
Citation: Skondras, P.; Zotos, N.;

Lagios, D.; Zervas, P.; Giotopoulos,

K.C.; Tzimas, G. Deep Learning

Approaches for Big Data-Driven

Metadata Extraction in Online Job

Postings. Information 2023, 14, 585.

https://doi.org/10.3390/

info14110585

Academic Editor: Haridimos

Kondylakis

Received: 19 September 2023

Revised: 19 October 2023

Accepted: 23 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Deep Learning Approaches for Big Data-Driven Metadata
Extraction in Online Job Postings
Panagiotis Skondras 1,*, Nikos Zotos 2, Dimitris Lagios 1, Panagiotis Zervas 1, Konstantinos C. Giotopoulos 2

and Giannis Tzimas 1

1 Data and Media Laboratory, Department of Electrical and Computer Engineering, University of Peloponnese,
22131 Tripolis, Greece; d.lagios@go.uop.gr (D.L.); p.zervas@uop.gr (P.Z.); tzimas@uop.gr (G.T.)

2 Department of Management Science and Technology, University of Patras, 26334 Patras, Greece;
nzotos@upatras.gr (N.Z.); kgiotop@upatras.gr (K.C.G.)

* Correspondence: eced2024@go.uop.gr

Abstract: This article presents a study on the multi-class classification of job postings using machine
learning algorithms. With the growth of online job platforms, there has been an influx of labor
market data. Machine learning, particularly NLP, is increasingly used to analyze and classify job
postings. However, the effectiveness of these algorithms largely hinges on the quality and volume of
the training data. In our study, we propose a multi-class classification methodology for job postings,
drawing on AI models such as text-davinci-003 and the quantized versions of Falcon 7b (Falcon),
Wizardlm 7B (Wizardlm), and Vicuna 7B (Vicuna) to generate synthetic datasets. These synthetic data
are employed in two use-case scenarios: (a) exclusively as training datasets composed of synthetic
job postings (situations where no real data is available) and (b) as an augmentation method to bolster
underrepresented job title categories. To evaluate our proposed method, we relied on two well-
established approaches: the feedforward neural network (FFNN) and the BERT model. Both the use
cases and training methods were assessed against a genuine job posting dataset to gauge classification
accuracy. Our experiments substantiated the benefits of using synthetic data to enhance job posting
classification. In the first scenario, the models’ performance matched, and occasionally exceeded,
that of the real data. In the second scenario, the augmented classes consistently outperformed
in most instances. This research confirms that AI-generated datasets can enhance the efficacy of
NLP algorithms, especially in the domain of multi-class classification job postings. While data
augmentation can boost model generalization, its impact varies. It is especially beneficial for simpler
models like FNN. BERT, due to its context-aware architecture, also benefits from augmentation but
sees limited improvement. Selecting the right type and amount of augmentation is essential.

Keywords: metadata extraction; online job postings; big data; web crawling; data preprocessing;
ChatGPT; deep learning; embeddings; labor market analysis

1. Introduction

The evolution of the internet has given rise to a plethora of online job portals and
internet-based labor market platforms. This digital transformation has brought about an
era rich in data. However, this vast influx of data brings forth challenges, particularly
in extracting valuable insights due to the ever-changing nature of job postings, which
necessitates daily extraction and continuous monitoring. The further integration of social
networks into recruitment processes adds another layer of complexity to data collection
and analysis. It is vital to understand the significance of accurate job posting classification
in the digital age, as it can influence job seekers, recruiters, and even labor market analysts
to make informed decisions.

Considering these challenges, this article zeroes in on the multi-class classification of
online job postings. Our focus is on data sourced exclusively from dedicated job posting

Information 2023, 14, 585. https://doi.org/10.3390/info14110585 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14110585
https://doi.org/10.3390/info14110585
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-5989-6313
https://doi.org/10.3390/info14110585
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14110585?type=check_update&version=1

Information 2023, 14, 585 2 of 19

portals, excluding social networks, which inherently exhibit the characteristics of big data.
One cannot overemphasize that the success of machine learning algorithms for job posting
classification is intricately tied to the quality and volume of training data. By leveraging
the capabilities of large language models (LLMs) for text generation and understanding,
we can counterbalance the scarcity of annotated data.

Our comprehensive strategy addresses not just the classification problem but also
delves deeply into the intricacies of data extraction and preprocessing, along with the vast
challenges presented by the sheer volume of data. We have developed specialized web
crawlers to adeptly gather job posting data from various online portals. Building on that,
we employ natural language processing (NLP) techniques to ensure data cleaning and
preprocessing, guaranteeing the consistency and quality of the collected data.

Utilizing the advanced capabilities of the OpenAI API [1] and the GPT4All [2] frame-
work, we are positioned to efficiently create high-quality job descriptions paired with
their respective job title annotations. Models like text-davinci-003 [3,4], Falcon [5–7], Vi-
cuna [8], and Wizardlm [9] (used in our approach), when guided by carefully structured
prompts [10–15], produce annotated data for us. This boosts our supervised learning
techniques, guaranteeing the creation of reliable and precise annotated datasets—crucial
for efficient metadata extraction and analysis.

The synthetic datasets we curate are pivotal to our methodology, serving two distinct
purposes: (a) Training in the absence of real data: Here, we address scenarios hampered by
a lack of genuine data. Relying solely on real data can constrict a model’s comprehension
and performance. Our synthetic data, designed to mirror real job postings, serves as an
independent training dataset, enabling model building and training where sourcing gen-
uine data might be challenging. (b) Data augmentation [16–20] for imbalanced categories:
Within datasets, certain categories may be inadequately represented. This can lead to biases
in predictions. Our synthetic data act as a remedy, amplifying these less-represented job
title categories and ensuring a balanced training set, crucial for the development of accurate
and universally applicable models.

Our methodologies are validated via experiments utilizing two different learning
strategies: (a) leveraging USE4 [21] to craft embeddings from the textual data, which subse-
quently serve as input for a feedforward neural network architecture, and (b) deploying a
pretrained BERT [22] model to derive embeddings, which are then fine-tuned.

The previous work section refer to research on job postings using multi-class classi-
fication, especially those studies that use machine learning. In the methodology section,
we delve into the methods, datasets, and preprocessing steps. We also outline the deep
learning structures and training procedures in the data collection and manipulation section.
In the results section, we discuss our experimental findings. The article concludes with a
discussion section on potential future research directions in this field.

2. Previous Work

In recent years, many studies have been made in relation to job postings and how we
may extract useful information or classify them per category. Recommendation systems
have been developed that match resumes with job postings, and extensive analyses have
been made of the texts of the job postings in order to extract skills, education level, and
other useful information.

Nasser I. and Alzaanin A. H. [23] investigated the problem of text classification using
multiple machine learning classifiers such as multinomial naive Bayes, support vector
machines, decision trees, K nearest neighbors, and random forest. The data they used
contained real and fake job postings. Zaroor A. et al. [24] developed the JRC—a job posting
and resume classification system that makes use of an integrated knowledge base for
performing the classification task. The innovation of the system lies in the search for
matching job postings and resumes. Unlike other systems, the JRC matches resumes that
only fall under their relevant occupational categories. The experiments were conducted
using a real-world dataset.

