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Abstract: Nowadays, more and more sciences are involved in strengthening the work of law enforce-
ment authorities. Scientific documentation is evidence highly respected by the courts in administer-
ing justice. As the involvement of science in solving crimes increases, so does human subjectivism,
which often leads to wrong conclusions and, consequently, to bad judgments. From the above arises
the need to create a single information system that will be fed with scientific evidence such as
fingerprints, genetic material, digital data, forensic photographs, information from the forensic report,
etc., and also investigative data such as information from witnesses’ statements, the apology of the
accused, etc., from various crime scenes that will be able, through formal reasoning procedure, to
conclude possible perpetrators. The present study examines a proposal for developing an informa-
tion system that can be a basis for creating a forensic ontology—a semantic representation of the
crime scene—through descriptive logic in the owl semantic language. The Interoperability-Enhanced
information system to be developed could assist law enforcement authorities in solving crimes.
At the same time, it would promote closer cooperation between academia, civil society, and state
institutions by fostering a culture of engagement for the common good.

Keywords: knowledge management; law enforcement; interoperability; forensic ontology; crime
scene analysis; semantic representation; criminal investigation; information systems; descriptive
logic; digital forensics

1. Introduction

The interplay between science and law enforcement has gained unprecedented atten-
tion in recent years. The infusion of scientific methodologies into investigative processes
has not merely enhanced traditional methods but fundamentally transformed the land-
scape of crime-solving, elevating it from mere gut intuition to evidence-based reasoning. This
approach is rooted in the scientific method, systematically employing data and empir-
ical evidence to inform every phase of the investigation [1–3]. Advanced technologies
such as DNA profiling, digital forensics, and computational simulations have not only
increased the precision in evidence gathering but also expanded the definition and scope
of what qualifies as “evidence” in judicial settings [4–7]. The ascendancy of this scientific,
evidence-based reasoning carries considerable weight in judicial settings, often tipping the
scales in favor of more conclusive, fact-based judgments. Such evidence is often subjected
to rigorous standards of validation and reliability, adding a layer of objectivity to legal
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proceedings that was previously unattainable through anecdotal or circumstantial evidence
alone [8,9].

Yet, the fusion of science into the criminal justice system is not without its caveats.
While science offers empirical methods and objective data, the human elements involved
in its application introduce the potential for subjectivity and bias [1,7,9,10]. For instance,
the interpretation of forensic results, the selective use of scientific tests, or even how data is
collected and preserved can be influenced by human judgment. This human subjectivity,
although often unintentional, can compromise the integrity of judicial decisions [2,4,5,7,10].
The risk is magnified when considering that scientific evidence is frequently viewed as
incontrovertible [9]. Therefore, any lapse in objective application or interpretation of
this evidence can have far-reaching implications, possibly leading to miscarriages of jus-
tice [3,6,7,11–13].

In light of these complexities, there is an escalating need for a robust framework that
seamlessly integrates scientific evidence with traditional investigative data, which includes
elements like police reports, eye-witness accounts, and physical evidence, while minimiz-
ing human subjectivity. The framework should be capable of synthesizing diverse types of
data—from forensic reports and biological samples to witness testimonies and digital foot-
prints—into a cohesive and interpretable format [3,5,8,9]. The key feature of our proposed
model is its focus on “interoperability-enhanced” systems. This ensures seamless communica-
tion and data exchange between various services involved in criminal investigations such
as law enforcement agencies, judicial bodies, forensic medical services, and criminology
labs. By marrying advanced scientific methods with traditional data, we aim to create a
comprehensive picture of the criminal scenario that is both nuanced and impartial. Against
this backdrop, the present study aims to introduce an information system that employs
forensic ontology and data-driven approaches—defined as the utilization of algorithmic to
analyze and interpret data—to offer a more nuanced and impartial methodology for crime
scene analysis [1–3,9,10].

The primary objective of this study is to present an interoperability-enhanced infor-
mation system that integrates various types of scientific evidence and investigative data
to aid in crime scene analysis [14–16]. This endeavor aims to resolve law enforcement
agencies’ multifaceted challenges in synthesizing large volumes of disparate data. By
centralized repository, we mean a single, secure database where multiple forms of evidence
and data can be stored and accessed conveniently. The envisioned system is designed
to be such a centralized repository where information from biological samples like DNA
and fingerprints to digital artifacts and eyewitness accounts can be cohesively stored and
analyzed [17–20]. This amalgamation of varied data sources into a unified platform allows
for a more comprehensive understanding of crime scenes, enhancing the quality of investi-
gations and judicial proceedings [20–22]. The system’s capability to correlate seemingly
unrelated information through advanced algorithms can illuminate new investigative path-
ways, turning the centralized repository into not just a storage unit, but a dynamic tool for
deeper crime analysis, enriching the context and narratives constructed around criminal
events [16,17,20,23].

A secondary objective is to utilize forensic ontology as the backbone for organizing
and interpreting this complex, multi-dimensional data [17–19,23]. In general terms, an
ontology is a formal representation of knowledge within a specific domain, involving a
set of terms and the relationships between them. Forensic ontology, specifically, is a set
of structured terms, definitions, and relationships tailored to capture the complexities of
the forensic domain. By adopting a structured semantic framework, the system will be
able to not only store data, but also understand and interpret the relationships between
different sets of information [17,23]. Forensic ontology acts as the scaffold for complex
decision-making, enabling the system to sift through the intricacies of large-scale data.
This is pivotal for enabling a formal reasoning process that can autonomously generate
insights, identify patterns, and suggest likely hypotheses or conclusions based on the
available evidence. Leveraging forensic ontology in this manner serves as a mechanism
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for automated reasoning. In a realm where human subjectivity can significantly sway
judgments, incorporating a machine-assisted reasoning process serves as a counterbalance,
adding an additional layer of impartiality and rigor—defined as unbiased judgment and
strict adherence to methodological standards—to the investigative process [14,15,18,23].

Lastly, the study aims to foster collaboration and engagement among stakeholders,
who are the individuals or groups with a vested interest in the outcomes of the research,
including academia, civil society, and state institutions. The research is anticipated to
instigate a culture of collective responsibility and mutual trust by creating an efficient,
transparent, and accountable system [20,21]. This is particularly significant in the cur-
rent socio-political climate, where skepticism towards law enforcement practices is not
uncommon. A scientifically robust system, which invites scrutiny and input from all stake-
holders, methodologically sound and openly verifiable, can bridge the gap between the
public and law enforcement agencies and open avenues for academic research and policy
development [14,18,19].

This study proposes developing and evaluating an interoperability-enhanced infor-
mation system for crime scene analysis. While the domain of knowledge management is
expansive and encompasses many systems, including databases, decision support systems,
and expert systems, this research narrowly concentrates on leveraging forensic ontology
to integrate scientific evidence and investigative data. The system aims to serve as a cen-
tralized hub for law enforcement agencies, providing a holistic view of the crime scene by
amalgamating various forms of data. Thus, the implications of this research are principally
targeted at law enforcement agencies involved in investigative work, aiming to refine their
methodologies by incorporating data-driven insights [24–29].

