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Abstract: Aiming at effectively improving photovoltaic (PV) park operation and the stability of
the electricity grid, the current paper addresses the design and development of a novel system
achieving the short-term irradiance forecasting for the PV park area, which is the key factor for
controlling the variations in the PV power production. First, it introduces the Xception long short-
term memory (XceptionLSTM) cell tailored for recurrent neural networks (RNN). Second, it presents
the novel irradiance forecasting model that consists of a sequence-to-sequence image regression NNs
in the form of a spatio-temporal encoder–decoder including Xception layers in the spatial encoder,
the novel XceptionLSTM in the temporal encoder and decoder and a multilayer perceptron in the
spatial decoder. The proposed model achieves a forecast skill of 16.57% for a horizon of 5 min when
compared to the persistence model. Moreover, the proposed model is designed for execution on
edge computing devices and the real-time application of the inference on the Raspberry Pi 4 Model B
8 GB and the Raspberry Pi Zero 2W validates the results.

Keywords: deep learning; ConvLSTM; irradiance forecasting; edge computing; photovoltaic parks;
ground-based sky images

1. Introduction

Artificial intelligence (AI) is an ever-expanding technology that has spread in uncon-
ventional scientific and industrial fields and has been integrated in smart systems [1–3] in
order to execute notorious tasks such as predicting the future state of a system and decision
making. These tasks often appear in the Smart Grid (SG) concept [3,4], where power grids
are supported by the information provided by Internet of Things (IoT) devices, which are
constantly monitoring the environment and the interaction between the energy provider
and the client. SGs are essential to power production involving renewable energy sources
(RES) because the RES and especially the photovoltaic (PV) parks have the disadvantage of
not producing energy at a constant rate.

In PV parks, the energy production depends heavily on the global horizontal irradiance
(GHI), the diffuse horizontal irradiance (DHI), the direct normal irradiance (DNI), the
cloud cover (CC) and other meteorological parameters. AI-enabled smart PV parks utilize
machine learning (ML) tools to forecast the future values of these parameters [5]. These
forecasting results lead the PV park controller to improve the power production capabilities
and henceforth the grid balancing [6]. The problem in many PV parks is the lack of
historical data that prevents a neural network (NN) from making reliable predictions. It
is also the case that numerical values are often not sufficient to depict the current state of
a system such as the weather conditions in the atmosphere. For this reason, researchers
and engineers considered sky images taken from the ground as an attractive solution. This
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is because sky images carry significantly more information compared to numerical data,
and moreover, they are able to provide even further detailed information by the use of
advanced ML techniques and convolutional NN (CNN)-based models. In the last decade,
the approaches with image-regression-based techniques have shown improved results and
these advances have made edge computing applications possible by the use of lightweight
models such as ShuffleNet [7] and the MobileNet [8].

The motivation of this research is the Archon project [9] that designs and develops
a controller that is efficient with respect to the implementation cost, the computational
load and the deployment, which will manage the PV park power production [9]. The
controller refers to all the aspects of the controlling mechanism, ranging from the underlying
infrastructure to the controller’s software. The infrastructure includes the sensors that
generate data and the hardware solutions for deploying the irradiance forecasting system
(IFS) on the edge. The cost-efficient controller design excludes sensors that generate numeric
data in order to reduce the cost of the equipment and the complexity of the interconnection
of all the contributing devices in the system. For the same purpose, the design excluded
the pyranometer, a device that provides essential information regarding current weather
conditions, because it is in high demand and expensive. Therefore, the entire design of the
proposed IFS depends solely on image sequences captured by low-cost cameras. Moreover,
the implementation targets edge computing devices that require less energy and are of
lesser cost compared to a work station.

Aiming at an improved solution to the GHI forecasting problem executable on edge
devices, the current article exploits image sequence regression techniques to introduce
the following two novel entities: (a) the Xception long short-term memory (XceptionL-
STM), a recurrent NN (RNN) for image sequence parsing and generation, and (b) a model
for a complete solution to the GHI forecasting that uses the proposed XceptionLSTM to
improve the forecasting results. The design of the proposed XceptionLSTM cell is based
on convolutional LSTM (ConvLSTM) cells. The proposed GHI forecasting model is a
sequence-to-sequence (Seq2Seq) image regression NN in the form of a spatio-temporal
encoder–decoder [10] that consists of Xception layers (XL) [11] in the spatial encoder, the
novel XceptionLSTM cells proposed by this work in the temporal encoder and decoder
and a multilayer perceptron (MLP) in the spatial decoder. The novel XceptionLSTM has
the following advantages compared to the ConvLSTMs: (a) its design allows the paral-
lelized execution of ConvLSTM cells with different kernel sizes, (b) it is significantly more
lightweight and (c) it showcases significantly improved usage of the data and kernel ten-
sors. The novel GHI forecasting model has the following improvements with respect to the
reported Seq2Seq architectures based on ConvLSTMs: (a) the proposed model converges
faster and (b) it requires less memory in order to infer data, making it ideal for executing
inference on-the edge devices.

The development and evaluation of the proposed model employs a custom dataset
of red green blue (RGB) 180◦ field-of-view sky images and GHI measurements collected
over a full callendar year period during the development of the the Archon project [9]. The
proposed model is trained and evaluated on an NVIDIA GeForce RTX 3080. The design
of the entire model has as target the execution on edge computing devices. For the time
performance evaluation we opted the Raspberry Pi 4 Model B 8 GB and the Raspberry Pi
Zero 2W as low-power, edge computing devices. The development of the model was based
on Pytorch [12], which is a Python package and a framework for NNs with a relatively
high Graphics Processing Unit (GPU) acceleration. Pvlib [13] is a Python package for PV
park performance simulation; in this work, it was the basis for estimating the position of
the sun in an image and for the generation of sun masks [14].

