
Citation: Abdalla, M.H.I.; Malberg,

S.; Dementieva, D.; Mosca, E.; Groh,

G. A Benchmark Dataset to

Distinguish Human-Written and

Machine-Generated Scientific Papers.

Information 2023, 14, 522. https://

doi.org/10.3390/info14100522

Academic Editor: Peter Revesz

Received: 31 July 2023

Revised: 13 September 2023

Accepted: 14 September 2023

Published: 26 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Benchmark Dataset to Distinguish Human-Written and
Machine-Generated Scientific Papers †

Mohamed Hesham Ibrahim Abdalla ‡, Simon Malberg ‡ , Daryna Dementieva * , Edoardo Mosca
and Georg Groh *

School of Computation, Information and Technology, Technical University of Munich, 80333 Munich, Germany;
ge96rac@mytum.de (M.H.I.A.); simon.malberg@tum.de (S.M.); edoardo.mosca@tum.de (E.M.)
* Correspondence: daryna.dementieva@tum.de (D.D.); grohg@in.tum.de (G.G.)
† This paper is a substantially extended and revised version of research published in Mosca E.; Abdalla M.H.I.;

Basso P.; Musumeci M.; and Groh G. Distinguishing Fact from Fiction: A Benchmark Dataset for Identifying
Machine-Generated Scientific Papers in the LLM Era. In Proceedings of the 3rd Workshop on Trustworthy
Natural Language Processing (TrustNLP 2023), pages 190–207, Toronto, Canada. Association for
Computational Linguistics.

‡ These authors contributed equally to this work.

Abstract: As generative NLP can now produce content nearly indistinguishable from human writing,
it is becoming difficult to identify genuine research contributions in academic writing and scientific
publications. Moreover, information in machine-generated text can be factually wrong or even
entirely fabricated. In this work, we introduce a novel benchmark dataset containing human-written
and machine-generated scientific papers from SCIgen, GPT-2, GPT-3, ChatGPT, and Galactica, as well
as papers co-created by humans and ChatGPT. We also experiment with several types of classifiers—
linguistic-based and transformer-based—for detecting the authorship of scientific text. A strong focus
is put on generalization capabilities and explainability to highlight the strengths and weaknesses
of these detectors. Our work makes an important step towards creating more robust methods for
distinguishing between human-written and machine-generated scientific papers, ultimately ensuring
the integrity of scientific literature.

Keywords: text generation; large language models; machine-generated text detection

1. Introduction

Generative Natural Language Processing (NLP) systems—often based on Large Language
Models (LLMs) [1–3]—have experienced significant advancements in recent years, with state-
of-the-art algorithms generating content that is almost indistinguishable from human-
written text [1,4–7]. This progress has led to numerous applications in various fields,
such as chatbots [8], automated content generation [9], and even summarization tools [10].
However, these advancements also raise concerns regarding the integrity and authenticity
of academic writing and scientific publications [11,12].

It is indeed increasingly difficult to differentiate genuine research contributions from
artificially generated content. Moreover, we are at an increased risk of including factually
incorrect or entirely fabricated information [13,14]. Reliably identifying machine-generated
scientific publications becomes, thus, crucial to maintaining the credibility of scientific
literature and fostering trust among researchers.

This work introduces a novel benchmark to address this issue. Our contribution—also
briefly sketched in Figure 1—can be summarized as follows:

(1) We present a dataset comprising human-written and machine-generated scientific
documents from various sources: SCIgen [15], GPT-2 [4], GPT-3 [1], ChatGPT [8],
and Galactica [16]. We also include a set of human–machine co-created documents
resembling scientific documents with both human-written and machine-paraphrased

Information 2023, 14, 522. https://doi.org/10.3390/info14100522 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14100522
https://doi.org/10.3390/info14100522
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0000-3781-4700
https://orcid.org/0000-0003-0929-4140
https://orcid.org/0000-0003-4045-5328
https://doi.org/10.3390/info14100522
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14100522?type=check_update&version=2

Information 2023, 14, 522 2 of 33

texts. Each document includes an abstract, introduction, and conclusion in a machine-
readable format. While real titles were used to generate articles for the dataset, there
is no title intersection between real and machine-generated papers in our dataset.

(2) We experiment with several classifiers—bag-of-words-based classifiers, RoBERTa [17],
Galactica [16], GPT-3 [1], DetectGPT [18], ChatGPT [8], and a proposed novel classifier
learning features using an LLM and Random Forest [19]—assessing their performance
in differentiating between human-written and machine-generated content. We also
assess each classifier’s generalization capabilities on out-of-domain data and human–
machine co-created papers to obtain a more accurate estimate of the likely real-world
performance of the different classifiers.

(3) We explore explainability insights from different classifiers ranging from word-level
explanations to more abstract concepts to identify typical differences between human-
written and machine-generated scientific papers.

Galactica
LLM

ChatGPT
LLM

GPT-2
LLM

SCIgen
CFG

Query

Title:
"Video (language) modeling ..."

Abstract: "Advances in video modeling ..."
Introduction: "Video data is a growing ..."
Conclusion: "In our work, we tested the ..."

D
et

ec
tio

n
B

en
ch

m
ar

k
G

en
er

at
io

n

Detect-
GPT

GPT-3GalacticaRoBERTaLogistic
Regr.

ChatGPT LLMFE
(our)

GPT-3
LLM

ChatGPT
LLM

(Para-
phraser)

Abstract: "..."
Introduction: "..."
Conclusion: "..."

Ex
pl

an
at

io
n

Explainability
insights

Logistic
Regression
Coefficients

LIME

LLMFE
Feature

Distributions

SHAP

Random
Forest
Feature

Importance

Figure 1. This work’s overview. Six methods are used to machine-generate papers, which are then
mixed with human-written ones to create our benchmark dataset. Seven models are then tested as
baselines to identify the authorship of a given output.

We release our benchmark dataset, baseline models, and testing code to the public
to promote further research and aid the development of more robust detection methods.
(https://huggingface.co/datasets/tum-nlp/IDMGSP) (accessed on 31 July 2023). This
work extends a previously published study [20].

2. Related Work
2.1. Machine-Generated Text Detection Benchmarks

Since the significant improvement of text generation models, the potential danger
and harm of machine-generated text has been acknowledged by NLP researchers. For this
reason, existing generations of generative models have been tested to create texts in various
domains to compile human-written vs. machine-generated benchmarks.

One of the first datasets and models to detect neural generated texts in a news domain
was Grover [7]. The Grover model for neural news generation was based on GPT-2 [4]
and was used to create a benchmark for neural news detection. In addition, for the news
domain, a dataset for automatic detection of machine-generated news headlines was
created [21]. The machine-generated headlines were also created with GPT-2. Beyond fake
news, the detection of generated scientific articles received attention as well, leading to the
first task benchmarks introduced in [22].

https://huggingface.co/datasets/tum-nlp/IDMGSP

Information 2023, 14, 522 3 of 33

With the increasing capabilities of LLMs, new benchmarks appeared recently, covering
several neural text generators and domains. In [23], the M4 (multi-generator, multi-domain,
and multi-lingual) dataset was presented. It covers various kinds of topics—Wikipedia arti-
cles, question-answering posts, news, and social posts—in six languages. In the MGTBench
benchmark [24], LLMs were evaluated on several different question-answering datasets.
Finally, the DeepfakeTextDetect dataset [25] covers news article writing, story generation,
scientific writing, argument generation, and question-answering.

2.2. Scientific Publication Corpora: Human and Machine-Generated

The ACL Anthology (https://aclanthology.org) (accessed on 24 April 2023). Ref. [26]
and arXiv [27] are widely used resources for accessing scientific texts and their associ-
ated metadata. However, these databases do not provide structured text for scientific
documents, necessitating the use of PDF parsers and other tools to extract text and resolve
references. Several efforts have been made to develop structured text databases for scientific
documents [28–30].

Despite progress in generating text, machine-generated datasets for scientific literature
remain limited. A recent study by Kashnitsky et al. [31] compiled a dataset including
shortened, summarized, and paraphrased paper abstracts and excerpts, as well as text
generated by GPT-3 [1] and GPT-Neo [32]. The dataset lists retracted papers as machine-
generated, which may not always be accurate, and only includes excerpts or abstracts of
the papers.

Liyanage et al. [22] proposed an alternative approach, in which they generated papers
using GPT-2 [4] and arXiv-NLP (https://huggingface.co/lysandre/arxiv-nlp) (accessed
on 24 April 2023). However, their dataset was limited to only 200 samples, which were
restricted to the fields of Artificial Intelligence and Computation and Language.

2.3. Generative NLP for Scientific Articles

Generative NLP for scientific publications has evolved significantly in recent years.
Early methods, such as SCIgen [15], used Context-Free-Grammars (CFG) to fabricate com-
puter science publications. These often contain nonsensical outputs due to CFG’s limited
capacity for generating coherent text.

With the advent of attention, transformers [33] and LLMs [1] have paved the way
for more sophisticated models capable of generating higher-quality scientific content.
Some known (both opensourced and closed) LLMs—such as GPT-3 [1], ChatGPT [8],
Bloom [2], LLaMa-2 [6], and PaLM-2 [34]—are built for general purposes. Others, instead,
are domain-specific and specialized for generating scientific literature. Popular examples
in this category are SciBERT [35] and Galactica [16].