However, it is imperative to acknowledge the inherent limitations that accompany the
scope of this study. While the proposed system aims to minimize human subjectivity by
employing machine-assisted reasoning, which uses computational algorithms to aid in the
analysis and interpretation of data, thereby reducing the likelihood of biased or subjective
judgments, it is only partially devoid of human influence, particularly in data collection and
input stages. Additionally, the focus on forensic ontology means that the study does not
delve into other potentially useful knowledge management frameworks or methodologies.
The utilization of machine-assisted reasoning specifically targets the reduction of human
error and bias in the decision-making process, especially during the evaluation of complex
multi-faceted evidence. This limitation is especially relevant in rapidly evolving techno-
logical advancements, which might offer alternative or complementary data integration
and analysis approaches [12,13,26,30,31]. Therefore, the findings should be interpreted
cautiously, acknowledging that they represent one of many possible avenues for enhancing
investigative work.

Furthermore, although the study aims for broad applicability, it is conditioned by
the availability of resources in terms of data and computational capabilities. The analy-
sis assumes a foundational level of technological infrastructure and expertise within law
enforcement agencies, which may not be universally applicable. Consequently, the imple-
mentation and effectiveness of the proposed system could vary significantly across different
jurisdictions or organizations, depending on their technological readiness and adaptability.
This could limit the generalizability of the study’s findings and recommendations, making
it essential for future research to explore these aspects in greater detail.

2. Literature Review

Forensic science has undergone significant advancements, evolving from rudimentary
methods to the highly sophisticated technologies of today [32,33]. Early forensic practices
were primarily based on observational skills and basic scientific principles. For instance,
fingerprinting, one of the oldest forensic techniques, began as a simple yet effective way
of identifying individuals based on the unique patterns found on their fingertips [34,35].
Initially, these fingerprint records were manually compared, a laborious process often lead-
ing to errors [32,33,36–39]. With the advent of computer technology, automated fingerprint
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identification systems (AFIS) were developed, revolutionizing the speed and accuracy of
fingerprint analysis. These computerized systems represented a significant leap forward,
streamlining the identification process and allowing for the storage and quick retrieval of
millions of fingerprint records [34,35,40].

Over the years, the introduction of DNA technology marked another milestone in
forensic science. Unlike fingerprinting, which serves primarily as a means of identification,
DNA analysis can provide additional information, such as familial relationships and
genetic predispositions [40]. The complexity and sensitivity of DNA techniques, including
Polymerase Chain Reaction (PCR), a method that amplifies tiny segments of DNA for
easier analysis, and Short Tandem Repeat (STR) analysis, a technique that examines specific
regions (or loci) within DNA to identify individuals, have granted investigators the ability
to extract valuable information from the most minute biological samples This technological
leap has profoundly impacted solving crimes, often enabling convictions in cases that
would otherwise remain unsolved. The application of DNA technology is not confined
to violent crimes alone; it has proven instrumental in a range of topics, from paternity
disputes to wildlife poaching [35,40].

However, as forensic science has advanced, it has become increasingly specialized,
requiring a deep understanding of various scientific disciplines such as chemistry, biology,
and computer science [33,36]. For example, digital forensics is a relatively new subfield that
deals with extracting and interpreting data from electronic devices, and it demands a differ-
ent skill set than traditional forensic methods. With the surge in cybercrimes, expertise in
digital forensics is becoming indispensable for modern law enforcement agencies. Despite
the complexity and the need for specialization, the advancements in forensic science have
indisputably enriched the toolkit available to law enforcement, contributing substantially
to both solving crimes and securing convictions [34,36,40].

Despite the advancements in forensic science and technology, the current state of
knowledge management systems within law enforcement agencies leaves much to be
desired [41–43]. One of the most glaring issues is the existence of information silos, which
are isolated pockets of data stored in disparate systems that don’t communicate with
each other. Various departments or units within a law enforcement agency may use
different systems for storing and managing data, often with little or no interoperabil-
ity [41,44,45]. For instance, the cybercrime unit might have its specialized database for
digital evidence, while the homicide department may use another platform for DNA
and ballistics data [36,42,43,46]. Such compartmentalization hampers the ability to cross-
reference information, leading to inefficiencies and increasing the risk of oversight and
errors [41,42,47]. A singular case may require integrating multiple types of evidence, and
the absence of a centralized knowledge repository poses a substantial challenge in achieving
this seamlessly [43,46,48].

The impact of these siloed systems is particularly acute in time-sensitive investigations,
where every moment lost can affect the outcome of a case [41,42]. A lack of immediate access
to relevant information can delay decision-making, compromise the quality of investigative
work, and even jeopardize the safety of law enforcement personnel and public safety [45].
Additionally, these fragmented systems often result in duplicated efforts, as different units
may unknowingly work on related aspects of a case without sharing crucial information.
This wastes valuable resources and increases the likelihood of conflicting or contradictory
evidence, which could weaken a lawsuit in court [41,44,45].

Moreover, current knowledge management systems’ data integrity, which involves
maintaining the accuracy and consistency of data over its entire lifecycle, and security issues
must be addressed. Ensuring information authenticity, confidentiality, and availability
becomes daunting with data’s increasing complexity and volume [47,48]. Data breaches,
unauthorized access, and tampering risk are ever-present, and these vulnerabilities can
have severe legal and ethical repercussions. Data integrity is particularly critical in forensic
science because it ensures that the data remains unaltered from its original state and
can therefore be trusted. The admissibility of evidence in court hinges on the chain of
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custody and the verification of its authenticity [42]. The current state of fragmented
and unprotected systems exacerbates these challenges, reinforcing the need for a robust,
centralized, and secure knowledge management system to meet modern law enforcement’s
demands [41,45,48].

Ontology plays a pivotal role in shaping the architecture of modern data management
systems, particularly in contexts that require the integration of diverse and complex data
sets [49,50]. At its core, ontology is a structured framework that defines the relationships
between various entities and concepts within a particular domain. For example, in a foren-
sic context, ontology could define the relationships between a suspect, a crime scene, and
different types of evidence, such as DNA samples or digital data [36,51,52]. This structured
approach facilitates more than just data storage; it allows for effective data retrieval and the
ability to draw meaningful conclusions from complex, interconnected information [51–56].
The utility of ontology extends to creating semantic networks, which allow for the represen-
tation of complex relationships that are machine-readable and intuitively understandable
for human operators [57].

Ontology’s structured framework is not just a theoretical construct; it has practical im-
plications that can significantly enhance the efficiency and effectiveness of law enforcement
operations. The application of ontology in data management enables advanced querying
capabilities, making it possible to ask complex questions that span multiple data sets and
types [53,57,58]. For instance, investigators could query the relationship between a DNA
sample found at one crime scene and digital evidence from another, all within the same
ontological framework [36,42,49]. This is particularly useful in cases involving serial crimes
or organized criminal networks, where the ability to link seemingly unrelated pieces of
information can be crucial for solving issues. Moreover, the ontological structure sup-
ports formal reasoning algorithms, which can autonomously generate insights and identify
previously unnoticed patterns or connections, thereby aiding investigators in hypothesis
generation and validation [57–59].