Information 2023, 14, 585 3 of 19

Several methodologies were proposed to address the job posting classification problem.
One of them [25] aims to identify four big dataset job families, recognize homogeneous
groups of big dataset skills (skill sets), and characterize each job family with the appropriate
level of competence required within each big dataset skill set using machine learning
algorithms. The aim of a structured classification of job families and skill sets was to
help establish a common dictionary to be used by HR recruiters and education providers.
Another approach [26] uses a transformer model with zero-shot and few-shot classification
settings, which aims to classify skills through job postings. This study used the European
Skills, Competences, Qualifications, and Occupations (ESCO) taxonomy to obtain fine-
grained classes for skills, and its target was the Danish labor market. Goindani M. et al. [27],
in their study, developed a system that classifies the industry of an employer using job
posting data and corrects possible errors in the former classifications. They used two
models for classification: support vector machines (SVMs) and gradient-boosted decision
trees (GBDTs). They observed that while both models perform similarly in classifying
job employers, GBDT is more effective than SVM in identifying job employers that were
wrongly computed. Varelas G. et al. [28] also used SVM, random forests, KNN, SGD
(stochastic gradient descent), and MLP neural network classifiers as voting algorithms for
the classification of job postings according to the ISCO Occupation Codes.

Although these approaches hold promise for improving classification accuracy, new
models and algorithms were developed. Nevertheless, among others, one of the main
challenges that remains is obtaining large and annotated datasets. Moreover, careful
evaluation is necessary to prevent biases toward specific job postings. The development of
effective strategies for collecting and annotating high-quality data is critical to facilitating
the development of accurate and unbiased models for the multi-class classification of
job postings.

3. Methodology
3.1. Overview

Our adopted methodology consists of the following steps: We initiated the process
with the collection of job posting data from online sources. This involved crawling websites
to gather raw data, preprocessing these data to make them consistent and clean, and finally
shaping the data into a standard comma-separated value format for easier handling and
analysis. Subsequently, we leveraged large language models to create synthetic job postings.
For this purpose, we utilized tools such as the OpenAI API and the GPT4All framework,
which are known for their text-generation capabilities.

The next phase focused on forming training data tailored for two specific use cases,
using synthetic data for (a) training in the absence of real data and (b) augmentation of
imbalanced categories. With the data in place, we moved on to the implementation of the
training process. Here, two distinct approaches were employed: the first combined USE4
embeddings with a feedforward neural network (FFNN) architecture, while the second
approach focused on using BERT embeddings and fine-tuning the BERT model for our
specific task. The implementation leveraged Hugging Face’s transformers library [29].

To ensure the robustness of our models, we defined an experimental procedure that
would guide our evaluation phase. Lastly, we determined specific metrics that would
be used to gauge the performance of our models, ensuring accuracy, reliability, and rele-
vance to our research goals. These steps are depicted in Figure 1 and are analyzed in the
next subsections.

Information 2023, 14, 585 4 of 19
Information 2023, 14, x 4 of 20

(a)

(b)

Figure 1. (a) Data collection, preprocessing, and dataset creation pipeline; (b) embedding genera-

tion, training, and evaluation pipeline.

3.2. Data Collection from Online Sources and Preprocessing

The process followed for the creation of the real job posting dataset is shown in Figure

2.

Figure 2. An overview of the creation procedure of the real job posting dataset.

Online Sources: As depicted in Figure 1a, the real job posting (RJP) dataset comprises

job postings collected exclusively from job advertisement sites. These sites serve as trusted

resources for gaining insights into the dynamics of the labor market. They encompass

Figure 1. (a) Data collection, preprocessing, and dataset creation pipeline; (b) embedding generation,
training, and evaluation pipeline.

3.2. Data Collection from Online Sources and Preprocessing

The process followed for the creation of the real job posting dataset is shown in
Figure 2.

Information 2023, 14, x 4 of 20

(a)

(b)

Figure 1. (a) Data collection, preprocessing, and dataset creation pipeline; (b) embedding genera-

tion, training, and evaluation pipeline.

3.2. Data Collection from Online Sources and Preprocessing

The process followed for the creation of the real job posting dataset is shown in Figure

2.

Figure 2. An overview of the creation procedure of the real job posting dataset.

Online Sources: As depicted in Figure 1a, the real job posting (RJP) dataset comprises

job postings collected exclusively from job advertisement sites. These sites serve as trusted

resources for gaining insights into the dynamics of the labor market. They encompass

Figure 2. An overview of the creation procedure of the real job posting dataset.

Online Sources: As depicted in Figure 1a, the real job posting (RJP) dataset comprises
job postings collected exclusively from job advertisement sites. These sites serve as trusted

Information 2023, 14, 585 5 of 19

resources for gaining insights into the dynamics of the labor market. They encompass vari-
ous industries and job categories, allowing for an in-depth understanding of labor market
patterns, skill requirements, and other key factors influencing employment. Crawling data
from job postings during the 2020 time period revealed potential biases stemming from the
disproportionate impact of the COVID-19 pandemic on certain industries. This resulted in
an underrepresentation of specific job sectors in our dataset.

Data Download and Text Extraction: For the data download task, we employed
advanced web crawling techniques, utilizing tools such as Scrapy [30], Requests [31],
and Beautiful Soup [32] in the Python language. The web crawling process involved
automatically traversing websites dedicated to job postings and navigating the intricate
network structure of these platforms to pinpoint and extract relevant job postings. Using
Beautiful Soup, we also extracted plain text from HTML structured data, ensuring that only
pertinent content was retained.

Text Reformatting and Cleaning: Throughout our data collection and processing,
emphasis was placed on maintaining the consistency and accuracy of the data. This
phase involved:

Correcting typographical errors.
Removing duplicate records.
Stripping special characters like &NBSP (HTML element), \r, and _.
Managing empty lines within a text block.
Using regular expressions to identify and exclude URLs embedded in job descriptions.
Deleting site-specific prefix keywords (e.g., ‘Job Description’).

Such procedures were critically implemented to ensure a dataset that is both represen-
tative and free from noise or inaccuracies.

Normalization: A significant aspect of our data treatment was the standardization
of job postings’ locations and educational qualifications. Preliminary analysis revealed
that different job advertisement platforms often had inconsistent naming conventions. We
addressed this by:

Constructing detailed inventories for geographical names linked to companies and
ensuring unified location representations.

Creating mappings for educational titles, recognizing that the same qualifications
might be described differently across job boards.

Indexing: Using a MariaDB [33] database, we designed a schema with two main
columns: “key” and “value”. The “key” column recorded the original descriptor from job
postings, while the “value” column logged its standardized equivalent. This indexing was
carried out using a blend of automated algorithms and periodic manual verifications.

3.3. Utilization of LLMs for Job Postings Generation

In the pursuit of generating high-quality synthetic job postings, we employed both the
OpenAI API and the GPT4All framework. OpenAI’s API provides a robust environment
for text generation. Conversely, the GPT4All framework, with its diverse model portfolio,
brings forth adaptability suitable for various computational setups. From the OpenAI
repertoire, we chose ‘text-davinci-003′ owing to its proven efficacy in generating contex-
tually appropriate and coherent content. Within the GPT4All framework, we specifically
chose the Falcon, Vicuna, and Wizard models. Their reduced parameter count allows
them to operate on consumer-level PCs with GPUs. By leveraging this combination, we
aimed to achieve a wide variety in our job posting responses, striving to be on par with the
text-davinci-003 model.

