
Citation: Hsu, F.-H.; Wu, M.-H.;

Hwang, Y.-L.; Chen, J.-X.; Huang,

J.-H.; Wang, H.-J.; Lai, Y.-W.

Defending IoT Devices against

Bluetooth Worms with Bluetooth

OBEX Proxy. Information 2023, 14, 525.

https://doi.org/10.3390/info14100525

Academic Editors: Krzysztof

Szczypiorski and Daniel Paczesny

Received: 20 August 2023

Revised: 24 September 2023

Accepted: 25 September 2023

Published: 27 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Defending IoT Devices against Bluetooth Worms
with Bluetooth OBEX Proxy
Fu-Hau Hsu 1 , Min-Hao Wu 2,* , Yan-Ling Hwang 3, Jian-Xin Chen 1, Jian-Hong Huang 1, Hao-Jyun Wang 1

and Yi-Wen Lai 1

1 Department of Computer Science and Information Engineering, National Central University,
Taoyuan 32001, Taiwan; hsufh@csie.ncu.edu.tw (F.-H.H.); opp556687@gmail.com (J.-X.C.);
gordon636798@gmail.com (J.-H.H.); alan.wang388@gmail.com (H.-J.W.); ncu106201516@gmail.com (Y.-W.L.)

2 Department of Electronic and Information Engineering, Xiamen City University, Xiamen 361000, China
3 School of Applied Foreign Languages, Chung Shan Medical University, Taichung 40201, Taiwan;

yanling@csmu.edu.tw
* Correspondence: mhwu@csie.ncu.edu.tw

Abstract: The number of Internet of Things (IoT) devices has increased dramatically in recent
years, and Bluetooth technology is critical for communication between IoT devices. It is possible
to protect electronic communications, the Internet of Things (IoT), and big data from malware and
data theft with BlueZ’s Bluetooth File Transfer Filter (BTF). It can use a configurable filter to block
unauthorized Bluetooth file transfers. The BTF is available for various Linux distributions and can
protect many Bluetooth-enabled devices, including smartphones, tablets, laptops, and the Internet of
Things. However, the increased number and density of Bluetooth devices have also created a serious
problem—the Bluetooth worm. It poses a severe threat to the security of Bluetooth devices. In this
paper, we propose a Bluetooth OBEX Proxy (BOP) to filter malicious files transferred to devices via
the OBEX system service in BlueZ. The method described in this article prevents illegal Bluetooth
file transfers, defending big data, the Internet of Things (IoT), and electronic communications from
malware and data theft. It also protects numerous Bluetooth devices, including smartphones, tablets,
laptops, and the Internet of Things, with many Linux distributions. Overall, the detection findings
were entirely accurate, with zero false positives and 2.29% misses.

Keywords: Internet of Things (IoT); Bluetooth technology; IoT device security; IoT malware; BlueZ’s
OBEX service daemon

1. Introduction

Bluetooth is a wireless communication protocol for short-range data transfer using
the 2.4 GHz radio frequency. Today, smartphones, laptops, and portable game consoles
have built-in Bluetooth connectivity. Many studies have shown the spread of Bluetooth
worms [1–4]. With the increasing number of Bluetooth-enabled devices around us, Blue-
tooth worms have become a severe problem.

Users store private information on Bluetooth-connected devices, including banking
data (credit card numbers, bank account numbers), private photos or videos, text messages,
health information, calendar appointments, emails, and contact information [5,6]. It makes
Bluetooth security an even more significant concern. Given the information we provide
through Bluetooth, a hacker may steal money, eavesdrop on conversations, seize complete
control of a device, monitor or influence their victim’s behavior, or even infect a device’s
network with malware [7]. It is critical to comprehend users’ familiarity with the mitigation
techniques that are accessible to protect against such vulnerabilities and security risks.

Since Bluetooth technology has existed for a while, several studies have documented
the different vulnerabilities and attack methods related to Bluetooth devices. In a report
published in 2010 by John Dunning, all the dangers and weaknesses related to Bluetooth

Information 2023, 14, 525. https://doi.org/10.3390/info14100525 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14100525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-2586-5874
https://orcid.org/0000-0001-6476-0154
https://doi.org/10.3390/info14100525
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14100525?type=check_update&version=2

Information 2023, 14, 525 2 of 26

technology were investigated and explained [8]. Many writers have researched the Bluetooth
man-in-the-middle (MITM) attack scenario to better comprehend these types of assaults.
In keeping with this, these writers have offered a variety of risk-reduction techniques that
may be used by both individuals and organizations [9–11]. A thorough description of the
many Bluetooth attack vectors, including worms, Trojans, DDoS assaults, MITM attacks,
and more, is given [7,12,13].

Although the worm is well-known online [14,15], the mobile Internet has yet to gain
much attention regarding worms. The existing methods may be briefly divided into two
groups. Su et al.’s research [16] demonstrated that Bluetooth is a crucial interface for worm
spreading and short-range worm containment. This finding was supported by research
conducted by Yan and Eidenbenz [17], Mickens and Noble [18], and Morris-King and
Cam [19], which examined the kinetics of worm transmission over the Bluetooth interface.
A distributed response system created by Ziba et al. [20] uses worm signatures to eliminate
nearby worms. However, the algorithm’s temporal complexity makes it too challenging
to handle massive networks. A graphical color-based sensor worm-coping approach was
put forth by Yang et al. [21]. The approach’s fundamental tenet is to broaden the variety
of software versions in the network. By restricting communication between susceptible
nodes, Li et al. [22] established a technique to determine a node’s level of susceptibility
and manage worms. By rejecting connection requests from strangers, Miklas et al. [23]
exploited social interactions to increase the security of Bluetooth interfaces and lessen the
transmission of malware. In order to safeguard massively dynamic mobile networks, Gao
and Liu [24] devised a two-layer network model that centered on the influence of human
behavior on worm propagation.

Fleizach et al. [25] validated the variations in the propagation traits of Internet and
mobile Internet worms. They assessed the efficiency of MMS worms on cellular networks
for long-range worm containment. Meng et al.’s [26] analysis of track data in mobile
networks allowed them to look at the reliability of SMS communications. The isolation
strategy was utilized by Bose et al. [27] to restrict communication between the MMS
network’s susceptible nodes. The core nodes in a social network should be protected
initially, according to Zhu et al.’s research [28]. However, this strategy disregards the
worm’s method of transmission through the Bluetooth interface, leaving room for the
worm to spread swiftly.

Social networks cannot be used to predict the number of clusters that the algorithm
requires. Zhao et al. [29] merged the centralized and decentralized patch distribution
mechanisms by creating a novel network layer model. Yang and Yang put forth an assess-
ment approach [28] to gauge how effective patch distribution is. Identifying high-velocity
infection locations is essential for distant worm containment. Community discovery [30,31]
and social impact analysis [32,33] have been frequently used in recent research to tackle this
problem. Bluetooth vulnerabilities can have a significant impact on actual business. A Blue-
tooth vulnerability could be used to steal sensitive data such as corporate secrets, customer
data, or personal health information. It could cause significant damage to an organization
and undermine customer trust. Bluetooth vulnerabilities can be used to plant ransomware,
which could lead to business downtime and data loss. Bluetooth vulnerabilities can be
used to attack industrial control systems, which could lead to production disruptions or
human casualties. Specific examples of Bluetooth vulnerabilities include hackers using
Bluetooth to attack a significant retailer, stealing the credit card information of more than
40 million customers, and using Bluetooth to attack a major healthcare company, stealing
the medical information of more than 15 million patients. Organizations should also raise
employee awareness of Bluetooth security risks and educate them on identifying and
avoiding them. A Bluetooth worm will replicate itself to vulnerable devices that it can
reach, and all infected devices will try to repeat themselves to other vulnerable devices.
The vulnerabilities lie in the protocol itself and the implementation of the protocol. Early
versions of the Bluetooth protocol were not designed with security in mind. Although
later versions of the Bluetooth protocol made some changes to the pairing process for

Information 2023, 14, 525 3 of 26

security purposes, the sheer complexity of the protocol itself makes auditing the protocol’s
implementation complex [34].

IoT device security procedures include safeguards such as creating secure hardware or
methods to identify and stop IoT malware. By considering these variables and protecting
against device hacking, several researchers in both industry and academia are tackling IoT
security. However, most current research focuses on machine learning or deep learning-
based detection strategies, rather than how IoT malware builds such an extensive network
of infected devices [35–37]. As a result, a review is required to assess the current body
of knowledge. Meanwhile, specific works—like [38–42]—discuss IoT malware, its many
assaults, and its characteristics.

Malware’s functional complexity has increased with time, substantially affecting
practically all gadgets. Malware may be divided into many categories according to its
operation, including worms, trojan horses, viruses, spyware, ransomware, rootkits, and
backdoors. IoT malware is interesting because, although it falls into several categories, it is
all bot-based, meaning it uses botnets for command and control, execution, and distribution.
Bluetooth is a well-liked wireless technology that enables close-range communication
between devices. However, the BlueBorne attack is a significant security flaw that may be
used to access Bluetooth devices without authorization—a fresh approach to forecasting
and stopping BlueBorne assaults. It can build the model on the application layer and has
demonstrated greater efficacy than earlier models. Studies that have already been carried
out [43,44] concentrate on screening malicious Bluetooth packets that might lead to remote
code execution. Miretskiy et al. [45] sought to filter all files in the system while they tried to
halt Bluetooth worms during the assault phase. The second method invariably resulted
in a system overhead, whereas the former demands new rules for each CVE that can be
identified in the future.

This study attempts to stop Bluetooth worms in the replication phase. Although this
approach cannot prevent the system from being hacked, it can prevent unknown Bluetooth
worms from spreading further.

There are several possible mechanisms for filtering malicious worm files in the system
or the file transfer process. These can be categorized as the following:

1. System call level: The goal is to hook system calls that are related to files, such as
open, close, read, write, etc. These can be accomplished by (1) modifying the kernel’s
system call implementation or (2) using the eBPF filter to intercept the system calls.
For this approach to work, the file system must be in mandatory locking mode, which
ensures that a time-of-check to time-of-use attack cannot happen [45].

2. File system level: Avfs [37] is an on-access antivirus file system that uses Linux’s
virtual file system (VFS) to stack on top of existing file systems and hooks the filtering
mechanisms into the read/write operation of the VFS. The on-access design minimizes
the performance impact compared to onopen, onclosed, or on-exec scanning.

3. Protocol level: Unlike the previous two categories, this approach focuses on files that
are transferred from external devices over network or wireless protocols. Depending
on the implementation and usage of the protocol stack, it may be challenging to
determine at which layer(s) in the protocol stack the hook points should be placed.
There are several challenges with this approach. For example, it may implement
some layers in the protocol stack inside the kernel; we need to be extra careful when
hooking them. Also, hooking inside the protocol layer involves manually inspecting
and modifying raw packets. For protocols that live inside another protocol, the
packets may fragment, and it may be challenging to reconstruct them, especially if the
protocol has to deal with retransmission packets.