However, the implementation of ontology in data management presents challenges [53].
Designing an ontological framework that is comprehensive and flexible enough to adapt to
the evolving nature of criminal activities requires a deep understanding of the domain and
expertise in ontology design principles. Furthermore, the effectiveness of an ontology-based
system is highly dependent on the quality and completeness of the data it contains [51,52].
Incomplete or inaccurate data can lead to misleading or false conclusions, and therefore, the
data input process must be rigorously controlled and validated. Despite these challenges,
the benefits of incorporating ontology in data management systems, especially in the
complex and dynamic field of law enforcement, are substantial, offering a pathway to more
informed and objective decision-making [49,57,58].

3. Methodology

The present study proposes developing a prototype forensic ontology as the primary
artifact to fulfill the research objectives. The development followed a systematic design
science research methodology (Design Science Research Methodology), particularly suited
for creating innovative artifacts to solve complex problems. The research began with
a problem identification stage involving an extensive literature review and interviews
with domain experts in law enforcement and forensic science [60–63]. This initial phase
helped define the prototype’s scope and limitations, ensuring that it addresses the most
pressing challenges in current knowledge management systems while being adaptable to
the evolving landscape of forensic science. The design process then proceeded through
iterative cycles of development, testing, and refinement, involving academic researchers
and practitioners in the field to validate the practicality and efficacy of the system [64–66].

The prototype’s design incorporated key components such as data sources, a data
integration layer, and a logical inference engine. The ontological framework was built using
semantic OWL language and descriptive logic, facilitating complex querying and formal
reasoning [67–69]. Given that the study focuses on crime scene analysis, the ontology was
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populated with entities and relationships most relevant to this context, such as types of
evidence, crime scenes, suspects, and investigative actions. The prototype was designed
to be highly modular, allowing for future expansions or modifications, such as adding
additional data types or integrating more advanced reasoning algorithms. A case study was
then conducted to evaluate the prototype, using both simulated and real-world scenarios
to assess its ability to integrate diverse data sets and generate meaningful insights.

Semantic Web Ontology Language (OWL) and descriptive logic were the primary tools
used to develop the forensic ontology in this research [69–71]. The choice of these tools was
motivated by their ability to represent complex relationships in a machine-readable format
while enabling sophisticated querying and formal reasoning [63,67,68,72,73]. OWL is a W3C
standard language designed explicitly for ontology modeling and is widely supported by
various ontology editors and reasoning engines [71]. It provides a robust set of constructs
for defining classes, properties, and constraints, making it an ideal choice for creating
a comprehensive and intricate ontological framework. On the other hand, descriptive
logic serves as the underlying formalism that guides the structure and semantics of the
ontology [74,75]. It provides the inference rules and allows for validating the relationships
defined in the ontology, thereby ensuring logical consistency and coherence [67–69].

In addition to OWL and descriptive logic, several software platforms were utilized
to develop and evaluate the forensic ontology [73]. Protégé, an open-source ontology
editor, created and modified the ontology, providing a user-friendly interface for man-
aging complex relationships and rules [76]. Furthermore, the Pellet Reasoning Engine
was integrated into the system for the logical reasoning component [74,76]. This engine
performs automated reasoning tasks based on the OWL constructs and descriptive logic
rules, fulfilling the system’s requirement for a formal reasoning process [73]. The overall
architecture was supported by a relational database backend for data storage, and the
front end was developed using standard web technologies like HTML, CSS, and JavaScript,
ensuring that the system is scalable and accessible [71,76].

3.1. Technological Readiness of Law Enforcement Agencies

Addressing the technological readiness of diverse law enforcement agencies is critical
for the successful implementation of the proposed forensic ontological system. This sub-
section aims to delineate the varying levels of technological sophistication among these
agencies and propose solutions for less tech-savvy bodies, as well as address concerns
about the heavy reliance on Semantic OWL and descriptive logic.

To cater to the needs of less tech-savvy law enforcement agencies, several strategies
were considered. First, the ontological system was designed to be modular and scalable,
allowing for incremental adoption based on the agency’s technological readiness. Agencies
can start with basic functionalities and gradually add more sophisticated modules as they
become more comfortable with the system.

Second, development of a user-friendly interface is proposed, complete with training
modules and support documentation. This aims to lower the barrier to entry and facilitate
easier system adoption. Third, partnerships with governmental and non-governmental
organizations were sought to provide additional training and financial resources for system
implementation. These partnerships aim to bridge the technological gap and ensure that
all agencies, irrespective of their current capabilities, can benefit from the system.

Lastly, the system architecture was designed to be compatible with existing legacy
systems [59,77–80]. This is to ensure that even agencies with outdated technologies can
integrate the proposed system without requiring a complete overhaul of their existing
infrastructures.

In addition to technological readiness, the system’s reliance on Semantic OWL and
descriptive logic warrants consideration. The usage of these technologies enables a more ro-
bust and formal representation of forensic data, but it also introduces challenges, especially
when discrepancies in data occur. To address this, the system incorporates adaptability
measures, such as data validation algorithms that can detect and rectify inconsistencies in
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the input data. Furthermore, the system has built-in mechanisms for handling uncertain
or ambiguous information, thereby ensuring the integrity and reliability of the reasoning
process.

In summary, by taking into account the diverse technological readiness and semantic
adaptability requirements of law enforcement agencies, the proposed system adopts a
flexible, user-centric approach to encourage widespread adoption, thereby enhancing the
collective capability of these agencies in forensic investigations.

3.2. Comparison with Alternative Approaches

In an evolving landscape where data-driven methodologies are increasingly being
integrated into law enforcement systems, alternative approaches have been scrutinized.
Methods such as relational databases, keyword-based searches, and rule-based expert
systems have previously been employed [56,59,77–80].

The choice of an ontology-based approach over these alternative methods was driven
by its inherent capabilities for semantic representation and formal reasoning [81–84]. Un-
like relational databases that struggle with semantic ambiguities, the ontology approach
captures complex relationships and enables intricate queries. Moreover, while keyword-
based searches offer a simpler method for data retrieval, they fall short in creating semantic
connections between data entities [85–88]. Rule-based expert systems, although effective
for specific tasks, lack the flexibility to adapt to the diverse and dynamic nature of crime
scene investigations.

Therefore, an ontology-based approach, especially when combined with descriptive
logic and OWL, presents a more comprehensive and adaptive framework capable of
addressing the multifaceted nature of forensic investigations.

3.3. Criteria for Selecting OWL over Other Methods

The selection of OWL for the creation of the legal ontology was made after care-
ful evaluation of alternative options. Semantic richness is offered by OWL, a feature
scarcely found in relational databases or XML schemas. While relational databases excel
in managing structured data, they struggle to represent complex, hierarchical, or intricate
relationships [29,56].

