
Citation: Wang, X.; Dong, S.; Zhang,

R. An Integrated Time Series Prediction

Model Based on Empirical Mode

Decomposition and Two Attention

Mechanisms. Information 2023, 14, 610.

https://doi.org/10.3390/info14110610

Academic Editor: Francesco

Camastra

Received: 23 September 2023

Revised: 4 November 2023

Accepted: 8 November 2023

Published: 11 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

An Integrated Time Series Prediction Model Based on Empirical
Mode Decomposition and Two Attention Mechanisms
Xianchang Wang 1, Siyu Dong 1 and Rui Zhang 2,*

1 College of Computer Science and Technology, Jilin University, Changchun 130012, China;
xcwang89@jlu.edu.cn (X.W.); dongsy21@jlu.edu.cn (S.D.)

2 Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of
Computer Science and Technology, Jilin University, Changchun 130012, China

* Correspondence: rui@jlu.edu.cn

Abstract: In the prediction of time series, Empirical Mode Decomposition (EMD) generates subse-
quences and separates short-term tendencies from long-term ones. However, a single prediction
model, including attention mechanism, has varying effects on each subsequence. To accurately
capture the regularities of subsequences using an attention mechanism, we propose an integrated
model for time series prediction based on signal decomposition and two attention mechanisms. This
model combines the results of three networks—LSTM, LSTM-self-attention, and LSTM-temporal
attention—all trained using subsequences obtained from EMD. Additionally, since previous research
on EMD has been limited to single series analysis, this paper includes multiple series by employing
two data pre-processing methods: ‘overall normalization’ and ‘respective normalization’. Experimen-
tal results on various datasets demonstrate that compared to models without attention mechanisms,
temporal attention improves the prediction accuracy of short- and medium-term decomposed series
by 15~28% and 45~72%, respectively; furthermore, it reduces the overall prediction error by 10~17%.
The integrated model with temporal attention achieves a reduction in error of approximately 0.3%,
primarily when compared to models utilizing only general forms of attention mechanisms. Moreover,
after normalizing multiple series separately, the predictive performance is equivalent to that achieved
for individual series.

Keywords: time-series prediction; empirical mode decomposition; attention mechanism; data
normalization

1. Introduction

Time series refers to a sequence of data points that vary over time, which widely exists
in economic, industrial, and other sectors. Time-series prediction is the prediction of future
trends at a specific time point or interval, derived from an established set of sequence
observations, which serves as a guiding principle for making informed decisions about
future actions. For example, investors frequently analyze recent stock price fluctuations
to anticipate future movements. In recent years, there have been comprehensive studies
on time-series prediction involving various machine-learning techniques. Among these,
neural networks have been demonstrated to yield generally superior prediction outcomes
compared to traditional machine-learning methods [1,2].

Because of the differences in time series themselves, they may exhibit various patterns
of change, such as periodic, stability, and non-stability [3]. General time series is not only
unstable in the trend but also has obvious fluctuation at the micro level, i.e., the change of
data has strong uncertainty between adjacent sampling time points. Stock prices as well
as sales, visitor flow, etc., belong to this type. Compared with others, these nonlinear and
non-stationary sequences have more complex features, so that traditional machine-learning
and deep-learning models have a larger prediction error [4]. Sequence stabilization, such
as Fourier transform, wavelet transform, and Empirical Mode Decomposition (EMD), is a
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common method used to deal with such sequences as those above. In recent years, EMD has
been widely used in the prediction of this type of sequence. Through EMD, the short-term
change and the long-term trend can be separated from the original sequences to improve
the prediction effect.

However, considering the dataset selection, current studies of EMD have been con-
ducted on a single sequence with many time nodes for each time. In fact, most datasets
are composed of more than one sequence obtained from relatively independent entities of
a single system, which are called “multiple sequences” in this paper. Although these se-
quences have the same attributes, there are many differences in value ranges and variation
characteristics among them. As for the application of EMD to multiple sequences, there is
still a lack of relevant research.

On the other hand, most studies use the same prediction model for the decomposed
sequences. However, since the different subsequences have different characteristics and
influence on the original sequence, the effect of a single model is different among each
subsequence as well. Multiple models are sometimes considered in actual research. Con-
sequently, we considered inputting each subsequence into these models, then selecting
the model with the best prediction effect for each for integration, which is the idea of
“decomposition–prediction–integration” [4].

The attention mechanism, initially developed for natural language processing, is a
neural network model that can be applied to extract a set of feature vectors from any given
problem. Consequently, the general attention model demonstrates its versatility across
various domains, including time-series analysis [5]. It can be employed in conjunction with
other neural networks, such as the Transformer [6], to predict time series.

Most studies regarding attention mechanisms with sequence decomposition are still
limited to using the same model for each subsequence. However, among the subsequences,
there is still the complexity of local features and the differences of global features, such as
period, to be considered. Consequently, our focus is on selecting the most suitable integra-
tion model based on the prediction performance of each subsequence to enhance the overall
prediction efficacy, in line with the “decomposition–prediction–integration” concept.

To summarize, this research presents an integrated time-series prediction model
constructed upon EMD with two attention mechanisms, namely Self-Attention (SA, a.k.a.
partial attention) and Temporal Attention (TA, a.k.a. global attention). The primary
innovations of our model are as follows:

1. Employing the concept of “disintegration–prediction–integration”, subsequences de-
composed by CEEMDAN are separately input into three networks, namely LSTM,
LSTM-Self-Attention (LSTM-SA), and LSTM-Temporal Attention (LSTM-TA), for train-
ing, followed by the selection of the optimal model for each subsequence to integrate.

2. Experiments were conducted on both single sequence and multiple sequence datasets.
In addition, considering the characteristics of multiple sequences, two data preprocess-
ing methods, “global normalization” and “separate normalization”, are investigated
and compared.

2. Literature Review
2.1. Empirical Mode Decomposition

The basic idea of Empirical Mode Decomposition (EMD) [7] is to decompose a non-
linear and non-stationary sequence into some subsequences with various period features.
Since EMD is subject to mode aliasing, generation of false components, and terminal effects,
Ensemble Empirical Mode Decomposition (EEMD) [8] has been proposed. This method
involves the addition of a pair of positively and negatively correlated Gaussian white noise
sequences to the pre-decomposed sequence. Compared to EEMD, Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) [9] addresses the issue
of noise transmission from high- to low-frequency.

EMD has been widely used in signal processing. Zheng et al. [10] improved the
Uniform Phase Empirical Mode Decomposition (UPEMD) and applied it to rolling bearing
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and rotor rubbing fault diagnosis. Adam et al. [11] applied EEMD to the exchange rate
data in order to analyze similarities in the Southern African Development Community
(SADC) exchange rate market’s structure. Mousavi et al. [12] applied CEEMDAN to the
structural damage detection of steel truss bridges, proving that the detection effect when
using CEEMDAN is significantly better than that when using EMD or EEMD. EMD is also
used in composite fault diagnosis of gearboxes [13], mechanical fault diagnosis [14], milling
chatter detection [15], etc.