4. The service level, based on where the mechanism hooks into the system: When
multiple applications need Bluetooth to interact with other devices, they may want to
implement some Bluetooth stacks. These can typically be performed through libraries,
sockets, or by sending the request to a service agent that does the job. This service

Information 2023, 14, 525 4 of 26

approach makes managing connected Bluetooth devices and using standard Bluetooth
protocols easier.

The first section of this paper is the introduction, which describes the basic concepts
and inspirations of this study. The second section is the background, which introduces
the background knowledge. The third section is related research, which focuses on the
BlueBorne vulnerability provided by the current malware; IoT malware attacks are not
limited to any part of a device. Section 4 presents the system structure and implementation
details of BlueZ’s OBEX service, while Section 5 reports the evaluation results of the
Bluetooth file transfer filtering mechanism. The limitations of the Bluetooth file transfer
filtering mechanism are discussed, as well as the research challenges, conclusion, and
future, in Section 6.

2. Background

In this section, we take a service-level approach to Linux-based Bluetooth file transfer
filtering that can be easily used by modern Linux operating systems that use BlueZ as their
Bluetooth implementation. We created a proxy service called the Bluetooth OBEX Proxy
(BOP), which can intercept and modify all messages to and from the original Bluetooth
service. It allows us to filter out malicious files transmitted via the Bluetooth service.

2.1. Bluetooth Worm

Gonzalez and Larraga et al. [46] suggested a CA-based two-dimensional model based
on an epidemiological compartmentalized model to examine the transmission of Bluetooth
worms. According to related research, there are seven different smartphone prevalence
states: vulnerable, exposed, infected, diagnosed, carried, interrupted, and recovered. When
considering homogenous smartphones, a set of local rules was created to mimic the dynam-
ics of the model. The model has recently expanded to assess the potential for recovering and
running antivirus updates and their effect on worms. To evaluate how Bluetooth malware
spreads under various circumstances, the presented model does not consider additional
aspects that may affect worm propagation, such as user interactions, human behavior,
and malware transmission characteristics. This study also evaluated transmission ranges
of 1, 10, or 100 m caused by various Bluetooth antenna types, transmission acceptance,
and discoverable patterns resulting from direct user engagement. Bluetooth worms use
Bluetooth as their propagation method. This short-range communication method heavily
influences propagation behavior. It is proximity-based, bandwidth-limited, and can be in
constant motion [4]. Figure 1 illustrates the cycle of a Bluetooth worm during infection.

2.2. BlueZ

There is a generic Bluetooth stack called BlueZ [47–49] for implementing the Blue-
tooth Hosting Protocol stack on Linux. It is the official Bluetooth stack for Linux and is a
free-source software. BlueZ is a Linux Bluetooth stack that maps the Bluetooth protocol
layer to user space daemons, kernel modules, kernel threads, configuration tools, utilities,
and libraries. These components work together to provide a complete Bluetooth stack for
Linux. The Bluetooth protocol stack comprises a controller chip and the corresponding
host machine. A USB or UART interface connects a Bluetooth hardware device to the host.
The Linux kernel communicates with the device through the host controller interface (HCI)
by sending HCI packets to and from the hardware controller, as shown in Figure 2. The
Bluetooth controller then creates a radio signal generated using an Asynchronous Con-
nectionless Link (ACL) or Synchronous Connection-Oriented Link (SCO) in the baseband.
SCOs are used for latency-sensitive applications that do not require a lossless data transfer,
such as hands-free audio.

Information 2023, 14, 525 5 of 26Information 2023, 14, x FOR PEER REVIEW 5 of 27

Figure 1. Bluetooth worm infection cycle.

2.2. BlueZ
There is a generic Bluetooth stack called BlueZ [47–49] for implementing the Blue-

tooth Hosting Protocol stack on Linux. It is the official Bluetooth stack for Linux and is a
free-source software. BlueZ is a Linux Bluetooth stack that maps the Bluetooth protocol
layer to user space daemons, kernel modules, kernel threads, configuration tools, utilities,
and libraries. These components work together to provide a complete Bluetooth stack for
Linux. The Bluetooth protocol stack comprises a controller chip and the corresponding
host machine. A USB or UART interface connects a Bluetooth hardware device to the host.
The Linux kernel communicates with the device through the host controller interface
(HCI) by sending HCI packets to and from the hardware controller, as shown in Figure 2.
The Bluetooth controller then creates a radio signal generated using an Asynchronous
Connectionless Link (ACL) or Synchronous Connection-Oriented Link (SCO) in the base-
band. SCOs are used for latency-sensitive applications that do not require a lossless data
transfer, such as hands-free audio.

While the Bluetooth controller handles the radio, baseband, and some of the HCI
layers, BlueZ runs the HCI and higher layers in the kernel or user space, as shown in Table
1. Some lower-layer protocols are implemented in the kernel, and the Bluetooth core ex-
poses the protocols through the Linux socket, simplifying the work needed to use Blue-
tooth in applications.

Figure 1. Bluetooth worm infection cycle.

Information 2023, 14, x FOR PEER REVIEW 6 of 27

Figure 2. Bluetooth protocol stack.

Table 1. Bluetooth protocol layers in kernel space and user space.

Kernel Space User Space
L2CAP SDP

SMP OBEX
SCO audio TCS
RFCOMM

BNEP
CMTP
HIDP

BlueZ provides service daemons for managing Bluetooth devices without knowing
the level of HCI commands, command-line tools, testing, and debugging. The service dae-
mon also allows for easy integration into the graphical user interfaces. For this service
approach to work, there must be a service manager and a way to communicate with the
service daemon. There is where systemd and D-Bus come in.

Bluetooth is a system service daemon for managing, pairing, and handling service
discovery protocols (SDPs) with other Bluetooth devices. Applications can register Blue-
tooth profiles with bluetoothd, and the shapes will add to the SDP records. When a con-
nection request is made to a Bluetooth profile, bluetoothd creates the Bluetooth socket for
the requesting device and passes the socket inode to the application that registers the
shape, as shown in Figure 3.

Figure 2. Bluetooth protocol stack.

While the Bluetooth controller handles the radio, baseband, and some of the HCI
layers, BlueZ runs the HCI and higher layers in the kernel or user space, as shown in
Table 1. Some lower-layer protocols are implemented in the kernel, and the Bluetooth
core exposes the protocols through the Linux socket, simplifying the work needed to use
Bluetooth in applications.

Information 2023, 14, 525 6 of 26

Table 1. Bluetooth protocol layers in kernel space and user space.

Kernel Space User Space

L2CAP SDP

SMP OBEX

SCO audio TCS

RFCOMM

BNEP

CMTP

HIDP

BlueZ provides service daemons for managing Bluetooth devices without knowing
the level of HCI commands, command-line tools, testing, and debugging. The service
daemon also allows for easy integration into the graphical user interfaces. For this service
approach to work, there must be a service manager and a way to communicate with the
service daemon. There is where systemd and D-Bus come in.

Bluetooth is a system service daemon for managing, pairing, and handling service dis-
covery protocols (SDPs) with other Bluetooth devices. Applications can register Bluetooth
profiles with bluetoothd, and the shapes will add to the SDP records. When a connection
request is made to a Bluetooth profile, bluetoothd creates the Bluetooth socket for the
requesting device and passes the socket inode to the application that registers the shape, as
shown in Figure 3.

Information 2023, 14, x FOR PEER REVIEW 7 of 27

Figure 3. bluetoothd and Bluetooth service profiles.

2.3. Systemd
In Linux distributions, systemd is a frequently used scheduling system [50]. It has

often drawn both acclaim and condemnation. It is considered to be highly centralized,
since it plays a crucial role in managing system operations, including logging, scheduling,
service monitoring, and system setup, which runs counter to the Unix tenet that each pro-
gram should focus on one task properly. Systemd’s supporters will point out that it is just
a group of individual binary files, such as systemctl and journald, that, when combined,
form a more extensive system. Whatever your opinion of systemd, it has spread so widely
that it is practically impossible to ignore if you use a major Linux distribution. Red Hat
first developed it in 2010 to replace older init systems, particularly SysV-style ones. By
2015, systemd had replaced SysV init and other init systems in the most popular distribu-
tions, including CentOS, RHEL, Debian, Ubuntu, and SUSE.

Systemd is one of the most popular init systems in the world. An init system is the
first process, with process ID 1, to start after the kernel is loaded. It initializes other func-
tions, services, etc., from preconfigured startup scripts or configuration files. In the case
of systemd, these are called the “unit” and “unit file”. A unit can be a service, socket,
device, target, or slice managed by systemd, with an associated init-style unit file describ-
ing it. Systemd is responsible for calculating all unit dependencies and marks, so it can
start units in parallel in the correct order, avoiding unnecessary delays in the boot process.

Figure 3. bluetoothd and Bluetooth service profiles.

Information 2023, 14, 525 7 of 26

2.3. Systemd

In Linux distributions, systemd is a frequently used scheduling system [50]. It has
often drawn both acclaim and condemnation. It is considered to be highly centralized, since
it plays a crucial role in managing system operations, including logging, scheduling, service
monitoring, and system setup, which runs counter to the Unix tenet that each program
should focus on one task properly. Systemd’s supporters will point out that it is just a
group of individual binary files, such as systemctl and journald, that, when combined, form
a more extensive system. Whatever your opinion of systemd, it has spread so widely that
it is practically impossible to ignore if you use a major Linux distribution. Red Hat first
developed it in 2010 to replace older init systems, particularly SysV-style ones. By 2015,
systemd had replaced SysV init and other init systems in the most popular distributions,
including CentOS, RHEL, Debian, Ubuntu, and SUSE.

Systemd is one of the most popular init systems in the world. An init system is the first
process, with process ID 1, to start after the kernel is loaded. It initializes other functions,
services, etc., from preconfigured startup scripts or configuration files. In the case of
systemd, these are called the “unit” and “unit file”. A unit can be a service, socket, device,
target, or slice managed by systemd, with an associated init-style unit file describing it.
Systemd is responsible for calculating all unit dependencies and marks, so it can start units
in parallel in the correct order, avoiding unnecessary delays in the boot process. Systemd
also has command-line tools such as systemctl and journalctl for managing and logging
units. And this mechanism uses D-Bus for inter-process communication, making D-Bus a
mandatory requirement.

The unit files follow the UNIX-inspired file hierarchy, which is the standard for all sys-
temd systems. Typically, the system-specific unit files for design and user services are stored
in /etc/systemd/system and /etc/systemd/user, respectively. They can be modified or in-
stalled by an administrator. Vendor-supplied unit files are stored in “/usr/lib/systemd/”,
with a “/lib” symbolic link pointing to them for backward compatibility. Package managers
such as apt, and npm install these vendor-supplied unit files and should not be modified
manually. Also, the unit files in /etc/systemd/ override the unit files in /usr/lib/systemd,
so you can change the behavior without modifying the default unit files. The type name
is used as the file extension for each type of unit, such as “.Service” for service units and
“.socket” for socket units.