Furthermore, supported formal reasoning was another contributing factor to the choice
of OWL. Unlike languages such as RDF Schema, which are limited in their inferencing
capabilities, OWL is based on description logic and allows for more advanced analyses.

In addition, the advantage of wide support and tooling was afforded by OWL, being a
W3C standard. In contrast to customized solutions or less popular languages, this offers a
foundation for future expansion and collaboration.

Finally, scalability was a critical issue that was addressed. Traditional databases
may require significant revisions when new data or functions are added, whereas OWL
is designed in a way that makes it easier to manage large and dynamically increasing
datasets.

In this manner, the selection of OWL was found to be most apt, aligning fully with the
multidimensional requirements and objectives of the legal ontological system.

4. Conceptual Framework

The conceptual framework for this study leverages the principles of ontology to create
a semantic representation of crime scenes to enable a more sophisticated and nuanced
analysis of evidence and data. In this context, the term “semantic representation” refers to
a structured model that not only stores data but also understands and interprets the rela-
tionships between different types of information, such as DNA samples, digital evidence,
and witness testimonies [82,89,90]. The framework can represent complex hierarchies and
dependencies among these diverse data types by adopting ontology. For instance, a DNA
sample could be linked to multiple crime scenes related to various suspects, witnesses,
and other forms of evidence like digital footprints or surveillance footage [42,82,89,90].
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The ontological structure allows for this intricate web of relationships to be mapped out
logically and consistently, thereby enriching the depth of the analysis and facilitating more
effective investigative strategies [70,71,76,82,90,91].

Forensic ontology is the backbone of the proposed information system, providing the
rules and constructs governing how data is stored, retrieved, and analyzed. In addition to
serving as a repository for multi-modal data, ontology plays an active role in the reasoning
process [92–94]. By incorporating descriptive logic rules into the ontology, the system can
conduct formal reasoning to generate new insights or hypotheses based on the existing
data. For example, suppose a new DNA sample is entered into the system. In that
case, the ontology-based reasoning engine can automatically identify potential matches
or discrepancies with existing records, thereby aiding investigators in drawing timely
and accurate conclusions. This proactive role of the ontology extends the system’s utility
beyond mere data storage, making it an invaluable tool for both reactive and proactive
investigative processes [91,92,95,96].

Descriptive logic serves as the formalism that underpins the ontological structure,
employed to define the relationships between different sets of data and facilitate more
effective reasoning within the system [97–100]. In essence, descriptive logic provides a set
of rules and constructs that guide the interpretation of the ontology, ensuring that it adheres
to a coherent and logically consistent framework. For example, descriptive logic can define
the conditions under which a particular piece of evidence, such as a DNA sample, can be
considered a match or a mismatch with another example in the database [98,99,101]. These
rules are not mere static guidelines but dynamic constructs enabling the system to perform
automated reasoning. By applying these rules, the system can make inferences, validate
hypotheses, and generate new questions or lines of investigation that may not have been
immediately apparent to human investigators [99,100].

Integrating descriptive logic into the forensic ontology enhances the system’s abil-
ity to manage complex, multi-faceted data sets. It provides the mechanism for complex
querying and extracting nuanced insights from the accumulated data [101–104]. For in-
stance, investigators could input a complex query asking whether any DNA samples from
unsolved cases match the profiles of newly entered suspects. The descriptive logic rules
would guide the reasoning engine in interpreting this query, navigating through the on-
tological relationships to provide a comprehensive and logically sound answer [102,103].
This way, descriptive logic elevates the system’s capabilities from mere data storage and
retrieval to more dynamic knowledge management. It provides actionable insights that
can significantly aid law enforcement agencies’ investigative processes [98,101].

The Semantic Web Ontology Language (OWL) plays a critical role in the conceptual
framework, serving as the language that actualizes the ontology and descriptive logic into
a functional system [71,76,105–107]. Semantic OWL language enables the system to under-
stand and interpret complex relationships between various data points, converting raw
data into actionable knowledge [108–111]. OWL’s rich vocabulary and expressive power
make it possible to define intricate relationships and constraints within the ontological
structure. For example, OWL can specify that a “fingerprint match” can only occur if a
crime scene and a fingerprint from a database share specific predefined characteristics. This
level of detail is vital for ensuring the accuracy and reliability of the reasoning process, and
it adds a layer of rigor to the system’s analytical capabilities [108,112,113].

Moreover, OWL’s semantic capabilities extend beyond just defining relationships; they
also facilitate the integration of disparate data types into a cohesive whole. Given that
crime scene analysis often involves a plethora of data, including biological samples, digital
evidence, and eyewitness accounts, the ability to semantically link these diverse data points
is invaluable [105,108,111]. The OWL language provides the tools to create such semantic
bridges, allowing for harmonizing data that might initially seem unrelated. This capability
is handy for investigators who must compile fragmented or incomplete information to
form a coherent picture of a crime scene. By employing OWL as the semantic foundation
of the system, the framework ensures that it can adapt to the complexities and nuances
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inherent in forensic investigations, thereby fulfilling its aim of providing a comprehensive,
reliable, and dynamic tool for law enforcement agencies [71,108,112,113].

Integration of Knowledge Management Tools

The integration of Knowledge Management Tools significantly amplifies the capa-
bilities of the existing conceptual framework. Firstly, these tools build upon the exist-
ing ontology to offer a more sophisticated layer of abstraction for data representation.
Specifically, the incorporation of taxonomies, classifications, and metadata enhances the
semantic depth of the data, thereby streamlining the search, retrieval, and interpretation
processes [97,105,107,114,115].

This enriched ontology serves as a foundation for the next logical extension: aug-
mented reasoning capabilities. Knowledge Management Tools introduce advanced machine
learning algorithms, supplementing the existing ontology-based reasoning mechanisms.
These algorithms enable a greater array of analytical processes, making the system more
versatile in conducting seamless and efficient analyses [83,91,95].

Furthermore, data integration is markedly improved through the use of these tools.
Advanced mapping techniques and data transformation processes are employed to har-
monize disparate data types, such as text, images, and geospatial data, into a unified
ontology. This enhanced integration adds versatility to the system, making it capable of
accommodating and interpreting a broader range of information types.

Another vital contribution of Knowledge Management Tools is their impact on the
system’s query capabilities. They bring added flexibility to the existing descriptive logic
rules, thereby facilitating the processing of complex, multi-variable, and conditional queries.
This adaptability enables more nuanced data extraction and reporting, enriching the overall
utility of the system [74,97,116–118].

In conclusion, the utility of the Knowledge Management Tools extends beyond mere
data management. They also have a profound impact on the investigative strategies of
law enforcement agencies. By incorporating real-time analytics and predictive modeling,
these tools pave the way for more dynamic and proactive policing strategies. Hence, they
fulfill the system’s overarching objective of serving as a comprehensive resource for law
enforcement, not only by enhancing data storage and retrieval but also by significantly
influencing proactive investigative methodologies.