Both general and domain-specific models have shown outstanding results in vari-
ous scientific tasks, demonstrating their potential to generate coherent and contextually
relevant scientific text. Consequentially, the same technology has been applied to other
domains, including writing news articles [7], producing learning material [36], and creative
writing [37]. Moreover, in education, the usage of advanced LLMs showed already promis-
ing results in providing “live“ help in the teaching process [38]. For such use cases, it is
important to develop trustworthy machine-generation technologies, able to provide both
factually correct information as well as display fluency in communication with the users.

2.4. Detection of Machine-Generated Text

The ability to automatically generate convincing content has motivated researchers
to work on its automatic detection, especially given its potential implications for various
domains.

Several approaches to detecting machine-generated text have emerged, employing
various techniques. In [39], a survey of the methods for machine-generated text detection
was presented. One solution is utilizing hand-crafted features [40]. In addition, linguistic-
based and bag-of-words features can be quite powerful and well-explainable baselines [41].

https://aclanthology.org
https://huggingface.co/lysandre/arxiv-nlp

Information 2023, 14, 522 4 of 33

The topology of attention masks was proven to be one of the efficient methods to detect
neural-generated texts in [42]. Finally, neural features in combination with supervised mod-
els can be trained to distinguish between human and machine-generated content [41,43,44].

Alternative approaches explore using the probability distribution of the generative
model itself [18] or watermarking machine-generated text to facilitate detection [45].

2.5. Detection of Machine-Generated Scientific Publications

As we have seen in Section 2.4, several general-purpose solutions exist aiming to
detect NLP-generated text. The detection of automatically generated scientific publications,
however, is an emerging subarea of research with a large potential for improvement.

Previous approaches have primarily focused on identifying text generated by SCIgen [15]
using hand-crafted features [46,47], nearest neighbor classifiers [48], and grammar-based de-
tectors [49]. More recent studies have shown promising results in detecting LLM-generated
papers using SciBERT [50], DistilBERT [51], and other transformer-based models [22,52].
Nonetheless, these approaches have mostly been tested only on abstracts or a substantially
limited set of paper domains.

With the appearance of ChatGPT [8], several studies were dedicated to evaluating how
good this model can be in generating scientific papers. In [53], it was shown that human
annotators are incapable of identifying ChatGPT-generated papers. Since ChatGPT can not
only be used to generate papers from scratch but also to paraphrase them, a method to
identify the polish-ratio of ChatGPT in a piece of text was proposed in [54].

In the end, we can see the necessity for an explainable and robust detector able to
detect machine-generated and edited articles from the most recent LLMs. With this work,
we are aiming to make a step towards the creation of such automated detectors.

3. Benchmark Dataset

In this section, we delve into the construction of our benchmark dataset, which
comprises human-written, machine-generated, and human–machine co-created scientific
papers. Often, for simplicity, we refer to these groups as real, fake, and co-created, respec-
tively. In Section 3.1, we elaborate on the process we followed to extract data from the PDF
documents of real papers. In Section 3.2, we describe our prompting pipelines and how we
utilized various generators to produce fake scientific papers. In Section 3.3, we explain our
approach to generating human–machine co-created papers.

Table 1 offers an overview of our dataset, including sources and numbers of samples
and tokens.

Table 1. Data sources included in our dataset and their respective sizes.

Source Quantity Tokens

arXiv parsing 1 (real) 12 k 13.4 M
arXiv parsing 2 (real) 4 k 3.2 M
SCIgen (fake) 3 k 1.8 M
GPT-2 (fake) 3 k 2.9 M
Galactica (fake) 3 k 2.0 M
ChatGPT (fake) 3 k 1.2 M
GPT-3 (fake) 1 k 0.5 M
ChatGPT (paraphrased real) 4 k 3.5 M

Total real (extraction) 16 k 16.6 M
Total fake (generators) 13 k 8.4 M
Total co-created (paraphrased) 4 k 3.5 M

Total 33 k 28.5 M

3.1. Real Papers Collection

To collect human-written—or real—scientific papers for our dataset, we source them
from the arXiv dataset [27] hosted on Kaggle (https://www.kaggle.com/datasets/Cornell-

https://www.kaggle.com/datasets/Cornell-University/arxiv
https://www.kaggle.com/datasets/Cornell-University/arxiv

Information 2023, 14, 522 5 of 33

University/arxiv (accessed on 24 April 2023)). We exclude scientific papers published after
ChatGPT (after November 2022) to avoid machine-generated papers leaking into our real
dataset. While it is still possible that some of the remaining papers were machine-generated,
we deem this to be highly unlikely and only affect a negligibly small number of papers,
if at all, given the lower accessibility and quality of generators before ChatGPT.

The arXiv dataset provides comprehensive metadata, including title, abstract, publica-
tion date, and category. However, the introduction and conclusion sections are not part of
the metadata, which implies the need for PDF parsing to extract these sections. From the
metadata, each paper’s ID and version are utilized to construct the document path and
retrieve the corresponding PDF from the publicly accessible Google Cloud Storage bucket.
Each PDF is then fed to the PyMuPDF [55] library to be parsed and to extract the relevant
content. Unfortunately, parsing PDFs is known to be very challenging. This is particularly
true for a double-column format, which many scientific papers have. Despite having tested
several heuristic rules to identify and extrapolate the correct sections, the process can still
fail at times. We discard data points where the parsing was unsuccessful.

The resulting set includes 12,000 real papers. Furthermore, we collect an additional
4000 samples undergoing a different parsing procedure. The intention is to ensure there
are no recognizable parsing artifacts that inadvertently ease the detection process (see
Section 4).

3.2. Fake Papers Generation

For the fake component of our dataset, we employ several models to generate abstracts,
introductions, and conclusions based on scientific paper titles. The overview of the models
used for generation is illustrated in Figure 2. The titles of the real papers sourced from
the arXiv database (see Section 3.1) serve as prompts for the models to generate the target
sections—i.e., abstract, introduction, and conclusion.

GPT-2

Title:
Lorem ipsum

Abstract:

Introduction:

Conclusion:

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

Model 2

Model 1

Model 3

(a) GPT-2 generation

Title:
Lorem ipsum

Abstract:

Introduction:

Conclusion:

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

Galactica/
GPT-3

(b) Galactica/GPT-3 generation

Title:
Lorem ipsum

Abstract:

Introduction:

Conclusion:

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

ChatGPT

(c) ChatGPT generation
Figure 2. Generation pipeline used for each model. For GPT-2 (a), the abstract, introduction, and con-
clusion sections are generated by three separately fine-tuned model instances, each based solely on
the paper title. In the case of Galactica and GPT-3 (b), each section is generated conditioning on the
previous sections. Finally, ChatGPT’s generation sequence (c) requires only the title to generate all
the necessary sections at once.

To create fake scientific papers, we fine-tune GPT-2 and GPT-3 instances [1,4] and
also leverage SCIgen [15], Galactica [16], and ChatGPT [8]. For each model—as shown
in Figure 2—we employ a unique prompting/querying strategy to produce the desired
paper sections.

This combination of models, ranging from CFG to state-of-the-art LLMs, aims to
generate a diverse set of artificially generated scientific papers. Concrete examples of
generated papers can be found in Appendix A.

https://www.kaggle.com/datasets/Cornell-University/arxiv
https://www.kaggle.com/datasets/Cornell-University/arxiv

Information 2023, 14, 522 6 of 33

3.2.1. SCIgen

Alongside the papers produced by the various LLMs, our fake dataset incorporates
documents generated by SCIgen [15]. Although the quality of CFG-generated text is
rather low and hence straightforward to identify, it remains relevant to ensure that current
detectors can distinguish machine-generated papers even if poorly written and containing
nonsensical content. Stribling and Aguayo [56] show that such papers have been accepted
in scientific venues in the past.

Prompting SCIgen is done simply by running it as an offline script (https://github.com/
soerface/scigen-docker) (accessed on 24 April 2023) which generates all the needed sections,
including the title. The entire paper in LATEXformat is generated as a result.

3.2.2. GPT-2

We fine-tune three distinct GPT-2 base (https://huggingface.co/gpt2) (accessed on
24 April 2023) models (124 M parameters) [4] to individually generate each section based
on the given title. The models are trained in a seq2seq fashion [57], with the training
procedure spanning six epochs and incorporating 3500 real papers. When encountering
lengthy inputs, we truncate those exceeding 1024 tokens, potentially resulting in less coher-
ent introductions and conclusions. Abstracts remain more coherent as they typically fall
below this threshold. We release these separately fine-tuned GPT-2 instances to generate ab-
stract (https://huggingface.co/tum-nlp/IDMGSP-GPT-2-ABSTRACT) (accessed on 31 July
2023), introduction (https://huggingface.co/tum-nlp/IDMGSP-GPT-2-INTRODUCTION)
(accessed on 31 July 2023), and conclusion (https://huggingface.co/tum-nlp/IDMGSP-
GPT-2-CONCLUSION) (accessed on 31 July 2023) for public usage and investigation.

Hyperparameters: For training, we use a batch size of 16 across all six epochs. We set
the max_new_token to 512, top_k to 50, and top_p to 0.5 for all three models.

Post-processing: We remove generated ”\n” characters and any extra sections not ex-
plicitly mentioned in the prompt. Additionally, we remove incomplete sentences preceding
the start of a new sentence. These are indeed common artifacts of GPT-2 and are easily
identifiable by lowercase letters.