Service unit

A service unit is a configuration file that describes a service in the Linux operating
system. It consists of three sections: [Unit], [Service], and [Install]. The [Unit] section
contains the description and documentation information that will be displayed using
systemctl. It can also specify conditions under which this unit should be run or not and
identify the dependencies, triggers, and conflicts when running this service using forward
properties. The [Service] section describes the type of service; how to start, stop, and reload
the service; and the environment, including environment variables, capabilities, and system
resources in which the service process should run. The [Install] section is used when the
command-line tool, systemctl, turns the device on or off. It can specify reverse properties
instead of forward ones in the [unit] section. It can also create aliases for the unit.

The service type can be simple, exec, forking, oneshot, dbus, notify, or idle; this is
needed because systemd needs to track the PIDs to know if the service is running. For
example, if an executable does a double fork to make itself a daemon process, but the type
for that service is set to simple, then systemd will consider that service to have exited.

A service unit of type dbus must specify the bus name that it will register on the dbus,
so that systemd can check for bus name collisions before starting it. The running state of
the service is determined by whether the bus name is captured or released.

Figure 4 is a simplified system service unit file for the Bluetooth core. It is a dbus-type
service that will register the “org.bluez” bus name. This service will only run if sysfs for Blue-
tooth are present. The service is started by running the “/usr/lib/bluetooth/bluetoothd”

Information 2023, 14, 525 8 of 26

executable with additional Linux kernel functions such as CAP_NET_BIND_SERVICE, and
CAP_NET_ADMIN.Services can use sockets for inter-process communication. Systemd
provides socket-based activation for these services. Systemd will create a listening socket
that waits for incoming connections and starts the associated service when a connection is
made, but this does not mean that the service cannot run without the socket. The socket
unit file is typically set to the same name as the service unit file. The socket is passed to the
service process via sd_listen_fds using the systemd library.

Information 2023, 14, x FOR PEER REVIEW 9 of 27

Figure 4. Simplified bluetooth.service unit file. In this figure, the syntax is shown in blue, while the
comments are shown in green.

Figures 5 and 6 are the socket and service unit files for the D-Bus system message
daemon. The socket unit creates a socket file placed in /run/dbus/system_bus_socket us-
ing the ListenStream variable. Systemd system services heavily use the D-Bus system mes-
sage bus, so it depends on the sysinit.target. Note that the service type is not specified. Its
service type is “simple”, not dbus, because it is the one that manages the D-Bus. The same
is true for the session bus. The dbus.service depends on dbus.socket, and dbus-daemon
contains the dbus, acting as a middleman to pass dbus messages from one to another. The
out-of-memory killer’s tweak level is set to −900, which makes it very unlikely that OOM
will kill the system bus dbus-daemon.

Figure 5. dbus.socket for system bus. In this figure, the syntax is shown in blue, while the com-
ments are shown in green.

Figure 4. Simplified bluetooth.service unit file. In this figure, the syntax is shown in blue, while the
comments are shown in green.

Figures 5 and 6 are the socket and service unit files for the D-Bus system message
daemon. The socket unit creates a socket file placed in /run/dbus/system_bus_socket
using the ListenStream variable. Systemd system services heavily use the D-Bus system
message bus, so it depends on the sysinit.target. Note that the service type is not specified.
Its service type is “simple”, not dbus, because it is the one that manages the D-Bus. The same
is true for the session bus. The dbus.service depends on dbus.socket, and dbus-daemon
contains the dbus, acting as a middleman to pass dbus messages from one to another. The
out-of-memory killer’s tweak level is set to −900, which makes it very unlikely that OOM
will kill the system bus dbus-daemon.

Information 2023, 14, x FOR PEER REVIEW 9 of 27

Figure 4. Simplified bluetooth.service unit file. In this figure, the syntax is shown in blue, while the
comments are shown in green.

Figures 5 and 6 are the socket and service unit files for the D-Bus system message
daemon. The socket unit creates a socket file placed in /run/dbus/system_bus_socket us-
ing the ListenStream variable. Systemd system services heavily use the D-Bus system mes-
sage bus, so it depends on the sysinit.target. Note that the service type is not specified. Its
service type is “simple”, not dbus, because it is the one that manages the D-Bus. The same
is true for the session bus. The dbus.service depends on dbus.socket, and dbus-daemon
contains the dbus, acting as a middleman to pass dbus messages from one to another. The
out-of-memory killer’s tweak level is set to −900, which makes it very unlikely that OOM
will kill the system bus dbus-daemon.

Figure 5. dbus.socket for system bus. In this figure, the syntax is shown in blue, while the com-
ments are shown in green.

Figure 5. dbus.socket for system bus. In this figure, the syntax is shown in blue, while the comments
are shown in green.

Information 2023, 14, 525 9 of 26
Information 2023, 14, x FOR PEER REVIEW 10 of 27

Figure 6. dbus.service for system bus. In this figure, the syntax is shown in blue, while the com-
ments are shown in green.

2.4. D-Bus
D-Bus is a message-oriented middleware (MOM) for client–server inter-process com-

munication between multiple applications developed by freedesktop.org [51,52]. The
freedesktop.org project, formerly the X Desktop Group (XDG), focuses on developing
standards and specifications for desktop environments for the X Window System, such as
GNOME and KDE. D-Bus eliminates the need to manage multiple one-to-one IPCs be-
tween processes by creating a virtual bus system. Each process sends and receives mes-
sages via the dbus-daemon, which routes these messages to the correct procedures.

There are two common types of buses: the system bus and the session bus. The sys-
tem bus is for system services and is available to all users and processes. Session buses are
for user services; there is a separate session bus for each user to have their desktop envi-
ronment and user services. Although D-Bus is for desktop GUI components to communi-
cate with the service daemon, some command-line tools, such as systemctl, journalctl, and
bluetoothctl, also use the D-Bus interface to communicate with the service daemon.

BlueZ uses both the system bus and the session bus; the former, as shown in Figure
5, is for exposing the interface for managing Bluetooth adapters, pairing Bluetooth de-
vices, running SDP, etc. The latter is for Bluetooth services such as OBEX; each user has a
dedicated one.
1. Bus Name

Each connection to the dbus-daemon is assigned a unique connection name by the
dbus-daemon, starting with a colon. For example, 1.13 is a valid, unique connection name.
The server can register known names on the bus for the client to refer to, and the dbus-
daemon will resolve the known names for the client when sending messages to it. An
available name is concatenated by dots, such as com.example.Service1.
2. Object and Interface

A D-Bus object can have one or more interfaces, with each interface having methods,
properties, and signals. An object is identified by its object path. An object path is in the
form of “/path/to/this/object”, where a single slash (“/”) is also acceptable, and it is re-
ferred to as the “root” object. D-Bus has its own type system that supports some basic
types, such as byte, boolean, int, uint, double, string, object path, array, dictionary, and
Unix fd. There is also a variant type that acts like a struct. Each message contains a signa-
ture field that uses the D-Bus type code to describe the data it carries. freedesktop.org has
specified four standard interfaces that objects can implement.

• org.freedesktop.DBus.Introspectable

Figure 6. dbus.service for system bus. In this figure, the syntax is shown in blue, while the comments
are shown in green.

2.4. D-Bus

D-Bus is a message-oriented middleware (MOM) for client–server inter-process com-
munication between multiple applications developed by freedesktop.org [51,52]. The
freedesktop.org project, formerly the X Desktop Group (XDG), focuses on developing
standards and specifications for desktop environments for the X Window System, such as
GNOME and KDE. D-Bus eliminates the need to manage multiple one-to-one IPCs between
processes by creating a virtual bus system. Each process sends and receives messages via
the dbus-daemon, which routes these messages to the correct procedures.

There are two common types of buses: the system bus and the session bus. The system
bus is for system services and is available to all users and processes. Session buses are for
user services; there is a separate session bus for each user to have their desktop environment
and user services. Although D-Bus is for desktop GUI components to communicate with the
service daemon, some command-line tools, such as systemctl, journalctl, and bluetoothctl,
also use the D-Bus interface to communicate with the service daemon.

BlueZ uses both the system bus and the session bus; the former, as shown in Figure 5,
is for exposing the interface for managing Bluetooth adapters, pairing Bluetooth devices,
running SDP, etc. The latter is for Bluetooth services such as OBEX; each user has a
dedicated one.

1. Bus Name

Each connection to the dbus-daemon is assigned a unique connection name by the
dbus-daemon, starting with a colon. For example, 1.13 is a valid, unique connection name.
The server can register known names on the bus for the client to refer to, and the dbus-
daemon will resolve the known names for the client when sending messages to it. An
available name is concatenated by dots, such as com.example.Service1.

2. Object and Interface

A D-Bus object can have one or more interfaces, with each interface having methods,
properties, and signals. An object is identified by its object path. An object path is in the
form of “/path/to/this/object”, where a single slash (“/”) is also acceptable, and it is
referred to as the “root” object. D-Bus has its own type system that supports some basic
types, such as byte, boolean, int, uint, double, string, object path, array, dictionary, and Unix
fd. There is also a variant type that acts like a struct. Each message contains a signature
field that uses the D-Bus type code to describe the data it carries. freedesktop.org has
specified four standard interfaces that objects can implement.

http://freedesktop.org
http://freedesktop.org
http://freedesktop.org

Information 2023, 14, 525 10 of 26

• org.freedesktop.DBus.Introspectable

This interface has an introspect method that returns an XML describing the object. A
D-Bus Introspection XML contains the interfaces and corresponding messages that it has.

• org.freedesktop.DBus.Properties

This interface can have custom properties and three methods to obtain and set them,
namely “Get”, “Set”, “GetAll”, and a “PropertiesChanged” signal to notify other processes.

• org.freedesktop.DBus.ObjectManager

A server can implement this interface to list all the objects it exports to the bus, and
it is usually implemented on the root object. This interface has a GetManagedObjects
method and two signals, InterfacesAdded and InterfacesRemoved. This design is for easier
client implementation. A client can subscribe to the InterfacesAdded signal, and all the
property information can be abstracted from that signal message, eliminating the need to
call Introspect.

• org.freedesktop.DBus.Peer

This interface has two methods, Ping and GetMachineId. “Ping” is used to check
connections to the server. “GetMachineId” is used primarily when D-Bus runs over TCP/IP
on different machines.

3. Message

There are five message types: INVALID, METHOD_CALL, METHOD_RETURN, ER-
ROR, and SIGNAL. The properties interface handles the properties of these message types.
A message contains sender, destination, path, interface, member, serial, and reply_serial to
identify the message’s source, destination, and purpose. The dbus-daemon controls the
sender field, so it cannot be spoofed, while the sender contains the destination field and
can be empty for sending messages such as signals. Method and signal names are specified
in the member field.

4. D-Bus Service

Services that register a bus name on message buses can be run automatically by the
dbus-daemon using a D-Bus service file placed in the “/usr/share/dbus-1/services/”
folder, as shown in Figure 7. The binary is executed by the dbus-daemon when a process
sends a message to a bus name specified in a service file, allowing systemd to manage the
service through systemd’s D-Bus interface.