The paper is organised as follows. First, Section 2 introduces the XceptionLSTM cell
and the model for the short-term irradiance forecasting. Section 3 reports the evaluation
results of CNN models for irradiance forecasting. Section 4 follows with a discussion
regarding the results presented in this and other related work reported in the literature.
Finally, Section 5 concludes the article.
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2. Materials and Methods

Making decisions proactively for a system that we monitor relies on the following
assumption: the system’s next state depends on the sequence of states in the recent history
of that system. Accordingly, we need the accurate forecasts for the forthcoming GHI state
in order to improve the PV park’s operation. In order to accomplish the latter task, a sky
camera captures a sequence of images consecutively with a constant time interval (referred
to as horizon from now on). Then, the PV park’s controller forwards the images to an NN.
The prediction model calculates a new sequence of values that corresponds to consecutive
GHI values with the same horizon as the input sequence. The input and output sequence
length and the horizon used for the prediction are the major model’s hyperparameters that
can be tuned to achieve the most accurate possible outcome. Other hyperparameters are
the model’s structure, the training schemes and any data preprocessing.

2.1. Model Structure

Most often, NNs need to be quite complex because of the large systems they are
tasked to simulate. Therefore, in highly complex systems such as the Earth’s atmosphere,
the traditional models that can respond to such fast-changing parameters may consist of
dozens of sequentially connected layers. Such models are most probably time consuming
in the tasks of training and inference and they are considered non-optimal for time-critical
applications and on-the-edge inference. These facts show that such systems require efficient
state-of-the-art ML algorithms and novel techniques with improved complexity and lesser
requirements for computational resources.

2.1.1. Xception Layer

The proposed prediction model utilizes XLs [11], which are a type of CNN that com-
bines the characteristics of Inception Modules [15] and depthwise separable convolutions
(DWSC) [11,16]. A DWSC extracts the parallelism of a traditional convolutional layer (CL)
by partitioning the operation in two simpler operations: a depthwise convolution and a
pointwise convolution. The former is a convolution in each frame of the channels of the
input tensor, while the latter is a convolution in each pixel of the input tensor. Combin-
ing the depthwise and pointwise convolution sequentially results in a CL with the same
result-producing capabilities but with a significantly reduced number of parameters and
computational complexity. The computational graph of a DWSC is depicted in Figure 1.
An Inception Module consists of a nested CL, where all nested layers process the same
input in parallel, and all the results are concatenated, added or in general reduced to a
new output tensor. The layers’ parallelization leads to a greater degree of data usage,
making it an ideal layer for inference on low-power edge devices. The benefit of employing
Inception Modules is also the attenuation of the vanishing gradient problem [17]. This
problem refers to those models that have a great number of sequentially connected layers,
and during the training scheme in these models, the gradient often becomes insignificant
during backpropagation.

The combination of DWSC and Inception Modules results in the XLs, which execute in
parallel depthwise operations such as the depthwise convolutions or the pooling operations.
Then, the model concatenates these results and forwards them to a pointwise convolution.
The latter scheme exploits two forms of parallelism: the inter-task parallelism (parallel
execution of nested layers in the Inception Module) and intra-task parallelism (parallel
execution of convolutions in all channels of the input tensor in a depthwise convolution).
Although the CL allows for an intra-task parallelism because of the different kernels that
can be applied independently in parallel (called inter-kernel parallelism), the proposed
model’s design can achieve a greater degree of intra-task parallelism with an XL and
the depthwise convolutions; the latter allow the partition of the input tensor into the
channels of the tensor. Hence, we can operate on each of these channels independently. The
advantage of the XL compared to the traditional CL is less overhead in terms of memory
access and smaller number of parameters and operations. We can add to the above a further
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improvement. This is the partitioning of the depthwise convolution in two asymmetrical
depthwise convolutions, one for each dimension of the frame, meaning convolutions with
kernel size 1× N and N × 1 [18], where N × N is the kernel size of the traditional CL. This
fact allows even further parallelism of the computations.

.
.
.

=⇒

=⇒

=⇒

.
.
.

Conv2D (k × k)

Depthwise Convolution

.
.
.

=⇒
Conv2D (1× 1)

Pointwise Convolution

Figure 1. Depthwise separable convolution breakdown.

This work considers the structure of the XL shown in Figure 2. It consists of four nested
layers, two of which are depthwise convolutions with kernel sizes of 3 and 5, a max pooling
layer and the identity function. The identity function is ultimately used as a pointwise
convolution of the XL’s input tensor. Also, including the identity function improves the
gradient descent; the gradient is broadcasted to and propagates through all four nested
layers, but is unaffected by the identity function. The gradients of all the nested layers
are then added and (back)propagated to the previous layer. As a result, the gradient of
an XL is mostly affected by the pointwise convolution and less affected by the nested
depthwise convolutions (they can be viewed as small adjustments in the output gradient).
Thus, the layers in the later stages of the backpropagation are less likely to experience the
vanishing gradient descent problem [15]. We can optionally add an activation function
between the depthwise and pointwise operations. However, early results have shown that
an activation before the pointwise convolution diminishes the accuracy of the results.

DConv2D (3× 3)

DConv2D (5× 5)

Max2D (3× 3)

Conv2D
(1× 1)

Figure 2. Structure of the implemented Xception Layer (XL).