Although our GPT-2 model is specifically fine-tuned for the task, generating long
pieces of text occasionally results in less meaningful content. Moreover, we observe that
decoupling the generation of sections can lead to inconsistencies among the generated
sections within the papers.

3.2.3. Galactica

Galactica is trained on a large corpus of scientific documents [16]. Therefore, it is
already well-suited for the task of generating scientific papers. To facilitate the genera-
tion of coherent long-form text, we divide the generation process into smaller segments,
with each section relying on preceding sections for context. For instance, while gener-
ating a conclusion, we provide the model with the title, abstract, and introduction as
concatenated text.

Hyperparameters: We use Galactica base (https:// huggingface.co/facebook/galactica-
1.3b) (accessed on 24 April 2023) (1.3 B parameters) [16] to generate each paper section
based on the previous sections. The complete set of hyperparameters can be found in
Table A1 in the Appendix A. Additionally, we enforce max length left padding. Due to the
limited model capacity, restriction of the output number of tokens is necessary to avoid the
hallucination risk introduced by long text generation.

Post-processing: To ensure completeness and coherence in the generated text, we
devise a generation loop that meticulously assesses the quality of the output. For example,
if the generated text lacks an <EOS> (end-of-sentence) token, the model is prompted to
regenerate the text. Furthermore, we eliminate any special tokens introduced by Galactica
during the process.

While Galactica base has 1.3 B parameters, it is still smaller than ChatGPT, which
can result in less coherent outputs when generating longer text segments. As a result,

https://github.com/soerface/scigen-docker
https://github.com/soerface/scigen-docker
https://huggingface.co/gpt2
https://huggingface.co/tum-nlp/IDMGSP-GPT-2-ABSTRACT
https://huggingface.co/tum-nlp/IDMGSP-GPT-2-INTRODUCTION
https://huggingface.co/tum-nlp/IDMGSP-GPT-2-CONCLUSION
https://huggingface.co/tum-nlp/IDMGSP-GPT-2-CONCLUSION
https://huggingface.co/facebook/galactica-1.3b
https://huggingface.co/facebook/galactica-1.3b

Information 2023, 14, 522 7 of 33

prompting the model to generate a specific section with preceding sections as context yields
better outcomes compared to providing only the title as context and requesting the model
to generate all three sections simultaneously.

3.2.4. ChatGPT

To generate a cohesive document, we prompt ChatGPT (https://help.openai.com/en/
articles/6825453-chatgpt-release-notes, release from 15 December 2022) [8] with “Write
a document with the title [TITLE], including an abstract, an introduction, and a conclusion”,
substituting [TITLE] with the desired title utterance. ChatGPT’s large size (20B parameters)
and strong ability to consider context eliminate the necessity of feeding previous output
sections into the prompt for generating newer ones.

Hyperparameters: For the entire generation process, we use the default temperature
of 0.7.

Despite not being explicitly trained for scientific text generation, ChatGPT can produce
extensive, human-like text in this domain. This capability likely stems from the model’s
large size, the extensive datasets it was trained on, and the incorporation of reinforcement
learning with human feedback.

3.2.5. GPT-3

We fine-tune an instance of GPT-3 (text-curie-001, 6.7 B parameters) [1] with 178 real
samples. Output papers generated through an iterative cascade process (as with Galactica)
present a much higher quality than those forged in a single step (as with ChatGPT). Hence,
we opt for the former strategy for GPT-3.

Pre/Post-Processing: To force the generation of cleaner outputs, we add an <END>
token at the end of each input used for fine-tuning. GPT-3 mimics this behavior and
predicts this token as well, so we remove every token added after generation <END>.

While still not on par with ChatGPT-generated outputs, we report a high quality for
GPT-3-crafted papers.

3.3. Co-Created Papers Generation

The co-created component of our dataset mimics papers written by humans and
models concurrently, a combination that is likely to appear in practice. That means texts
originally written by either a human or an LLM and subsequently extended, paraphrased,
or otherwise adjusted by the other. To create such papers at scale, we take a set of 4000 real
papers from our TEST dataset (see Table 2) and paraphrase them with ChatGPT [8]. To stay
within ChatGPT’s context length limits, we paraphrase each paper section—i.e., abstract,
introduction, and conclusion—in a separate prompt. We then construct co-created papers
with varying shares of human and machine input by combining original and paraphrased
sections as shown in Figure 3.

ConclusionIntroduction

RealParaphrasedReal

Abstract

ParaphrasedRealReal

ParaphrasedParaphrasedReal

ParaphrasedParaphrasedParaphrased

Count

1000 papers

1000 papers

1000 papers

1000 papers

Figure 3. Our co-created test dataset TEST-CC contains 4000 papers with varying shares of real and
ChatGPT-paraphrased sections.

https://help.openai.com/en/articles/6825453-chatgpt-release-notes
https://help.openai.com/en/articles/6825453-chatgpt-release-notes

Information 2023, 14, 522 8 of 33

Table 2. Overview of the datasets used to train and evaluate the classifiers. Each column represents
the number of papers used per source. Concerning real papers, unless indicated, we use samples
extracted with parsing 1 (see Section 3.1).

arXiv ChatGPT GPT-2 SCIgen Galactica GPT-3 ChatGPT
Dataset (Real) (Fake) (Fake) (Fake) (Fake) (Fake) (Co-Created)

Standard train (TRAIN) 8 k 2 k 2 k 2 k 2 k - -
Standard train subset (TRAIN-SUB) 4 k 1 k 1 k 1 k 1 k - -
TRAIN without ChatGPT (TRAIN-CG) 8 k - 2 k 2 k 2 k - -
TRAIN plus GPT-3 (TRAIN + GPT3) 8 k 2 k 2 k 2 k 2 k 1.2 k -
Standard test (TEST) 4 k 1 k 1 k 1 k 1 k - -
Out-of-domain GPT-3 only (OOD-GPT3) - - - - - 1 k -
Out-of-domain real (OOD-REAL) 4 k (parsing 2) - - - - - -
ChatGPT only (TECG) - 1 k - - - - -
Co-created test (TEST-CC) - - - - - - 4 k

Hyperparameters: For paraphrasing, we use OpenAI’s gpt-3.5-turbo-0613 model
and set the temperature to 1.0 to achieve the largest deviation from the original human-
written text.

4. Detection Experiments

In this section, we conduct experiments about identifying the source of a given paper—
i.e., determining whether it is fake or real. We further investigate the ability of our baseline
classifiers to detect co-created papers with varying degrees of fake—i.e., paraphrased—
content. We start by defining data splits and subsets for training and testing, which
are useful to evaluate generalization capabilities. Next, we outline the classifiers used
as baselines to measure performance on the benchmark task. Finally, we examine the
detection performance of the classifiers, investigate the obtained explanations, and apply
additional post hoc explainability methods to the classifiers to gain deeper insights into the
detection process.

4.1. Data Splits and Generalization Tests

We divide our dataset (displayed in Table 1) into standard train and standard test sets for
training and testing our classifiers, respectively. Furthermore, we aim to evaluate models
on out-of-domain test data. To achieve this, we create various data subsets by applying
different splits to our benchmark. All the splits utilized for our experiments are detailed in
Table 2. For instance, the reader can observe the composition of a data split with no access
to ChatGPT samples (TRAIN-CG) and test sets composed only of differently-parsed real
papers (OOD-REAL), only ChatGPT papers (OOD-CG), or only GPT-3 ones (OOD-GPT3).

4.2. Classifiers

We build and evaluate seven classifiers to perform the downstream task of classifying
scientific papers as fake or real based on their content (abstract, introduction, and conclusion
sections)—we remind the reader that all paper titles are real and will therefore not serve as
input to the classifiers. To obtain an understanding of the difficulty of this classification
task, we train two simple bag-of-words-based classifiers, Logistic Regression (LR) [58] and
Random Forest (RF) [19]. Further, we fine-tune GPT-3 [1], Galactica [16], and RoBERTa [17]
for this detection task. Lastly, we use a ChatGPT-based classifier without fine-tuning and a
novel classifier that we call Large Language Model Feature Extractor (LLMFE) that learns
explainability features using an LLM and then performs classification with Random Forest.

To accommodate memory and API limitations, we impose a restriction on the input
tokens for GPT-3, Galactica, and RoBERTa by truncating texts after a certain number of
tokens (details described in the following sections per model). However, since the average
length of the combined input sections is about 900 tokens, which is less than the truncation
limit, this constraint does not lead to significant information loss.

Information 2023, 14, 522 9 of 33

4.2.1. Bag-of-Words Classifier

As the simplest classifiers, we evaluate Random Forest [19] and Logistic Regres-
sion [58] on TF-IDF [59] features. This is to obtain an indication of the difficulty of the
classification task—i.e., whether there is any classification signal in word frequencies alone
or the detection of fake scientific papers requires more complex features. With Random
Forest and Logistic Regression, we can explain the results by examining feature importance
and learned coefficients.

Hyperparameters: We use the Random Forest and Logistic Regression implementa-
tions in scikit-learn [60] with default hyperparameters. We create features based on n-grams.
A comparison of accuracies when using 1-grams, 2-grams, or a combination of both can
be found in Table A2 in the appendix. In the following, we will report results based on
1-grams as these yielded the highest accuracy scores.