Information 2023, 14, x FOR PEER REVIEW 11 of 27

This interface has an introspect method that returns an XML describing the object. A
D-Bus Introspection XML contains the interfaces and corresponding messages that it has.

• org.freedesktop.DBus.Properties
This interface can have custom properties and three methods to obtain and set them,

namely “Get”, “Set”, “GetAll”, and a “PropertiesChanged” signal to notify other pro-
cesses.

• org.freedesktop.DBus.ObjectManager
A server can implement this interface to list all the objects it exports to the bus, and

it is usually implemented on the root object. This interface has a GetManagedObjects
method and two signals, InterfacesAdded and InterfacesRemoved. This design is for eas-
ier client implementation. A client can subscribe to the InterfacesAdded signal, and all the
property information can be abstracted from that signal message, eliminating the need to
call Introspect.

• org.freedesktop.DBus.Peer
This interface has two methods, Ping and GetMachineId. “Ping” is used to check con-

nections to the server. “GetMachineId” is used primarily when D-Bus runs over TCP/IP
on different machines.
3. Message

There are five message types: INVALID, METHOD_CALL, METHOD_RETURN, ER-
ROR, and SIGNAL. The properties interface handles the properties of these message
types. A message contains sender, destination, path, interface, member, serial, and re-
ply_serial to identify the message’s source, destination, and purpose. The dbus-daemon
controls the sender field, so it cannot be spoofed, while the sender contains the destination
field and can be empty for sending messages such as signals. Method and signal names
are specified in the member field.
4. D-Bus Service

Services that register a bus name on message buses can be run automatically by the
dbus-daemon using a D-Bus service file placed in the “/usr/share/dbus-1/services/” folder,
as shown in Figure 7. The binary is executed by the dbus-daemon when a process sends a
message to a bus name specified in a service file, allowing systemd to manage the service
through systemd’s D-Bus interface.

Figure 7. D-Bus service file for OBEX service.

2.5. OBEX and Object Push Profile
OBject EXchange (OBEX) [53–55] is a communication protocol for exchanging binary

objects between devices. It uses the type–length–value binary format, which is easier for
resource-constrained machines to parse. Bluetooth uses OBEX to implement the Object
Push profile to send vCards (electronic business cards) and files to another device.

The BlueZ implementation uses an executable “obexd” that runs “obex.service” us-
ing the systemd user service. It registers a “com.bluez.obex” bus name on the session bus.
It exports a “/com/bluez/obex” object that provides the interfaces for registering OBEX
agents and the client interface that can create OBEX sessions in Figure 8.

Figure 7. D-Bus service file for OBEX service.

2.5. OBEX and Object Push Profile

OBject EXchange (OBEX) [53–55] is a communication protocol for exchanging binary
objects between devices. It uses the type–length–value binary format, which is easier for
resource-constrained machines to parse. Bluetooth uses OBEX to implement the Object
Push profile to send vCards (electronic business cards) and files to another device.

Information 2023, 14, 525 11 of 26

The BlueZ implementation uses an executable “obexd” that runs “obex.service” using
the systemd user service. It registers a “com.bluez.obex” bus name on the session bus.
It exports a “/com/bluez/obex” object that provides the interfaces for registering OBEX
agents and the client interface that can create OBEX sessions in Figure 8.

Information 2023, 14, x FOR PEER REVIEW 12 of 27

Figure 8. Interfaces of the D-Bus object “/com/bluez/obex”. The HTML tag is written in a dark red
typeface; the attribute name and value are in red and blue, respectively.

An application initiates an OBEX object push session by calling the CreateSession
method on the org.bluez.obex.Client1 interface. Another application on a separate device
registers an OBEX agent object that implements the org.bluez.obex.Agent1 interface in
Figure 9 by calling the RegisterAgent method on the org.bluez.AgentManager1 interface
in Figure 8.

Figure 8. Interfaces of the D-Bus object “/com/bluez/obex”. The HTML tag is written in a dark red
typeface; the attribute name and value are in red and blue, respectively.

An application initiates an OBEX object push session by calling the CreateSession
method on the org.bluez.obex.Client1 interface. Another application on a separate device
registers an OBEX agent object that implements the org.bluez.obex.Agent1 interface in
Figure 9 by calling the RegisterAgent method on the org.bluez.AgentManager1 interface in
Figure 8.

When obexd receives a push request for an OBEX object, it first creates a session
object, as shown in Figure 10, and a transfer object, as shown in Figure 11, then calls the
AuthorizePush method of an existing OBEX agent to confirm whether to accept or reject the
request. If the agent agrees with the recommendation, it returns a path where obexd will
store the file. The object push starts the transfer of the file and simultaneously updates the
properties of the transfer object to reflect the transfer status. On each update, the transfer
object will fire a PropertiesChanged signal. The OBEX agent listens for this signal, waits for
the file transfer to complete, and retrieves the file.

Information 2023, 14, 525 12 of 26
Information 2023, 14, x FOR PEER REVIEW 13 of 27

Figure 9. Interfaces of a D-Bus OBEX agent object. The HTML tag is written in a dark red typeface;
the attribute name and value are in red and blue, respectively.

When obexd receives a push request for an OBEX object, it first creates a session ob-
ject, as shown in Figure 10, and a transfer object, as shown in Figure 11, then calls the
AuthorizePush method of an existing OBEX agent to confirm whether to accept or reject
the request. If the agent agrees with the recommendation, it returns a path where obexd
will store the file. The object push starts the transfer of the file and simultaneously updates
the properties of the transfer object to reflect the transfer status. On each update, the trans-
fer object will fire a PropertiesChanged signal. The OBEX agent listens for this signal,
waits for the file transfer to complete, and retrieves the file.

Figure 9. Interfaces of a D-Bus OBEX agent object. The HTML tag is written in a dark red typeface;
the attribute name and value are in red and blue, respectively.

Information 2023, 14, 525 13 of 26
Information 2023, 14, x FOR PEER REVIEW 14 of 27

Figure 10. Interfaces of a D-Bus OBEX session object. The HTML tag is written in a dark red type-
face; the attribute name and value are in red and blue, respectively.

Figure 10. Interfaces of a D-Bus OBEX session object. The HTML tag is written in a dark red typeface;
the attribute name and value are in red and blue, respectively.

Information 2023, 14, 525 14 of 26
Information 2023, 14, x FOR PEER REVIEW 15 of 27

Figure 11. Interfaces of a D-Bus OBEX transfer object. The HTML tag is written in a dark red type-
face; the attribute name and value are in red and blue, respectively.

3. Related Work
Attack surfaces are exposed areas of a system or exploitable vulnerabilities that put

a device at risk. The cyber-attack surface, human attack surface, and software attack sur-
face are the three categories that make up the standard classification of attack surfaces.
IoT malware attacks are not region-specific like other types of malwares. Therefore, in
contrast to the wide variety, the attack surfaces are divided into network and network
device level, service level, firmware level, and device level attack surfaces.

3.1. BlueBorne
BlueBorne [43,56] studies the Bluetooth attack surface, including Android, iOS, Win-

dows, and Linux. BLE has several distinct locations where it is vulnerable. The security of
each protocol layer varies, and a single flaw can put the entire system to a halt. The Blue-
Borne attack, which enables hackers to hijack a user’s device without the owner’s
knowledge, has recently gained attention. A comprehensive and complex security model
must be developed to mitigate these vulnerabilities. The foundation of the BlueBorne at-
tack [43] is the exploitation of several vulnerabilities at various levels. Attackers can cov-
ertly take control of IoT devices, leak information, and remotely execute malicious code.
Millions of devices are now under the control of hackers thanks to the BlueBorne assault,
who may use these resources to create DDoS attacks that will be difficult to counter for

Figure 11. Interfaces of a D-Bus OBEX transfer object. The HTML tag is written in a dark red typeface;
the attribute name and value are in red and blue, respectively.

3. Related Work

Attack surfaces are exposed areas of a system or exploitable vulnerabilities that put a
device at risk. The cyber-attack surface, human attack surface, and software attack surface
are the three categories that make up the standard classification of attack surfaces. IoT
malware attacks are not region-specific like other types of malwares. Therefore, in contrast
to the wide variety, the attack surfaces are divided into network and network device level,
service level, firmware level, and device level attack surfaces.

3.1. BlueBorne

BlueBorne [43,56] studies the Bluetooth attack surface, including Android, iOS, Win-
dows, and Linux. BLE has several distinct locations where it is vulnerable. The security

Information 2023, 14, 525 15 of 26

of each protocol layer varies, and a single flaw can put the entire system to a halt. The
BlueBorne attack, which enables hackers to hijack a user’s device without the owner’s
knowledge, has recently gained attention. A comprehensive and complex security model
must be developed to mitigate these vulnerabilities. The foundation of the BlueBorne
attack [43] is the exploitation of several vulnerabilities at various levels. Attackers can
covertly take control of IoT devices, leak information, and remotely execute malicious
code. Millions of devices are now under the control of hackers thanks to the BlueBorne
assault, who may use these resources to create DDoS attacks that will be difficult to counter
for some time. It uses eight CVEs across multiple platforms, including three remote code
executions (RCEs), three information leaks, and two logical flaws, and turns them into
exploits that can be turned into Bluetooth worms. In a follow-up presentation at Black Hat
Europe, another information leak CVE was found that can be used with other CVEs to
bypass KASLR and cause more damage to the system.

The army’s lab team pointed out that the complexity of the Bluetooth specification
makes it difficult to audit implementations. The major problem is multiple fragmenta-
tion mechanisms across various layers of the stack. Packages must be fragmented and
reassembled numerous times to reach their destination.

3.2. Packet Filtering for BlueBorne

Seri and Vishnepolsky [43,57] check for malformed Bluetooth packets within three
protocol layers of the Bluetooth protocol stack that BlueBorne uses to achieve remote code
execution. It can achieve the goal of stopping BlueBorne, but this approach needs to make
rules for each CVE. Manually creating these rules takes a lot of work in the long run.

With regard to BlueBorne flaws discovered in different Bluetooth stack levels, nu-
merous vulnerabilities were discovered as Armis [43] Labs researchers examined how the
Bluetooth layer is implemented in other operating systems. Under the term BlueBorne, all
of these vulnerabilities were made public in 2017. L2CAP, SDP, SMP, and BNEP are the
impacted Bluetooth layers [58]. Combining the BlueBorne flaws into a single assault, a
hacker may take complete control of any Bluetooth-enabled device. The Bluetooth protocol
specification’s complexity may contribute to the high number of vulnerabilities. The vul-
nerable operating systems are Linux, Android, iOS, and Windows. However, fixes have
already been released for these issues. Only devices with out-of-date OS versions are vul-
nerable now. Internet of Things (IoT) devices, desktop computers, and smartphones utilize
the same operating systems. There are around 8.2 billion devices, including smartphones
running Android or iOS, laptops running Linux or Windows, and Internet of Things (IoT)
devices running Linux-based operating systems like the Tizen operating system. Attackers
can penetrate air-gap networks utilized in locations where security is a top priority due to
the broad spectral range of susceptible equipment.