2.1.2. XceptionLSTM

ConvLSTM cells [19] are RNNs that utilize convolutions and operate on tensors,
in contrast to fully-connected LSTM (FC-LSTM) cells [20] that operate on vectors. The use of
LSTM cells is either to process or generate a sequence of data; their most usual applications
are the deep learning (DL) based natural language processing (NLP) applications [21]
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and time-series predictions [22,23]. ConvLSTM cells are able to process more complex
tasks, such as next frame prediction [24] and other time-series predictions with feature
extraction [25]. The proposed model utilises XLs [11] as a substitute for convolutions in
ConvLSTM. XLs used in the proposed model’s LSTM cells are structured as shown in
Figure 3. Equations (1)–(10) and Figure 3 describe XceptionLSTM cells:

x = Concat(Xt, Ht−1), (1)

ic = XLi(x), (2)

fc = XL f (x), (3)

cc = XLc(x), (4)

oc = XLo(x), (5)

ig = σ(ic + Ct−1 �Whi), (6)

fg = σ
(

fc + Ct−1 �Wh f

)
, (7)

og = σ(oc + Ct−1 �Who), (8)

Ct = fg � Ct−1 + ig � act(cc), (9)

Ht = og � act(Ct), (10)

where the new input and the hidden state of the previous iteration of the cell are concate-
nated (Equation (1)) and forwarded to four XLs (input, forget, cell and output convolutions,
Equations (2)–(5)). The input, forget and output gates (Equations (6)–(8)) are calculated by
first summing the results of the corresponding convolutions with the Hadamard products
of the cell state of the previous iteration (Ct−1) with their corresponding parameters and
then applying the sigmoid function. The new cell state (Ct) is a combination of the previous
cell state, the input and forget gate and the cell convolution (Equation (9)). The new hidden
state (Ht) is the Hadamard product of the output state with the activated new cell state
(Equation (10)). We note here that the XL operations in the XceptionLSTM cell do not have
a nested max pooling operation.

Figure 3. The structure of an Xception long short-term memory (XceptionLSTM) cell.

The proposed RNN has significant advantages compared to ConvLSTMs:

• Parallelized execution of multiple ConvLSTM cells with different kernel sizes in a
single XceptionLSTM cell.

• Significantly more lightweight when compared to the ConvLSTMs that have similar
structural elements.

• Improved utilization of the data and kernel tensors: k times less input data calls in
the depthwise convolution and w2 times less kernel calls in the pointwise convolution
when compared to traditional convolutions, where k is the number of kernels and w is
the window size of the tradithonal CL.
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2.1.3. Proposed Model

The proposed model is a spatio-temporal encoder/decoder (Figure 4) with an Xception-
based spatial encoder, an XceptionLSTM temporal encoder and decoder and an MLP as
the spatial decoder. The structures of the spatial encoder and the decoder are depicted in
Figures 5 and 6, respectively.

Imgt-N+1 ... Imgt

Spatial
Encoder

... Spatial
Encoder

Temporal
Encoder

Temporal
Decoder

Spatial
Decoder

... Spatial
Decoder

Îrrt
... ̂Irrt+M

time

Figure 4. Spatio-temporal encoder/decoder breakdown.

The spatial encoder contains 6 layers. The first two layers are the two input XLs that
extract data from the input image. Then, the two middle residual layers refine the data.
Each of these two residual layers consists of a nested sequential module of two XLs. Each
residual layer’s output is the sum of the nested module’s output and its input. Note here
that the number of output tensor channels of the second residual layer is double compared
to its input tensor channels. To match the above in the second residual layer, the sum is
calculated with the result of a 1× 1 convolution of the input in order to match the number
of channels in all nested layers. The nested module can be interpreted as an input corrector
that refines the input tensor’s data. The last two XLs compress the data to an encoded state.
The spatial encoder finally normalizes the encoded state. The spatial decoder involves
three linear layers, which are represented by the three last layers in Figure 6. The first
three layers in Figure 6 reduce the encoded state produced by the temporal decoder to a
fixed sized tensor with adaptive average pooling and flatten it to a vector. The third stage
normalizes the vector and forwards it to the 3-layer MLP.
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All layers are followed by leaky rectified linear unit (LeakyReLU) with a negative
slope of 0.1125. ReLU is the output activation function in the inference, but the training
scheme uses LeakyReLU with a near-zero negative slope (10−3) to allow backpropagation
when a negative value is produced in the early stages of training. The proposed model
can accept any image of frame size of at least 64× 64 pixels. This work uses frames of size
128× 128. We note here that during the development stages of the proposed model, we
studied a variety of models; all these models yielded the best metrics and results with the
128× 128 size frames.

2.2. Dataset

The current study has conducted research for datasets appropriate for the model.
During the early stages, we considered the Folsom, CA, dataset [26], which was based
on a camera that did not provide constant orientation over the time that the dataset was
produced; therefore, there was no method to locate the sun systematically. Other datasets
include the WSISEG database [27], WILLIAM Meteo Database [28], SKIPP’D [29] and
SRRL BMS [30], which are limited with respect to the number of images compared to our
needs for training the proposed model and for the target forecasting horizon. Hence, we
proceeded by organizing and developing the Archon–Athens, Greece Dataset, a custom
dataset for the purposes of the project Archon [9]. The dataset consists of approximately
250 thousand sky images from the All Sky Imager (ASI-16), an automatic full-sky camera
system with fisheye lens for a 180° field of view, and GHI measurements of 1 min intervals.
The instruments are placed in the rooftop of the Inaccess office (38.04◦ N, 23.81◦ E, Sorou
Str, Athens, GR) and have gathered data since 25 October 2022. The captured images depict
the various weather conditions that occur in the greek capital. Most of the images show
partly cloudy or clear sky conditions. There are also plenty of days with precipitation and
thin cloud ceilings. Also, the halo phenomenon appears often in images from morning and
evening hours. Samples of the dataset are provided in Figure 7.