4.2.2. GPT-3

We fine-tune a GPT-3 [1] Ada model (text-ada-001, 350 M parameters) for the classi-
fication task. GPT-3 is fine-tuned in a causal manner, where the model is prompted with
the concatenated paper sections along with their corresponding label. This is set up as a
binary classification where the output is a single token indicating whether the paper is real
(0) or fake (1). During inference, the model generates a single token based on the sections of
a given paper.

As fine-tuning GPT-3 models requires a paid API, we train it only on a smaller subset
of our dataset (TRAIN-SUB) shown in Table 2. We limit the number of input tokens to 2048
while retaining the default hyperparameters provided by the API.

4.2.3. Galactica

We adapt Galactica-mini (https://huggingface.co/facebook/galactica-125m) (accessed
on 24 April 2023) [16] from a causal language model that predicts probabilities for each
word in the vocabulary to a binary classifier with an output layer that predicts probabilities
for two labels: fake and real.

The model is provided with all sections concatenated together with the corresponding
label. Galactica, being a causal language model, generates a probability distribution
spanning the entire vocabulary in its output. Nevertheless, this approach incurs significant
memory usage, particularly when employed as a classifier. Therefore, we opted to retrain
the output layer to yield a probability distribution for binary outcomes.

Hyperparameters: To cope with memory constraints, we limit the number of input
tokens to 2048. Additionally, we adjust the batch size to 2 with gradient accumulation steps
of 4 and enabled mixed precision. Furthermore, we set the number of epochs to 4, weight
decay to 0.01, and warm-up steps to 1000. Our initial learning rate is 5 × 10−6.

4.2.4. RoBERTa

We fine-tune RoBERTa base (125 M parameters) (https://huggingface.co/roberta-base)
(accessed on 24 April 2023) [17] for the classification task. RoBERTa is limited to 512 input
tokens, meaning that all text exceeding this limit is ignored. Our dataset exceeds this constraint
for many entries. We choose to address the problem by fine-tuning three separate RoBERTa mod-
els to classify the three sections individually rather than retraining the input layer by enlarging
the input size. https://huggingface.co/tum-nlp/IDMGSP-RoBERTa-TRAIN-ABSTRACT
(accessed on 31 July 2023) (https://huggingface.co/tum-nlp/IDMGSP-RoBERTa-TRAIN-
INTRODUCTION) (accessed on 31 July 2023) (https://huggingface.co/tum-nlp/IDMGSP-
RoBERTa-TRAIN-CONCLUSION) (accessed on 31 July 2023) We take the majority vote
from three model instances as the final output for each sample. We prompt each model
with the capitalized name of the section plus the content of the latter, e.g., “Abstract: In this
paper . . . ”.

https://huggingface.co/facebook/galactica-125m
https://huggingface.co/roberta-base
https://huggingface.co/tum-nlp/IDMGSP-RoBERTa-TRAIN-ABSTRACT
https://huggingface.co/tum-nlp/IDMGSP-RoBERTa-TRAIN-INTRODUCTION
https://huggingface.co/tum-nlp/IDMGSP-RoBERTa-TRAIN-INTRODUCTION
https://huggingface.co/tum-nlp/IDMGSP-RoBERTa-TRAIN-CONCLUSION
https://huggingface.co/tum-nlp/IDMGSP-RoBERTa-TRAIN-CONCLUSION

Information 2023, 14, 522 10 of 33

Hyperparameters: To fine-tune the RoBERTa base, we set the number of epochs to 2,
weight decay to 0.001, and batch size to 16. As with Galactica, the initial learning rate is
5 × 10−6, and the warmup steps 1000.

4.2.5. DetectGPT

We evaluate DetectGPT [18] as another classifier as it has been shown to detect LLM-
generated texts with high accuracy.

Hyperparameters: We use DetectGPT’s default configuration and code (https://github.
com/BurhanUlTayyab/DetectGPT) (accessed on 15 May 2023).

4.2.6. ChatGPT

To obtain natural-language explanations for classification directly, we prompt Chat-
GPT [8] via the OpenAI API. With this, we determine whether a scientific paper is fake or
real and retrieve an explanation for its decision. The prompts include the concatenated
sections, each beginning with the section name (e.g., “Abstract:\nIn this paper . . . ”), and task
instructions. We compare the detection performance of four different prompting styles:

(1) Input-Output Prompting (IO): First, return the prediction (i.e., fake or real). Second,
follow up with an explanation of the reasons for the prediction.

(2) Chain-of-Thought Prompting (CoT) [61]: First, return a sequence of thoughts on
whether the paper is more likely fake or real. Second, return the final prediction.

(3) Indicator Prompting (IP): First, return a set of observations indicating that the paper
was written by a human. Second, return a set of observations indicating that the paper
was generated by a machine. Third, return the final prediction.

(4) Few-Shot Prompting (FS) [1]: Perform Input-Output Prompting but include a set of
6 annotated examples—one example from each generator and one real example—in
the prompt (i.e., scientific papers with their abstract, introduction, conclusion, and fake
or real label).

On our specific task, we observe the best classification results for the IO prompting
style. Hence, we will only report accuracy scores for this prompting style in the following.
For a detailed accuracy comparison of the different prompting styles, see Table A3 in the
appendix. When using CoT prompting, there is a large number of instances where ChatGPT
refuses to return a definite class label (real or fake) but instead returns unknown. We treat
these results as incorrect answers and thus observe low accuracy scores for CoT prompting.
We did not observe this behavior for the other prompting styles.

Hyperparameters: For classification, we use OpenAI’s gpt-3.5-turbo-0613 model
with the default temperature of 0.7. Only for Few-Shot Prompting, we prompt the
gpt-3.5-turbo-16k-0613 model as a larger context length is needed. We do not perform
task-specific fine-tuning. Due to API limitations, we classify only 100 randomly sampled
papers from each test set using each of the four prompting styles. During implementation,
we also experimented with larger samples and observed consistent classification accuracy
scores independent of the sample size.

4.2.7. Large Language Model Feature Extractor (LLMFE)

Finally, we introduce and evaluate a novel explainable classifier LLMFE that learns
human-understandable features using an LLM and an approach inspired by contrastive
learning [62]. These features can range from very low-level (e.g., occurrences of a specific
word) to very high-level (e.g., logical conclusiveness of argumentation). Figure 4 shows
how LLMFE works conceptually. Training this classifier follows a four-step process:

(1) Feature Engineering: The LLM is presented with a pair of one real and one fake
scientific paper and instructed to describe a list of features that would best distinguish
these papers from each other. As we score each feature on a range of 0 to 10, we further
instruct the LLM to label the meaning of the extreme ends of this scale for each feature

https://github.com/BurhanUlTayyab/DetectGPT
https://github.com/BurhanUlTayyab/DetectGPT

Information 2023, 14, 522 11 of 33

to avoid ambiguity. This prompt is repeated for n_pairs times to extract multiple
different sets of features based on different example pairs.

(2) Feature Consolidation: As the previous step may have generated a large number of
features, many of which are duplicates or semantically similar, we consolidate the
extracted features into a smaller feature set. This is done by vectorizing each feature
description using embeddings and performing hierarchical/agglomerative clustering
[63] on the embeddings. We then manually investigate the cluster dendrogram and
define a distance threshold d_thres. We finally merge all features less than d_thres
apart from each other and represent each cluster through the feature closest to the
cluster centroid. If d_thres is chosen carefully, this results in a significantly smaller,
semantically diverse, and duplicate-free feature set. More detailed illustrations of this
step can be found in Appendix B.4.

(3) Feature Scoring: The LLM is presented with an abstract, introduction, and conclusion
of a scientific paper and descriptions of all features in the feature set. It is then
instructed to assign an integer value from 0 to 10 to each feature that most accurately
describes the scientific paper. This prompt is repeated for each example in the training
dataset of size n_sample.

(4) Classifier Training: The previous steps resulted in a structured dataset of n_sample
examples with one integer value for each feature in the learned feature set. Further,
class labels (i.e., real or fake) are known. This dataset is used to train a Random
Forest [19] classifier that learns to detect papers based on the features described by the
LLM.

Real paper Fake papervs.

Real paper Fake papervs.

1

2

n_pairs

…

Real paper Fake papervs.

LLM

Feature

Feature

Feature

Feature

d_thres

Feature
Feature
Feature
Feature

LLM

Paper

Feature
Feature
Feature
Feature 3

7
1
8

Label+

Random
Forest

Classifier

LLM

Paper

Feature
Feature
Feature
Feature 3

7
1
8

Label
Random
Forest

Classifier

1. Feature
Engineering

2. Feature
Consolidation

3. Feature
Scoring

4. Classifier
Training/Prediction

Tr
ai

n
in

g
In

fe
re

n
ce

Repeat n_sampletimes

Hierarchical
Clustering

Embedding

S
te

p

Embedding
Embedding
Embedding

Embedding

Embedding
…

Figure 4. LLMFE follows a four-step process: (1) Generate features suitable for distinguishing real
and fake papers using the LLM based on multiple pairs of one real and one fake paper each. (2) Remove
duplicate features through hierarchical clustering on embeddings of the feature descriptions. (3) Score
scientific papers along the remaining features using the LLM. (4) Finally, train a Random Forest
Classifier to predict the real or fake label based on the feature scores.