Our methodological approach was firmly rooted in the creation of dynamic queries
meticulously tailored for the selected LLMs. A crucial facet of our strategy revolved
around the intricate tuning of model parameters. Beyond the standard considerations
like token limits, we delved deep into parameters [34,35], such as temperature and top_p,
which play pivotal roles in influencing the randomness and diversity of text generation,

Information 2023, 14, 585 6 of 19

respectively. By adjusting the temperature, we were able to modulate the balance between
randomness and determinism in the generated content. Simultaneously, fine-tuning the
top_p parameter allowed us to control the diversity, ensuring that the generated postings
were neither too generic nor too niche. In our final implementation, we opted for a token
count representative of conventional job postings, maintaining an average of 350 tokens.

The depth of our prompts encompassed a vast spectrum of job titles and their
corresponding synonyms and spanned a range of educational backgrounds and work
experiences. Combinations of educational levels, English proficiency, and styles that
were incongruous with the job title (e.g., a lawyer with a high school degree) were either
proactively prohibited by the LLMs, which issued specific warning messages, or were
selectively excluded during the manual annotation phase (addressed in the data cleaning
step shown in Figure 1a). This meticulous attention to detail ensured our synthetic outputs
were congruent with real-world job postings, all while maintaining strict adherence to
predetermined criteria.

Measuring Similarity of Job Postings

To thoroughly understand the content and variety of job postings within each dataset
and draw meaningful comparisons, we employed the following methodological approach.
Initially, we converted the textual content of job descriptions into numerical vectors through
the utilization of term frequency-inverse document frequency (TF-IDF) vectorization [36].
This approach serves to quantify the significance of each term within a given job description
relative to the entirety of the dataset. To measure the similarity between these vectorized
descriptions, we leveraged the cosine similarity metric [37]. To facilitate a more intuitive
grasp of the similarity scores between job descriptions, we present our findings through
the utilization of a heatmap visualization. This graphical representation employs color
gradients to convey the extent of similarity between pairs of job descriptions. To make the
visual representation more understandable and organized, we arranged the order such
that similar jobs are positioned next to each other. Thus, clusters of job titles with similar
characteristics were visually juxtaposed, rendering the inherent relationships and patterns
more readily discernible.

Real job postings (RJPs): As regards real job posting data, the heatmap clearly shows
that job postings with identical titles exude a high degree of similarity. This reflection of
consistency underlines the standardized nature of how certain roles are described across
different platforms or sources. At the same time, the heatmap highlighted areas where
distinct job titles shared substantial content overlap. Such patterns could hint at roles that
share common domains, responsibilities, or skills. Conversely, there were job titles that
distinctly stood apart, emphasizing the specialized or niche nature of certain roles.

ChatGPT job postings (davinci-003): In the dataset generated by the text-davinci-003
model, job descriptions corresponding to identical titles demonstrated a high degree of
intra-category homogeneity, showcasing the model’s proficiency in maintaining content
consistency for defined roles. However, inter-category overlaps were observed, indicating
the model’s perception of shared responsibilities across distinct roles. Specific descriptions
also manifested as outliers, representing niche or specialized roles, further underscoring
the model’s granularity in content generation. Given the observed consistency and diver-
sity in the synthesized dataset, it is inferred that the model accurately captures both the
overarching and detailed nuances of the professional landscape.

GPT4All models job postings (FVW): In this case, our findings also revealed that
AI-generated job descriptions bearing the same title show strong similarity, affirming the
model’s adeptness in generating consistent content for specific roles. Yet, intertwined
within this consistency were regions where different job titles converged, hinting at the
model’s perception of roles with intertwined responsibilities or overlapping domains. These
confluences offer a glimpse into the model’s synthesized understanding of the complex
world of professions. In contrast, there were descriptions that maintained their distinct
identity, emphasizing roles that the model discerned as specialized or uniquely positioned.

Information 2023, 14, 585 7 of 19

The analysis reveals that advanced AI models, like text-davinci-003, exhibit a com-
mendable capability to replicate the intricate details and themes present in genuine job
descriptions. Thus, it is evident that the AI-generated data present a potential asset for clas-
sifier training, promising a comprehensive dataset that encompasses both general themes
and specific job role intricacies. The subsequent figures present the job posting similarities
in the constructed datasets. Figure 3 presents job posting similarity for the RJP dataset.

Information 2023, 14, x 7 of 20

distinct identity, emphasizing roles that the model discerned as specialized or uniquely

positioned.

The analysis reveals that advanced AI models, like text-davinci-003, exhibit a com-

mendable capability to replicate the intricate details and themes present in genuine job

descriptions. Thus, it is evident that the AI-generated data present a potential asset for

classifier training, promising a comprehensive dataset that encompasses both general

themes and specific job role intricacies. The subsequent figures present the job posting

similarities in the constructed datasets. Figure 3 presents job posting similarity for the RJP

dataset.

Figure 3. Similarity of job postings in the RJP dataset.

As shown in Figure 3, despite the varied nature of different job roles (e.g., cooks and

doctors, lifeguards, and marketing), an average similarity score of approximately 0.2 is

observed across job postings, suggesting overlapping language usage. This overlap might

stem from the predominance of generic content in postings, with only a minor emphasis

on specific job skills, resulting in a foundational similarity even among unrelated profes-

sions.

Within the dataset generated by the text-davinci-003 model, we observed a notable

level of internal consistency among job descriptions associated with the same job titles.

This observation underscores the model’s competence in ensuring content coherence for

specific roles. However, we also noted instances of cross-category convergence, suggest-

ing that the model recognizes shared responsibilities among distinct job positions. Figure

4 presents the similarities of job postings in the davinci-003 dataset.

Figure 3. Similarity of job postings in the RJP dataset.

As shown in Figure 3, despite the varied nature of different job roles (e.g., cooks and
doctors, lifeguards, and marketing), an average similarity score of approximately 0.2 is
observed across job postings, suggesting overlapping language usage. This overlap might
stem from the predominance of generic content in postings, with only a minor emphasis on
specific job skills, resulting in a foundational similarity even among unrelated professions.

Within the dataset generated by the text-davinci-003 model, we observed a notable
level of internal consistency among job descriptions associated with the same job titles.
This observation underscores the model’s competence in ensuring content coherence for
specific roles. However, we also noted instances of cross-category convergence, suggesting
that the model recognizes shared responsibilities among distinct job positions. Figure 4
presents the similarities of job postings in the davinci-003 dataset.

The generated FWV dataset also presented consistency among job descriptions associ-
ated with the same job titles and high similarities in job postings, particularly in occupations
such as systems engineer, software architect, and application developer. The similarity
matrix for the FWV dataset is presented in Figure 5.

Information 2023, 14, 585 8 of 19Information 2023, 14, x 8 of 20

Figure 4. Similarity of job postings in the davinci-003 dataset.

The generated FWV dataset also presented consistency among job descriptions asso-

ciated with the same job titles and high similarities in job postings, particularly in occu-

pations such as systems engineer, software architect, and application developer. The sim-

ilarity matrix for the FWV dataset is presented in Figure 5.

Figure 4. Similarity of job postings in the davinci-003 dataset.
Information 2023, 14, x 9 of 20

Figure 5. Similarity of job postings in the FVW dataset.

3.4. Training Dataset Creation and Use Cases

To balance out the absence of annotated data for performing the multi-class classifi-

cation task, four datasets were created,

o one dataset with real-world data from online sources (RJP),

o two synthetic datasets from the OpenAI API (davinci-003) and the GPT4All frame-

work models Falcon, Vicuna, and Wizardlm (FVW),

o an augmented dataset (augmented), which is a composition of instances from

davinci-003 for augmenting underrepresented classes, and 60% of the RJP dataset

(‘davinci-003’ was selected due to its diverse and linguistically rich responses, result-

ing in a higher quality of augmentation). This augmented dataset was then combined

with the RJP_train (60% of the original RJP dataset),

o RJP_evaluation dataset (evaluation) derived from the remaining data of the RJP da-

taset (approximately 40%). To ensure both a substantial training set and a robust

evaluation, we allocated 60% of the data for training and 40% for evaluation. The

selection of instances for each subset was conducted randomly, ensuring against a

biased distribution or the exclusion of difficult-to-learn/classify instances.