In time-series prediction, the prediction accuracy can be enhanced by introducing
EMD into the learning model. Nguyen et al. [16] combined EEMD and Long Short-Term
Memory (LSTM) to predict time-series signals in nuclear power plants. Peng et al. [17]
combined CEEMDAN with the permutation entropy method and used the Convolution-
based Gated Recurrent Neural Network (ConvGRU) to predict South Asian high intensity.
Jin et al. [18] proposed a deep-learning model based on EMD with a back-propagation (BP)
neural network and Particle Swarm Optimization (PSO). Guo et al. [19] proposed a model
based on EMD, multi-view learning, and a winner-takes-all strategy. EMD is also used for
Air Quality Index (AQI) forecasting with broad learning systems [20], tourism forecasting
with the Recurrent Neural Network (RNN) [21], stock price prediction with the hybrid
model of the Convolutional Neural Network (CNN), LSTM [22], etc.

Although EMD is widely used in many types of time series, in the existing researches,
what is decomposed in each experiment is still a single original sequence. Sometimes
the sequences to be processed may be multiple with the same properties but relative
independence. Considering the differences of value ranges and variation characteristics,
it is not necessarily appropriate to either decompose only one of the sequences or to
simply concatenate each sequence before decomposition. Consequently, how to pre-process
multiple sequences before decomposition is one focus of our research.

On the other hand, in each research regarding time-series prediction with EMD men-
tioned above, the same learning model is applied in all decomposed sequences. The
comparison of multiple models is still limited to the overall effect. Due to the difference of
periodicity, it can be observed that, although one model demonstrates optimal prediction
performance on some subsequences, other distinct models work best on other subsequences.
Consequently, when evaluating multiple learning models in a model based on EMD, it is
necessary to consider the performance diversity of these models within the subsequences,
in addition to comparing the overall effect of them.

2.2. Attention Mechanism

The earliest work on attention mechanisms is Bahdanau et al.’s machine translation
model [23], which addressed certain issues with RNN’s structure. As attention mechanisms
have been used in multiple fields related to text and image processing, they have gradually
become popular in deep learning [5]. Moreover, the introduction of Transformer [6]
further proves the effectiveness of attention. Attention is widely applied in many types of
subsequences, such as text, audio, video, and of course, time series.

This section focuses on attention’s application of time series. Li et al. [24] combined
LSTM with attention to predict water conservancy data. Hu J. et al. [25] designed a
multistage attention network with influential attention and temporal attention to study the
influence of different non-predictive time series on target series in different time stages in
historical data. He et al. [26] proposed an encoder–decoder network based on dual attention
enhancement and LSTM for typhoon track prediction. Hu Y.-T. et al. [27] proposed a RNN
based on network self-attention to study similarity scores in time series. Lai et al. [1]
proposed a Long- and Short-term Time-series network (LSTNet), which used temporal
attention mechanisms to learn from the sequences with uncertain periods. Based on LSTNet,
Wang et al. [28] introduced spatial and temporal self-attention to discover the dependences
between variables and the relationships among historical observations.

Transformer [6] is a sequence-to-sequence model containing multiple tensors of multi-
head self-attention mechanisms. Since the O

(
L2) (L is the length of the input window
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sequence) complexity influences Transformer’s performance of learning long sequences,
many improvements of it have been made, such as LogTrans [29], Performer [30], Re-
former [31], Informer [32], Autoformer [33], Fedformer [34], Scaleformer [35], etc., most of
which have O(L log L) complexity.

In terms of a combination of attention with EMD, Chen et al. [36] proposed a hybrid
model consisting of EMD and the attention-based LSTM. Hu Z.-D. [37] proposed a predic-
tion model based on CEEMDAN and LSTM with an attention mechanism and constructed
a news sentiment index based on news texts to predict crude oil prices. Neeraj et al. [38]
used EMD to compose electric load data and proposed an encoder–decoder model with
LSTM and attention for prediction. In Huang et al.’s short-term metro passenger flow
prediction [39], the series after CEEMDAN are reconstructed and trained in the attention-
based Seq2Seq model. Yu et al. [40] combined and improved EEMD with Variational
Mode Decomposition (VMD) to decompose photovoltaic power series and predict the
subsequences by bidirectional LSTM with the whale optimization algorithm and attention
mechanism. However, most of the existing studies using attention in the model based on
EMD are still limited in applying attention to all subsequences (including reconstructed
subsequences) simultaneously, which is the same as what has been stated in Section 2.1.

Liu et al. [41] proposed a hybrid model containing EEMD, entropy-based denoising,
GRU, and history attention to predict stock prices. After denoising, the subsequences
are reconstructed as high-, medium-, and low-frequency. GRU with History Attention
(GRU-HA) is used to train reconstructed high- and medium-frequency subsequences, while
BP is used to train reconstructed low-frequency subsequences. However, due to the lack of
sufficient benchmarks, the paper only shows, from the experiment result, that BP achieved
better prediction effects than GRU-HA on reconstructed low-frequency subsequence. On
low-frequency subsequence, to further prove that the attention mechanism could not obtain
better prediction effects, effect comparison between GRUs with and without attention
is necessary. Meanwhile, there is a lack of clear selection basis of prediction models for
each subsequence.

To sum up, when the attention mechanism is applied in the time series after decom-
position, most papers still apply the whole prediction model to all subsequences. Even if
there is individual research that applies different prediction models to the subsequences, it
considers only the comparison among the whole model without the comparison on each
subsequence among multiple prediction models.

3. Preliminaries
3.1. Empirical Mode Decomposition

EMD is a method for processing nonlinear and non-stationary sequences, which can
effectively separate different period features of the sequence. The basic idea of EMD is to de-
compose an original sequence into a series of Intrinsic Mode Function (IMF) subsequences
and a rest sequence. The procedure for EMD is as follows:

1. For the original sequence x(t), set r(t) = x(t) and k = 1.
2. Set m(t) = r(t).
3. Cubic spline interpolation was used to fit all local minima (respective maxima), ending

up with an envelope, emin(t) (respective emax(t)).
4. Calculate m(t) and c(t):

m(t) =
1
2
(emin(t) + emax(t)) (1)

c(t) = r(t) − m(t) (2)

5. If c(t) meets the conditions of IMF as in the following, set IMFk(t) = c(t) as an IMF
subsequence of x(t) and

r(t) = x(t) − c(t): (3)
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a. For the entire data set, the number of extrema and the number of zero crossings
must either be equal or differ, at most by one;

b. At any point, the mean value of the envelopes defined by the local maxima and
the local minima must be zero.

Otherwise, let m(t) = c(t) and repeat Steps 3~5.

6. IF r(t) is a constant sequence or it includes at most one minimum point and one maxi-
mum point each (in current studies, the termination condition of the EMD algorithm
is usually expressed as r(t) and is a constant or monotone sequence. However, the
series with at most one minimum point and one maximum point is still unable to be
decomposed), which means it is undecomposable, this is the end of the algorithm.
In this case, set RES(t) = r(t) as the remaining sequence; we then obtain k IMF
subsequences IMFi(t) (i = 1, 2, . . . , k) and a remaining sequence, RES(t), i.e.,

x(t) =
k

∑
i=1

IMFi(t) + RES(t) (4)

Otherwise, let k = k + 1 and repeat Steps 2~6.
EEMD and CEEMDAN are EMD’s two most common variants. We used CEEMDAN

to decompose the sequences in this paper. The procedure for CEEMDAN is as follows:

1. For the original sequence x(t), set r(t) = x(t) and k = 1.
2. For N times, add Gaussian white noise sequences to r(t), obtaining the following N

sequences:

xk,j(t) =
{

r(t) + nk,1(t), j = 1
xk,j−1(t) + nk,j(t), j = 2, 3, . . . , N (5)

where nk,j(t)(j = 1, 2, . . . , N) is the Gaussian white noise sequences in the jth trial
and xk,j(t) is the time series with the additional noise.