Throughout the first three steps, the LLM is made aware of its overall goal of distin-
guishing real and fake scientific papers through the prompt instructions. We add this context
information to best exploit the LLM’s general world understanding obtained through
extensive pre-training and to compensate for the relatively small sample sizes used for
training. Inference on the test dataset then requires only two steps:

(1) Feature Scoring: Similar to the Feature Scoring step during training, a set of new
papers is scored along the learned features.

(2) Classifier Prediction: The class label of the new papers is predicted using the trained
Random Forest classifier.

Hyperparameters: Our LLMFE implementation uses OpenAI’s gpt-3.5-turbo-0613
with the default temperature of 0.7 for the Feature Engineering step and gpt-3.5-turbo-16k
-0613 with a temperature of 0.0—for deterministic behavior—for the Feature Scoring step.
We set n_pairs=100 and obtained 884 features from the Feature Engineering step. For the
Feature Consolidation step, we create embeddings of the feature descriptions with Ope-
nAI’s text-embedding-ada-002 and chunk_size=1000. We apply agglomerative cluster-
ing from Scipy’s [64] linkage implementation with a cosine distance metric and calculate

Information 2023, 14, 522 12 of 33

the average distance between clusters. We chose d_thres=0.05 as this resulted in a conve-
nient balance between de-duplication and semantic feature diversity, yielding a final set of
83 features. We finally trained a Random Forest classifier with scikit-learn’s [60] default
hyperparameters on 600 papers from the TRAIN dataset (300 real papers and 60 fake papers
from each generator).

4.3. Performance

Table 3 presents a summary of the accuracy scores achieved by our models on vari-
ous splits. Given the significance of evaluating generalization to unseen generators, we
highlight out-of-domain settings in blue. We exclude experiments entailing training GPT-3
on TRAIN + GPT3 and TRAIN-CG due to limited OpenAI API credits. Results of our
fine-tuned models and LLMFE are also compared with DetectGPT as an existing zero-shot
detection baseline [18], ChatGPT, and our Logistic Regression (LR) and Random Forest (RF)
classifiers trained on 1-gram TF-IDF features.

Table 3. Experiment results reported with accuracy metric. Out-of-domain experiments, i.e., evalu-
ation on unseen generators, are highlighted in blue. Highest values per test set are highlighted in
bold. (*) ChatGPT-IO and LLMFE accuracies have been evaluated on randomly sampled subsets of
100 scientific papers per test set due to API limits.

Model Train Dataset TEST OOD-GPT3 OOD-REAL TECG TEST-CC
LR-1gram (tf-idf) (our) TRAIN 95.3% 4.0% 94.6% 96.1% 7.8%
LR-1gram (tf-idf) (our) TRAIN + GPT3 94.6% 86.5% 86.2% 97.8% 13.7%
LR-1gram (tf-idf) (our) TRAIN-CG 86.6% 0.8% 97.8% 32.6% 1.2%
RF-1gram (tf-idf) (our) TRAIN 94.8% 24.7% 87.3% 100.0% 8.1%
RF-1gram (tf-idf) (our) TRAIN + GPT3 91.7% 95.0% 69.3% 100.0% 15.1%
RF-1gram (tf-idf) (our) TRAIN-CG 97.6% 7.0% 95.0% 57.0% 1.7%
Galactica (our) TRAIN 98.4% 25.9% 95.5% 84.0% 6.8%
Galactica (our) TRAIN + GPT3 98.5% 71.2% 95.1% 84.0% 12.0%
Galactica (our) TRAIN-CG 96.4% 12.4% 97.6% 61.3% 2.4%
RoBERTa (our) TRAIN 72.3% 55.5% 50.0% 100.0% 63.5%
RoBERTa (our) TRAIN + GPT3 65.7% 100.0% 29.1% 100.0% 75.0%
RoBERTa (our) TRAIN-CG 86.0% 2.0% 92.5% 76.5% 9.2%
GPT-3 (our) TRAIN-SUB 100.0% 25.9% 99.0% 100.0% N/A
DetectGPT - 61.5% 0.0% 99.9% 68.7% N/A
ChatGPT-IO (our) (*) - 69.0% 49.0% 89.0% 0.0% 3.0%
LLMFE (our) (*) TRAIN + GPT3 80.0% 62.0% 70.0% 90.0% 33.0%

Our simplest models, LR and RF, already achieve accuracy scores greater than 90%
on the TEST dataset, suggesting that the classification task of distinguishing real and fake
scientific papers is rather easy to learn if trained on comparable scientific papers. However,
evaluated against out-of-domain scientific papers, accuracy scores drop significantly. All
models perform poorly on out-of-domain papers generated by GPT-3 curie (OOD-GPT3).
This result supports the findings of previous studies by Bakhtin et al. [43], which indicate
that models trained on specific generators tend to overfit and perform poorly on data
outside their training distribution. However, after training our Galactica and RoBERTa
models with GPT-3 examples (TRAIN + GPT3), the models achieve higher accuracies (71%
and 100%, respectively). A similar behavior can be observed for the LR and RF classifiers.

All models, except RoBERTa, perform poorly when detecting human–machine co-
created papers (TEST-CC). Seeing papers generated by ChatGPT and GPT-3 during training
each noticeably improves the detection accuracy for all models, presumably because these
examples are most similar to the ChatGPT-paraphrased papers that are part of the TEST-CC
dataset. RoBERTa still achieves an accuracy of 75%, which is remarkable given that many
examples only contain a relatively low share of machine-generated text. This seems to be
due to a high-recall bias of the trained RoBERTa model, which achieves comparatively high
accuracy scores on datasets that only contain fake papers (i.e., OOD-GPT3, TECG) but lower
scores on the remaining datasets that also contain real papers. GPT-3 and DetectGPT have
not been evaluated against TEST-CC due to limited computing resources and API credits.

Information 2023, 14, 522 13 of 33

Models that were not fine-tuned to the classification task, DetectGPT and ChatGPT,
perform noticeably worse than the fine-tuned models. Our ChatGPT-based LLMFE out-
performs ChatGPT on all test datasets except OOD-REAL, indicating that LLM’s detection
abilities can be enhanced with a systematic prompting approach and guidance. In particular,
we observe great improvements in the more sophisticated texts in our TECG and TEST-CC
datasets. This may be because of the more high-level features identified by LLMFE—e.g.,
those that capture a paper’s overall coherence.

It is worth noting that our RoBERTa model exhibits excellent results when evaluated
on a dataset of ChatGPT-generated papers (TECG). The model achieves an accuracy of
77% without prior training on a similar dataset (TRAIN-CG), and 100% accuracy when a
similar dataset is included in the training (TRAIN). These results outperform Galactica in
both scenarios.

The overall good results on OOD-REAL—i.e., real paper processed with a different
parser—indicate that our models are not exploiting any spurious artifact introduced during
the parsing procedure. DetectGPT notably overfits papers generated with GPT-2 and
deems most samples coming from a different source as real. Indeed, it performs well on
OOD-REAL (100%) and poorly on OOD-GPT3 (0%).

4.4. Explainability Insights

The different types of classifier models provide a rich set of explainability insights
that help us understand what characterizes real and fake scientific papers, respectively.
LR and RF classifiers trained on TF-IDF 1-grams provide insights into individual words.
For Galactica, RoBERTa, and GPT-3, we extract insights on more complex features of word
combinations. Lastly, LLMFE learns very high-level, abstract features describing complex
relationships between words, such as grammar and cohesion. Additionally, we analyze
linguistic-based features such as readability scores and the length of papers.

4.4.1. Word-Level Insights from LR and RF

The coefficients learned by LR (see Figure 5a) and feature importance learned by
RF indicate that real papers draw from a diverse set of words and—more often than fake
papers—make references to specific sections (“section”), other papers (“et” and “al”),
or recent trends (“recently”). In contrast, fake papers tend to rely on one-size-fits-all
vocabulary such as “method”, “approach”, or “implications” more than real papers.

4.4.2. LIME and SHAP Insights for Galactica, RoBERTa, and GPT-3

We use LIME [65] and SHAP [66] to inspect predictions made by Galactica, RoBERTa,
and GPT-3. While these explanations fail to convey a concise overview, they are still useful
to notice patterns and similarities across samples sharing labels and sources [67,68].

Often, RoBERTa and Galactica models tend to classify papers as real when the papers
include infrequent words and sentences starting with adverbs. In addition, we notice that
SHAP explanations corresponding to real papers have all words with low Shapley values.
We believe this is intuitive as a paper appears real if it does not contain any artifact that
strongly signals an AI source.

On the other hand, papers whose sections begin with “In this paper, . . . ”, “In this work,
. . . ”, or “In this study, . . . ” are often marked as fake. The same goes for those containing
repeated words, spelling mistakes, or word fragments such as “den”, “oly”, “um”. Detectors
are also able to spot incoherent content and context, as well as sections that are unnaturally
short and do not convey any specific point. Several explanation instances of Galactica and
RoBERTa can be found in Appendix C for further inspection. We choose not to provide an
explanation for our GPT-3 classifier since it requires many requests to OpenAI’s paid API.