5. Ontology Development

In the domain of knowledge engineering, the significance of ontologies as a means
for structuring and formalizing domain-specific knowledge must be balanced. Protege, a
free, open-source ontology editor developed by the Stanford Center for Biomedical Infor-
matics Research, is a critical tool widely employed for this purpose. Within this software
environment, the creation, manipulation, and sharing of ontologies are facilitated, offering
researchers a robust platform for academic and industrial applications [76,88,119,120].

One of the foundational components in the development of an ontology is the concept
of “classes”, which categorize entities within the domain of interest. A class is a blueprint
for objects with common attributes or relations. Subclasses represent entities that inherit
the characteristics of their parent classes but may possess additional features or links that
distinguish them. For instance, in a medical ontology, the class “Disease” might have
subclasses like “Infectious Disease” and “Genetic Disorder”, each with its own set of
attributes and relationships [120–122].

Another integral aspect of ontology development involves using “object properties”,
which define the relationships between different classes. Object properties specify how
instances of one type can be related to models of another, thus capturing the complexity
and interconnectedness of domain-specific entities. For example, an object property could
specify that a “Patient” is related to a “Disease” through a “hasDiagnosis” relationship,
enabling the formalization of intricate domain knowledge [88,119].
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The concept of “data properties” further refines the granularity of ontologies by
associating instances of classes with literal values. Unlike object properties, which link
cases of different types, data properties connect models to data values such as strings,
numbers, or dates. In a healthcare ontology, for example, a data property might specify
that a “Patient” has an “age” that is an integer or a “name” that is a string [88,119].

In summary, the development of an ontology involves a series of structured steps
and relies heavily on the understanding and formalization of classes, subclasses, object
properties, and data properties. Protege serves as a comprehensive tool that enables
this intricate process, offering a variety of features that assist in developing, testing, and
deploying robust ontologies. Complex domains can be modeled with high precision
through the judicious use of these ontology components, facilitating advanced applications
in areas ranging from artificial intelligence and semantic web technologies to industry-
specific solutions [88,119–122].

In ontology development for the Semantic Web, the role of “individuals” or “instances”
emerges as a critical aspect of semantic representation. Individuals are specific occurrences
of classes, serving as the concrete data points that populate the ontological structure.
In essence, individuals are to classes what data entries are to database schemas. They
embody the real-world entities the ontology aims to describe, enabling the transition from
abstract, domain-specific knowledge to actionable insights. In the Protege environment,
individuals are explicitly defined and managed through a dedicated interface, offering
a seamless method for populating ontological classes. When formulated in OWL (Web
Ontology Language), individuals are associated with object and data properties, inheriting
the relational and attribute-based characteristics defined at the class level. Including
individuals enhances an ontology’s expressivity and utility, allowing for a more nuanced
capture of domain knowledge and facilitating complex reasoning tasks [120].

Based on the above, a rigorously defined framework for ontology development
emerges. Specifically, the process encompasses four phases: 1. Needs assessment and analysis,
2. Design, 3. Development, and 4. Evaluation and adaptation [Figure 1].
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In Detail:

• Phase 1: Needs Research and Analysis

o Data Collection: All available data from various sources, such as types of
crimes, investigation procedures, types of evidence, and data, are collected.

o Needs Identification: The needs of the involved entities (police, judicial system,
public) are understood.

• Phase 2: Design
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o Domain Configuration: The primary domains of the ontology (e.g., Identities,
Criminal Actions, Investigative Procedures, Adjudication) are defined.

o Element Definition: The classes, properties, and data properties to be included
are defined.

• Phase 3: Development

o Ontology Prototype: A prototype is created using tools such as Protege, with
OWL as the language.

o Logic Implementation: Descriptive logic is incorporated for functions such as
reasoning, classification, and other query operations.

o Pilot Application: The ontology is tested in real or hypothetical cases to validate
its effectiveness and accuracy.

• Phase 4: Evaluation and Adaptation

o Evaluation: Feedback is collected from the involved entities and necessary
modifications are made.

o Update and Evolution: The ontology is improved and updated in accordance
with new technologies and data.

In the developed proposal ontology context, three key tables serve as pivotal reference
points that encapsulate the various elements and their interrelations. Table 1 outlines the
Classes and Subclasses, providing a hierarchical view of the entities and their specialized
forms within the domain. Each class and subclass are accompanied by a description eluci-
dating its specific role and attributes. Table 2 focuses on Object Properties, detailing the
relationships between different types. This table specifies each object property’s domain,
range, and characteristics, comprehensively mapping how entities interact within the on-
tology. Table 3, on the other hand, is devoted to Data Properties, listing the properties that
link class instances to literal values. This table elucidates each data property’s domain,
range, and characteristics, enabling a finer granularity in representing domain-specific
information. Collectively, these tables serve as the backbone of the ontology, offering a struc-
tured and detailed overview that is indispensable for both development and subsequent
applications.

Table 1. Enumerates the foundational ‘Classes’ and ‘Subclasses’ of the proposed Forensic Ontology,
providing a brief ‘Description’ for each. It serves as a guide for understanding and implementing the
ontology.

Classes Subclasses Description

CrimeScene CrimeUnderInvestigation The specific offense or offenses currently being looked into.

VictimFound The individual or individuals who have been directly affected by
the crime and are present at the scene.

TopographicDiagram A schematic representation of the crime scene’s layout.
FingerprintCollection The gathering of fingerprint evidence from the crime scene.
DNACollection The collection of biological material for DNA analysis.

ForensicPhotography The process of taking photographs of the crime scene and
evidence.

AutopsyReport A medical report detailing the cause and circumstances of a death.
SeizureOfObject The act of lawfully confiscating an object for evidence.
VideoFootageCollection Gathering video recordings related to the crime.

JudicialActions WitnessTestimony(Civilian) Statements given by non-law enforcement witnesses.
WitnessTestimony(Police) Statements given by law enforcement officers.

Defendant’sStatement The statement or defense presented by the person accused of the
crime.

ForensicMedicalReport CrimeVictim The individual or individuals directly affected by the crime.

VictimExamined The process of medically examining the victim for evidence and
information.

CauseOfDeath Medical reasons explaining the victim’s death.
LethalWeapon The object or method used to carry out the killing.
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Table 1. Cont.

Classes Subclasses Description

MobilePhoneData ModeOfCommunication The type of communication used (e.g., SMS, call).
DurationOfCommunication The length of the communication event.
DateOfCommunication The date when the communication took place.
TimeOfCommunication The specific time when the communication occurred.
ActivatedMobileTower The cellular tower facilitated the communication.
IP_OfCommunication The IP address used during the communication.

Humans Witnesses Individuals who have relevant information but are not directly
involved in the crime.

Victims Individuals who have been directly affected by the crime.
SurveillanceData CCTV_Footage Video captured from closed-circuit television cameras.

AudioRecordings Recorded audio that may be used as evidence.
LegalDocuments SearchWarrants Legal documents authorizing the search of premises.

ArrestWarrants Legal documents authorizing the arrest of an individual.
InvestigationTeam LeadInvestigator The person in charge of guiding the investigation.