2022-11-15 13:08:00
GHI = 302Wm−2

2022-12-15 10:09:00
GHI = 173Wm−2

2023-01-15 14:32:00
GHI = 144Wm−2

2023-02-15 07:14:00
GHI = 30Wm−2

2023-03-15 07:38:00
GHI = 577Wm−2

2023-04-15 11:20:00
GHI = 951Wm−2

2023-05-15 05:00:00
GHI = 157Wm−2

2023-06-15 16:07:00
GHI = 146Wm−2

2023-07-15 12:00:00
GHI = 879Wm−2

2023-08-07 09:02:00
GHI = 886Wm−2

Figure 7. The Archon–Athens, Greece Dataset.

We keep all images from January, April and July 2023 as evaluation data and use the
rest of the dataset for training and validation with a 90% split. January represents a set of
days with bad power yields and frequent weather changes, while April and July represent
days with good yields with frequent and infrequent weather changes, respectively. To
achieve a more objective validation loss, the training and validation sets are created by
splitting the dataset based on the days in a month and then extracting the valid input image
and target irradiance sequences from each subset for all months. This guarantees that the
model has not processed an image during both training and validation and that the two
subsets cover the weather conditions from all the available months. Overall, we used 67%
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of the dataset for training, 8% for validation and fine-tuning and 25% for the evaluation
presented in Section 3.

2.2.1. Input Images

The proposed model accepts as input a sequence of consecutive images captured one
frame per minute. All images are first resized from 1536× 1536 RGB images of 8-bit depth
to 128× 128× 3 tensors of single floats. An extra channel called sun mask [14] highlights
the sun disk in an image at clear sky conditions. The introduction of this binary mask is
one way to provide the models with useful data related to the image. Such data include the
solar azimuth and the solar elevation, and by using this binary mask, they can be easily
correlated with the image. It also hints that the highlighted areas are the region in the
image expected to correspond to the sky fragments providing the larger fraction of GHI.

2.2.2. Output Irradiance

The proposed model outputs irradiance (GHI) values as single floats. These GHI target
values are integers and range from one (1) to around 1460 W m−2. We have discarded all
possible sequences that have sky images captured before sunrise or after sunset.

2.3. Metrics

The literature provides a variety of metrics for evaluating solar forecasts, which are
envisaged from different perspectives [31]. In this article, we evaluate the results of the
tested models with mean bias error (MBE), mean absolute error (MAE), mean absolute
percentage error (MAPE), root mean square error (RMSE), and forecast skill (FS) shown in
Equations (11)–(15), respectively.

Mean bias error: MBE =
1
N

N

∑
i=1

(ŷi − yi), (11)

Mean absolute error: MAE =
1
N

N

∑
i=1
‖ŷi − yi‖, (12)

Mean absolute percentage error: MAPE =
1
N

N

∑
i=1

∥∥∥∥
ŷi − yi

yi

∥∥∥∥, (13)

Root mean square error: RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2, (14)

Forecast skill: FS = 1− RMSE
RMSEpers

, (15)

where N is the size of the test dataset, ŷi is the forecast and yi is the target value for a
horizon H. The MBE highlights whether a model shows bias when forecasting and hence,
whether the results tend to consistently under- or overestimate the target value. The MAE
and RMSE show the measured deviation of the results in respect to the target values. We
can interpret the former as the expected deviation in the lower range of the GHI values,
whereas the latter refers to the expected deviation in the upper range of the GHI values. The
FS provides a more dataset-independent way to evaluate models [32]. This is accomplished
by comparing the models to the Persistence Model, which forecasts that no change will
occur to the target value after a horizon. The Persistence Model is a baseline model that
often appears in short- and ultra short-term irradiance forecasting solutions, where the
forecast horizon ranges from 15 s to 2 min. The MAPE metric indicates the normalized
deviation of the forecasts from the target values, which also helps in assessing the models’
performance more comprehensively.
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3. Results

This section presents the evaluation results of the proposed model for the task of
short-term irradiance forecasting. Moreover, it presents the results of the study on the
performance of models with various temporal encoders/decoders and it compares their
results to that of the proposed model. The comparison models include ConvLSTMs,
stacked ConvLSTMs, bidirectional ConvLSTMs and their respective depthwise separable
(DWSConvLSTM) and Xception versions. The presented benchmark also compares the
temporal encoders and decoders that are based on convolutional gated recurrent Units
(ConvGRU) [33], an RNN initially intended for spatio-temporal feature learning from
videos. We note here that bidirectionality only applies to the temporal encoder, as it is
the only module that accepts a sequence as an input, and the results of the forward and
backward pass of the input sequence are summed and forwarded to the temporal decoder.
All layers of the tested temporal models accept and generate tensors of size 8× 8× 128.
Table 1 is an overview of the models evaluated in this work.

Table 1. Overview of spatio-temporal models’ number of parameters and operations and the training
time per epoch for an input sequence of five 128× 128× 4 images and an output sequence of fifteen
irradiance values.