3. EMD is used to decompose xk,j(t). Extract the first IMF subsequence of each sequences’
decomposition results, and the average of them becomes the first subsequence of the
final decomposition as:

IMFk(t) =
1
N

N

∑
j=1

imf1

(
xk,j(t)

)
(6)

where imf1(·) is a function that obtains the first IMF subsequence of a sequence
through EMD.

4. The remaining sequence is:

r(t) = x(t) − IMFk(t) (7)

5. IF r(t) is a constant sequence or it includes at most one minimum point and one
maximum point both, which means it is undecomposable, this is the end of the
algorithm. In this case, set RES(t) = r(t) as the remaining sequence, then we obtain k
MF subsequences IMFi(t) (i = 1, 2, . . . , k) and a remaining sequence, RES(t), i.e.,

x(t) =
k

∑
i=1

IMFi(t) + RES(t) (8)

Otherwise, let k = k + 1 and repeat Steps 2~5.
EMD, EEMD, and CEEMDAN can be performed by calling the EMD-signal/PyEMD

(“EMD-signal” is for install and “PyEMD” is for import in code. The library is not pre-
installed in Python, Anaconda, or Pytorch, and should be installed by users) library in
Python.
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Research has shown that there is little diversity of prediction effect between using
EMD and CEEMDAN in time-series prediction [6]. Since solving EMD’s disadvantages of
mode aliasing, generation of false components, and terminal effects, the subsequences from
CEEMDAN can express the regularity of the original sequence in different periods more
accurately. However, in the usual case, the time complexity of CEEMDAN is O(Nnlog n),
while that of EMD is O(nlog n), where n is the length of the sequence and N is the times of
adding noise sequences. In the EMD-signal/PyEMD library of Python, the default value of
N is 100, which makes the time cost of CEEMDAN significantly higher than that of EMD.

3.2. LSTM

The Recurrent Neural Network (RNN) is a type of neural network model used ex-
clusively for the analysis and prediction of time series. Since gradient disappearance and
explosion make it difficult for traditional RNNs to learn long-distance dependencies, gates
are added to the RNN to form LSTM [42] and GRU (Gated Recurrent Unit) [43]. The
two networks selectively remember and forget information through the gates to learn
the long-term correlation features of the sequence, which effectively solves the long-term
dependence problem. All three of the above networks are widely adopted time-series
prediction models.

We selected LSTM for our work. The LSTM unit is composed of three gate layers, as
shown in Figure 1, forget gate, input gate, and output gate, through which the selective
memory and long-term dependence on input information are realized.

Information 2023, 14, x FOR PEER REVIEW 6 of 23 
 

 

In this case, set RES(𝑡) = 𝑟(𝑡) as the remaining sequence, then we obtain k MF subse-
quences IMF (𝑡) (𝑖 = 1,2, … , 𝑘) and a remaining sequence, RES(t), i.e., 

𝑥(𝑡) = IMF (𝑡) + RES(𝑡) (8) 

Otherwise, let k = k + 1 and repeat Steps 2~5. 
EMD, EEMD, and CEEMDAN can be performed by calling the EMD-signal/PyEMD 

(“EMD-signal” is for install and “PyEMD” is for import in code. The library is not pre-
installed in Python, Anaconda, or Pytorch, and should be installed by users) library in 
Python. 

Research has shown that there is little diversity of prediction effect between using 
EMD and CEEMDAN in time-series prediction [6]. Since solving EMD’s disadvantages of 
mode aliasing, generation of false components, and terminal effects, the subsequences 
from CEEMDAN can express the regularity of the original sequence in different periods 
more accurately. However, in the usual case, the time complexity of CEEMDAN is 𝑂(𝑁𝑛 log𝑛), while that of EMD is 𝑂(𝑛 log𝑛), where n is the length of the sequence and N 
is the times of adding noise sequences. In the EMD-signal/PyEMD library of Python, the 
default value of N is 100, which makes the time cost of CEEMDAN significantly higher 
than that of EMD. 

3.2. LSTM 
The Recurrent Neural Network (RNN) is a type of neural network model used exclu-

sively for the analysis and prediction of time series. Since gradient disappearance and 
explosion make it difficult for traditional RNNs to learn long-distance dependencies, gates 
are added to the RNN to form LSTM [42] and GRU (Gated Recurrent Unit) [43]. The two 
networks selectively remember and forget information through the gates to learn the long-
term correlation features of the sequence, which effectively solves the long-term depend-
ence problem. All three of the above networks are widely adopted time-series prediction 
models. 

We selected LSTM for our work. The LSTM unit is composed of three gate layers, as 
shown in Figure 1, forget gate, input gate, and output gate, through which the selective 
memory and long-term dependence on input information are realized. 

 
Figure 1. Basic structure of LSTM. 

The algorithm of LSTM can be expressed by the following [44]: 

Figure 1. Basic structure of LSTM.

The algorithm of LSTM can be expressed by the following [44]:
∼
c t
ot
it
ft

 =


tan h

σ
σ
σ

(W
[

xt
ht−1

]
+ b
)

(9)

ct = ft � ct−1 + it �
∼
c t (10)

ht = ot � tan h(ct) (11)

where xt is the input for the current moment, W and b are parameters to be learnt, σ is the
sigmoid function, and � is the product of the corresponding elements to the tensor.



Information 2023, 14, 610 7 of 24

3.3. Attention Mechanism

The attention mechanism is a method that imitates the human visual nerve and uses
limited computing resources to process more important information. According to the
usage, attention can be divided into temporal attention, spatial (feature) attention, etc. It is
often used in conjunction with encoder–decoder frameworks such as Transformer [6].

The general attention mechanism can be represented as a key-value pair, as shown in
Figure 2. Firstly, compute the attention distribution A =

{
αij
}

between tensors K and Q:

αij = softmax
(
s
(
k j, qi

))
=

exp
(
s
(
k j, qi

))
∑N

m=1 exp(s(km, qi))
(12)

where N is the length of the input sequence, i, j ∈ {1, 2, . . . , N} are, respectively, the
positions of the output and the input sequences, k j, qi are, respectively, the jth row vector
of K and the ith row vector of Q, and s(·) is the Attention Scoring Function (ASF), including
scaled dot product, cosine similarity, etc. The scaled dot product is used in this paper.

Information 2023, 14, x FOR PEER REVIEW 7 of 23 
 

 

�̃�𝑜𝑖𝑓 = tanh𝜎𝜎𝜎 𝑊 𝑥ℎ + 𝑏  (9) 

𝑐 = 𝑓 ⊙ 𝑐 + 𝑖 ⊙ �̃�  (10) ℎ = 𝑜 ⊙ tanh(𝑐 ) (11) 

where 𝑥  is the input for the current moment, W and b are parameters to be learnt, σ is the 
sigmoid function, and ⊙ is the product of the corresponding elements to the tensor. 

3.3. Attention Mechanism 
The attention mechanism is a method that imitates the human visual nerve and uses 

limited computing resources to process more important information. According to the us-
age, attention can be divided into temporal attention, spatial (feature) attention, etc. It is 
often used in conjunction with encoder–decoder frameworks such as Transformer [6]. 