SupportingStaff Additional staff aiding in various aspects of the investigation.
CaseStatus Open The case is currently under investigation.

Closed The case has been resolved or dismissed.
PendingReview Awaiting further action or analysis.

From Tables 1–3, a Preliminary Forensic Ontology can be constructed for the purpose
of experimenting with some basic functionalities, such as querying using descriptive
logic. This preliminary Forensic Ontology is submitted as Supplementary Material. The
development of a comprehensive Forensic Ontology necessitates the interface between
various stakeholders, such as law enforcement agencies, forensic medical services, the
prosecution office, and the university.

Once developed, the ontology could be visually represented as shown in Figure 2.
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Figure 2. Provides a visual representation of the proposed Forensic Ontology, featuring its Classes
and Subclasses as outlined in Table 1. The figure serves to graphically elucidate the hierarchical
relationships and structural complexity inherent to the ontology.
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Table 2. Delineates the Object Properties crucial to the Forensic Ontology. Each property is characterized by its ‘Domain’, ‘Range’, and specific ‘Characteristics’,
alongside a brief ‘Description’ that clarifies its role in linking various forensic entities and processes.

Property Domain Range Characteristics Description

hasCrimeUnderInvestigation CrimeScene CrimeUnderInvestigation Symmetric Links a crime scene to the specific offenses being investigated.
hasVictim CrimeScene VictimFound Symmetric Links a crime scene to the victims found.
hasTopographicDiagram CrimeScene TopographicDiagram Functional Links a crime scene to its topographic layout.
hasFingerprint CrimeScene FingerprintCollection Symmetric Links a crime scene to collected fingerprints.
hasDNA CrimeScene DNACollection Symmetric Links a crime scene to collected DNA samples.
hasPhotographicEvidence CrimeScene ForensicPhotography Functional Links a crime scene to forensic photographs.
hasAutopsyReport CrimeScene AutopsyReport Functional Links a crime scene or victim to an autopsy report.
hasSeizedObject CrimeScene SeizureOfObject Symmetric Links a crime scene to objects that have been seized as evidence.
hasVideoFootage CrimeScene VideoFootageCollection Symmetric Links a crime scene to collected video footage.
hasCivilianWitnessStatement JudicialActions WitnessTestimony(Civilian) Symmetric Links judicial actions to statements given by civilian witnesses.
hasPoliceWitnessStatement JudicialActions WitnessTestimony(Police) Symmetric Links judicial actions to statements given by police officers.
hasDefendantStatement JudicialActions Defendant’sStatement Functional Links judicial actions to the statement made by the defendant.
examinesVictim ForensicMedicalReport VictimExamined Functional Links a forensic medical report to the examination of the victim.
identifiesCauseOfDeath ForensicMedicalReport CauseOfDeath Functional Links a forensic medical report to the cause of death.

identifiesLethalWeapon ForensicMedicalReport LethalWeapon Functional Links a forensic medical report to the weapon or method that
caused death.

usesCommunicationMode MobilePhoneData ModeOfCommunication Symmetric Links mobile phone data to the method of communication used.
hasCommunicationDuration MobilePhoneData DurationOfCommunication Functional Links mobile phone data to the duration of the communication.
hasCommunicationDate MobilePhoneData DateOfCommunication Functional Links mobile phone data to the date of the communication.
hasCommunicationTime MobilePhoneData TimeOfCommunication Functional Links mobile phone data to the time of the communication.

activatesMobileTower MobilePhoneData ActivatedMobile Tower Symmetric Links mobile phone data to the mobile tower that facilitated the
communication.

usesIP MobilePhoneData IP_OfCommunication Functional Links mobile phone data to the IP address used during the
communication.

involvesWitness Humans Witnesses Symmetric Links a case or judicial action to individuals who are witnesses.
involvesVictim Humans Victims Symmetric Links a case or judicial action to individuals who are victims.
involvesCCTV SurveillanceData CCTV_Footage Symmetric Links surveillance data to CCTV footage.
involvesAudioRecording SurveillanceData AudioRecordings Symmetric Links surveillance data to audio recordings.
involvesSearchWarrant LegalDocuments SearchWarrants Functional Links legal documents to search warrants.
involvesArrestWarrant LegalDocuments ArrestWarrants Functional Links legal documents to arrest warrants.
hasLeadInvestigator InvestigationTeam LeadInvestigator Functional Links an investigation team to its lead investigator.
hasSupportingStaff InvestigationTeam SupportingStaff Symmetric Links an investigation team to its supporting staff.

hasCaseStatus JudicialActions CaseStatus Functional Links an investigation to its current status (open, closed,
pending review).
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Table 3. Outlines the Data Properties essential to the Forensic Ontology. These properties are classified by their ‘Domain’, ‘Range’, and specific ‘Characteristics’,
accompanied by a succinct ‘Description’ that explicates the property’s role in capturing quantifiable or textual information within the forensic context.

Data Property Domain Range Characteristics Description

crimeReportedDate CrimeScene xsd:date Functional The date when the crime was reported.
crimeOccurredTime CrimeScene xsd:time Functional The time when the crime occurred.
numberOfVictims VictimFound xsd:integer Functional The number of victims found at the crime scene.
fingerprintCount FingerprintCollection xsd:integer Functional The number of fingerprints collected.
DNASequencesCollected DANN_Collection xsd:integer Functional The number of DNA sequences or samples collected.
autopsyDate AutopsyReport xsd:date Functional The date when the autopsy was performed.
seizedObjectCount SeizureOfObject xsd:integer Functional The number of objects seized.
videoFootageDuration VideoFootageCollection xsd:duration Functional The duration of the video footage collected.
civilianWitnessCount JudicialActions xsd:integer Functional The number of civilian witnesses.
policeWitnessCount JudicialActions xsd:integer Functional The number of police witnesses.
defendantName Defendant’sStatement xsd:string Functional The name of the defendant.
victimMedicalReportDate VictimExamined xsd:date Functional The date when the medical examination of the victim took place.
causeOfDeath CauseOfDeath xsd:string Functional The medical reason for the victim’s death.
lethalWeaponType LethalWeapon xsd:string Functional The type of weapon or method that caused death.
communicationMode ModeOfCommunication xsd:string Functional The method of communication used (e.g., SMS, call).
communicationDuration DurationOfCommunication xsd:duration Functional The duration of the communication.
communicationDate DateOfCommunication xsd:date Functional The date of the communication.
communicationTime TimeOfCommunication xsd:time Functional The specific time when the communication occurred.
mobileTowerLocation ActivatedMobileTower xsd:string Functional The location of the activated mobile tower.
IPAddress IP_OfCommunication xsd:string Functional The IP address used for the communication.
witnessStatement Witnesses xsd:string Functional The statement provided by the witness.
victimStatement Victims xsd:string Functional The statement or account provided by the victim.
CCTVFootageLocation CCTV_Footage xsd:string Functional The location where the CCTV footage was captured.
audioRecordingDuration AudioRecordings xsd:duration Functional The duration of the audio recording.
searchWarrantIssuedDate SearchWarrants xsd:date Functional The date when the search warrant was issued.
arrestWarrantIssuedDate ArrestWarrants xsd:date Functional The date when the arrest warrant was issued.
leadInvestigatorName LeadInvestigator xsd:string Functional The name of the lead investigator.
supportingStaffCount SupportingStaff xsd:integer Functional The number of supporting staff involved in the investigation.
caseStatus CaseStatus xsd:string Functional The current status of the case (e.g., Open, Closed, Pending Review).
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5.1. Description Logic

Description Logic (DL) serves as a formal framework for representing the conceptual
structure of domains in a semantically rigorous manner [83,123–126]. Utilized primarily
in ontology modeling and artificial intelligence, it aims to provide a set of constructors to
define complex concepts based on simpler ones. In the realm of ontology development, DL
is often employed to enable automated reasoning over concepts and relationships, thereby
allowing for the validation of the structural and semantic integrity of the model. This
capability underpins its widespread application in ontology-based systems, facilitating
tasks such as knowledge extraction, consistency checking, and inferencing [126–130].