3.3. LBM

Seri and Vishnepolsky [34,56,59] proposed a system for filtering malicious peripherals
by applying firewall rules to the USB packets they send and receive. The system also
includes a subsystem for filtering Bluetooth packets in several Bluetooth protocol layers,
since Bluetooth peripherals can connect to the system via the HID interface. The system
can inspect Bluetooth HCI layer packets because many Bluetooth controllers use USBs to
connect to the system. Filtering malformed Bluetooth packets to protect the kernel from
CVE vulnerabilities is one of the goals of this paper. For each peripheral subsystem, the
LBM only needs to install a hook for incoming and outgoing peripheral data, after which
modules can be created to filter specific peripheral packet types (such as USB request blocks
or Bluetooth socket buffers). We use the Extended BSD Packet Filter (eBPF) mechanism,
which allows filtering applications to load from user space, which is crucial for performance
and scalability. Unlike previous solutions, LBM can be designed to provide a universal
foundation for any peripheral protocol. Therefore, using LBM, it is easy to integrate existing
solutions such as USBFILTER and USBFirewall. In addition, by incorporating modifications

Information 2023, 14, 525 16 of 26

into the LBM core structure, it can easily handle new peripherals. We have developed
hooks for the Bluetooth host control interface (HCI) and Logical Link and Adaptation
Protocol (L2CAP) layers, and demonstrated the hook mechanism for the Bluetooth host
control interface (HCI) and Logical Link and Adaptation Protocol (L2CAP) layers to show
the adaptability and flexibility of the LBM framework. A near-field communication (NFC)
protocol hook mechanism is a way to intercept and modify NFC messages as they are being
transmitted between two devices. This can be used for various purposes, such as blocking
malicious NFC messages, logging NFC traffic, or injecting custom NFC messages.

3.4. Avfs

Avfs [43,45] is a high-performance, portable, on-access stackable antivirus virtual file
system. On-access scanning is an enhancement to onopen, onclose and on-exec scanning.
The on-access scanner can prevent viruses from being written to the disk by scanning for
viruses as the program reads or writes data. The user can avoid unexpected delays because
the scan can only be performed when the data can be read, not when the file is opened. We
have created an actual per-access virus scanning system called Avfs, a stacking file system.
Avfs can be used with any other unmodified file system (such as Ext2 or NFS) and does
not require the operating system to be modified because it is a stacking file system. For
example, Windows clients can be transparently protected by Avfs when deployed over
SMB. Avfs is a tool that can be used for general pattern matching and virus detection. It
uses a modified version of ClamAV called “Oyster” for file scanning, which improves RAM
usage over the original ClamAV and is embedded in the kernel for performance gains.
Avfs takes a state-oriented approach to file scanning, allowing it to partially scan a file and
resume scanning later until it is completely scanned. Scanned files are tagged to avoid
unnecessary rescanning and are rescanned if modified.

4. Proposed Model

The proposed solution minimally perturbs the system. It does not require using a
custom kernel or rebuilding and installing a modified BlueZ user space daemon. Instead, it
inspects files transferred to devices through BlueZ’s service daemon. Malicious files are
removed from the system if transmitted through BlueZ’s OBEX service.

4.1. System Design Principles

The intermediary entity, the BOP (broker of objects and protocols), occupies a central
position within the intricate network of clients and the original OBEX (Object Exchange)
service. Its purpose is to facilitate the seamless exchange of objects between these two enti-
ties, serving as a conduit for their communication. To accomplish this, the BOP performs
the critical task of exporting objects from clients and the OBEX service. The creation and
destruction of session and transfer objects are dynamic, with their instantiation and destruc-
tion triggered by receiving signals from the object managers. In addition to its intermediary
role, the BOP also assumes responsibility for caching and modifying the temporary file
location derived from the return of the AuthorizePush method before its transmission to
the OBEX service. It performs this task with the utmost care and precision, ensuring the
integrity and security of the exchanged files. To further enhance its functionality, the BOP
uses a filtering mechanism activated by the occurrence of the “PropertiesChanged” signal
within the transfer object. Before being passed to the standard session bus, this signal
acts as a trigger for applying the filtering mechanism, ensuring that only the relevant and
desired data are passed. The BOP file check handler, which carries the weight of critical
responsibility, calculates the file’s hash value. This estimated value is then sent to the
renowned VirusTotal platform using the VirusTotal API, where a meticulous evaluation is
performed to determine the presence of any malicious intent within the file being scanned.
By employing this intricate and comprehensive framework, the BOP assumes its role as a
crucial communication arbiter, ensuring the smooth and secure exchange of objects between

Information 2023, 14, 525 17 of 26

clients and the OBEX service while maintaining the highest standards of reliability and
effectiveness.

4.2. Bluetooth OBEX Proxy (BOP)

Without the user’s knowledge, an attacker can connect to a mobile device and take
control of personal information like a phonebook or calendar file. For instance, by con-
necting directly to a particular file containing a phonebook, the connection is established
using Object Exchange (OBEX). The OBEX protocol creates an FTP connection and grants
complete interactive access to the destination device’s file system.

The Helemoto assault is comparable to the Bluebugging attack. It makes use of some
phones’ subpar “trusted device” management. Like the Bluebugging attack, the perpetrator
poses as the sender of a virtual contact file (vCard) to a Bluetooth Object Exchange (OBEX)
push profile that has not been authenticated on the victim’s device. A Bluetooth device
may send and receive objects (files) to and from other Bluetooth devices using the OBEX
profile, which is part of the Bluetooth standard. The transfer procedure is interrupted once
the attack starts, and the victim adds the attacker’s phone to their trusted device list.

The BOP sits between the applications and the OBEX daemon via two session buses [10,60],
as shown in Figure 12. Another dbus-daemon systemd service unit creates the obex-bus session
bus and a socket unit described in Section 4.2.

Information 2023, 14, x FOR PEER REVIEW 18 of 27

connecting directly to a particular file containing a phonebook, the connection is estab-
lished using Object Exchange (OBEX). The OBEX protocol creates an FTP connection and
grants complete interactive access to the destination device’s file system.

The Helemoto assault is comparable to the Bluebugging attack. It makes use of some
phones’ subpar “trusted device” management. Like the Bluebugging attack, the perpetra-
tor poses as the sender of a virtual contact file (vCard) to a Bluetooth Object Exchange
(OBEX) push profile that has not been authenticated on the victim’s device. A Bluetooth
device may send and receive objects (files) to and from other Bluetooth devices using the
OBEX profile, which is part of the Bluetooth standard. The transfer procedure is inter-
rupted once the attack starts, and the victim adds the attacker’s phone to their trusted
device list.

The BOP sits between the applications and the OBEX daemon via two session buses
[10,60], as shown in Figure 12. Another dbus-daemon systemd service unit creates the
obex-bus session bus and a socket unit described in Section 4.2.

Figure 12. BOP system architecture.

1. Asynchronous Message Handling
The BOP implementation uses a new D-Bus Python package called dbus-next [61],

which supports the Python async and Glib main loop. The first attempt to implement the
proxy service using the legacy Python dbus package failed at the very last moment, when
all other components were almost ready. The reason for the failure is that while proxying
the “AuthorizePush” method call to the obex agent, the agent calls back to it for additional
file transfer information, as shown in Figure 13. The handler is still in the event loop wait-
ing for the “AuthorizePush” response from the OBEX agent, so the event loop cannot pick
up the next task and cannot proxy the method call from the OBEX agent. Finally, the two
method calls are timed out, and the object push is aborted.

Figure 12. BOP system architecture.

1. Asynchronous Message Handling

The BOP implementation uses a new D-Bus Python package called dbus-next [61],
which supports the Python async and Glib main loop. The first attempt to implement
the proxy service using the legacy Python dbus package failed at the very last moment,
when all other components were almost ready. The reason for the failure is that while
proxying the “AuthorizePush” method call to the obex agent, the agent calls back to it

Information 2023, 14, 525 18 of 26

for additional file transfer information, as shown in Figure 13. The handler is still in the
event loop waiting for the “AuthorizePush” response from the OBEX agent, so the event
loop cannot pick up the next task and cannot proxy the method call from the OBEX agent.
Finally, the two method calls are timed out, and the object push is aborted.

Information 2023, 14, x FOR PEER REVIEW 19 of 27

Figure 13. Sequence diagram for handling the AuthorizePush method call.

2. Message Redirection
The proxying action is carried out by changing the messages’ sender, destination,

serial, and reply_serial and forwarding them to the other bus, as shown in Figure 14. It
allows the BOP to work without implementing all the methods and signals for all the ob-
jects. We only need to implement the object handlers for the ways we want to hook and
modify the response messages. When hooking a method call, a callback function is created
to intercept the response from obexd. The callback function can export new objects on a
message bus or manipulate the response before passing it to the other side.

Figure 14. Proxying messages between two message buses.

3. Object Creation
An application’s OBEX agent object must be proxied to the OBEX bus session bus,

while the session object and transfer object must be proxied to the standard session bus.
These objects are created as needed and removed when they have served their purpose.
A new OBEX agent object is exported or released on the obex-bus session bus by the BOP
AgentManager when the RegisterAgent or UnregisterAgent method call to obexd returns
success. As for session objects and transfer objects, they are exported or removed on the
default session bus by the BOP ObjectManager when it receives an InterfacesAdded or
InterfacesRemoved signal before forwarding the call.
4. Filter Mechanism

Figure 13. Sequence diagram for handling the AuthorizePush method call.

2. Message Redirection

The proxying action is carried out by changing the messages’ sender, destination,
serial, and reply_serial and forwarding them to the other bus, as shown in Figure 14. It
allows the BOP to work without implementing all the methods and signals for all the
objects. We only need to implement the object handlers for the ways we want to hook and
modify the response messages. When hooking a method call, a callback function is created
to intercept the response from obexd. The callback function can export new objects on a
message bus or manipulate the response before passing it to the other side.

Information 2023, 14, x FOR PEER REVIEW 19 of 27

Figure 13. Sequence diagram for handling the AuthorizePush method call.

2. Message Redirection
The proxying action is carried out by changing the messages’ sender, destination,

serial, and reply_serial and forwarding them to the other bus, as shown in Figure 14. It
allows the BOP to work without implementing all the methods and signals for all the ob-
jects. We only need to implement the object handlers for the ways we want to hook and
modify the response messages. When hooking a method call, a callback function is created
to intercept the response from obexd. The callback function can export new objects on a
message bus or manipulate the response before passing it to the other side.

Figure 14. Proxying messages between two message buses.

3. Object Creation
An application’s OBEX agent object must be proxied to the OBEX bus session bus,

while the session object and transfer object must be proxied to the standard session bus.
These objects are created as needed and removed when they have served their purpose.
A new OBEX agent object is exported or released on the obex-bus session bus by the BOP
AgentManager when the RegisterAgent or UnregisterAgent method call to obexd returns
success. As for session objects and transfer objects, they are exported or removed on the
default session bus by the BOP ObjectManager when it receives an InterfacesAdded or
InterfacesRemoved signal before forwarding the call.
4. Filter Mechanism

Figure 14. Proxying messages between two message buses.