The general attention mechanism can be represented as a key-value pair, as shown 
in Figure 2. Firstly, compute the attention distribution 𝐴 = α  between tensors K and Q: 

𝛼 = softmax 𝑠 𝑘 ,𝑞 = exp 𝑠 𝑘 ,𝑞∑ exp 𝑠(𝑘 , 𝑞 )  (12)

where N is the length of the input sequence, 𝑖, 𝑗 ∈ {1, 2, … ,𝑁} are, respectively, the posi-
tions of the output and the input sequences, 𝑘 ,𝑞  are, respectively, the jth row vector of K 
and the ith row vector of Q, and 𝑠(∙) is the Attention Scoring Function (ASF), including 
scaled dot product, cosine similarity, etc. The scaled dot product is used in this paper. 

 
Figure 2. Basic structure of attention mechanism. 

There are two ways to output H. One way is by calculating the weighted sum of ten-
sor V based on tensor A as: 

ℎ = 𝛼 𝑣  (13) 

where ℎ  is the ith row vector of H and 𝑣  is the jth row vector of V. 

Figure 2. Basic structure of attention mechanism.

There are two ways to output H. One way is by calculating the weighted sum of tensor
V based on tensor A as:

hi =
N

∑
j=1

αijvj (13)

where hi is the ith row vector of H and vj is the jth row vector of V.
The other way, which is mainly used in self-attention, is by multiplying tensor V with

tensor A as:
H = A×V (14)

4. Methodology
4.1. General Framework

For the proposed integrated model of time-series prediction based on CEEMDAN and
two types of LSTM-attention, the framework is shown in Figure 3. The model adopts the
idea of “decomposing–prediction–integration”. The original sequence is normalized and
decomposed into several subsequences, including a set of IMF sequences, IMF1, IMF2, . . .,
IMFn, and a remaining sequence, RES. Each subsequence is input to LSTM, LSTM-Self-
Attention (LSTM-SA), or LSTM-Temporal Attention (LSTM-TA) for training. The better
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model output is selected as the output of each subsequence, and the integration of these
output sequences is output as the final prediction result.
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4.2. Single Sequence and Multiple Sequence

For the convenience of description, we provide the following definition of “single
sequence” and “multiple sequence”.

Time series does not exist in isolation. It shows the change of one or several attributes
of one or a class of subjects in time. In a variety of time series, some reflect only one
subject, which are named “single sequence”. In contrast, the other datasets reflect two or
more subjects that are relatively independent from one other, i.e., changes in the data of
one subject do not make any change in the other. We refer to such time series containing
multiple subjects as “multiple sequence” or “multi-sequence”.

It should be noted that “multiple sequence” is different from “multivariate sequence”
and “multi-dimensional sequence”. “Multiple sequence” is a sequence that has the same
attributes for multiple subjects, as opposed to only one subject, while the other two, a.k.a.
“tensor sequence” and “tensor time series” [45], are sequences that represent multiple
attributes, as opposed to only one attribute, for each subject.
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4.3. Data Pre-Processing: Global and Separate Normalization

Normalization aims to scale the data by a certain rule to narrow the gap of the
data magnitude. The common two normalization methods are the min–max scaler and Z-
normalization (i.e., the normalization according to the mean and standard deviation). Given
that the min–max scaler is used in most of the existing research, we use it in the paper.

For single sequences, the whole dataset can be directly normalized. For multiple
sequences, there are two ways of normalization shown below.

• Global normalization

Each sequence segment is concatenated along the time dimension and normalized as
a whole. For example, there are two sequences:

{an} = {0, 1, 2, 3, 4}

{bn} = {6, 7, 8, 9, 10}

After the global min–max scaler, the two sequences become:{
a’

n

}
= {0, 0.1, 0.2, 0.3, 0.4}

{
b’

n

}
= {0.6, 0.7, 0.8, 0.9, 1}

However, in multiple sequences, there may possibly be large diversity in the range of
values covered by the individual sequence segments (e.g., the price of one stock is tens to
hundreds of dollars, while the price of another is only a few dollars). If they are normalized
globally, this diversity will not be eliminated, which will still increase the difficulty and
reduce the efficiency of neural network training, thus affecting the accuracy of prediction.
To eliminate this diversity, there is the following method, named separate normalization.

• Separate normalization

Each sequence segment is normalized separately and then concatenated along the time
dimension for further research. For the sequences {an} and {bn} above, after the separate
min–max scaler, they will be as follows:{

a’
n

}
= {0, 0.25, 0.5, 0.75, 1}

{
b’

n

}
= {0, 0.25, 0.5, 0.75, 1}

Obviously, this method eliminates the diversity of the range among the sequence
segments. However, in order to denormalize accurately before outputting, it is neces-
sary to record the length of each segment in the order of sequence segment splicing as
well as determine the maximum and minimum value of each segment, respectively, for
subsequent denormalization.

4.4. Processing of Decomposed Subsequences

In the model based on EMDs, even if the original data have been normalized, the
value range of decomposed subsequences obtained will change. For instance, Figure 4
shows the curves of the NYtem dataset (see Section 5.1) and its two subsequences after
CEEMDAN. Though the input sequence has been normalized, the ranges of decomposed
sequences are different from the sequence before decomposition.
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Neural networks are sensitive to the value of the input data, i.e., either a too-large
or a too-small value will lead to a small gradient, which makes training difficult. If
the range of the subsequence is very small, the convergence of the neural network’s
gradient will be affected. Consequently, it is necessary to normalize each decomposed
subsequence again. In this case, normalization is unnecessary for single sequences before
decomposition. For multiple sequences, we need not scale to the interval [0, 1] during the
separate normalization before decomposition, but the interval should not be too large or
too small.

4.5. Two Attention Mechanisms

The neural network model based on EMD involves decomposing each subsequence
into neural network models for prediction. The prediction results of each subsequence
are then aggregated as the output. During training, each subsequence functions as a
relatively independent entity, allowing for the use of distinct neural network models. To
achieve optimal overall performance, we can select the most appropriate model for each
subsequence based on the training effectiveness of each model. This concept is referred to
as the “decomposition–prediction–integration” strategy [4].

In this study, we have employed three models: LSTM, LSTM-Self-Attention (LSTM-
SA), and LSTM-Temporal Attention (LSTM-TA). LSTM-SA and LSTM-TA are both encoder–
decoder models, with LSTM serving as the encoder and the attention mechanism serving
as the decoder. The output of LSTM is utilized as the input for the attention mechanism. By
implementing CEEMDAN on each subsequence and inputting the results into the three
models, we can compare their respective effects and choose the model with the better
performance for integration. LSTM has been described in Section 3.2; thus, we will only
discuss the two attention mechanisms in this section.

4.5.1. Self-Attention (Partial Attention) Mechanism

The Self-Attention (SA) mechanism is a model designed to capture the internal inter-
dependency of sequences, commonly employed in text analysis and time-series prediction.
Since SA operates only on the input window sequence of LSTM (i.e., a small sequence used
for prediction), it can also be named “partial attention” in time-series prediction.

After sequence decomposition, the short-term regular subsequence reflects the short-
term oscillation characteristics of the original sequences. Besides the stationary nature
of the subsequence itself, its period is shorter than the length of the LSTM input win-
dow. Consequently, compared to the original sequence with more complex features
and the medium- and long-term regular subsequence, whose period is longer than the
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length of the input window, SA is more advantageous for extracting internal features in
short-period subsequences.

In contrast to the Transformer, which also relies on self-attention, the self-attention
employed in this study consists of only a single tensor of single-head attention. Specifically,
in the Transformer encoder, set both the number of heads and the number of layers to 1
and eliminate the feed-forward layer to obtain the self-attention utilized in this work.