The dataset details are tabulated in Table 1.

Figure 5. Similarity of job postings in the FVW dataset.

Information 2023, 14, 585 9 of 19

3.4. Training Dataset Creation and Use Cases

To balance out the absence of annotated data for performing the multi-class classifica-
tion task, four datasets were created,

one dataset with real-world data from online sources (RJP),
two synthetic datasets from the OpenAI API (davinci-003) and the GPT4All framework

models Falcon, Vicuna, and Wizardlm (FVW),
an augmented dataset (augmented), which is a composition of instances from davinci-

003 for augmenting underrepresented classes, and 60% of the RJP dataset (‘davinci-003’
was selected due to its diverse and linguistically rich responses, resulting in a higher
quality of augmentation). This augmented dataset was then combined with the
RJP_train (60% of the original RJP dataset),

RJP_evaluation dataset (evaluation) derived from the remaining data of the RJP
dataset (approximately 40%). To ensure both a substantial training set and a robust
evaluation, we allocated 60% of the data for training and 40% for evaluation. The
selection of instances for each subset was conducted randomly, ensuring against a
biased distribution or the exclusion of difficult-to-learn/classify instances.

The dataset details are tabulated in Table 1.

Table 1. Detailed job posting numbers are represented per job title.

Job Category RJP FVW Davinci-003 Augmented RJP_
Evaluation

Lawyers 367 153 250 275 147
Trainee lawyers 42 150 150 175 32

Teachers 499 155 150 299 200
Human resources 498 155 150 299 199

Marketing 497 255 250 298 199
Customer support—sales 495 268 250 297 198

Retail services 495 155 150 297 198
Cook 500 205 200 300 200

Logistics 494 154 150 296 198
Financial services 492 219 200 295 197

Civil engineers 484 160 150 290 194
Receptionist 65 170 232 271 44

Hotel manager 68 170 232 272 58
Barman 67 170 232 271 28

Lifeguard 64 160 160 198 26
Restaurant manager 67 180 232 272 25

Chambermaid 67 180 232 270 63
Landscaping—workers 471 189 150 283 188

Technicians 469 255 250 281 188
Systems engineer 47 170 252 280 19

Web developer 27 170 250 266 21
Software architect 31 170 262 280 13

Front end developer 163 180 179 280 62
Application aeveloper 122 182 210 280 52

Pharmacist 64 169 242 280 26
Doctor 47 186 252 280 19
Nurse 65 183 180 219 26

Spa Therapist 84 191 230 280 34
Total 6851 5104 5827 7684 2854

Table 1 presents all classes (28) contained in each dataset. Some classes act as a superset
(parent) of similar or specialized types of jobs (children). For example, the class Cooks
contains job postings that refer to Cook A, Cook B, and Baker. Table 2 presents the classes
that embody similar or specialized types of jobs.

Information 2023, 14, 585 10 of 19

Table 2. The distribution of types of jobs per class.

Job Category/Class Similar/Specialized Type of Job

Human resources HR Generalist, HR Assistant, HR Specialist, HR Payroll Officer, Junior HR Assistant, and
HR Business Partner

Civil Engineer Civil Engineer, Building Architect, Mechanical Technician, Natural Resources Engineer
Cooks A’ Cook, B’ Cook, Chef, Baker, Sous Chef, Buffet/Bar, and Pastry Chef

Customer support—sales
Customer Support, Customer Service Supporter, Sales Executive, Commercial Representative,
Customer Experience Specialist, E-commerce Site Specialist, Customer Service Supporter, and

Customer Service Agent

Financial services
Economist, Accounting Officer, Accountant, Financial Advisor, Investment Advisor,

Portfolio Manager, Financial Services Risk Management Advisor, Financial Services Consultant,
Financial Analyst, Auditor, Credit Manager, and Financial Manager

Landscaping—workers Agro Coordinator, Agronomist, Gardener, Market Development Agronomist, Landscape
Environmental Manager, and Landscape Engineer

Logistics Warehouse Worker, Warehouse Driver, Warehouse Officer, Warehouse Assistant, and
Warehouse Staff

Marketing Sales and Marketing, Marketing Executive, Marketing Officer, Digital Marketing,
Marketing Manager, Performance Marketing Specialist, and Marketing Associate

Retail Services Cashier, Store Manager, Food Delivery Driver, and Store Administrator

Software Engineer Systems Engineer, Web Developer, Software Architect, Front end Developer, and
Application Developer

Teachers English Teacher, Italian Teacher, Spanish Teacher, German Teacher, French Teacher,
Russian Teacher, and Arabic Teacher

Technicians Plumber, Electrician, Refrigeration engineer, Ironworker, Bicycle technician, Bodyworker Car
painter, and Cabinet maker

In the following paragraphs, we will give a description of the use cases.
Use Case 1—Training in the Absence of Real Data: In scenarios devoid of real data,

synthetic data, birthed from AI models [38–43], emerges as an invaluable alternative. For
the training in use Case 1, we utilized the davinci-003 and the FVW datasets. Both datasets
were composed of the same classes as the RJP dataset, with a comparable number of
instances for each class (Table 1). The performance of the models was compared with that
of models trained with real data (the RJP dataset).

Use Case 2—Augmentation of Imbalanced Categories: In situations marked by an
underrepresentation of specific job categories, augmentation becomes a crucial corrective
measure. This approach guarantees a more balanced dataset, ensuring equal representation
of all classes our model aims to classify, thereby preventing overfitting to any class. To
train the classification model for use in Case 2, we employed an augmented version of the
RJP dataset section that was originally used for training in the reference experiments. In
specific, once we identified the classes that were not adequately represented, we augmented
them by adding instances from the davinci-003 dataset, resulting in the augmented dataset
(Table 1).

3.5. Models Architecture and Training

In this subsection, we delve into the intricacies of our methodology for training a
state-of-the-art text classifier. Our approach embraces two distinct but powerful techniques:
the first leverages the USE4 embeddings that serve as the input to a feedforward neural
network (FFNN), embodying a synthesis of traditional and modern representations. The
second employs BERT, utilizing its embeddings not merely as input but to fine-tune the
entire BERT architecture for our specific task.

FFNN model: We have meticulously crafted and trained a feedforward neural network
tailored to the demands of a multi-class classification assignment. The utilized architecture
includes an input layer with 512 units, reflecting the model’s anticipation of input data
with 512 features, similar to those provided by the USE4 methodology. Further, we have
introduced a hidden layer featuring 256 units coupled with the ReLU (Rectified Linear

Information 2023, 14, 585 11 of 19

Unit) activation function. This robust design choice enhances the network’s capacity for
capturing complex patterns within the data.

For the critical output layer, we have employed the softmax activation function,
aligning with established best practices for multi-class classification tasks. The number of
units in this layer corresponds to the previously calculated unique class count (28), ensuring
comprehensive coverage of class predictions.