Temporal Model Kernel Size
Temporal Encoder/Decoder Spatio-Temporal Encoder/Decoder Training

Time per
Epoch (min)

Param. OPs (MAC) Param. OPs (MAC)

Spatial Encoder - - - 833 K 1.03 G
Spatial Decoder - - - 658 K 0.66 M

3.26

ConvGRU
3 1.79 M 1.13 G 3.90 M 6.27 G 19.16
5 4.93 M 3.15 G 7.05 M 8.28 G 20.54

ConvLSTM
3 2.43 M 1.51 G 4.94 M 6.65 G 19.33
5 6.62 M 4.19 G 9.13 M 9.33 G 20.79

bi-ConvLSTM
3 4.85 M 1.89 G 6.80 M 7.02 G 20.89
5 13.2 M 5.24 G 15.8 M 10.4 G 21.68

Stacked
ConvLSTM

3, 3 6.06 M 3.02 G 8.57 M 8.16 G 21.67
3, 5 12.3 M 5.71 G 14.9 M 10.8 G 23.54
5, 5 16.5 M 8.39 G 19.1 M 13.5 G 25.45

DWSConvLSTM
3 334 K 172 M 2.85 M 5.31 G 19.66
5 342 K 177 M 2.85 M 5.31 G 19.73

bi-
DWSConvLSTM

3 668 K 215 M 3.18 M 5.35 G 20.13
5 684 K 221 M 3.20 M 5.36 G 20.23

Stacked
DWSConvLSTM

3, 3 826 K 343 M 3.34 M 5.48 G 20.64
3, 5 839 K 349 M 3.35 M 5.49 G 20.75
5, 5 847 K 354 M 3.36 M 5.49 G 20.87

XceptionLSTM XL 871 K 516 M 3.38 M 5.65 G 19.63
bi-XceptionLSTM XL 1.74 M 645 M 4.25 M 5.78 G 19.75

Stacked
XceptionLSTM 2×XL 2.17 M 1.03 G 4.68 M 6.17 G 20.79

All the models are trained and evaluated in a Linux workstation with an Intel(R)
Core(TM) i7-9700K CPU @ 3.60 GHz and a NVIDIA GeForce RTX 3080 GPU. We deploy a
Raspberry Pi 4 Model B 8 GB and a Raspberry Pi Zero 2W for time performance tests as
devices on the edge, configured as a Linux workstation with a quad core Cortex-A72 (ARM
v8) 64-bit SoC @ 1.5 GHz for the former and as a Linux workstation with a quad-core Arm
Cortex-A53 64-bit SoC @ 1 GHz for the latter device. We use Python 3.9.13 and Pytorch
2.0.0+cuda11.7 for the development of the evaluated models.



Information 2023, 14, 617 10 of 18

3.1. Training Scheme

In order to reduce the total training time of all models that are evaluated in this article,
we used transfer learning and partitioned the models’ training in two stages, as shown
in Figure 8. In the first stage, we trained the spatial encoder and decoder in the training
dataset for the problem of irradiance estimation. Specifically, the spatial model accepts
an image and estimates the GHI value for this particular image. This stage is common
to all the models we tested; therefore, the spatial encoder and decoder were trained only
once. We train the second stage’s spatio-temporal model using as initial weights: (a) for
the spatial encoder and decoder those resulting of the first stage and (b) for the temporal
encoder and decoder arbitrary weights. This scheme allows us to test whether the spatial
encoder and decoder can effectively forecast GHI values.
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Figure 8. Training scheme.

Table 2 lists all the hyperparameters that we examined and chose for the presented
benchmark. For the first stage, we used RMSProp with decay of 0.9 and ε = 1.0. We
used a learning rate of 0.001 decaying every epoch using an exponential rate of 0.94 and
the MSELoss as the criterion for calculating the loss. The spatial model was trained for
29 epochs and achieved an RMSE of 35.3 W m−2 for the solar irradiance estimation. For
the second stage, we used the same scheduler, optimizer and loss function with an initial
learning rate of 5× 10−5. With this training scheme we were able to reduce the total epochs
from 30 to just 6 epochs for the spatio-temporal models. Moreover, all the models achieved
better metrics when they were trained with this scheme compared to training the whole
spatio-temporal model without any transfer learning.
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Table 2. The hyperparameters that were examined and chosen for the presented benchmark.

Hyperparameter Tested Options Final
Input Sequence Length {5, 10, 15} 5

Output Sequence Length {5, 10, 15} 15
Image Frame Size {64, 128, 256} 128

Concatenate Sunmask {True, False} True
Removed Foreign Objects {True, False} True
Encoded State’s Channels {16, 32, 64, 128, 256} 128

Optimizer {Adam, RMSProp} RMSProp

Scheduler
{

ReduceOnPlateau,
Exponential, Step

}
Exponential

Learning Rate
{

5× 10−2, 10−3, 5× 10−4,
10−4, 5× 10−5, 10−5

}
1st Stage: 10−3

2nd Stage: 5× 10−5

Loss Function
{

L1, SmoothL1
Huber, MSE

}
MSE Loss

Batch Size {8, 12, 16, 20, 24} 16

3.2. Model Evaluation

Table 1 presents the implementation details of the models evaluated in this work:
the ConvLSTM, the DWSConvLSTM and the XceptionLSTM-based models in their single-
cell, bidirectional and double-stacked versions and the ConvGRU-based models. Table 3
presents the evaluation results of the metrics for the tested models. All the models con-
sidered for this comparison infer a sequence of five images with a horizon of 1 min and
output 15 GHI values that correspond from 1 to 15-min forecasts. Note here that the
XceptionLSTM cell in the three versions we examined prevails with respect to the RMSE
and FS scores. Specifically, the single XceptionLSTM cell scores 68.8 W m−2, 94.6 W m−2

and 116 W m−2 RMSE for the horizons of 1, 5, 15 min with a mean score of 99.8 W m−2

and the double-stacked XceptionLSTM scores 69.2 W m−2, 94.4 W m−2 and 115.8 W m−2

RMSE with a mean score of 99.8 W m−2. Moreover, the proposed cell in its bidirectional
form scores 68.7 W m−2, 94.5 W m−2 and 117.3 W m−2 in the RMSE metric for the same
horizons and reports a mean score of 100.3 W m−2. The bidirectional XceptionLSTM is the
best-performing model based on the MAPE metric, achieving a mean score of 24.5% across
the examined horizons. Furthermore, the XceptionLSTM cell achieves low MAE scores for
the 1 min horizon, but the stacked DWSConvLSTM cells report lower MAE metrics in all
the other horizons.

