Things (IoT) and cloud computing (CC) has un-
locked significant potential for advancements across various technical industries, promising
a future characterized by autonomous adaptability and improved environmental sustain-
ability. Within the dynamic cloud environment, characterized by uncertain workloads, the
role of policy mechanisms in CC decision making is pivotal. Assessing available cloud
capacity before deploying tasks in the CC environment is imperative, and policies can
range from simple conditional statements to complex logical structures comprising multiple
combinations of actions and triggers.

This paper has leveraged monitoring and prediction mechanisms to establish the cur-
rent state of cloud infrastructure and anticipate future resource scenarios. This knowledge
aids cloud service providers (CSPs) in effective resource management and in triggering
various policies based on the relevant metrics.

As a direction for future research, we propose the implementation of intelligent
agents, particularly Hierarchical Reinforcement Learning, to engage with cloud resource
statuses. These agents can assign positive and negative rewards based on predefined met-
rics and policies, ultimately aiming to minimize negative rewards and maximize positive
rewards. This approach could lead to the identification of optimal solutions that enhance
cloud resource management and provide a solid foundation for continued exploration
in this field.
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