Information 2023, 14, 522 14 of 33

(a) LR 1-gram coefficients

0 2 4 6 8 10

Grammar And Syntax
Real
Fake

0 2 4 6 8 10

Mathematical Formalism

0 2 4 6 8 10

Use Of Domain-Specific Terminology

0 2 4 6 8 10

Abstract Clarity

0 2 4 6 8 10

Conclusion Length

0 2 4 6 8 10

Use Of Passive Voice

0 2 4 6 8 10

Emotive Language

0 2 4 6 8 10

Cohesion

(b) LLMFE feature distributions

Figure 5. Explainability insights from our Logistic Regression (LR) and Large Language Model
Feature Extractor (LLMFE) classifiers. (a) shows the 1-grams with the 10 lowest (indicating real) and
highest (indicating fake) coefficients learned by LR. (b) shows the distributions of scores for the eight
most important features (according to Random Forest feature importance) learned by LLMFE.

4.4.3. Abstract Features from LLMFE

LLMFE identifies more abstract features such as grammar and syntax, use of domain-
specific terminology, or cohesion as shown in Figure 5b. We observe that score distributions of
real papers tend to be narrower than those of fake papers. This is not surprising given that
fake papers were generated by multiple generators, some more and some less advanced.
For many features, the distributions of real and fake papers have the same mode, suggesting
that collectively our dataset of machine-generated papers resembles real papers quite well.

4.4.4. Readability Metrics for Different Generators

Figure 6 shows the distribution of Flesch–Kincaid Grade Level [69] and Gunning
Fog [70] readability metrics [71] for papers from the different generators and real papers.
Flesch–Kincaid measures the technical difficulty of the papers, while Gunning Fog mea-
sures the readability of the papers. The comparison confirms our observation that our
machine-generated papers are representative of real papers with a slight increase in writing
sophistication from SCIgen and GPT-2 to ChatGPT and GPT-3 generators, with Galactica
being the median.

Scigen GPT-2 GalacticaChatGPT GPT-3 All
 Generators

Real CC
0

5

10

15

20

25

30

35

40

Sc
or

e

Flesch Kincaid Scores For Different Generators

(a) Flesch Kincaid

Scigen GPT-2 GalacticaChatGPT GPT-3 All
 Generators

Real CC
0

5

10

15

20

25

30

35

40

Sc
or

e

Gunning Fog Scores For Different Generators

(b) Gunning Fog
Figure 6. Distribution of readability metrics for papers from the different generators. (a) shows
Flesch–Kincaid scores while (b) shows Gunning Fog scores for all generators.

Information 2023, 14, 522 15 of 33

4.4.5. Generated Texts Length

We observe differences in the length of the sections in our fake scientific papers de-
pending on the generator. Figure 7 shows the length distributions of sections generated
by the different generators. On average, machine-generated sections from all generators
are shorter than sections from real papers—the only exception being abstracts and conclu-
sions generated by GPT-2, which are slightly longer than real abstracts and conclusions,
on average. For most generators, we also see less length variety compared to real papers.

Scigen GPT-2 GalacticaChatGPT GPT-3 All
 Generators

Real CC

100

200

300

400

500

To
ke

n
Co

un
t

Abstract Token Count For Different Generators

(a) Abstract Length

Scigen GPT-2 GalacticaChatGPT GPT-3 All
 Generators

Real CC

0

200

400

600

800

1000

To
ke

n
Co

un
t

Introduction Token Count For Different Generators

(b) Introduction Length

Scigen GPT-2 GalacticaChatGPT GPT-3 All
 Generators

Real CC
0

200

400

600

800

1000

To
ke

n
Co

un
t

Conclusion Token Count For Different Generators

(c) Conclusion Length

Figure 7. The generators exhibit different tendencies for the length of the generated fake scientific
papers. (a) shows the length distribution of generated abstracts, (b) shows the same for introductions,
and (c) shows conclusion lengths.

For the co-created scientific papers (CC), despite prompting ChatGPT to return para-
phrased sections with a similar length or even the exact word count as the original sections,
we observe a tendency of ChatGPT to summarize sections during paraphrasing. While
paraphrased abstracts have roughly the same length as their originals, paraphrased intro-
ductions, and conclusions sections are often significantly shorter, as shown in Figure 8. We
conclude that ChatGPT does not reliably follow length constraints when confronted with a
paraphrasing task on longer texts.

Information 2023, 14, 522 16 of 33

100 200 300 400 500
Token count (original)

100

200

300

400

500

To
ke

n
co

un
t (

pa
ra

ph
ra

se
d)

Abstract

200 400 600 800 1000
Token count (original)

0

200

400

600

800

1000

Introduction

200 400 600 800 1000
Token count (original)

0

200

400

600

800

1000
Conclusion

Figure 8. Paraphrasing sections with ChatGPT has a tendency to result in sections shorter than the
original. The reduction in section length is most visible for the longer introduction and conclusion
sections. For an analysis of lengths of generated fake scientific papers, see Figure 7 in the appendix.

5. Limitations and Future Work

Despite memory, GPU, and API limitations presenting significant obstacles for our
project, we could still create high-quality fake scientific papers. Nonetheless, we believe
there is room for improvement in addressing such limitations. For instance, beyond simply
improving the quality of the generated papers, further insights could be gained from
exploring generation processes entailing a collaboration between different models and
input prompts.

Due to the complexity of parsing PDFs, we are currently limited to specific sections
(abstract, introduction, conclusion) instead of complete papers. Moreover, processing entire
publications would require substantial computational efforts. We believe that selecting
sections dynamically at random instead of a fixed choice is worth exploring and will be the
focus of future work.

Beyond DetectGPT [18], other zero-shot text detectors such as GPTZero (https://gptzero.
me) (accessed on 31 July 2023) present promising solutions worth testing on our benchmark
dataset. However, at the time of writing, such solutions are not available for experiments
at scale.

In future work, we aim to address these limitations by exploring dynamic section
selection, combining models and prompts in the generation process, improving papers’
quality, and investigating the potential of zero-shot text detectors such as GPTZero as
they become more accessible and scalable. We think that future research should further
investigate how stable classifiers, such as the ones presented in this paper, are against
newly appearing LLMs and how to improve the classifiers’ generalization capabilities to
out-of-domain samples.

6. Discussion, Ethical Considerations, and Broader Impact

It is important to emphasize that our work does not condemn the usage of LLMs.
The legitimacy of their usage should be addressed by regulatory frameworks and guidelines.
Still, we strongly believe it is crucial to develop countermeasures and strategies to detect
machine-generated papers to ensure accountability and reliability in published research.

Our benchmark dataset serves as a valuable resource for evaluating detection al-
gorithms, contributing to the integrity of the scientific community. However, potential
challenges include adversarial attacks and dataset biases [72,73]. It is essential to develop
robust countermeasures and strive for a diverse, representative dataset.

7. Conclusions

This work introduced a benchmark dataset for identifying machine-generated scientific
papers in the LLM era. Our work creates a resource that allows researchers to evaluate
the effectiveness of detection methods and thus support the trust and integrity of the
scientific process.

https://gptzero.me
https://gptzero.me

Information 2023, 14, 522 17 of 33

We generated a diverse set of papers using both SCIgen and state-of-the-art LLMs—
ChatGPT, Galactica, GPT-2, and GPT-3. This ensures a variety of sources and includes
models capable of generating convincing content. We fine-tuned and tested several baseline
detection models—Logistic Regression, Random Forest, GPT-3, Galactica, and RoBERTa—
and compared their performance to DetectGPT, ChatGPT, and a novel Large Language
Model Feature Extractor (LLMFE) that we propose. The results demonstrated varying
degrees of success, with some models showing remarkable performance on specific subsets
while sometimes struggling with out-of-domain data.

By providing a comprehensive platform for evaluating detection techniques, we
contribute to the development of robust and reliable methods for identifying machine-
generated content. Moving forward, we plan to address the current limitations and further
enhance the utility of our benchmark for the research community.

We release a repository containing our benchmark dataset as well as the code used for
experimental results (https:// huggingface.co/datasets/tum-nlp/IDMGSP) (accessed on
31 July 2023).

Author Contributions: Design of experiments, E.M. and D.D.; Dataset creation, E.M., M.H.I.A. and
S.M.; Experiments, M.H.I.A. and S.M.; writing—original draft preparation, E.M.; writing—journal
version preparation, D.D. and S.M.; writing—review and editing, G.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This paper has been supported by the German Federal Ministry of Education and Research
(BMBF, grant 01IS17049).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: All data created within this research is available online (https://hugg
ingface.co/datasets/tum-nlp/IDMGSP, accessed on 27 July 2023).

Acknowledgments: We would like to acknowledge the help of Social Research Computing Group
for providing an opportunity to conduct this research and Paolo Basso and Margherita Musumeci
for participating in the first version of this publication. Additionally, we would like to thank Leslie
McIntosh for her guidance throughout our research journey.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

NLP Natural Language Processing
LLM Large Language Model
BoW Bag-of-Words
OOD Out-of-Domain
CFG Context-Free-Grammars

Appendix A. Generation Examples

In this section, we present examples of text that were generated using the models
we employed.

Appendix A.1. ChatGPT

Figures A1 and A2 provide examples of prompts that can be used to generate paper
sections using ChatGPT.

https://huggingface.co/datasets/tum-nlp/IDMGSP
https://huggingface.co/datasets/tum-nlp/IDMGSP
https://huggingface.co/datasets/tum-nlp/IDMGSP

Information 2023, 14, 522 18 of 33

Figure A1. Example 1 of prompting ChatGPT to produce sections of a scientific paper given the
paper title.