Our model instantiation was executed through the tf.keras.Model function, where we
thoughtfully defined the input and output layers, establishing a coherent neural network
architecture. The optimization strategy we employed is Adadelta, with a learning rate of
0.15 and a rho value of 0.95. These parameter values were thoughtfully chosen to balance
the model’s capacity for rapid convergence and effective minimization of loss.

To initiate the training process, we thoughtfully compiled the model, selecting
‘sparse_categorical_crossentropy’ as the loss function, a well-suited choice for multi-class
classification. Additionally, we specified the earlier-established optimizer, and as an es-
sential measure of performance, we designated ‘accuracy’ as the primary metric to be
meticulously monitored.

The training procedure was initiated using a dataset as training data, accompanied
by the corresponding class labels. Additionally, a validation dataset was thoughtfully
provided to assess the model’s performance on unseen data. Over the course of training,
the model underwent 37 epochs, and each epoch’s learning updates were processed with
a modest batch size of 32, ensuring efficient utilization of computational resources and
steady convergence. This rigorous training protocol allowed our model to reach its optimal
performance potential.

A confusion matrix is constructed based on the predicted and true labels, and a
function is used to visualize this matrix. The confusion matrix is also converted into an
Excel spreadsheet for further analysis. A classification report is generated to summarize
model performance by class, including metrics such as precision, recall, and F1-score.

BERT model: The implementation of building and training a BERT-based model
(“BERT-base-uncased”) for the multi-class classification task leveraged the Hugging Face’s
transformers library [29]. Data Splitting: We split the training data into training and
evaluation datasets. This division helps assess the model’s performance on unseen data.
For testing, we employed 10% of the dataset as test size, ensuring that the data are ran-
domly partitioned while maintaining class distribution balance. Tokenizer and Model: The
tokenizer, obtained from the “BERT-base-uncased” pretrained model, is responsible for
processing text input. The model, also pretrained on “BERT-base-uncased”, is tailored for
sequence classification and has a number of labels equal to the count of unique class labels
(28) in the training data. This architecture is particularly well-suited for text classification
tasks [44]. Data Preparation: For training and evaluation, we created two datasets, one for
training and one for evaluation. These datasets include text inputs and their corresponding
category labels (28), which are encoded as numerical values. The tokenizer is applied
to tokenize and preprocess the text data, and a maximum sequence length of 256 tokens
is imposed. Training Arguments Method: The training arguments, which were defined
using a specific crafted method, included settings such as the output directory for model
checkpoints. The batch sizes for training were eight, and for evaluation, they were also
eight; the number of training epochs was three, and logging parameters were specified.
We used the option GPU (no_cuda) to load the best model at the end of training. Trainer
Configuration: The trainer is configured with the training arguments method and the pre-
pared training and evaluation datasets. This setup streamlines the training and evaluation
process. Training and Evaluation: We utilized the training using the train() method and
evaluated the model’s performance on the evaluation dataset using the evaluate() method.
The results were stored for later analysis. Predictions on Test Data: The model is applied
to predict categories (28) on a separate test dataset. Predicted labels and true labels are
extracted, and the accuracy of the model’s predictions is calculated using the method of
accuracy score. Confusion Matrix and Visualization: A confusion matrix is constructed

Information 2023, 14, 585 12 of 19

based on the predicted and true labels, and a function is used to visualize this matrix. The
confusion matrix is also converted into an Excel spreadsheet for further analysis. Metrics
Report: A classification report is generated to summarize model performance by class,
including metrics such as precision, recall, and F1-score.

The constructed model provides a comprehensive and systematic approach to training
a BERT-based text classification model, evaluating its performance, and analyzing the
results. The returned values include accuracy, a confusion matrix, and a metrics report for
further insights into the model’s classification performance.

Opting for a setup that employs both USE4 embeddings with a feedforward neural
network and BERT embeddings for fine-tuning BERT is a strategic decision rooted in
achieving a well-rounded analysis. The combination offers a chance to compare traditional
methods with cutting-edge models, establish a foundational benchmark with the FFNN,
and then gauge the incremental advantages of the more intricate BERT. Both USE4 and
BERT embeddings are powerful in their own right, capturing diverse linguistic nuances;
the former offers a broad semantic understanding, while the latter provides context-rich
representations. BERT’s design facilitates tailoring to specific tasks, leveraging both its
pre-trained linguistic knowledge and the specifics of the current task through fine-tuning.
By diversifying the approach, there’s an inherent risk mitigation—if one method encoun-
ters challenges, the other might excel. Overall, this dual methodology fosters a deeper,
more holistic grasp of text classification strategies, balancing both depth and breadth
of understanding.

3.6. Metrics

For the evaluation of our trained models, we adopted the following metrics:
Total Accuracy: This is a foundational metric that calculates the proportion of all

correctly predicted instances out of the total instances. It provides an aggregate measure of
the model’s performance, offering a general sense of its reliability.

Macro average: It calculates the metric for each class independently and then averages
the results, treating all classes equally. Macro-averaging is useful for addressing class
imbalances by giving equal weight to each class in evaluation.

Per Class Precision, Recall, and F-measure: While total accuracy offers an overview, it
is crucial to assess the model’s performance for individual classes, especially in imbalanced
datasets. Precision measures the fraction of correctly predicted instances of a class against
all instances that were predicted for that class. It provides insights into the model’s
ability to correctly identify positive cases. Recall (or sensitivity) assesses the fraction
of correctly predicted instances of a class against all actual instances of that class. It
showcases the model’s ability to capture all potential positive cases. F-measure (or F1-score)
is the harmonic mean of precision and recall, providing a balance between the two. It is
particularly useful when there’s a need to consider both false positives and false negatives.

4. Results

Within the scope of this study, we directed our attention to the examination and
assessment of two distinct use cases defined in Section 3.4. Table 3 displays the total
accuracy and micro-average metrics, which treat each class equally important, achieved
by both the FFNN and BERT learning approaches for each training set. The “Use cases”
column defines the purpose of each experiment, with “Ref” denoting the experiments used
as reference points for comparison in Use Cases 1 and 2.

Information 2023, 14, 585 13 of 19

Table 3. Overall experiments with the prediction accuracy in each case.

Experiments Use
Cases Model Training

Dataset
Evaluation

Dataset Accuracy Macro Avg

1 Ref FFNN RJP_train RJP_evaluation 0.84 0.62
2 Ref BERT RJP_train RJP_evaluation 0.96 0.91
3 1 FFNN davinci-003 RJP_evaluation 0.73 0.66
4 1 FFNN FVW RJP_evaluation 0.73 0.65
5 1 BERT davinci-003 RJP_evaluation 0.86 0.79
6 1 BERT FVW RJP_evaluation 0.84 0.77
7 2 FFNN Augmented RJP_evaluation 0.89 0.83
8 2 BERT Augmented RJP_evaluation 0.97 0.94

The reference experiments, which utilized the RJP_train dataset, revealed a discernible
difference in the performances of the two models. BERT demonstrated remarkable accuracy,
registering at 0.96 and a macro average of 0.91, notably outperforming FFNN, which
achieved scores of 0.84 and 0.62, respectively.

In the experiments labeled as Use Case 1, we employed two distinct training datasets:
“davinci-003” and “FVW”. Notably, FFNN’s performance remained relatively consistent
across these datasets, posting accuracies of 0.73 for both and macro averages of 0.66 and
0.65, respectively. In contrast, BERT showcased nuanced variations in its performance.
Using the “davinci-003” dataset, it achieved an accuracy of 0.86 and a macro average of
0.79. Yet, when trained on the “FVW” dataset, a slight decline was evident, with the model
registering an accuracy of 0.84 and a macro average of 0.77.