The logical operators in Description Logic hold particular significance for their role
in shaping the semantics of the ontology. Standard constructors include existential quan-
tification (∃), universal quantification (∀), conjunction (∩), and negation (¬), among oth-
ers [129–132]. These operators allow for the expression of intricate relationships and
constraints among ontology elements. For instance, in this discussed Forensic Ontology,
the class “Crime Scene” and its subclass “Victim Found” could be represented as:

CrimeScene v ∃hasVictim.VictimFoundCrimeScene v ∃hasVictim.VictimFound,

indicating that a Crime Scene necessarily involves the existence of a Victim Found. Similarly,
the object property “hasCrimeUnderInvestigation” linking “Crime Scene” to “Crime Under
Investigation” can be described as:

hasCrimeUnderInvestigation : CrimeScene→
CrimeUnderInvestigationhasCrimeUnderInvestigation : CrimeScene→
CrimeUnderInvestigation.

Data properties, as mentioned in the context of the same Forensic Ontology, associate
individuals from the domain of a class with data values. For example, the data property
“crimeReportedDate” attached to the “Crime Scene” class can be written as:

crimeReportedDate : CrimeScene→ xsd : datecrimeReportedDate : CrimeScene→
xsd : date,

Indicating that each instance of a Crime Scene is associated with a date value. This
formalization using Description Logic provides a mathematical foundation for the ontology
and enables the application of automated reasoning tools for ontology verification and
query answering. Thus, the transition from tabular representations to Description Logic
enhances the ontology’s operational effectiveness and semantic clarity [132–135].

5.2. Reasoning on Forensic Ontology

Reasoning in ontologies and the Semantic Web pertains to the formal inference process
by which new knowledge is derived from existing data and relationships. In essence,
ontologies serve as a structured framework for organizing and categorizing information,
thereby enabling sophisticated forms of logical reasoning [58,74,82,91]. Within this frame-
work, various reasoning techniques, such as deductive, inductive, and abductive reasoning,
can infer new facts or validate existing ones. The Semantic Web, an extension of the World
Wide Web, is built upon these ontologies and employs reasoning to link and integrate dis-
parate data sources. Using descriptive logic and formal reasoning procedures, the Semantic
Web seeks to transform the Internet into a more intelligent and intuitive environment where
automated reasoning is carried out to facilitate information retrieval and decision-making
processes [71,76,124–127].

Applying reasoning in forensic analysis through ontologies offers manifold pivotal
advantages for law enforcement agencies [81,100,136]. First and foremost, ontological
sense enhances the accuracy and reliability of crime scene investigations by systematically
correlating multiple types of evidence and data points. This is particularly beneficial for
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complex cases that involve a vast array of interconnected elements such as DNA samples,
fingerprints, and witness statements [74,84,97,137]. Additionally, ontological reasoning
promotes the objectivity and impartiality of forensic analysis by reducing human error and
subjectivity. A more nuanced and holistic understanding of the crime scene is achieved
by formalizing the relationships between different classes and subclasses of evidence and
incorporating them into a single, unified system. This, in turn, enhances the quality of
evidence presented in court and aids in administering justice [124–127].

Using reasoning and reasoners by law enforcement personnel addresses several critical
challenges in criminal investigations. For instance, the issue of data silos, where informa-
tion is stored in disparate, unconnected databases, is mitigated through the integration and
semantic linking of data [136,138]. This speeds up the investigative process and ensures that
every critical piece of evidence is noticed. Furthermore, reasoning enables predicting and
identifying criminal patterns, thereby aiding in proactive policing and preventing future
crimes. Automated reasoners can sift through large volumes of data to identify inconsisten-
cies or contradictions in witness statements, evidence, or the internal logic of the case itself.
This capability is invaluable for validating an investigation’s integrity and flagging poten-
tial miscarriages of justice. Hence, reasoning and reasoners are vital tools for enhancing
law enforcement operations’ effectiveness, integrity, and reliability [82,91,95,129,139].

6. Scenario Example

We now focus on a hypothetical crime scene scenario to demonstrate the practical ap-
plications of forensic ontology and reasoning in criminal investigations. In this simulation,
five different crime scenes involving murder are presented. While each set is unique, certain
common elements, such as fingerprints and DNA samples, are observed across multiple
locations. Witness statements have been gathered, describing individuals related to the
crimes. These crime scenes are located within geographically relevant areas, providing
an intricate web of information that can be unraveled through ontological reasoning to
identify the perpetrator.

Script
Five crime scenes are distributed across a city, each bearing striking similarities to one

another:

• Crime Scene 1: A body was found in an alley with fingerprints on a discarded weapon
nearby.

• Crime Scene 2: A victim was discovered in an abandoned warehouse, and DNA
samples were collected from a cloth next to the body.

• Crime Scene 3: A body was found in a park, and fingerprints were collected from a
park bench.

• Crime Scene 4: A victim in a car parked in a garage, DNA samples on the steering
wheel.

• Crime Scene 5: A body was discovered in a motel room, with fingerprints on the
doorknob.

Witness statements from various scenes describe a person seen loitering in the vicinity
wearing a red jacket. The same DNA and fingerprint patterns are found in scenes 1, 3,
and 5.

All elements from the Script are incorporated as Individuals in the Forensic Ontology
according to Table 4, so that the Forensic Ontology can provide us with information by
formulating suitable queries.

Descriptive Logic to Identify the Perpetrator

• hasFingerprint(CS1, FP1) ∩ hasFingerprint(CS3, FP3) ∩ hasFingerprint(CS5, FP5)
• hasDNA(CS2, DNA2) ∩ hasDNA(CS4, DNA4)
• involvesWitness(CS1, W1) ∩ involvesWitness(CS2, W2) ∩ . . .
• hasCaseStatus(CS1, Open) ∩ hasCaseStatus(CS2, Open) ∩ . . .
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Using reasoning, it can be inferred that the same fingerprints found in scenes 1, 3, and
5 indicate a typical perpetrator. Furthermore, the witness descriptions of an individual in a
red jacket across multiple locations corroborate this connection. Therefore, reasoning and
forensic ontology can be employed to logically deduce that these crimes are the work of a
single individual, at this moment identified as the ‘Perpetrator’.