Information 2023, 14, 522 19 of 33

Figure A2. Example 2 of prompting ChatGPT to produce sections of a scientific paper given the
paper title.

Appendix A.2. Galactica

For generating text with the Galactica model, an overview of the hyperparameters
used is provided in Table A1. Each subsection shows how Galactica is prompted to generate
the abstract, the introduction and the conclusion sections.

Table A1. Hyperparameters used to generate each paper section in the Galactica model. Each row
corresponds to a decoding of a section based on the previous input sections. Here we used parameters
of the MODEL.GENERATE function provided by Huggingface [74].

Input Section(s) Output Section Tokenizer Max_Input_Size Max_New_Tokens Do_Sample Temperature top_k top_p No_Repeat_Ngram_Size Early_Stopping

Title Abstract 64 512 True - - - - -
Title + Abstract Introduction 576 (64 + 512) 1024 True 0.7 25 0.9 10 True
Title + Abstract + Introduction Conclusion 1600 (64 + 512 + 1024) 1024 True 0.7 25 0.9 10 True

Appendix A.2.1. Abstract Generation

INPUT:

Title: On the Global Structure of Hopf Hypersurfaces in Complex Space Form

Information 2023, 14, 522 20 of 33

OUTPUT:

Abstract: For a generic hypersurface in complex space form, all Hopf hypersurfaces
are proved to be homogeneous or Hopf homogeneous. As a consequence, it is shown
that the generalized Sasakian metric is a Ricci soliton on a Hopf hypersurface.

Appendix A.2.2. Introduction Generation

INPUT:

Title: On the Global Structure of Hopf Hypersurfaces in Complex Space Form

Abstract: For a generic hypersurface in complex space form, all Hopf hypersurfaces
are proved to be homogeneous or Hopf homogeneous. As a consequence, it is shown
that the generalized Sasakian metric is a Ricci soliton on a Hopf hypersurface.

Introduction:

OUTPUT:

A Hopf hypersurface is a hypersurface which admits a Hopf field, that is, a vector field
such that [ξ, ξ] is a normal vector field. The Hopf field is unique up to multiplication
by a positive constant. The existence of Hopf fields is equivalent to the existence
of a 1-form η such that η ∧ dηn−1 is a volume form. Let Mn be a hypersurface in a
complex space form M2n+1(c) with constant sectional curvature c. We denote by g
the metric induced by the Riemannian metric of M2n+2(c). The Hopf field is given
by ξ = 1√

n J∇ f , where J is the complex structure on M2n+3 and f is a function on

Mn ⊂ M2n+1. In [1], Wang and Chen showed that a Hopf hypersurface in M2n+l(c)
is homogeneous if and only if the Hopf field is parallel. In this paper, we study
the structure of Hopf hypersurfaces in complex space form. We show that a Hopf
hypersurface is homogeneous if and only if it is Hopf homogeneous. We also show
that a Hopf hypersurface is Hopf homogeneous if and only if the generalized Sasakian
metric is a Ricci solitons on it.

Appendix A.2.3. Conclusion Generation

INPUT:

Title: On the Global Structure of Hopf Hypersurfaces in Complex Space Form

Abstract: For a generic hypersurface in complex space form, all Hopf hypersurfaces
are proved to be homogeneous or Hopf homogeneous. As a consequence, it is shown
that the generalized Sasakian metric is a Ricci soliton on a Hopf hypersurface.

Introduction:

A Hopf hypersurface is a hypersurface which admits a Hopf field, that is, a vector field
such that [ξ, ξ] is a normal vector field. The Hopf field is unique up to multiplication
by a positive constant. The existence of Hopf fields is equivalent to the existence
of a 1-form η such that η ∧ dηn−1 is a volume form. Let Mn be a hypersurface in a
complex space form M2n+1(c) with constant sectional curvature c. We denote by g
the metric induced by the Riemannian metric of M2n+2(c). The Hopf field is given
by ξ = 1√

n J∇ f , where J is the complex structure on M2n+3 and f is a function on

Mn ⊂ M2n+1. In [1], Wang and Chen showed that a Hopf hypersurface in M2n+l(c) is
homogeneous if and only if the Hopf field is parallel. In this paper, we study the struc-
ture of Hopf hypersurfaces in complex space form. We show that a Hopf hypersurface
is homogeneous if and only if it is Hopf homogeneous. We also show that a Hopf

Information 2023, 14, 522 21 of 33

hypersurface is Hopf homogeneous if and only if the generalized Sasakian metric is a
Ricci solitons on it.

Conclusion:

OUTPUT:

We obtain a complete classification of Hopf hypersurfaces in complex space forms.

Appendix A.3. GPT-2

In the following, we show an example of how the fine-tuned GPT-2 was used to
generate the abstract, the introduction, and the conclusion sections.

Appendix A.3.1. Abstract Generation

INPUT:

Competitive Multi-Agent Load Balancing with Adaptive Policies in Wireless Networks
<|sep|>

OUTPUT:

In this paper, we propose adaptive multi-agent load balancing (AML) based on adap-
tive policies to achieve better performance. The adaptive policies can be designed to
maximize the number of agent users and to reduce the number of latency. We present
a comprehensive evaluation of AML on three wireless networks. We demonstrate that
the adaptive policies outperform state-of-the-art AML strategies by an average of 6.5%
and by an average of 2.5% when compared to state-of-the-art strategies. The perfor-
mance of adaptive policies is evaluated on the three wireless networks with multiple
users and multiple latency.

Appendix A.3.2. Introduction Generation

INPUT:

Competitive Multi-Agent Load Balancing with Adaptive Policies in Wireless Networks
<|sep|>

OUTPUT:

Wireless networks are increasingly becoming the backbone of the modern world.
The wireless networks have been the main source of energy for many years, and they
are the main source of power for many businesses. However, wireless networks are
also the main source of information for many people. For example, people in many
countries rely on a variety of information services, such as social networks, social
media, and e-mail. However, the information services are not available in all countries.
Therefore, the information services are not available for all countries.

Appendix A.3.3. Conclusion Generation

INPUT:

Competitive Multi-Agent Load Balancing with Adaptive Policies in Wireless Networks
<|sep|>

OUTPUT:

Information 2023, 14, 522 22 of 33

In this paper, we propose adaptive policies that optimize the network performance
of different types of wireless networks. We show that adaptive policies can achieve
competitive performance for different types of wireless networks. The proposed
adaptive policies have been tested in several real-world wireless networks. We find that
adaptive policies outperform state-of-the-art policies for the most common wireless
networks. We also show that adaptive policies can be used to optimize the network
performance of wireless networks by adapting their performance to different types
of wireless networks. The proposed adaptive policies are able to achieve competitive
performance for different types of wireless networks.

Appendix A.4. GPT-3

The following frames show how each section is generated using a GPT-3 generator.

Appendix A.4.1. Abstract Generation

INPUT:

Primitive Representation Learning for Scene Text Recognition

OUTPUT:

Primitive scene representation learning is an important subfield of deep learning,
which has been widely applied in many image recognition tasks such as image seg-
mentation and object detection. In recent years, several methods have been proposed
to learn the primitive scene representation. Among them, most methods are based
on U-Net architecture and use either a global or local context to capture the global or
local structure of the input scenes. However, these approaches do not fully exploit
the structure information in scenes. In this paper, we propose a novel primitive scene
representation learning method for scene text recognition using a residual block-based
encoder-decoder strategy with multiple level-up passes. To this end, we design three
residual block structures with different subsampling ratios: 1:1 (global), 2:1 (local)
and 1:2 (global+local). We also designed an attention module that can be used to
further guide the search space in each level-up pass by enforcing certain conditions on
hierarchical representations obtained during previous levels.

Appendix A.4.2. Introduction Generation

INPUT:

Primitive Representation Learning for Scene Text Recognition

Primitive scene representation learning is an important subfield of deep learning,
which has been widely applied in many image recognition tasks such as image seg-
mentation and object detection. In recent years, several methods have been proposed
to learn the primitive scene representation. Among them, most methods are based
on U-Net architecture and use either a global or local context to capture the global or
local structure of the input scenes. However, these approaches do not fully exploit
the structure information in scenes. In this paper, we propose a novel primitive scene
representation learning method for scene text recognition using a residual block-based
encoder-decoder strategy with multiple level-up passes. To this end, we design three
residual block structures with different subsampling ratios: 1:1 (global), 2:1 (local)
and 1:2 (global+local). We also designed an attention module that can be used to
further guide the search space in each level-up pass by enforcing certain conditions on
hierarchical representations obtained during previous levels.

Introduction:

OUTPUT:

Information 2023, 14, 522 23 of 33

[1,2]. It has been widely applied in many image segmentation and object detection
[3,4] tasks. In these applications, deep learning is often used to learn the complex
parameters such as models and training schemes. Alternatively, it can be also applied
on the more fundamental problems of learning a better model for predicting new input
data that have not been seen before. Learning representations of unseen data is one of
the most fundamental problems within machine learning and has attracted tremendous
attention in recent years [5]. Primitive scene representation learning (PSRL) is an
important subfield of deep learning which aims at modeling the basic visual concepts
such as objects and scenes in order to solve various real-world applications likeimage
segmentation [6], pedestrian detection [7], video classification [8] etc.