The process of SA is shown in Figure 5. For the given tensor X ∈ RT×D, using the
scaled dot product as ASF, the calculation procedure is as follows:

Q = XWq ∈ RT×D (15)

K = XWk ∈ RT×D (16)

V = XWv ∈ RT×D (17)

Atten = softmax
(

KQT
√

T

)
V (18)

where T is the inputted time step length; D is the output dimension of LSTM; and
Wq ∈ RD×D, Wk ∈ RD×D, and Wv ∈ RD×D are the parameter matrixes of linear mapping.
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4.5.2. Temporal (Global) Attention Mechanism

LSTM has solved the long-term dependence problem of RNN; however, “long short-
term memory” is different from “long-term memory”. When the whole sequence is rela-
tively long or the length of the input sequence is uncertain, the information storing ability
of the hidden and the cell state output by LSTM is still limited.

The Temporal Attention (TA) mechanism, a.k.a. global attention mechanism, is one of
the methods used to better capture the rules of sequences in a long time period. Different
from SA, which only focuses on a small sequence, it is a neural network model able to
capture long-term patterns in the whole sequence. Through EMDs, the original sequence
produces a set of subsequences with different periods. The purpose of TA is to learn the
periodicity of the whole sequence over a long period of time. It is more beneficial to capture
the periodic regularity of subsequences whose period is significantly shorter than the whole
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sequence length (the specific degree varies depending on the specific dataset, which is
generally shorter than 1/10 of the whole length). What is more, since each subsequence
is a stable sequence with periodic oscillations, the periodic rule is more obvious than the
non-stationary original sequence with complex changing trend, which is more beneficial to
learning the periodic character through TA.

The main process of TA is shown in Figure 6 and described as follows:
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1. The hidden state, h, and the cell state, c, output by the LSTM are input to the LSTM
unit for one-step prediction, obtaining the updated hidden state ht and cell state ct.

2. Concatenate ht to the tail of X, the output tensor of the LSTM encoder, along the time
dimension as the prediction sequence, H0.

3. Let Q be the last time step of H0 and K and V be the (T + 1)th to the 2nd time step from
the bottom of H0, where T is the time dimension of the input to the LSTM encoder.
Calculate the attention value according to the equation below:

Atten = diag

(
softmax

(
KQT
√

T

)T)
V (19)

where “diag(·)” is a function to convert the column vector to a diagonal matrix. In
this case, Equation (19) is equivalent to multiplying each dimension of the column
vector output by the softmax function with the corresponding row vector in V, which
is the “row product” described in Figure 6.

4. Add the attention values for each time dimension in Atten, i.e.,

h∗ =
T

∑
i=1

atteni (20)

where atteni is a vector in the ith time dimension of Atten.
5. Concatenate Q to the tail of h∗, which becomes the prediction result hatten to output.

TA can be used for multi-step prediction by looping the above procedure in the
decoder, setting h = ht and c = ct after each step, and concatenating the prediction results
of each step along the time dimension in turn. Considering the experimental requirements,
multi-step prediction is not discussed in this paper.
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4.5.3. Comparison and Limitation of the Two Attention Mechanisms

As mentioned above, SA is suitable for predicting short-term regularity, while TA has
the advantage of predicting short- and medium-period regularities. Besides that, the effect
diversity between the two is reflected in the structure.

SA only accepts the output tensor of LSTM as its input without using the historical
information in the hidden state, h, or the cell state, c, so it is limited to the extraction
of regularity inside the input window. TA processes the hidden state, h, of the LSTM
output and lets it become the query of attention mechanism, fully utilizing the historical
information stored in h during the process of extracting features. Consequently, TA can
not only extract periodic regularities longer than the input window, but also extract short-
period regularities more accurately than SA.

However, not all subsequences are applicable to attention mechanisms. TA’s ability of
promoting LSTM’s memory is still limited. The last few subsequences generated through
EMD have a long period, which is usually hundreds of times that of the input window,
which make it difficult for TA to memorize this long-period regularity. To achieve better
overall results, we considered using multiple network models to train and select the
appropriate one for each subsequence according to the effect, as in the whole model we
designed in Section 4.1.

5. Experiments
5.1. Datasets and Experiment Environment

The following three datasets from Kaggle will be used for the experiment.

• New York Daily Average Temperature (NYtem): From a large database containing the
daily average temperature data of 321 cities in 125 countries since 1995, the data of
New York City from 10 April 2009 to 13 May 2020 are selected under the preconditions,
including avoiding missing values, with a total of 4052 entries. The prediction rule is
to use 10 consecutive data items to predict the next data.

• Monthly ReTail Sales of the USA (MRTS): It contains the data of monthly sales in
various fields of the US retail industry from January 1992 to May 2020. We selected
the original statistical data stored in “.xls” format. Eliminating some total items and
combining with some situations in the experiment, 8882 data items in 28 fields were
selected. Six consecutive items were used to predict the next.

• SocioEconomic Status Score (SES): It contains 2086 socioeconomic status percentage
scores for 149 countries every 10 years between 1880 and 2010. We used six consecutive
entries to predict the next one.

The three datasets above are time series with microscopic oscillation characteristics.
To be specific, NYtem is a single sequence, while MRTS and SES are multiple sequences.
Meanwhile, the length of each sequence part in MRTS is significantly larger than that
in SES.

Experiment environment: Windows 10, Python 3.8, Pytorch 1.11 on CPU, installing
EMD-signal 1.4 and other necessary third-party libraries. VScode and Jupyter Notebook
are the development environment.

5.2. Methods for Comparison and Evaluation Criteria

We use the following methods in our comparative evaluation:

• For prediction tasks without sequence decomposition, besides LSTM, LSTM-SA, and
LSTM-TA, we also used Support Vector Regression (SVR) with linear kernel func-
tion (SVR-linear), SVR with Radial Basis Function (a.k.a. Gaussian kernel function)
(SVR-RBF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine
(LightGBM), BP, CNN, RNN, and GRU.

• For prediction tasks with sequence decomposition and a single prediction model,
besides LSTM, LSTM-SA, and LSTM-TA, we also used RNN and GRU.
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• For prediction tasks with sequence decomposition and multiple prediction models,
we considered three ways of model integration: (1) SA integration, our proposed inte-
grated model with the selection between LSTM and LSTM-SA for each subsequence;
(2) TA integration, our proposed integrated model with the selection among LSTM,
LSTM-SA, and LSTM-TA for each subsequence; (3) RLG integration, an integrated
model with the selection among RNN, LSTM, and GRU [4].

Four criteria were adopted in this study, including Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-square (R2).

MAE and RMSE both measure the absolute error between the prediction results and
the real data, where RMSE is sensitive to the results with large errors.

MAE =
1
N

N

∑
i=1
|yi − ŷi| (21)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (22)

MAPE measures the relative error between the predicted and the real data.

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (23)

To be consistent with the representation of the experimental results, “×100%” in
the formula described in most papers is deleted. This is because the output of the
“mean_absolute_percentage_error” function in the “sklearn.metrics” library of Python
is expressed as a decimal rather than a percentage (e.g., 90% is expressed as 0.9).

R2 measures how well the model fits on the whole dataset. When its value is closer to
1, the model fits better.

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (24)

In Equations (21)~(24), yi is true value in the original sequence, ŷi is the predicted
value, and y = ∑N

i=1 yi.