Information 2023, 14, 525 19 of 26

3. Object Creation

An application’s OBEX agent object must be proxied to the OBEX bus session bus,
while the session object and transfer object must be proxied to the standard session bus.
These objects are created as needed and removed when they have served their purpose. A
new OBEX agent object is exported or released on the obex-bus session bus by the BOP
AgentManager when the RegisterAgent or UnregisterAgent method call to obexd returns
success. As for session objects and transfer objects, they are exported or removed on the
default session bus by the BOP ObjectManager when it receives an InterfacesAdded or
InterfacesRemoved signal before forwarding the call.

4. Filter Mechanism

If a PropertiesChanged signal indicates that the transfer is competitive, either by
transfer size or transfer status, it calls the BOP file check handler and does not pass the
signal to the default session bus. The file check handler always passes the signal to the
default session bus when the check is complete. However, the file is copied to the original
temp file location only if it passes the file check. Otherwise, the file is deleted.

5. Custom Systemd Service and D-Bus Service

When an application makes a method call to org.bluez.obex, the dbus-daemon first
checks to see if a process already registers the name. If a process does not own the name,
the dbus-daemon checks for D-Bus service files that specify that name. The obexd is then
run by the dbus-daemon and passed to the systemd daemon, which will then manage the
systemd user service.

(a) obex-bus.service and obex-bus.socket

The two files create a new session bus placed in the XDG_RUNTIME_DIR. It allows
the original obex.service to talk to the BOP service.

(b) obex.service

This service unit file overrides the original service file. It changes the DBUS_SESSION_
BUS_ADDRESS environment variable to point to the newly created obex-bus socket file so
that obexd connects to this message bus instead of the default session bus. This service also
removed the alias in the [Install] section used by the OBEX D-BUS service.

(c) dbus-org.bluez.obex.service

The original obex.service creates an alias service called dbus-org.bluez.obex.service,
which is used by the OBEX D-Bus service to associate the process with systemd. This
service file runs the BOP service and requires both obex.service and obex-bus.service.

5. Evaluation

The experiment setup uses a server running the proxy service and a client using the
OBEX object push profile to send a file to the server. The two virtual machines (VMs) run
inside a Proxmox VE server, as shown in Tables 2 and 3.

Table 2. Server running OBEX proxy.

Server VM

vCPU 2 cores

RAM 4 GB

Bluetooth MediaTek Inc. mt7921e

OS Ubuntu 22.04.2 LTS

Kernel 5.15.0-75-generic

Information 2023, 14, 525 20 of 26

Table 3. Client.

Client VM

vCPU 2 cores

RAM 4 GB

Bluetooth Cambridge Silicon Radio, Ltd. Bluetooth
Dongle (USB)

OS Ubuntu 22.04.2 LTS

Kernel 5.15.0-75-generic

5.1. Functional Testing

The system is tested with and without the proxy service using a normal file (10k.file)
and a malicious file (linux_ai_mal.tar.gz). A normal file should be successfully transferred
without any problems, while a malicious file will result in an empty file of size zero.
Figures 15 and 16 show successful transfers with and without the BOP. Figure 17 shows
that the file is empty when a malicious file is transferred through the BOP.

Information 2023, 14, x FOR PEER REVIEW 21 of 27

without any problems, while a malicious file will result in an empty file of size zero. Fig-
ures 15 and 16 show successful transfers with and without the BOP. Figure 17 shows that
the file is empty when a malicious file is transferred through the BOP.

Figure 15. Object pushes without BOP.

Figure 16. Object pushes with BOP.

Figure 15. Object pushes without BOP.

Information 2023, 14, x FOR PEER REVIEW 21 of 27

without any problems, while a malicious file will result in an empty file of size zero. Fig-
ures 15 and 16 show successful transfers with and without the BOP. Figure 17 shows that
the file is empty when a malicious file is transferred through the BOP.

Figure 15. Object pushes without BOP.

Figure 16. Object pushes with BOP. Figure 16. Object pushes with BOP.

Information 2023, 14, 525 21 of 26Information 2023, 14, x FOR PEER REVIEW 22 of 27

Figure 17. OPP transfer results with and without BOP. The red square are with BOP.

FTP is tested using the FTP client Python script provided by BlueZ. A standard file
(100k.file) and a malicious file (malicious.elf) are sent to another Bluetooth device in Fig-
ure 18. Figure 19 shows the service log of the BOP, which shows that 100k.file passed the
filter while malicious.elf did not. Below the service log is a “ls” command output showing
that only 100k.file exists.

Figure 18. File Transfer with and without BOP.

Figure 19. FTP transfer results with and without BOP.

Figure 17. OPP transfer results with and without BOP. The red square are with BOP.

FTP is tested using the FTP client Python script provided by BlueZ. A standard
file (100k.file) and a malicious file (malicious.elf) are sent to another Bluetooth device in
Figure 18. Figure 19 shows the service log of the BOP, which shows that 100k.file passed the
filter while malicious.elf did not. Below the service log is a “ls” command output showing
that only 100k.file exists.

Information 2023, 14, x FOR PEER REVIEW 22 of 27

Figure 17. OPP transfer results with and without BOP. The red square are with BOP.

FTP is tested using the FTP client Python script provided by BlueZ. A standard file
(100k.file) and a malicious file (malicious.elf) are sent to another Bluetooth device in Fig-
ure 18. Figure 19 shows the service log of the BOP, which shows that 100k.file passed the
filter while malicious.elf did not. Below the service log is a “ls” command output showing
that only 100k.file exists.

Figure 18. File Transfer with and without BOP.

Figure 19. FTP transfer results with and without BOP.

Figure 18. File Transfer with and without BOP.

Information 2023, 14, x FOR PEER REVIEW 22 of 27

Figure 17. OPP transfer results with and without BOP. The red square are with BOP.

FTP is tested using the FTP client Python script provided by BlueZ. A standard file
(100k.file) and a malicious file (malicious.elf) are sent to another Bluetooth device in Fig-
ure 18. Figure 19 shows the service log of the BOP, which shows that 100k.file passed the
filter while malicious.elf did not. Below the service log is a “ls” command output showing
that only 100k.file exists.

Figure 18. File Transfer with and without BOP.

Figure 19. FTP transfer results with and without BOP. Figure 19. FTP transfer results with and without BOP.

Information 2023, 14, 525 22 of 26

5.2. Accuracy

The accuracy of the BOP was tested with 3607 malicious files downloaded from
Bazaar’s daily submissions [62] that are smaller than 100 KB in size, as well as 1056 files
from BlueZ’s GitHub repository source files [63]. Files with any “malicious” or “suspicious”
records from VirusTotal are counted as malicious, while others are non-malicious. One hun-
dred and seven malicious files passed the BOP filter, while the BOP blocked none of the
normal files in Figure 20. Hence, the false positive rate of the BOP is zero, and the false
negative rate of the BOP is 2.29%. The 107 false negatives are discussed in the last section.
In the accuracy section, we say that there are 107 false positives. Later, we uploaded the
107 files to VirusTotal to see if the result changed. Two files were marked as malicious,
and the remaining 105 files are still marked as clean by VirusTotal. Among the 105 files,
58 have community comments in the VirusTotal database. Fifty of them are from Nextron
Systems’ THOR APT scanner. Most of them are PE files with malformed or corrupted
headers. One file from FileScan.IO was marked as clean, as well as two from Malshare,
two from Joe Sandbox Analysis, one with suspicious comments, one with malicious words,
and one with size 0.

Information 2023, 14, x FOR PEER REVIEW 23 of 27

5.2. Accuracy
The accuracy of the BOP was tested with 3607 malicious files downloaded from Ba-

zaar’s daily submissions [62] that are smaller than 100 KB in size, as well as 1056 files from
BlueZ’s GitHub repository source files [63]. Files with any “malicious” or “suspicious”
records from VirusTotal are counted as malicious, while others are non-malicious. One
hundred and seven malicious files passed the BOP filter, while the BOP blocked none of
the normal files in Figure 20. Hence, the false positive rate of the BOP is zero, and the false
negative rate of the BOP is 2.29%. The 107 false negatives are discussed in the last section.
In the accuracy section, we say that there are 107 false positives. Later, we uploaded the
107 files to VirusTotal to see if the result changed. Two files were marked as malicious,
and the remaining 105 files are still marked as clean by VirusTotal. Among the 105 files,
58 have community comments in the VirusTotal database. Fifty of them are from Nextron
Systems’ THOR APT scanner. Most of them are PE files with malformed or corrupted
headers. One file from FileScan.IO was marked as clean, as well as two from Malshare,
two from Joe Sandbox Analysis, one with suspicious comments, one with malicious
words, and one with size 0.

Figure 20. BOP accuracy.

5.3. Performance
The performance of the BOP was tested using five different files of 1 KB, 10 KB, 100

KB, 1 MB, and 10 MB in size, created using the truncate command in Figure 21. Each file
was tested ten times to calculate the average transfer time. The Bluetooth connection of
the two test VMs was already established to avoid measuring the time to develop and
disconnect the Bluetooth connection before and after the OBEX protocol was actually ex-
ecuted. The time was calculated from when an application received the AuthorizePush
method call to when it received the signal indicating that the transfer was complete.

The performance difference comes from the time it takes to receive a response from
the VirusTotal API after making an API call. The request time has a significant impact on
the performance of the BOP.

Figure 20. BOP accuracy.

5.3. Performance

The performance of the BOP was tested using five different files of 1 KB, 10 KB, 100 KB,
1 MB, and 10 MB in size, created using the truncate command in Figure 21. Each file was
tested ten times to calculate the average transfer time. The Bluetooth connection of the two
test VMs was already established to avoid measuring the time to develop and disconnect
the Bluetooth connection before and after the OBEX protocol was actually executed. The
time was calculated from when an application received the AuthorizePush method call to
when it received the signal indicating that the transfer was complete.

Information 2023, 14, x FOR PEER REVIEW 24 of 27

Figure 21. BOP performance test with different file sizes.

5.4. Functionality Comparisons
The BOP was implemented in the Linux operating system kernel. One of the most

well-known antivirus programs for Linux is ClamAV. Linux machines cannot have their
file systems automatically scanned by ClamAV. Therefore, the BOP can identify malware
as soon as it is downloaded to a Linux computer over Bluetooth. However, ClamAV will
find the infection in the subsequent scanning cycle. And it can take several hours to scan
the entire file system. Users of ClamAV must specify to ClamAV which files in which di-
rectories they should repeatedly check to avoid the issue mentioned above. Benign files
that have already been examined in the guides must be scanned again by ClamAV. Finally,
VirusTotal, which has access to more than 60 viral signature databases, is used by the BOP.
However, ClamAV only has one database of signatures. Therefore, the BOP is better than
ClamAV at identifying Bluetooth malware (Table 4)

Table 4. Functionality comparisons between the BOP and ClamAV. In this table, V means YES. X
represents NO, and # is “the number of”.