Our experiments for Use Case 2 highlighted the effectiveness of data augmentation.
Both models, when trained on the augmented dataset, exhibited enhanced performance
metrics. FFNN posted an accuracy of 0.89 and a macro average of 0.83. Concurrently, BERT
achieved an accuracy of 0.97 and a macro average of 0.94, compared to the results of FFNN.

In summation, our results emphatically underscore BERT’s superior performance over
FFNN across a variety of training datasets. Furthermore, the tangible benefits of enhancing
datasets with synthetic data augmentation were prominently observed, emphasizing its
value as a best practice and highlighting its potential to shape future research and experi-
mentation. In the subsequent subsections, we will delve into the per-class performance for
each experiment.

4.1. Use Case 1 per Class Results

For Use Case 1, we evaluated the performance of FNN and BERT methods on three
datasets: the RJP dataset, davinci-003 dataset, and the FVW dataset. Table 4 presents
the average performance metrics, offering a comparison between these methods in a
per-class manner.

Table 4. Model performance for the use of Case 1.

Dataset Approach Precision Recall F1-Score

RJP FFNN 0.6546 0.6329 0.6161
RJP BERT 0.9050 0.9111 0.9068

davinci-003 FFNN 0.6832 0.6889 0.6621
davinci-003 BERT 0.8861 0.7771 0.7886

FVW FFNN 0.6886 0.6607 0.6546
FVW BERT 0.8179 0.7700 0.7725

In the RJP dataset, BERT achieved a precision of 0.9050, outperforming FNN’s 0.6546.
BERT also recorded a recall of 0.9111, higher than FNN’s 0.6329, resulting in an F1-score
of 0.9068 for BERT and 0.6161 for FNN. However, on the synthetic datasets (davinci-
003 and FVW), BERT’s metrics displayed a decline compared to their performance on

Information 2023, 14, 585 14 of 19

the RJP dataset. FNN’s performance remained relatively stable across all datasets. This
consistency might be attributed to the evaluation dataset’s origin being similar to the RJP
data, potentially introducing bias that can influence model performance evaluation. We
further analyzed individual categories to study the model’s response to sparse true dataset
instances when trained on synthetic data.

Our next steps involve examining specific classes with pronounced performance differ-
ences between synthetic and real data. We will emphasize the F1 score as a balanced metric.
For the davinci-003 dataset, roles like “software architect” and “trainee-junior lawyer” per-
formed better on synthetic than real data. In contrast, roles such as “chambermaid”, “cook”,
and “hotel manager”, among others, favored real data. A similar pattern was observed
with the FVW synthetic dataset, notably with “trainee-junior lawyer” performing well on
synthetic data, while roles like “application developer”, “barman”, and “chambermaid”
preferred real data. The results are illustrated in Figures 6 and 7.

Figure 6. FFNN overall F1—score results for use Case 1.

Figure 7. BERT overall F1—score results for use Case 1.

Information 2023, 14, 585 15 of 19

Figures 6 and 7 present a graphical comparison of F1 scores across various classes for
the three datasets. From these figures, several observations can be made. Some classes,
like “software architect” and “trainee-junior lawyer”, show consistent performance across
both real and synthetic datasets. However, there is a wide variance in performance among
different classes. While some classes perform better with real data, others have comparable
or even better F1 scores with synthetic data. On the whole, real data tend to yield better
results, especially with the BERT method, whereas FNN’s results are more comparable
between dataset types. On a class-by-class basis, the effectiveness of synthetic data is not
uniform, suggesting that certain classes might benefit from more genuine data or improved
dataset generation techniques.

These observations highlight the potential of synthetic data for specific job roles
and underscore the need for further research into advanced synthetic dataset generation
methods. The possibility of augmenting real dataset classes with synthetic samples to
enhance performance is also suggested. This discussion sets the stage for our exploration
of Use Case 2 in the subsequent section.

4.2. Use Case 2 per Class Results

As explained in Section 3.4, Use Case 2 involves experiments focused on evaluating the
use of synthetic data to augment underrepresented categories of job titles. In pursuit of this
objective, we assess the augmented dataset (refer to Section 3.4) using experiments 1 and 2
as references. The dataset-level average performance metrics, Table 5, reveal interesting
insights into the comparative performance of these approaches.

Table 5. Model performance for use Case 2.

Dataset Approach Precision Recall F1-Score

RJP FFNN 0.6546 0.633 0.6160
RJP BERT 0.9050 0.9111 0.9068

Augmented FFNN 0.8625 0.8207 0.8279
Augmented BERT 0.9411 0.9504 0.9432

In the following Figures 8 and 9, the results of the F1-score are presented for use in
Case 2 for the FFNN and BERT models.

Figure 8. FFNN overall F1—score results for use Case 2.

Information 2023, 14, 585 16 of 19

Figure 9. BERT overall F1—score results for use Case 2.

In the RJP dataset, BERT generally exhibits better performance than FNN based
on precision, recall, and F1-score metrics. Both models achieve high scores for classes
like “civil engineer”, “customer support—sales”, and “teachers”. However, both models
underperform in the “trainee-junior lawyer” class. At the same time, many classes show
strong results; a few, such as “hotel manager” and “software architect”, exhibit varied
performance. Overall, BERT seems more effective for this dataset, but there are areas of
potential enhancement.

BERT consistently achieves higher performance than FNN across the majority of the
classes, particularly in precision. Several classes have BERT achieving perfect or near-
perfect scores in precision, recall, and F1-score. FNN, while generally lagging behind BERT,
also showcases strong results in many classes. However, there are noticeable weak points:
for certain classes, FNN’s precision dips as low as 0.57, and its recall even further to 0.36.
On the other hand, BERT’s lowest precision and recall scores are 0.60 and 0.75, respectively.
One significant observation is a class where FNN’s recall is notably lower at 0.36, yet BERT
achieves a perfect score of 1. Overall, while both models display commendable performance
in various categories, BERT emerges as the more robust choice for the augmented dataset,
though there remain specific areas where both models could see improvement.

Upon comparing the results from the RJP dataset and the augmented dataset, we
observe several prominent trends. Firstly, BERT consistently outperforms FNN in both
datasets, yet the margin of superiority is more pronounced in the augmented dataset.
This suggests that the complexity and diversity introduced by data augmentation further
accentuate the strengths of the BERT model.

In the RJP dataset, certain classes that had mediocre performance with FNN witnessed
a marked improvement in the augmented dataset. This indicates that the augmentation
process could potentially introduce more varied representations of those classes, aiding
FNN in its generalization capability. BERT, being inherently more capable of understanding
context due to its architecture, also benefits from this, but to a lesser extent, as it already
achieved near-optimal results in the RJP dataset.

However, not all classes benefited uniformly. There were instances where performance
metrics for both FNN and BERT either remained unchanged or slightly decreased in the
augmented dataset. This could be due to the introduction of noisy or mislabeled data
during augmentation. Over-augmentation can sometimes introduce artifacts or irrelevant
variations that can confuse the models, especially the simpler ones like FNN.

Information 2023, 14, 585 17 of 19

Furthermore, we noted that in the augmented dataset, the gap between the best-
performing and worst-performing classes in terms of F1-score has narrowed down for
FNN, suggesting a more uniform performance. BERT, on the other hand, maintains its
superiority across the board, but some classes did not witness a substantial boost, potentially
indicating that BERT had already learned a near-optimal representation for those classes in
the original RJP dataset.