5.3. Experiments on Dataset NYtem

The normalized NYtem datasets is input into CEEMDAN. Each decomposed sub-
sequence is input to LSTM without and with secondary normalization, respectively, for
comparison. Determining whether secondary normalization is needed, each subsequence is
input into LSTM-self-attention and LSTM-temporal attention. Comparing predicting effects
with LSTM, the optimal integrated model is selected to compare with the undecomposed
model and the single model with decomposition.

After sequence decomposition, eight IMF subsequences and a residual-term RES are
obtained. These sequences are secondarily normalized and input into LSTM with the
unnormalized sequences, respectively, with the comparison of R2 indexes. The results are
shown in Table 1.
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Table 1. Predicting effect comparison of LSTM on NYtem between the subsequences without and
with secondary normalization.

Subsequence R2 without Secondary
Normalization

R2 with Secondary
Normalization

IMF1 0.209830 0.226047
IMF2 0.915300 0.919399
IMF3 0.997985 0.997993
IMF4 0.999910 0.999810
IMF5 0.999945 0.999879
IMF6 0.999975 0.999956
IMF7 0.999161 0.999540
IMF8 0.998578 0.999868
RES −4.207980 0.999857

In Table 1, there is little diversity in the prediction effect between IMFs before and
after secondary normalization. However, it shows serious overfitting on RES without the
normalization. Accordingly, we believe that a secondary normalization is essential before
inputting the subsequences into the neural network. Subsequences are all secondarily
normalized in the follow-up experiments.

Table 2 shows the prediction effects of each decomposition subsequence on LSTM and
two LSTMs with attention. Considering that the value of these subsequences may be close
to or even equal to zero so that it is not suitable to use MAPE, only MAE, RMSE and R2

criteria are listed in the table. In all the tables below, for each subsequence and evaluation
index, the best results are marked in bold and the second best are underlined.

Table 2. Prediction results of LSTM, LSTM-SA, and LSTM-TA for each decomposed subsequence of
NYtem.

Subsequences
LSTM LSTM-SA LSTM-TA

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

IMF1 0.027933 0.035760 0.221853 0.027081 0.034681 0.268124 0.023834 0.032200 0.369078
IMF2 0.007363 0.010486 0.918929 0.007320 0.010011 0.926119 0.006302 0.008748 0.943575
IMF3 0.000999 0.001522 0.997991 0.003152 0.005126 0.977205 0.000953 0.001505 0.998036
IMF4 0.000293 0.000369 0.999808 0.001652 0.002133 0.993582 0.000132 0.000175 0.999957
IMF5 0.000202 0.000259 0.999884 0.001201 0.001677 0.995127 0.000507 0.000540 0.999495
IMF6 0.000895 0.001158 0.999955 0.005709 0.007149 0.998275 0.000443 0.000566 0.999989
IMF7 0.000892 0.001029 0.999538 0.002317 0.003177 0.995594 0.002020 0.002384 0.997518
IMF8 0.000213 0.000344 0.999875 0.000706 0.000937 0.999072 0.001254 0.001464 0.997735
RES 0.000035 0.000057 0.999830 0.000127 0.000163 0.998614 0.000057 0.000063 0.999793

In Table 2, compared with the model without attention, the prediction effect of SA on
short-term regular subsequences, IMF1 and IMF2, is slightly improved, while TA achieves
a much better effect on IMF1~IMF4 and IMF6 than the two model. According to Table 2,
the following two integration models are selected:

• SA integration: LSTM-SA is used for IMF1 and IMF2, while LSTM is used for the others.
• TA integration: LSTM-TA is used for IMF1 ~ IMF4 and IMF6, while LSTM is used for

IMF5, IMF7, IMF8, and RES.

All models mentioned in Section 5.2 are applied in this and the following experiments.
Table 3 shows the results of each experiment.
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Table 3. Results of the experiment on NYtem dataset.

Type Network Model MAE RMSE MAPE R2

Without
CEEMDAN

SVR-linear 3.913410 5.143536 0.082907 0.905441
SVR-RBF 3.934860 5.164794 0.083349 0.904657
XGBoost 4.073632 5.336617 0.087877 0.898208

LightGBM 4.048071 5.328266 0.087172 0.868526
BP 3.867268 5.132837 0.083532 0.905834

CNN 3.862023 5.108569 0.082561 0.906722
RNN 3.846566 5.100761 0.082990 0.907007
LSTM 3.850042 5.093421 0.082190 0.907274
GRU 3.848090 5.091207 0.082539 0.907354

LSTM-SA 3.954155 5.211856 0.085696 0.902911
LSTM-TA 3.833786 5.067739 0.081731 0.908325

CEEMDAN +
single network

RNN 2.422320 3.136646 0.051033 0.964835
LSTM 2.386664 3.102749 0.050591 0.965591
GRU 2.393581 3.128216 0.050683 0.965024

LSTM-SA 2.394424 3.095457 0.050952 0.965752
LSTM-TA 2.104671 2.813940 0.044123 0.971698

CEEMDAN +
multi-network

integration

RLG integration 2.384882 3.102448 0.050459 0.965597
SA integration 2.293810 2.974200 0.048594 0.968383
TA integration 2.093080 2.808107 0.044101 0.971816

In Table 3, on NYtem, decomposition-based models perform significantly better than
models without decomposition. In non-decomposition models, the two attention mecha-
nisms increase the prediction error instead of decreasing it. After decomposition’s import,
LSTM-TA’s prediction error is significantly lower than that of the reference models. For
example, compared with LSTM, MAE is decreased by 11.8% and RMSE is decreased
by 9.3%.

After selecting the model with the best prediction performance for each subsequence
to ensemble, the prediction error is reduced compared with using a single model. Among
them, the effect of using attention on some subsequences is better than that of all and not
using attention, and the improvement of TA’s prediction effect is higher than SA’s. For
example, compared with the single LSTM, the MAE of the SA-integrated model is reduced
by 3.9% and the RMSE is reduced by 4.1%, while these of TA integration are 12.3% and
9.5%, respectively. In addition, the effects of the two attention-integrated models are also
better than the RLG integration in [4].

5.4. Experiments on Datasets MRTS and SES
5.4.1. Pre-Experiment: Global and Separate Normalization

For the multi-sequence datasets MRTS and SES, we conducted pre-experiments on
two types of normalization, “global normalization” and “separate normalization”, before
the formal experiments. Firstly, without decomposition, the sequences after the two types
of preprocessing are input to LSTM, respectively, to train and predict. The effect is shown
in Table 4.

Table 4. Pre-experiment results of the two ways of normalization (without decomposition).

Dataset Way of Normalization MAE RMSE MAPE R2

MRTS
Global 567.8171 991.9713 0.239498 0.747510

Separate 473.0790 805.7689 0.176781 0.833403

SES
Global 4.599162 6.930198 0.178287 0.931681

Separate 4.414155 6.155032 0.200523 0.946109

In Table 4, all the criteria for separately normalized MRTS are better than that of global
normalization, while those for SES achieve the same result, except for MAPE. The primary
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reason why the MAPE of separately normalized SES is higher than the globally normalized
one is that the prediction error is larger for some items with smaller values.