 Automatically Scan
of Signature Data-

bases Used
Need to Configure

Directory
BOP X 60+ X

ClamAV V 1 V

6. Conclusions
The novelty of the BOP approach lies in the fact that it is the first proposed centralized

proxy to filter malicious files transferred through BlueZ’s OBEX system service. Tradi-
tional approaches usually require each device to run its security software, which makes
the device’s security dependent on the device manufacturer’s security capabilities. The
BOP approach improves security and reliability by centralizing security checks in a single
agent. The BOP approach can improve the security of Bluetooth devices by impacting the
following areas, reducing the risk of Bluetooth devices being attacked by malicious files.
We created a proxy service called the BOP on the D-Bus message bus to intercept all mes-
sages between the server and client processes of the BlueZ OBEX service. The messages
proxied by the BOP are then used to filter malicious files transferred to the device using
the VirusTotal APIs. To further restrict access to temporary files, create a dedicated user
account to run a centralized OBEX service for each user on the system. It will allow for
more granular control over who has access to temporary files and will help mitigate the

Figure 21. BOP performance test with different file sizes.

Information 2023, 14, 525 23 of 26

The performance difference comes from the time it takes to receive a response from
the VirusTotal API after making an API call. The request time has a significant impact on
the performance of the BOP.

5.4. Functionality Comparisons

The BOP was implemented in the Linux operating system kernel. One of the most
well-known antivirus programs for Linux is ClamAV. Linux machines cannot have their
file systems automatically scanned by ClamAV. Therefore, the BOP can identify malware
as soon as it is downloaded to a Linux computer over Bluetooth. However, ClamAV will
find the infection in the subsequent scanning cycle. And it can take several hours to scan
the entire file system. Users of ClamAV must specify to ClamAV which files in which
directories they should repeatedly check to avoid the issue mentioned above. Benign files
that have already been examined in the guides must be scanned again by ClamAV. Finally,
VirusTotal, which has access to more than 60 viral signature databases, is used by the BOP.
However, ClamAV only has one database of signatures. Therefore, the BOP is better than
ClamAV at identifying Bluetooth malware (Table 4).

Table 4. Functionality comparisons between the BOP and ClamAV. In this table, V means YES. X
represents NO, and # is “the number of”.

Automatically Scan # of Signature
Databases Used

Need to Configure
Directory

BOP X 60+ X

ClamAV V 1 V

6. Conclusions

The novelty of the BOP approach lies in the fact that it is the first proposed centralized
proxy to filter malicious files transferred through BlueZ’s OBEX system service. Traditional
approaches usually require each device to run its security software, which makes the
device’s security dependent on the device manufacturer’s security capabilities. The BOP
approach improves security and reliability by centralizing security checks in a single
agent. The BOP approach can improve the security of Bluetooth devices by impacting
the following areas, reducing the risk of Bluetooth devices being attacked by malicious
files. We created a proxy service called the BOP on the D-Bus message bus to intercept all
messages between the server and client processes of the BlueZ OBEX service. The messages
proxied by the BOP are then used to filter malicious files transferred to the device using
the VirusTotal APIs. To further restrict access to temporary files, create a dedicated user
account to run a centralized OBEX service for each user on the system. It will allow for
more granular control over who has access to temporary files and will help mitigate the risk
of unauthorized access. A proxy can be also created to route requests between two message
buses. It can be used to improve performance and security by ensuring that requests are
routed through a secure channel. It is a proxy that can be also created between Bluetooth
and obexd daemons. It can be used to intercept the sockets passed to obexd, and to filter
packets based on their content. It can help to prevent malicious packets from being sent
to obexd, and can help to protect the system from attack. Finally, a proxy can be used to
deny or allow access to services for which users originally have or do not have permissions.
It can implement a more granular access control policy and help protect the system from
unauthorized access.

Author Contributions: Conceptualization, F.-H.H. and J.-X.C.; Methodology, F.-H.H.; Software,
J.-H.H. and Y.-W.L.; Validation, H.-J.W.; Formal analysis, H.-J.W. and Y.-W.L.; Data curation, J.-H.H.;
Writing—original draft, M.-H.W.; Writing—review & editing, M.-H.W. and Y.-L.H.; Visualization,
J.-X.C.; Project administration, F.-H.H. and M.-H.W. All authors have read and agreed to the published
version of the manuscript.

Information 2023, 14, 525 24 of 26

Funding: Ministry of Science and Technology of Taiwan under no. MOST 111-2221-E-008-080-MY3.

Data Availability Statement: The data supporting this study’s findings are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. González, G.; Lárraga, M.E.; Alvarez-Icaza, L.; Gomez, J. Bluetooth worm propagation in smartphones: Modeling and analyzing

spatio-temporal dynamics. IEEE Access 2021, 9, 75265–75282. [CrossRef]
2. Nallusamy, T.; Ravi, R. Investigation on cybernetic worm propagation in Bluetooth enabled devices. Caribb. J. Sci. 2022, 52,

1450–1460.
3. Ghillani, D.; Gillani, D.H. A perspective study on Malware detection and protection, A review. Authorea 2022. preprints. [CrossRef]
4. Mahboubi, A.; Camtepe, S.; Ansari, K. Stochastic modeling of IoT botnet spread: A short survey on mobile malware spread

modeling. IEEE Access 2020, 8, 228818–228830. [CrossRef]
5. Carettoni, L.; Merloni, C.; Zanero, S. Studying bluetooth malware propagation: The bluebag project. IEEE Secur. Priv. 2007, 5,

17–25. [CrossRef]
6. Podhradsky, A.L.; Casey, C.; Ceretti, P. The Bluetooth honeypot project. In Proceedings of the Wireless Telecommunications

Symposium 2012, London, UK, 18–20 April 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–10.
7. Hassan, S.S.; Bibon, S.D.; Hossain, M.S.; Atiquzzaman, M. Security threats in Bluetooth technology. Comput. Secur. 2018, 74,

308–322. [CrossRef]
8. Dunning, J. Taming the blue beast: A survey of bluetooth based threats. IEEE Secur. Priv. 2010, 8, 20–27. [CrossRef]
9. Albahar, M.A.; Haataja, K.; Toivanen, P. Bluetooth MITM vulnerabilities: A literature review, novel attack scenarios, novel

countermeasures, and lessons learned. Int. J. Inf. Technol. Secur. 2016, 8, 25–49.
10. Haataja, K.; Hyppönen, K.; Pasanen, S.; Toivanen, P. MITM attacks on Bluetooth. In Bluetooth Security Attacks: Comparative

Analysis, Attacks, and Countermeasures; Springer: Berlin/Heidelberg, Germany, 2013; pp. 61–70.
11. Sandhya, S.; Devi, K.S. Contention for man-in-the-middle attacks in Bluetooth networks. In Proceedings of the 2012 Fourth

International Conference on Computational Intelligence and Communication Networks, Mathura, India, 3–5 November 2012;
IEEE: Piscataway, NJ, USA, 2012; pp. 700–703.

12. Haataja, K.; Hypponen, K.; Toivanen, P. Ten years of bluetooth security attacks: Lessons learned. In Computer Science I Like;
University of Eastern Finland: Kuopio, Finland, 2011; p. 45.

13. Minar, N.B.-N.I.; Tarique, M. Bluetooth security threats and solutions: A survey. Int. J. Distrib. Parallel Syst. 2012, 3, 127. [CrossRef]
14. Wang, Y.; Wen, S.; Xiang, Y.; Zhou, W. Modeling the propagation of worms in networks: A survey. IEEE Commun. Surv. Tutor.

2013, 16, 942–960. [CrossRef]
15. Zou, C.C.; Towsley, D.; Gong, W. Modeling and simulation study of the propagation and defense of internet e-mail worms. IEEE

Trans. Dependable Secur. Comput. 2007, 4, 105–118. [CrossRef]
16. Su, J.; Chan, K.K.W.; Miklas, A.G.; Po, K.; Akhavan, A.; Saroiu, S.; de Lara, E.; Goel, A. A preliminary investigation of worm

infections in a bluetooth environment. In Proceedings of the 4th ACM Workshop on Recurring Malcode, Alexandria, VA, USA, 3
November 2006; pp. 9–16.

17. Yan, G.; Eidenbenz, S. Modeling propagation dynamics of bluetooth worms (extended version). IEEE Trans. Mob. Comput. 2008, 8,
353–368. [CrossRef]

18. Mickens, J.W.; Noble, B.D. Modeling epidemic spreading in mobile environments. In Proceedings of the 4th ACM Workshop on
Wireless Security, Cologne, Germany, 2 September 2005; pp. 77–86.

19. Morris-King, J.R.; Cam, H. Controlling proximity-malware infection in diverse tactical mobile networks using K-distance pruning.
In Proceedings of the MILCOM 2016—2016 IEEE Military Communications Conference, Baltimore, MD, USA, 1–3 November
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 503–508.

20. Zyba, G.; Voelker, G.M.; Liljenstam, M.; Méhes, A.; Johansson, P. Defending mobile phones from proximity malware. In
Proceedings of the IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1503–1511.

21. Yang, Y.; Zhu, S.; Cao, G. Improving sensor network immunity under worm attacks: A software diversity approach. In
Proceedings of the 9th ACM International Symposium on Mobile ad hoc Networking and Computing, Hong Kong, China, 26–30
May 2008; pp. 149–158.

22. Li, F.; Yang, Y.; Wu, J. CPMC: An efficient proximity malware coping scheme in smartphone-based mobile networks. In
Proceedings of the 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; IEEE: Piscataway, NJ, USA, 2010;
pp. 1–9.

23. Miklas, A.G.; Gollu, K.K.; Chan, K.K.; Saroiu, S.; Gummadi, K.P.; De Lara, E. Exploiting social interactions in mobile systems.
In Proceedings of the International Conference on Ubiquitous Computing, Tyrol, Austria, 16–19 September 2007; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 409–428.

24. Gao, C.; Liu, J. Modeling and restraining mobile virus propagation. IEEE Trans. Mob. Comput. 2012, 12, 529–541. [CrossRef]

https://doi.org/10.1109/ACCESS.2021.3081482
https://doi.org/10.22541/au.166308976.63086986/v1
https://doi.org/10.1109/ACCESS.2020.3044277
https://doi.org/10.1109/MSP.2007.43
https://doi.org/10.1016/j.cose.2017.03.008
https://doi.org/10.1109/MSP.2010.3
https://doi.org/10.5121/ijdps.2012.3110
https://doi.org/10.1109/SURV.2013.100913.00195
https://doi.org/10.1109/TDSC.2007.1001
https://doi.org/10.1109/TMC.2008.129
https://doi.org/10.1109/TMC.2012.29

Information 2023, 14, 525 25 of 26

25. Fleizach, C.; Liljenstam, M.; Johansson, P.; Voelker, G.M.; Mehes, A. Can you infect me now? Malware propagation in mobile
phone networks. In Proceedings of the 2007 ACM Workshop on Recurring Malcode, Alexandria, VA, USA, 2 November 2007;
pp. 61–68.