In conclusion, data augmentation, as reflected in the results on the augmented dataset,
generally aids in model generalization and performance, especially for models with simpler
architectures like FNN (Table 3). However, augmentation is not a guaranteed solution;
careful consideration must be given to the type and amount of augmentation applied to
ensure that it genuinely aids the learning process. BERT’s consistent performance across
both datasets highlights its suitability for such classification tasks.

5. Discussion

In our study on the effectiveness of augmented data for job postings with multi-class
classification, we found that blending real job postings with AI-generated data enhanced the
performance of both the FFNN and BERT models, especially in the case of underrepresented
classes. This augmentation not only expanded the training sample size but also enriched
the model’s domain understanding with diverse linguistic patterns. When paired with
the davinci-003 dataset, BERT consistently displayed superior accuracy, while FFNN also
performed well, though with some limitations in certain occupation classes.

Our results underscore the potential of integrating augmented data for broader labor
market analyses, such as predicting skill requirements, estimating salaries, and analyzing
employment trends. Augmented datasets, with their richness and diversity, provide a
robust foundation for addressing these complex tasks. Furthermore, this methodology’s
potential could extend to other sectors, such as healthcare, social media text classification,
or spam detection. Leveraging augmented data can enhance models’ understanding of
varied linguistic patterns, potentially improving classification accuracy, especially with
limited data.

Our exploration of large language models (LLMs), including text-davinci-003, Falcon,
Vicuna, and Wizard, provided significant insights. By adjusting model parameters like
temperature and top_p, we were able to obtain contextually appropriate outputs. Integral to
this process was prompt engineering, which played a crucial role in ensuring the generation
of relevant, high-quality synthetic data. The importance of this approach becomes even
more evident when considering the need for AI models to adhere to ethical and operational
parameters, especially when maintaining unbiased data.

However, blending real-world and synthetic data introduces challenges, chiefly in
maintaining data quality and consistency. Balancing synthetic diversity without losing
domain-specific nuances is crucial. Moreover, training models on combined datasets em-
phasizes the need for these models to generalize across diverse sources. As AI’s role
expands in areas like content recommendation and hiring, it is vital to address potential
biases for both operational (e.g., an algorithm might overlook qualified candidates due to in-
accurate data blending) and ethical reasons (e.g., biased data might lead a recommendation
system to favor certain demographic groups).

In conclusion, our research offers insights that have implications beyond the realm
of job postings. The combination of prompt engineering and strict guardrails [45] on
LLMs response can provide us with augmented data appropriate for training that is less
computationally expensive (compared to LLMs capability of extracting knowledge from
text) yet powerful methods, such as transformer-based classifiers or deep learning models.
Future work could delve deeper into refining synthetic data generation processes and
further exploring applications in varied domains.

Information 2023, 14, 585 18 of 19

Author Contributions: G.T., P.S. and P.Z. conceptualized the research. The methodology was framed
by P.Z. and P.S. Data curation and formal analysis were led by P.S., D.L., N.Z. and P.Z., with software
development by P.S. and P.Z.; P.S. drafted the original manuscript, with subsequent reviews by P.Z.,
K.C.G., N.Z. and G.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data and code presented in this study are available on GitHub:
https://github.com/panagiotis-skondras/informatics (accessed on 15 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. OpenAI API. Available online: https://bit.ly/3UOELSX (accessed on 15 October 2023).
2. GPT4All API. Available online: https://docs.gpt4all.io/index.html (accessed on 15 October 2023).
3. Ye, J.; Chen, X.; Xu, N.; Zu, C.; Shao, Z.; Liu, S.; Cui, Y.; Zhou, Z.; Gong, C.; Shen, Y.; et al. A Comprehensive Capability Analysis

of GPT-3 and GPT-3.5 Series Models. arXiv 2023, arXiv:2303.10420.
4. Anand, Y.; Nussbaum, Z.; Duderstadt, B.; Schmidt, B.; Mulyar, A. GPT4All: Training an Assistant-style Chatbot with Large

Scale Data Distillation from GPT-3.5-Turbo. 2023. Available online: https://github.com/nomic-ai/gpt4all (accessed on
16 September 2023).

5. The Rise of Open-Source LLMs in 2023: A Game Changer in AI. Available online: https://www.ankursnewsletter.com/p/the-
rise-of-open-source-llms-in-2023 (accessed on 15 October 2023).

6. 12 Best Large Language Models (LLMs) in 2023. Available online: https://beebom.com/best-large-language-models-llms/
(accessed on 15 October 2023).

7. Penedo, G.; Malartic, Q.; Hesslow, D.; Cojocaru, R.; Cappelli, A.; Alobeidli, H.; Pannier, B.; Almazrouei, E.; Launay, J. The
RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only. arXiv 2023,
arXiv:2306.01116.

8. Chiang, W.; Li, Z.; Lin, Z.; Sheng, Y.; Wu, Z.; Zhang, H.; Zheng, L.; Zhuang, S.; Zhuang, Y.; Gonzalez, J.E.; et al. Vicuna: An Open-
Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality. Available online: https://lmsys.org/blog/2023-03-30-vicuna/
(accessed on 15 October 2023).

9. Xu, C.; Sun, Q.; Zheng, K.; Geng, X.; Zhao, P.; Feng, J.; Tao, C.; Jiang, D. WizardLM: Empowering Large Language Models to
Follow Complex Instructions. arXiv 2023, arXiv:2304.12244.

10. White, J.; Fu, Q.; Hays, S.; Sandborn, M.; Olea, C.; Gilbert, H.; Elnashar, A.; Spencer-Smith, J.; Schmidt, D. A Prompt Pattern
Catalog to Enhance Prompt Engineering with ChatGPT. arXiv 2023, arXiv:2302.11382.

11. Strobelt, H.; Webson, A.; Sanh, V.; Hoover, B.; Beyer, J.; Pfister, H.; Rush, A.M. Interactive and Visual Prompt Engineering for
Ad-hoc Task Adaptation with Large Language Models. IEEE Trans. Vis. Comput. Graph. 2023, 29, 1146–1156. [CrossRef]

12. Liu, Y.; Deng, G.; Xu, Z.; Li, Y.; Zheng, Y.; Zhang, Y.; Zhao, L.; Zhang, T.; Liu, Y. Jailbreaking ChatGPT via Prompt Engineering:
An Empirical Study. arXiv 2023, arXiv:2305.13860.

13. Gao, A. Prompt Engineering for Large Language Models. 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=4504303 (accessed on 24 October 2023).

14. Liu, V.; Chilton, L.B. Design Guidelines for Prompt Engineering Text-to-Image Generative Models. In Proceedings of the CHI
Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022; pp. 1–23. [CrossRef]

15. Sabit, E. Prompt Engineering for ChatGPT: A Quick Guide to Techniques, Tips, And Best Practices. TechRxiv 2023.
techrXiv:22683919.v2.

16. Bayer, M.; Kaufhold, M.A.; Reuter, C. 2022. A Survey on Data Augmentation for Text Classification. ACM Comput. Surv. 2023,
55, 146. [CrossRef]

17. Shi, Z.; Lipani, A. Rethink the Effectiveness of Text Data Augmentation: An Empirical Analysis. arXiv 2023, arXiv:2306.07664.
18. Kumar, V.; Choudhary, A.; Cho, E. Data Augmentation using Pre-trained Transformer Models. arXiv 2021, arXiv:2003.02245.
19. Li, Y.; Wang, X.; Miao, Z.; Tan, W.C. Data augmentation for ML-driven data preparation and integration. Proc. VLDB Endow. 2021,

14, 3182–3185. [CrossRef]
20. Whitehouse, C.; Choudhury, M.; Aji, A.F. LLM-powered Data Augmentation for Enhanced Crosslingual Performance. arXiv 2023,

arXiv:2305.14288v1.
21. Cer, D.; Yang, Y.; Kong, S.; Hua, N.; Limtiaco, N.; St. John, R.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar, C.; et al.