The MBE metric reports no noticable bias for ConvLSTM and XceptionLSTM-based
spatio-temporal models, which means that these two kinds of models have no tendency to
over- or underestimate forecasts. On the other hand, most DWSConvLSTM-based models
tend to systematically underestimate the forecasts of the first few horizons. The same
tendency appears in the bidirectional versions of all models. In contrast to the above,
the ConvGRU based models tend to overestimate forecasts. Moreover, the models with
bidirectional temporal encoders appear to forecast more accurately for greater horizons
when compared to their unidirectional counterparts, but less accurately when one more
layer is added to the unidirectional models. As we can conclude by the metrics of Table 3,
the increased accuracy of the models with stacked temporal encoders and decoders seems
to be more intense in the cells that use depthwise operations. In addition, given that all the
benchmarked models score RMSE and MAE values within 4.6 W m−2 from one another,
we conclude that the structure of the temporal encoder and decoder does not significantly
change the reported metric scores.
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Table 3. Evaluation results of the models in Table 1 for the horizons of 1, 5, 15 min and the average
for the first 15 min. The best models for each metric and horizon are bolded.

Model
Kernel

Size
MBE (W m−2) MAE (W m−2) MAPE (%)

1 min 5 min 15 min Mean 1 min 5 min 15 min Mean 1 min 5 min
Persistence – <0.025 −0.0841 0.1795 <0.001 20.61 44.1 74.8 52.9 6.21 15.89

ConvGRU
3 −3.19 9.63 9.09 8.83 34.6 47.2 59.6 50.4 24.66 32.5
5 −1.508 7.86 8.17 7.52 33.0 46.2 59.0 49.7 22.72 29.34

ConvLSTM
3 −0.686 5.68 3.82 3.60 33.1 47.0 59.6 49.9 21.41 27.73
5 2.080 1.898 −1.321 0.1465 33.0 47.1 60.9 50.8 21.73 27.87

bi-ConvLSTM
3 3.02 2.520 <0.025 0.1741 34.1 49.2 63.3 53.5 19.89 26.69
5 −4.24 −5.07 −7.30 −6.10 34.3 47.4 60.0 50.8 19.91 24.87

Stacked
ConvLSTM

3, 3 3.10 3.26 1.304 1.741 33.5 47.3 59.5 50.3 22.08 29.31
3, 5 0.2465 0.313 −4.12 −1.500 33.0 47.0 60.0 50.4 21.49 27.68
5, 5 −2.170 −1.474 −4.08 −2.824 35.0 47.7 59.9 51.0 19.76 26.35

DWSConvLSTM
3 −14.13 −5.37 −2.234 −4.49 35.5 46.6 59.8 50.3 22.11 27.69
5 −11.49 −5.97 −3.01 −4.75 34.8 46.3 59.0 49.8 21.56 26.20

bi-
DWSConvLSTM

3 −15.90 −5.63 0.988 −3.94 37.0 46.0 58.5 49.5 22.71 26.88
5 3.54 3.81 −4.48 1.335 34.5 46.6 60.1 50.1 23.07 28.81

Stacked
DWSConvLSTM

3, 3 −6.38 0.678 2.481 1.022 35.0 46.4 58.5 49.6 23.14 29.92
3, 5 −8.51 −3.71 1.160 −1.831 34.7 45.4 58.3 49.0 20.60 26.18
5, 5 1.994 0.452 −6.07 −1.518 34.5 46.7 59.6 50.1 23.01 28.48

XceptionLSTM XL −3.01 1.139 −4.87 −0.924 32.5 46.1 59.9 49.7 20.46 24.43
bi-XceptionLSTM XL −7.03 −2.992 −8.16 −4.52 32.7 45.7 59.0 49.2 19.57 22.98

Stacked
XceptionLSTM 2×XL −2.650 −0.963 −3.35 −1.657 33.0 45.8 60.4 49.9 19.38 23.27

RMSE (W m−2) FS (%) MAPE (%)
1 min 5 min 15 min Mean 1 min 5 min 15 min Mean 15 min Mean

Persistence – 75.2 113.3 146.6 122.4 – – – – 38.5 30.7

ConvGRU
3 69.4 94.8 113.1 99.9 7.70 16.37 22.88 17.77 38.5 30.7
5 68.3 95.4 114.6 100.0 9.12 15.77 21.83 17.74 36.8 31.4

ConvLSTM
3 69.5 95.5 114.5 100.0 7.50 15.69 21.92 17.67 38.5 30.7
5 70.0 98.2 116.2 102.1 6.94 13.34 20.75 15.93 37.2 30.5

bi-ConvLSTM
3 70.2 96.5 115.5 101.3 6.61 14.85 21.22 16.58 33.2 28.38
5 70.1 95.9 115.6 100.9 6.79 15.36 21.13 16.94 31.1 26.53