26. Meng, X.; Zerfos, P.; Samanta, V.; Wong, S.H.; Lu, S. Analysis of the reliability of a nationwide short message service. In
Proceedings of the IEEE INFOCOM 2007—26th IEEE International Conference on Computer Communications, Anchorage, AK,
USA, 6–12 May 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1811–1819.

27. Bose, A.; Hu, X.; Shin, K.G.; Park, T. Behavioral detection of malware on mobile handsets. In Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Services, Breckenridge, CO, USA, 17–20 June 2008; pp. 225–238.

28. Zhu, Z.; Cao, G.; Zhu, S.; Ranjan, S.; Nucci, A. A social network based patching scheme for worm containment in cellular
networks. In Handbook of Optimization in Complex Networks: Communication and Social Networks; Springer: New York, NY, USA,
2012; pp. 505–533.

29. Zhao, D.; Wang, L.; Wang, Z.; Xiao, G. Virus propagation and patch distribution in multiplex networks: Modeling, analysis, and
optimal allocation. IEEE Trans. Inf. Forensics Secur. 2018, 14, 1755–1767. [CrossRef]

30. Zhang, X.; Cao, G. Transient community detection and its application to data forwarding in delay tolerant networks. IEEE/ACM
Trans. Netw. 2017, 25, 2829–2843. [CrossRef]

31. Lu, Z.; Sun, X.; Wen, Y.; Cao, G.; La Porta, T. Algorithms and applications for community detection in weighted networks. IEEE
Trans. Parallel Distrib. Syst. 2014, 26, 2916–2926. [CrossRef]

32. Peng, S.; Wu, M.; Wang, G.; Yu, S. Containing smartphone worm propagation with an influence maximization algorithm. Comput.
Netw. 2014, 74, 103–113. [CrossRef]

33. Yang, W.; Wang, H.; Yao, Y. An immunization strategy for social network worms based on network vertex influence. China
Commun. 2015, 12, 154–166. [CrossRef]

34. Wu, J.; Wu, R.; Antonioli, D.; Payer, M.; Tippenhauer, N.O.; Xu, D.; Tian, D.; Bianchi, A. {LIGHTBLUE}: Automatic {Profile-Aware}
Debloating of Bluetooth Stacks. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Virtual, 11–13
August 2021; pp. 339–356.

35. Vasan, D.; Alazab, M.; Venkatraman, S.; Akram, J.; Qin, Z. MTHAEL: Cross-architecture IoT malware detection based on neural
network advanced ensemble learning. IEEE Trans. Comput. 2020, 69, 1654–1667. [CrossRef]

36. Huda, S.; Miah, S.; Yearwood, J.; Alyahya, S.; Al-Dossari, H.; Doss, R. A malicious threat detection model for cloud assisted
internet of things (CoT) based industrial control system (ICS) networks using deep belief network. J. Parallel Distrib. Comput.
2018, 120, 23–31. [CrossRef]

37. Parra, G.D.L.T.; Rad, P.; Choo, K.-K.R.; Beebe, N. Detecting Internet of Things attacks using distributed deep learning. J. Netw.
Comput. Appl. 2020, 163, 102662. [CrossRef]

38. De Donno, M.; Dragoni, N.; Giaretta, A.; Spognardi, A. Analysis of DDoS-capable IoT malwares. In Proceedings of the 2017
Federated Conference on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic, 3–6 September 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 807–816.

39. Hallman, R.; Bryan, J.; Palavicini, G.; Divita, J.; Romero-Mariona, J. IoDDoS-the internet of distributed denial of sevice attacks. In
Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security, Porto, Portugal, 24–26 April 2017;
Scitepress: Setúbal, Portugal, 2017; pp. 47–58.

40. Shobana, M.; Rathi, S. Iot malware: An analysis of iot device hijacking. Int. J. Sci. Res. Comput. Sci. Comput. Eng. Inf. Technol. 2018,
3, 2456–3307.

41. Vignau, B.; Khoury, R.; Hallé, S. 10 years of IoT malware: A feature-based taxonomy. In Proceedings of the 2019 IEEE 19th
International Conference on Software Quality, Reliability and Security Companion (QRS-C), Sofia, Bulgaria, 22–26 July 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 458–465.

42. Vignau, B.; Khoury, R.; Hallé, S.; Hamou-Lhadj, A. The evolution of IoT Malwares, from 2008 to 2019: Survey, taxonomy, process
simulator and perspectives. J. Syst. Archit. 2021, 116, 102143. [CrossRef]

43. Almiani, M.; Razaque, A.; Yimu, L.; Minjie, T.; Alweshah, M.; Atiewi, S. Bluetooth application-layer packet-filtering for blueborne
attack defending. In Proceedings of the 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC),
Rome, Italy, 10–13 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 142–148.

44. Tian, D.J.; Hernandez, G.; Choi, J.I.; Frost, V.; Johnson, P.C.; Butler, K.R. LBM: A security framework for peripherals within the
linux kernel. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 967–984.

45. Miretskiy, Y.; Das, A.; Wright, C.P.; Zadok, E. Avfs: An On-Access Anti-Virus File System. In Proceedings of the 13th USENIX
Security Symposium, San Diego, CA, USA, 9–13 August 2004; pp. 73–88.

46. García, G.G.; Ramirez, M.E.L. Modeling the spatio-temporal dynamics of worm propagation in smartphones based on cellular
automata. In Proceedings of the 2016 European Modelling Symposium (EMS), Pisa, Italy, 28–30 November 2016; IEEE: Piscataway,
NJ, USA, 2016; pp. 196–201.

47. Cäsar, M.; Pawelke, T.; Steffan, J.; Terhorst, G. A survey on Bluetooth Low Energy security and privacy. Comput. Netw. 2022, 205,
108712. [CrossRef]

https://doi.org/10.1109/TIFS.2018.2885254
https://doi.org/10.1109/TNET.2017.2708090
https://doi.org/10.1109/TPDS.2014.2370031
https://doi.org/10.1016/j.comnet.2014.09.004
https://doi.org/10.1109/CC.2015.7188533
https://doi.org/10.1109/TC.2020.3015584
https://doi.org/10.1016/j.jpdc.2018.04.005
https://doi.org/10.1016/j.jnca.2020.102662
https://doi.org/10.1016/j.sysarc.2021.102143
https://doi.org/10.1016/j.comnet.2021.108712

Information 2023, 14, 525 26 of 26

48. Wang, H.; Xi, M.; Liu, J.; Chen, C. Transmitting IPv6 packets over Bluetooth low energy based on BlueZ. In Proceedings of the
2013 15th International Conference on Advanced Communications Technology (ICACT), PyeongChang, Republic of Korea, 27–30
January 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 72–77.

49. Beutel, J.; Krasnyanskiy, M. Linux BlueZ Howto. Available online: http://www.grc.upv.es/localdocs/bluezhowto.pdf (accessed
on 23 September 2023).

50. Kirkbride, P. Basic Linux Terminal Tips and Tricks; Springer: Berlin/Heidelberg, Germany, 2020.
51. Basig, L.; Lazzaretti, F. Reliable Messaging Using the CloudEvents Router; OST Ostschweizer Fachhochschule: Rapperswil,

Switzerland, 2021.
52. Celesti, A.; Fazio, M.; Galletta, A.; Carnevale, L.; Wan, J.; Villari, M. An approach for the secure management of hybrid cloud–edge

environments. Future Gener. Comput. Syst. 2019, 90, 1–19. [CrossRef]
53. Groza, B.; Andreica, T.; Berdich, A.; Murvay, P.-S.; Gurban, E.H. Prestvo: Privacy enabled smartphone based access to vehicle

on-board units. IEEE Access 2020, 8, 119105–119122. [CrossRef]
54. Zeadally, S.; Siddiqui, F.; Baig, Z. 25 years of bluetooth technology. Future Internet 2019, 11, 194. [CrossRef]
55. Kiourtis, A.; Mavrogiorgou, A.; Kyriazis, D. A comparative study of bluetooth spp, pan and goep for efficient exchange of

healthcare data. Emerg. Sci. J. 2021, 5, 279–293. [CrossRef]
56. Seri, B.; Livne, A. Exploiting Blueborne in Linux-Based IoT Devices; Armis: Palo Alto, CA, USA, 2019.
57. Seri, B.; Vishnepolsky, G. The Dangers of Bluetooth Implementations: Unveiling Zero Day Vulnerabilities and Security Flaws in Modern

Bluetooth Stacks; ArmisLabs: Palo Alto, CA, USA, 2017; pp. 1–38.
58. Seri, B.; Vishnepolsky, G. BlueBorne-Technical Report; Technical Report; Armis: Palo Alto, CA, USA, 2017; 41p. Available online:

https://www.scribd.com/document/360135609/BlueBorne-Technical-White-Paper (accessed on 21 September 2023).
59. Godwin, S.; Glendenning, B.; Gagneja, K. Future security of smart speaker and IoT smart home devices. In Proceedings of the

2019 Fifth Conference on Mobile and Secure Services (MobiSecServ), Miami Beach, FL, USA, 2–3 March 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 1–6.

60. Caldwell, L.; Ekerfelt, S.; Hornung, A.; Wu, J.Y. The Art of Bluedentistry: Current Security and Privacy Issues with Bluetooth Devices;
Semantic Scholar; University of Washington: Seattle, WA, USA, 2006.

61. freedesktop.org. File-Hierarchy—File System Hierarchy Overview. Available online: https://www.freedesktop.org/software/
systemd/man/file-hierarchy.html (accessed on 21 September 2023).

62. Bazaar. Malware-Bazaar. Available online: https://datalake.abuse.ch/malware-bazaar/daily/ (accessed on 21 September 2023).
63. O. L. B. p. Stack. BlueZ. Available online: https://github.com/bluez/bluez/archive/refs/heads/master.zip (accessed on 21

September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.grc.upv.es/localdocs/bluezhowto.pdf
https://doi.org/10.1016/j.future.2018.06.043
https://doi.org/10.1109/ACCESS.2020.3003574
https://doi.org/10.3390/fi11090194
https://doi.org/10.28991/esj-2021-01276
https://www.scribd.com/document/360135609/BlueBorne-Technical-White-Paper
https://www.freedesktop.org/software/systemd/man/file-hierarchy.html
https://www.freedesktop.org/software/systemd/man/file-hierarchy.html
https://datalake.abuse.ch/malware-bazaar/daily/
https://github.com/bluez/bluez/archive/refs/heads/master.zip

	Introduction
	Background
	Bluetooth Worm
	BlueZ
	Systemd
	D-Bus
	OBEX and Object Push Profile

	Related Work
	BlueBorne
	Packet Filtering for BlueBorne
	LBM
	Avfs

	Proposed Model
	System Design Principles
	Bluetooth OBEX Proxy (BOP)

	Evaluation
	Functional Testing
	Accuracy
	Performance
	Functionality Comparisons

	Conclusions
	References