Universal Sentence Encoder for English. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Brussels, Belgium, 31 October–4 November 2018; pp. 169–174. [CrossRef]

22. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. arXiv 2019, arXiv:1810.04805.

23. Nasser, I.; Alzaanin, A.H. Machine Learning and Job Posting Classification: A Comparative Study. Int. J. Eng. Inf. Syst. 2020, 4,
6–14.

https://github.com/panagiotis-skondras/informatics
https://bit.ly/3UOELSX
https://docs.gpt4all.io/index.html
https://github.com/nomic-ai/gpt4all
https://www.ankursnewsletter.com/p/the-rise-of-open-source-llms-in-2023
https://www.ankursnewsletter.com/p/the-rise-of-open-source-llms-in-2023
https://beebom.com/best-large-language-models-llms/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.1109/TVCG.2022.3209479
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4504303
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4504303
https://doi.org/10.1145/3491102.3501825
https://doi.org/10.1145/3544558
https://doi.org/10.14778/3476311.3476403
https://doi.org/10.48550/arXiv.1803.11175

Information 2023, 14, 585 19 of 19

24. Zaroor, A.; Maree, M.; Sabha, M. JRC: A Job Post and Resume Classification System for Online Recruitment. In Proceedings of the
2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), Boston, MA, USA, 6–8 November 2017;
pp. 780–787. [CrossRef]

25. De Mauro, A.; Greco, M.; Grimaldi, M.; Ritala, P. Human resources for Big Data professions: A systematic classification of job
roles and required skill sets. Inf. Process. Manag. 2018, 54, 807–817. [CrossRef]

26. Zhang, M.; Jensen, K.N.; Plank, B. Kompetencer: Fine-grained Skill Classification in Danish Job Postings via Distant Supervision
and Transfer Learning. arXiv 2022, arXiv:2205.01381.

27. Goindani, M.; Liu, Q.; Chao, J.; Jijkoun, V. Employer Industry Classification Using Job Postings. In Proceedings of the 2017 IEEE
International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 18–21 November 2017; pp. 183–188.
[CrossRef]

28. Varelas, G.; Lagios, D.; Ntouroukis, S.; Zervas, P.; Parsons, K.; Tzimas, G. Employing Natural Language Processing Techniques for
Online Job Vacancies Classification; IFIP Advances in Information and Communication Technology; Springer: Cham, Switzerland,
2022; pp. 333–344. [CrossRef]

29. Hugging Face Libraries. Available online: https://huggingface.co/docs/hub/models-libraries (accessed on 15 October 2023).
30. Scrappy. Available online: https://scrapy.org/ (accessed on 13 October 2023).
31. Requests. Available online: https://python.langchain.com/docs/integrations/tools/requests (accessed on 15 October 2023).
32. Beautiful Soup. Available online: https://www.crummy.com/software/BeautifulSoup/bs4/doc/ (accessed on 15 October 2023).
33. MariaDB. Available online: https://mariadb.org (accessed on 13 October 2023).
34. ChatGPT—Python Parameters Tuning. Available online: https://platform.openai.com/docs/api-reference/completions/create

(accessed on 15 October 2023).
35. GPT4All—Python Parameters Tuning. Available online: https://docs.gpt4all.io/gpt4all_python.html#the-generate-method-api

(accessed on 15 October 2023).
36. Sparck, J.K. A Statistical Interpretation of Term Specificity and Its Application in Retrieval. J. Doc. 1972, 28, 11–21. [CrossRef]
37. Cosine Similarity. Available online: https://www.sciencedirect.com/topics/computer-science/cosine-similarity (accessed on 15

October 2023).
38. Josifoski, M.; Sakota, M.; Peyrard, M.; West, R. Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and the

Case of Information Extraction. arXiv 2023, arXiv:2303.04132v1.
39. Xu, B.; Wang, Q.; Lyu, Y.; Dai, D.; Zhang, Y.; Mao, Z. S2ynRE: Two-Stage Self-Training with Synthetic Data for Low-resource

Relation Extraction. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, ON,
Canada, 9–14 July 2023; Association for Computational Linguistics: Kerrville, TX, USA; Volume 1, pp. 8186–8207. [CrossRef]

40. Jeronymo, V.; Bonifacio, L.; Abonizio, H.; Fadaee, M.; Lotufo, R.; Zavrel, J.; Nogueira, R. InPars-v2: Large Language Models as
Efficient Dataset Generators for Information Retrieval. arXiv 2023, arXiv:2301.01820v4.

41. Veselovsky, V.; Ribeiro, M.H.; Arora, A.; Josifoski, M.; Anderson, A.; West, R. Generating Faithful Synthetic Data with Large
Language Models: A Case Study in Computational Social Science. arXiv 2023, arXiv:2305.15041v1.

42. Abonizio, H.; Bonifacio, L.; Jeronymo, V.; Lotufo, R.; Zavrel, J.; Nogueira, R. InPars Toolkit: A Unified and Reproducible Synthetic
Data Generation Pipeline for Neural Information Retrieval. arXiv 2023, arXiv:2307.04601v1.

43. Skondras, P.; Psaroudakis, G.; Zervas, P.; Tzimas, G. Efficient Resume Classification through Rapid Dataset Creation Using
ChatGPT. In Proceedings of the 14th International Conference on Information, Intelligence, Systems and Applications (IISA 2023),
Volos, Greece, 10–12 July 2023.

44. Tay, Y.; Dehghani, M.; Bahri, D.; Metzler, D. Efficient Transformers: A Survey. 2022. ACM Comput. Surv. 2023, 55, 1–34. [CrossRef]
45. Safeguarding LLMs with Guardrails. Available online: https://towardsdatascience.com/safeguarding-llms-with-guardrails-4f5

d9f57cff2 (accessed on 15 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ICTAI.2017.00123
https://doi.org/10.1016/j.ipm.2017.05.004
https://doi.org/10.1109/ICDMW.2017.30
https://doi.org/10.1007/978-3-031-08341-9_27
https://huggingface.co/docs/hub/models-libraries
https://scrapy.org/
https://python.langchain.com/docs/integrations/tools/requests
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://mariadb.org
https://platform.openai.com/docs/api-reference/completions/create
https://docs.gpt4all.io/gpt4all_python.html#the-generate-method-api
https://doi.org/10.1108/eb026526
https://www.sciencedirect.com/topics/computer-science/cosine-similarity
https://doi.org/10.18653/v1/2023.acl-long.455
https://doi.org/10.1145/3530811
https://towardsdatascience.com/safeguarding-llms-with-guardrails-4f5d9f57cff2
https://towardsdatascience.com/safeguarding-llms-with-guardrails-4f5d9f57cff2

	Introduction
	Previous Work
	Methodology
	Overview
	Data Collection from Online Sources and Preprocessing
	Utilization of LLMs for Job Postings Generation
	Training Dataset Creation and Use Cases
	Models Architecture and Training
	Metrics

	Results
	Use Case 1 per Class Results
	Use Case 2 per Class Results

	Discussion
	References