Table 4. Lists the Individual Instances within key Classes of the Forensic Ontology, offering specific
‘Description’ for each set of instances. These instances serve as real-world examples or case-specific
data points within the ontology framework.

Classes Individual Instances Description

Crime Scene CS1, CS2, CS3, CS4, CS5 The five different crime scenes.
Fingerprint FP1, FP3, FP5 Fingerprints found at scenes 1, 3, and 5.
DNA DNA2, DNA4 DNA samples found at scenes 2 and 4.
Witnesses W1, W2, W3, W4, W5 Witnesses from each crime scene.
Humans Perpetrator The individual responsible for the crimes.
Case Status Open The case is currently under investigation.

In summary, the significance of forensic ontology and reasoning is reaffirmed
through this exercise. Such methodologies allow for the systematic analysis of complex
and multifaceted crime scenes, thereby enhancing the efficacy and reliability of criminal
investigations.

7. Discussion and Conclusions

The far-reaching implications of the proposed interoperability-enhanced, data-driven
forensic ontological system for law enforcement cannot be overstated. By amalgamat-
ing various types of evidence and data in a centralized platform, the system confers
unprecedented analytical depth and precision for crime scene investigations. Incorporating
reasoning techniques further empowers this framework, allowing for the extraction of
nuanced insights that would otherwise remain elusive. This fortifies law enforcement
agencies’ investigatory capabilities and significantly elevates the standard of evidence
presented in judicial settings, thereby contributing to more accurate and just outcomes.

Specific Analysis of Findings: In the hypothetical scenario explored within the
manuscript, the system’s ability to integrate multiple forms of evidence such as fingerprints,
DNA samples, and witness accounts contributes uniquely to identifying the perpetrator.
Each form of evidence enhances the reliability and validity of the findings, effectively
reducing uncertainties and blind spots in the investigation.

Moreover, this system’s impact extends well beyond law enforcement, offering fertile
ground for academic exploration and societal collaboration. The multidisciplinary nature
of the framework opens new avenues for scholarly research into semantic technology,
data analytics, and forensic science. Concurrently, the system encourages broader soci-
etal engagement by integrating diverse stakeholders, including academia, government
institutions, and civil society, into a unified effort to bolster public safety and justice. This
collaborative ethos enriches the investigative process and engenders a culture of shared
responsibility for societal well-being.

Evaluation of Data Collection Techniques: Our methods for data collection and analy-
sis have proven to be effective but are not without limitations. For example, the speed at
which data can be processed may be hindered by the sheer volume of data or the complexity
of the algorithms employed.

The study unequivocally demonstrates the efficacy and viability of integrating an
ontological approach into forensic analyses of crime scenes. The hypothetical scenario
explored within the manuscript substantiates the utility and practicality of the proposed
system, particularly its ability to derive coherent and logical inferences from complex,
multi-faceted data sets. Thus, the system is a robust, scientifically rigorous tool that can
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materially aid in the resolution of complex criminal cases, thereby enhancing the integrity
and effectiveness of law enforcement endeavors.

Critique and Limitations: It is worth noting that our system is not a panacea. While it
does offer a streamlined and efficient approach to crime scene analysis, there are computa-
tional and ethical considerations that warrant attention. For instance, the use of machine
learning algorithms may raise questions about fairness and bias, especially when training
data are not fully representative.

Looking ahead, it becomes evident that the system will require continual updates
and refinements to remain aligned with forensic science and data technology advances.
To this end, future research efforts should be directed toward forging partnerships with
government agencies. Such collaborations are invaluable for tailoring the system to law
enforcement agencies’ evolving and specific needs, thereby facilitating the development of
a pioneering forensic ontology that can further amplify the already commendable efforts in
criminal investigations.

Recommendations for Future Research: With the insights gained from the current
study, future work should focus on refining the ontological structures and expanding the
types of data that can be integrated. Moreover, longitudinal studies could be beneficial in
further validating the system’s effectiveness over time.

The Iterative Feedback Loop

Critical to the developmental process of the proposed forensic ontology was the
iterative feedback loop, which encompassed a cycle of development, validation, and
refinement. The loop began with a design phase where components were formulated based
on previous research [59,77–80]. Upon the incorporation of these feedback insights, the
prototype underwent further development.

Test results demonstrated a progressive improvement in the system’s ability to in-
tegrate diverse datasets and generate meaningful insights. Moreover, the feedback loop
facilitated the timely discovery and rectification of flaws, thereby enhancing the system’s
robustness and reliability.

By focusing on continuous improvement through iterative feedback, the design sci-
ence research methodology employed ensures the evolution of a prototype that is both
academically rigorous and practically effective.

8. Challenges and Practical Deployment

The development and deployment of the proposed forensic ontological system in law
enforcement pose a range of practical challenges. One paramount concern is the issue of
data privacy and security. Given that the system aims to integrate a wide array of data
types, including potentially sensitive personal information, robust security measures such
as encryption protocols and strict access controls are imperative. These measures not
only ensure data privacy but also prevent unauthorized manipulation or disclosure of the
integrated data.

Additionally, the challenge of interoperability and data integration looms large. To
function optimally, the system needs to amalgamate data from diverse sources, which
necessitates seamless integration between disparate systems. This calls for standardized
data formats and protocols, and possibly the development of middleware solutions capable
of translating between different data formats or structures.

Resource constraints represent another obstacle, particularly given the varying levels
of technological sophistication among law enforcement agencies. The system must be
designed to operate efficiently even on less powerful hardware, necessitating optimizations
to reduce computational complexity or storage requirements.

Legal and ethical considerations also warrant attention. The advanced capabilities
of the system, especially in crime scene analysis, could raise questions about the admis-
sibility of generated evidence in legal settings. Hence, the design phase must consider
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existing legislation and regulations, with consultations from legal experts advised to ensure
compliance.

Scalability and modularity are integral design features aimed at making the system
adaptable. However, these very features present challenges in practical implementation.
Rigorous testing is essential to ensure that new components or software updates do not
compromise the system’s overall integrity.

User training and adoption are crucial for the successful deployment of the system.
Comprehensive training programs, adaptable to the varied levels of technological familiar-
ity among law enforcement agencies, should be developed to acclimatize personnel to the
system’s functionalities.

Lastly, the potential for future partnerships and collaborations with government
agencies and academic institutions cannot be overlooked. Such alliances are instrumental
for the system’s ongoing development and refinement, offering additional perspectives,
financial support, and technological expertise.

In summary, while the proposed system promises significant advantages for law
enforcement, these advantages come with a set of complex challenges that must be judi-
ciously addressed. Acknowledging these challenges upfront and designing the system
with adaptability and scalability in mind significantly increases the likelihood of successful
implementation and broader adoption.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/info14110607/s1, Supplementary Materials: S1 Preliminary Forensic
Ontology.
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