Furthermore, for MRTS, after the sequences’ two types of normalization, the partially
decomposed sequences are shown in Figure 7. The specific selected subsequences are
labeled on the left of the image. The comparison shows that since the lower observations
in the original data account for a large part, the peaks in the obtained short and medium
period subsequences are obviously biased to the higher part of the original data after its
global normalization and decomposition. However, for the sequence normalized separately,
the peak distribution after resolving is more even.
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The two sets of subsequences obtained above are input to LSTM, respectively, and the
R2 index comparison between them is shown in Table 5. After the decomposition of the
global-normalized sequences, serious overfitting appeared on two short-term regularity
sequences, IMF1 and IMF2, which makes the prediction of them significantly deviate
from the actual results. On the contrary, the network fits much better for the sequences
normalized separately.

Table 5. Predicting effect comparison of LSTM in MRTS between the two normalizations.

Subsequences R2 of Global Normalization R2 of Separate Normalization

IMF1 −14.070469 0.467846
IMF2 −7.345910 0.845353
IMF3 0.885757 0.981216
IMF4 0.980300 0.988858
IMF5 0.976094 0.998820
IMF6 0.965597 0.999776
IMF7 0.981883 0.999878
IMF8 0.993806 0.999924
IMF9 0.996590 0.999465
IMF10 0.988181 0.997533
IMF11 0.996145 0.999978
IMF12 0.962748 N/A
RES 0.999179 0.987735
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According to the pre-experiment results above, both the MRTS and SES datasets will be
normalized separately in the rest of the experiments. Thereafter, the experimental steps are
the same as in Section 5.3, with the decomposed subsequences all normalizing secondarily
as well.

5.4.2. Formal Experiments

After MRTS’s separate normalization and CEEMDAN, 11 IMFs and a residual se-
quence RES are obtained. Table 6 shows the prediction results of each subsequence on
LSTM and the two LSTMs with attention. As well as Table 2, SA shows superiority in
short-period subsequences, while TA shows superiority in short- and medium-period ones.

Table 6. Prediction results of LSTM and two LSTMs with attention for each decomposed subsequence
of MRTS.

Subsequences
LSTM LSTM-SA LSTM-TA

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

IMF1 0.068942 0.097606 0.467846 0.065848 0.092235 0.524803 0.057779 0.080788 0.635440
IMF2 0.037138 0.050192 0.845353 0.035867 0.048719 0.854293 0.026625 0.038382 0.909564
IMF3 0.005232 0.010196 0.981216 0.006584 0.010877 0.978625 0.005231 0.010331 0.980717
IMF4 0.001694 0.003324 0.988858 0.008016 0.011720 0.861490 0.000901 0.001767 0.996852
IMF5 0.000490 0.000722 0.998820 0.001642 0.002323 0.987764 0.000186 0.000271 0.999833
IMF6 0.000398 0.000536 0.999776 0.002089 0.002830 0.993748 0.000209 0.000286 0.999936
IMF7 0.000545 0.000696 0.999878 0.002323 0.003289 0.997277 0.000268 0.000344 0.999970
IMF8 0.000947 0.001202 0.999924 0.004963 0.006195 0.997991 0.000263 0.000341 0.999994
IMF9 0.000995 0.001297 0.999465 0.001978 0.002493 0.998023 0.000688 0.000879 0.999754
IMF10 0.000416 0.000526 0.997533 0.001791 0.002043 0.962785 0.002017 0.002209 0.956496
IMF11 0.000159 0.000224 0.999978 0.000552 0.000700 0.999784 0.001272 0.001806 0.998562
RES 0.000607 0.000729 0.987735 0.003025 0.003572 0.705902 0.002139 0.002418 0.865267

For MRTS, we select two integrated models below according to Table 6:

• SA integration: LSTM-SA is used for IMF1 and IMF2, while LSTM is used for the others.
• TA integration: LSTM-TA is used for IMF1, IMF2, and IMF4 ~ IMF9, while LSTM is

used for IMF3, IMF10, IMF11, and RES.

The results are listed in Table 7. The characteristics reflected between Tables 3 and 7
have many similarities. The main difference is that, for the undecomposed sequence, the
two attention mechanisms play a certain role in improving the prediction accuracy, espe-
cially TA. After decomposition is introduced, the improvement effect of TA is significantly
higher than that without decomposition, whose decline degree of MAE is increased from
2.1% to 17.3%, and that of RMSE is raised from 3.5% to 16.1%.

The experiment was carried out on SES following the same contents and steps as
MRTS, and the results are shown in Table 8. The characteristics presented in the table are
generally the same as the experiments on the previous two datasets, and LSTM-TA and
TA integration with decomposition still have obvious advantages in prediction accuracy.
However, there is almost no difference between the effect of optimal ensemble and all using
LSTM-TA.
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Table 7. Results of the experiment on the MRTS dataset.

Type Network Model MAE RMSE MAPE R2

Without CEEMDAN

SVR-linear 526.0849 969.2392 0.218535 0.758949
SVR-RBF 463.5917 817.6718 0.176396 0.828445
XGBoost 457.5255 819.7784 0.166906 0.827560

LightGBM 454.6330 828.9988 0.167352 0.823658
BP 515.1523 962.2463 0.212070 0.762415

CNN 516.4068 955.7559 0.213203 0.765609
RNN 529.6522 931.3066 0.217999 0.777448
LSTM 464.5581 766.3151 0.173935 0.849318
GRU 475.4387 766.6409 0.180633 0.849190

LSTM-SA 460.4295 823.7485 0.167469 0.825885
LSTM-TA 454.5888 731.5010 0.170132 0.862698

CEEMDAN + single
network

RNN 471.7071 717.2306 0.205216 0.868003
LSTM 386.4517 574.5975 0.169103 0.915282
GRU 360.5774 536.4187 0.158428 0.926167

LSTM-SA 367.6106 546.2686 0.163798 0.923430
LSTM-TA 319.7796 481.9345 0.136828 0.940403

CEEMDAN +
multi-network

integration

RLG integration 360.7650 536.8711 0.158490 0.926042
SA integration 358.9588 534.3266 0.160022 0.926741
TA integration 319.0218 480.0937 0.136684 0.940858

Table 8. Results of the experiment on SES dataset.

Type Network Model MAE RMSE MAPE R2

Without CEEMDAN

SVR-linear 4.220502 6.381952 0.182274 0.942063
SVR-RBF 4.109615 6.111284 0.178699 0.946873
XGBoost 4.397779 6.321137 0.192321 0.943161

LightGBM 4.365276 6.217920 0.189436 0.945003
BP 4.414531 6.233717 0.188793 0.944723

CNN 4.442804 6.231893 0.194008 0.944755
RNN 4.354441 6.101125 0.191706 0.947049
LSTM 4.489087 6.286058 0.210149 0.943791
GRU 4.395441 6.142638 0.198855 0.946326

LSTM-SA 4.421953 6.132696 0.196389 0.946500
LSTM-TA 4.337513 6.047821 0.197218 0.947970

CEEMDAN + single
network

RNN 2.687751 3.686859 0.119663 0.980664
LSTM 2.677974 3.646671 0.117467 0.981083
GRU 2.680054 3.668520 0.120776 0.980856

LSTM-SA 2.665125 3.683923 0.116307 0.980695
LSTM-TA 2.398506 3.588900 0.097303 0.981678

CEEMDAN +
multi-network

integration

RLG integration 2.671909 3.690628 0.118131 0.980624
SA integration 2.601956 3.604627 0.109592 0.981517
TA integration 2.400186 3.583131 0.097391 0.981737

5.5. Analysis
5.5.1. Analysis of the Results

According to the experiment results on the three datasets shown in Tables 2, 3 and 6–8,
no matter what neural network model is selected, the prediction error of the models using
EMDs is 11%~45% lower than that without decomposition. Comparing the prediction
effects of each decomposed subsequence, the prediction error of SA for the short-term regu-
larity sequences is reduced, but by less than 5%, while that of TA is 15%~28%. Meanwhile,
the effect of most medium period subsequences is also improved, with mostly more than
46% of error reduced, while the highest is 72.2%. From the final effect, in the model using
EMDs, the prediction accuracy after adding TA to some or all subsequences is significantly
higher than that without attention or by adding SA, while MAE drops by 10%~17% com-
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pared with no attention and 10%~13% compared with adding SA. The effect of the model
with TA is also significantly better than that of classical neural networks such as RNN
and GRU. In a word, when TA is applied to some subsequences after decomposition, the
prediction effect is significantly greater than that without decomposition, without attention,
and with SA. What is more, multi-sequences after separate normalization achieve forecast
effects as good as single subsequences.