Stacked
ConvLSTM

3, 3 69.7 96.3 115.1 100.7 7.27 15.06 21.47 17.09 36.7 31.0
3, 5 70.2 97.8 116.5 102.2 6.67 13.66 20.52 15.87 34.3 29.43
5, 5 70.7 96.5 115.0 101.1 5.93 14.88 21.56 16.72 31.9 27.64

DWSConvLSTM
3 72.2 96.7 117.0 101.7 3.96 14.65 20.17 16.15 37.6 30.5
5 71.4 95.2 115.2 100.3 5.02 15.97 21.39 17.31 34.9 28.99

bi-
DWSConvLSTM

3 72.3 95.0 115.1 100.0 3.79 16.14 21.50 17.51 35.7 29.55
5 71.0 95.7 114.8 100.2 5.57 15.57 21.71 17.37 38.8 31.6

Stacked
DWSConvLSTM

3, 3 73.3 95.9 113.7 100.3 2.51 15.38 22.43 17.16 36.7 31.8
3, 5 72.1 95.2 114.3 100.0 4.09 16.01 22.01 17.55 35.2 28.72
5, 5 71.1 95.5 114.4 100.2 5.41 15.71 21.99 17.42 39.4 31.4

XceptionLSTM XL 68.8 94.6 116.0 99.8 8.53 16.52 20.88 17.85 32.3 27.09
bi-XceptionLSTM XL 68.7 94.5 117.3 100.3 8.52 16.57 20.01 17.52 28.91 24.50

Stacked
XceptionLSTM 2×XL 69.2 94.4 115.8 99.8 7.94 16.69 21.04 17.85 31.3 25.66
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3.3. Timing Reports

Figure 9 is a diagram of the mean execution time of the evaluated models on the edge
devices. The proposed model, in its three benchmarked versions, executes as a single cell
in 2.69 s and 7.54 s, as a bidirectional cell in 2.91 s and 7.99 s and as a double-stacked cell
3.31 s and 8.78 s for the Raspberry Pi 4 Model B and the Raspberry Pi Zero 2W. We notice
that the inference time of all models are within 10 % of the slowest recorded time on both
edge devices, which corresponds to the model that includes stacked XceptionLSTMs in its
temporal encoder and decoder. This is because a major fraction of the complexity derives
from the repeated execution of the spatial encoder and decoder, that is, once per element
of the input and output sequences. The graph also shows the expected behavior for the
models that are based on the same LSTM cells, a fact deducing that the model with less
parameters executes faster. That behaviour is not true for cells of different structure; despite
the great difference in the amount of parameters and total operations, XceptionLSTM cells
appear to have comparable execution times with ConvLSTM cells due to the optimizations
that the Pytorch library performs in convolutions. We believe that the reason behind this is
that the operation of concatenating the channels of the results of all the nested depthwise
operations in an XL to form a single tensor for the pointwise convolution to process causes
the reported execution time overhead. One way to cope with this is to avoid concatenation
by executing the pointwise operation first, then splitting the intermediate tensor and finally,
forwarding the chunks to the nested depthwise operations. These modifications improve
the reported execution times but they result in degraded metrics. During the evaluation
of the inference times, both devices reported a constant power consumption measured at
5.1 W for the Raspberry Pi 4 Model B and 0.7 W for the Raspberry Pi Zero 2W.
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Figure 9. Timing reports for inference on low-cost, edge computing devices.

4. Discussion

Researchers and engineers in the renewable energy field are keen for solutions to the
short-term irradiance forecasting problem [31]. Especially in the last two decades, they
focus on computer vision and ML-based systems, which often include image processing
for satellite imagery [34–37]. Given that the satellite images cover a vast area of the Earth’s
land, measuring the GHI in different areas of an image may provide significantly different
values. The alternative is the ground-based imagery [38–40], which clearly depicts the
current weather conditions in the area of interest with a notable application example the
case of large PV parks. The PV park controllers use multiple ground-based sensors and
they can yield more accurate results [41].
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As Ziyabari et al. [10] suggest, researchers often consider spatio-temporal architectures
as a solid base for their models because the dimensionality of the input data does not
constrain considerably the final structure of their models. This holds whether the input
data is multiple time-series of environmental measurements from multiple sensors that
are spread in a wide area or, as in this article, a time-series of images from a single sky
camera. ConvLSTM-based solutions are reported in image regression related techniques
that target irradiance forecasting [42–44]. This is because CLs are effective in modelling
the complex dynamics of the environmental variables, such as the cloud and the wind
movement. Moreover, as the name suggests, ConvLSTMs can capture the long-term
evolution of the irradiance values. More accurately, ConvLSTMs excel in modeling the
long-term dependences of the target data and extract the correlation among the input
data [40]. It is quite common for researchers to utilize image segmentation for cloud cover
estimations as a means to enhance the results of ML-based forecasting models [45,46].