From the experiment results, the subsequences in which TA plays an advantage are
concentrated in short and medium periods. However, it is also found in the experiments
that at the junction of the short- and medium-term subsequences, a sequence with an
abnormal effect appears, whose prediction effect in LSTM is better than that with TA. Since
there is little diversity between the TA-integrated model and the single TA, in practical
applications, we can just disable attention to long-term regularity subsequences and add
TA to the others, which is known as “TA′ integration”. The effect comparison between
TA′ integration, TA integration, and all the models with TA is shown in Table 9. The table
shows that there is little interval between the effect of TA- and TA′-integrated models.

Table 9. Comparison of training results between two TA-integrated models and LSTM-TA.

Dataset Model MAE RMSE MAPE R2

NYtem

LSTM-TA 2.104671 2.813940 0.044123 0.971698
TA

integration 2.093080 2.808107 0.044101 0.971816

TA′

integration 2.092645 2.808982 0.044135 0.971798

MRTS

LSTM-TA 319.7796 481.9345 0.136828 0.940403
TA

integration 319.0218 480.0937 0.136684 0.940858

TA′

integration 319.3912 481.1079 0.136731 0.940608

SES

LSTM-TA 2.398506 3.588900 0.097303 0.981678
TA

integration 2.400186 3.583131 0.097391 0.981737

TA′

integration 2.396544 3.585854 0.097185 0.981709

5.5.2. Analysis of the Model Performance

For each neural network model applied in decomposed time series, we counted the
total number of training parameters and the time cost to train the same epochs on the
current experiment environment. Meanwhile, two types of Transformer, TransFormer
encoder (TFencoder) and TransFormer encoder with Feed-Forward decoder (TF-FF), are
introduced to compare.

Taking the MRTS dataset as an example, the results are shown in Table 10. According
to Table 10, compared with LSTM, the prediction error of LSTM-TA is reduced by 17%
at the cost of a 54% increase in time cost and a two-fold increase in space cost. In fact,
this performance of LSTM-TA is still relatively better in the current environment. Under
our experiment environment and the same training epochs, the time cost of TFencoder is
14.4 times that of LSTM or 8.65 times that of LSTM-TA, while that of TF-FF is 17.2 times
that of LSTM or 10.3 times that of LSTM-TA. The total number of training parameters of
TFencoder is 221 times that of LSTM or 76 times that of LSTM-TA, while that of TF-FF is
338 times that of LSTM or 117 times that of LSTM-TA.
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Table 10. The training effect and performance comparison of neural network models (on MRTS
dataset).

Neural Network
Model

Relative MAE with
Decomposition

(LSTM = 1)

Relative RMSE with
Decomposition

(LSTM = 1)

Total Number of
Training Parameters

Training Time Cost
(s/100 Epochs)

RNN 1.220611 1.248231 1153 9
LSTM 1.000000 1.000000 4480 12
GRU 0.933046 0.933556 3393 15

LSTM-SA 0.951246 0.950698 7585 17
LSTM-TA 0.827476 0.838734 12993 20
TFencoder N/A N/A 989607 173

TF-FF N/A N/A 1515777 206

Moreover, experiments on an open-source code (https://github.com/BorealisAI/
scaleformer, accessed on 3 November 2023) show that the number of Transformer’s training
parameters is 4.86 times that of TF-FF with the same properties or 567 times that of LSTM-
TA (7366145). The amount of Informer’s [32] and Autoformer’s [33] training parameters
is close to Transformer’s parameters, while their training time costs are, respectively, 1.26
and 1.09 times that of Transformer’s. Compared to Transformer, the space and time costs
of Reformer [31] both exhibit a 60% reduction (the amount of its training parameters is
2893825); however, this improvement still leaves a considerable gap between Reformer
and LSTM-TA. Consequently, we believe that under the experimental environment of this
paper, the proposed model achieves relatively good prediction results and maintains good
overall performance.

In addition, the training time cost we counted is only for a single decomposed sequence.
Since each subsequence is relatively independent, if conditions permit, all subsequences
can be trained in a parallel environment, in which case the total training time will only
depend on the subsequence and model with the longest time cost. Due to the limitation of
the experiment environment, only theoretical analysis is carried out here.

6. Conclusions and Prospect

In time-series prediction, EMD is a type of method that generates subsequences and
separates short-term tendencies from long-term ones. Since the studies of EMD are limited
to single sequences, our model is also used in multiple sequences with a discussion of
preprocessing by “global normalization” and “separate normalization”. On the other
hand, the prediction effect possibly has diversity when the same model is applied to
different subsequences. To obtain the regularities of subsequences more accurately with
the attention mechanism, we propose an integrated time-series prediction model based on
signal decomposition and two attention mechanisms, namely self-attention and temporal
attention. Experiments on various datasets show that, compared to the model without
attention, temporal attention increases the prediction accuracy of short- and medium-term
decomposed series by, respectively, 15%~28% and 45%~72%, and the total prediction
error is reduced by 10%~17%. The integrated model with temporal attention reduced
the error by approximately 0.3%, compared to using attention in all subsequences. When
multiple sequences are normalized separately, the prediction effect is equivalent to that of
single sequences.

The datasets were selected from some common areas and have a certain representa-
tiveness. Consequently, the proposed model can be applied to most common single and
multiple sequences. What is more, the performance comparison between neural network
models proves that our model achieves relatively good prediction results and as maintains
good overall performance in the current environment. Compared with Transformer and
its variants, our model has lower space overhead and faster training speed, which is more
suitable for running in parallel environments with low space requirements.

https://github.com/BorealisAI/scaleformer
https://github.com/BorealisAI/scaleformer
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Although CEEMDAN improves the traditional EMD and can obtain subsequences
with more accurate periodic features, its time cost is still much larger than EMD. In the
future, we will consider more sequence decomposition strategies to optimize our model.

On the other hand, due to the constraints of time and experiment environment, only
the attention mechanism and single-step prediction are considered in this research, and we
have only theoretically analyzed the feasibility of parallelism. If conditions permit, we will
consider the following factors:

1. Introducing more mainstream neural network models, such as Transformer and its
variants, to research their application in decomposed sequences and the optimal
integration problem.

2. Multi-step prediction as appropriate.
3. Parallel training of the subsequences. Moreover, emerging computing technologies,

such as edge computing and cloud computing [46], can be considered to enable remote
data processing and efficient learning with prediction, thereby enhancing the overall
effect and performance.
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