Zhang et al. [47] compare the results of MLP, CNN and LSTM models that are trained to
predict PV power differences by using PV power data and sky images. They conclude that
a hybrid model using both PV power data and images has a better-balanced performance
across different types of weather conditions. Sun et al. [48] present the SUNSET, a deep
CNN architecture that accepts an image sequence and other data produced by the PV park
and it outputs PV power and clear sky index (CSI) predictions. The input image sequence is
in the form of a single hyperspectral image. Ajith et al. [49] developed a multi-modal fusion
network for ultra-short irradiance forecasting using infrared images and past irradiance
data. They explain that infrared images of the sky can better capture the cloud dynamics
in the small horizon of 15 s. Kumari et al. [40] discuss the advantages and drawbacks of
using LSTMs, gated reccurrent units (GRU), CNNs, deep belief networks (DBN), RNNs and
hybrid artificial neural networks (ANN) for solar irradiance forecasting. Basmile et al. [50]
review and compare eight different AI models for horizons of a minute, an hour and
for daily average forecasts of GHI, DHI and DNI values. Nie et al. [44] explore training
tactics for heterogeneous datasets and how transfer learning contributes to reducing the
training effort and improving the results of a model. Lyu et al. [51] use deep reinforcement
learning (DRL) in order to dynamically change between optimal features of a model by
recognising weather patterns. We note here that the FS reported in the bibliography ranges
from −2.4 – 33.2% for the lower range to 14.4 – 25.2% for the upper range of the examined
horizons [14,43,52,53].

The proposed model targets implementations for short-term irradiance forecasting
on low-power devices. In this article, we presented a benchmarking of known ConvLSTM
based spatio-temporal models [10,19,40] for the latter task with the evaluation of the
models in terms of metric scores and execution times. The proposed XceptionLSTM
cell and spatio-temporal model show notable performance for horizons over 10 min and
improved forecasting skills for smaller horizons. We noticed that, when taking into account
the evaluation results of other related works [43,54], the proposed model exhibit a lower
drop of forecasting skill as the horizon increases. This means that our model constitutes a
very attractive solution for short-term irradiance forecasting; moreover, it can be integrated
in SG systems that are based on ultra short-term forecasts. Furthermore, the proposed
RNN is significantly lightweight when compared to traditional RNNs and models from the
bibliography [43,44], as it requires half of the memory that the weights of the ConvLSTM-
based spatio-temporal models need.

Focusing on the edge devices, the proposed model is optimized for inference on low-
power devices and can process up to 22.27 sequences per minute in the low power device
Raspberry Pi 4 Model B and up to 7.81 sequences per minute in the ultra low-power device
Raspberry Pi Zero 2W. Hence, less powerful IoT devices suffice for the execution of fore-
casting tasks that were once considered power intensive and computationally demanding.
Considering that the number of PV parks added to the power grids constantly increases
and that low-end devices are easy to maintain and cost-effective, the proposed model offers
a very tempting alternative to the high performance and high cost controllers.
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We note here that, on one hand, the real-time execution of the inference computations
on the edge will impose limitations on the NN design and consequently on the number
of respective NN layers. On the other hand, the models in the bibliography that consider
mainly the improvement of feature extraction and not the execution efficiency consist
of dozens of sequentially connected layers [44,52,53]. Compared to the later works, the
proposed model has limited NN layers but it achieves competitive results and conforms
to the specified execution times. An addition to the above cost and execution related
considerations in the proposed NN is the exclusion of the injection of numeric data in
the final NN layers. This injection [40,44,47–49,51,52] gives more accurate forecasts but
increases the overall complexity. Finally, one of the key factors of this research is the
response time of the PV park controller. Although the presented IFS is statically configured,
the controller must be able to dynamically configure the IFS in order to adjust to the
environment and satisfy the time constraints. The controller has to choose the optimal
input and output sequence lengths and the horizon for improved PV park management.
Therefore, the proposed solution has to be configurable and also maintain a certain level of
accuracy across the allowed configurations.

5. Conclusions

The current paper introduced a novel irradiance forecasting model that is efficient
with respect to the computational complexity and specifically designed for edge computing
devices. It also introduced the basis for the design of the forecast model, which is an
innovative RNN called XceptionLSTM. The advantages of the proposed model lie in its
reduced computational complexity, the achievement of Forecast Skill of 16.57% for a horizon
of 5 min when compared to the Persistence Model and finally, the execution time results
on known edge computing devices. The results, which are accomplished on a Raspberry
Pi 4 Model B 8 GB and on a Raspberry Pi Zero 2W, validate the real-time performance
of the model. The future work will first include further optimizations of the XL that will
allow for real-time deployment for under a minute horizons. The second very interesting
target includes the combination of the XLs with other RNNs, as well as experiments on NN
quantization for efficient mapping on very large-scale integration (VLSI) and edge-oriented
field programmable gate arrays (FPGA).
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
ANN Artificial neural network
CC Cloud cover
CL Convolutional layer
CNN Convolutional neural network
ConvLSTM Convolutional long short-term memory
ConvGRU Convolutional gated recurrent unit
CPU Central processing unit
CSI Clear sky index
DBN Deep belief network
DL Deep learning
DHI Diffuse horizontal irradiance
DNI Direct normal irradiance
DRL Deep reinforcement learning
DWSC Depthwise separable convolution
DWSConvLSTM Depthwise separable convolutional long short-term memory
FC-LSTM Fully connected long short-term memory
FPGA Field programmable gate array
FS Forecast skill
GHI Global horizontal irradiance
GPU Graphics processing unit
GRU Gated recurrent unit
IFS Irradiance forecasting system
IoT Internet of Things
LeakyReLU Leaky rectified linear unit
LSTM Long short-term memory
MAE Mean absolute error
MBE Mean bias error
ML Machine learning
MLP Multilayer perceptron
NLP Natural language processing
NN Neural network
PV Photovoltaic
ReLU Rectified linear unit
RES Renewable energy source
RGB Red green blue
RMSE Root mean square error
RNN Recurrent neural network
Seq2Seq Sequence-to-sequence
SG Smart grid
SoC System-on-chip
VLSI Very large-scale integration
XceptionLSTM Xception long short-term memory
XL Xception layer
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