Appendix A.4.3. Conclusion Generation

INPUT:

Primitive Representation Learning for Scene Text Recognition

Primitive scene representation learning is an important subfield of deep learning,
which has been widely applied in many image recognition tasks such as image seg-
mentation and object detection. In recent years, several methods have been proposed
to learn the primitive scene representation. Among them, most methods are based
on U-Net architecture and use either a global or local context to capture the global or
local structure of the input scenes. However, these approaches do not fully exploit
the structure information in scenes. In this paper, we propose a novel primitive scene
representation learning method for scene text recognition using a residual block-based
encoder-decoder strategy with multiple level-up passes. To this end, we design three
residual block structures with different subsampling ratios: 1:1 (global), 2:1 (local)
and 1:2 (global+local). We also designed an attention module that can be used to
further guide the search space in each level-up pass by enforcing certain conditions on
hierarchical representations obtained during previous levels.

[1,2]. It has been widely applied in many image segmentation and object detec-
tion [3,4] tasks. In these applications, deep learning is often used to learn the complex
parameters such as models and training schemes. Alternatively, it can be also applied
on the more fundamental problems of learning a better model for predicting new input
data that have not been seen before. Learning representations of unseen data is one of
the most fundamental problems within machine learning and has attracted tremen-
dous attention in recent years [5]. Primitive scene representation learning (PSRL) is an
important subfield of deep learning which aims at modeling the basic visual concepts
such as objects and scenes in order to solve various real-world applications likeimage
segmentation [6], pedestrian detection [7], video classification [8] etc.

OUTPUT:

We propose a novel residual block-based encoder-decoder (R-BiDe) method for learn-
ing the primitive scene representation. We introduce a residual block structure with
different subsampling ratios, and design an attention module that can be used to
guide the search space in each level-up pass. The proposed R-BiDe method achieves
better performance than other stateof-theart methods on several difficult scene text
recognition benchmarks with no overfitting issues. In future works, we will focus on
exploring the model design principles of R-BiDe as well as its application scenarios
such as object detection and autonomous driving using deep learning frameworks
such as Caffe and PyTorch.

Information 2023, 14, 522 24 of 33

Appendix A.5. SCIgen

In the case of SCIgen papers, a script is used to generate the paper documents. Once
the documents are generated, they are subsequently parsed to extract the relevant sections.
The following frame shows an example of a generation after parsing.

Title: Towards the Understanding of Randomized Algorithms

Abstract: Many security experts would agree that, had it not been for online al-
gorithms, the investigation of XML might never have occurred. Given the current
status of heterogeneous epistemologies, statisticians predictably desire the evaluation
of public-private key pairs, which embodies the important principles of programming
languages. In order to solve this riddle, we present an analysis of expert systems (Ju-
das), disconfirming that symmetric encryption and hash tables are never incompatible.
It at first glance seems counterintuitive but fell in line with our expectations .

Introduction: Recent advances in interposable modalities and trainable modalities
do not necessarily obviate the need for 802.11 mesh networks. After years of robust
research into Byzantine fault tolerance, we disprove the evaluation of information
retrieval systems. The notion that security experts collaborate with atomic symmetries
is generally adamantly opposed. The evaluation of link-level acknowledgements
would tremendously amplify vacuum tubes. The basic tenet of this solution is the
development of IPv7. For example, many frameworks allow the study of the transistor.
On a similar note, we emphasize that our system improves systems. Thus, we use
lossless communication to disprove that online algorithms and journaling file systems
can interact to fulfill this ambition. Relational methodologies are particularly unfortu-
nate when it comes to “smart” information. This is an important point to understand.
However, for example, many frameworks observe the memory bus. Thusly, we see
no reason not to use trainable communication to develop concurrent theory. This
outcome is usually a private ambition but is supported by related work in the field.
We describe new perfect modalities, which we call Judas. Though such a claim might
seem counterintuitive, it has ample historical precedence. To put this in perspective,
consider the fact that little-known futurists never use IPv6 to surmount this problem.
Contrarily, stochastic technology might not be the panacea that cyberneticists expected.
Two properties make this method distinct: our application prevents homogeneous
configurations, and also Judas is copied from the analysis of DHTs [1]. To put this
in perspective, consider the fact that little-known information theorists rarely use
802.11b to address this challenge. Combined with the UNIVAC computer, such a claim
synthesizes new stochastic modalities. The rest of this paper is organized as follows.
Primarily, we motivate the need for the transistor. Similarly, we place our work in
context with the prior work in this area. On a similar note, to solve this question, we
construct an analysis of telephony (Judas), which we use to show that the seminal
relational algorithm for the exploration of active networks by Thompson [1] runs in
Ω(log log n) time. In the end, we conclude.

Conclusion: Our method will address many of the issues faced by today’s theo-
rists. Similarly, Judas can successfully prevent many link-level acknowledgements
at once. Our methodology for constructing the improvement of the Turing machine
is particularly excellent. We plan to explore more problems related to these issues in
future work.

Appendix B. Classifier Details

Appendix B.1. Bag-of-Words Classifiers

Table A2 shows the detailed results for the different bag-of-words classifiers introduced
in Section 4.2.1.

Information 2023, 14, 522 25 of 33

Table A2. Experiment results for the different bag-of-words classifiers reported with accuracy metric.
Out-of-domain experiments are highlighted in blue. The highest values per test set are highlighted
in bold.

Model Train Dataset TEST OOD-GPT3 OOD-REAL TECG TEST-CC
LR-1gram
(tf-idf) TRAIN 95.3% 4.0% 94.6% 96.1% 7.8%

LR-1gram
(tf-idf) TRAIN + GPT3 94.6% 86.5% 86.2% 97.8% 13.7%

LR-1gram
(tf-idf) TRAIN-CG 86.6% 0.8% 97.8% 32.6% 1.2%

LR-2gram
(tf-idf) TRAIN 89.1% 0.5% 96.5% 91.3% 6.4%

LR-2gram
(tf-idf) TRAIN + GPT3 90.0% 89.7% 86.1% 97.3% 15.7%

LR-2gram
(tf-idf) TRAIN-CG 73.3% 0.0% 99.6% 1.4% 0.6%

LR-(1,2)gram
(tf-idf) TRAIN 94.8% 0.2% 97.8% 94.6% 2.7%

LR-(1,2)gram
(tf-idf) TRAIN + GPT3 95.1% 83.3% 92.6% 97.8% 5.9%

LR-(1,2)gram
(tf-idf) TRAIN-CG 83.3% 0.2% 99.3% 1.7% 0.3%

RF-1gram
(tf-idf) TRAIN 94.8% 24.7% 87.3% 100.0% 8.1%

RF-1gram
(tf-idf) TRAIN + GPT3 91.7% 95.0% 69.3% 100.0% 15.1%

RF-1gram
(tf-idf) TRAIN-CG 97.6% 7.0% 95.0% 57.0% 1.7%

RF-2gram
(tf-idf) TRAIN 90.8% 12.4% 76.8% 99.3% 29.9%

RF-2gram
(tf-idf) TRAIN + GPT3 87.7% 96.8% 54.6% 99.9% 44.0%

RF-2gram
(tf-idf) TRAIN-CG 85.8% 3.4% 88.8% 44.1% 8.5%

RF-(1,2)gram
(tf-idf) TRAIN 95.4% 22.4% 87.8% 93.8% 9.1%

RF-(1,2)gram
(tf-idf) TRAIN + GPT3 93.8% 96.0% 66.6% 100.0% 19.7%

RF-(1,2)gram
(tf-idf) TRAIN-CG 87.8% 1.9% 96.8% 43.8% 1.1%

Appendix B.2. GPT-3

The following frame shows a GPT-3 classifier training prompt. The input label (1 for
fake and 0 for real) is separated from the input by the separator token (###).

Abstract:

For a generic hypersurface in complex space form, all Hopf hypersurfaces are proved
to be homogeneous or Hopf homogeneous. As a consequence, it is shown that the
generalized Sasakian metric is a Ricci soliton on a Hopf hypersurface.

Introduction:

A Hopf hypersurface is a hypersurface which admits a Hopf field, that is, a vector field
such that [ξ, ξ] is a normal vector field. The Hopf field is unique up to multiplication
by a positive constant. The existence of Hopf fields is equivalent to the existence
of a 1-form η such that η ∧ dηn−1 is a volume form. Let Mn be a hypersurface in a
complex space form M2n+1(c) with constant sectional curvature c. We denote by g
the metric induced by the Riemannian metric of M2n+2(c). The Hopf field is given
by ξ = 1√

n J∇ f , where J is the complex structure on M2n+3 and f is a function on

Mn ⊂ M2n+1. In [1], Wang and Chen showed that a Hopf hypersurface in M2n+l(c) is

Information 2023, 14, 522 26 of 33

homogeneous if and only if the Hopf field is parallel. In this paper, we study the struc-
ture of Hopf hypersurfaces in complex space form. We show that a Hopf hypersurface
is homogeneous if and only if it is Hopf homogeneous. We also show that a Hopf
hypersurface is Hopf homogeneous if and only if the generalized Sasakian metric is a
Ricci solitons on it.

Conclusion:

For a generic hypersurface in complex space form, all Hopf hypersurfaces are proved
to be homogeneous or Hopf homogeneous. As a consequence, it is shown that the
generalized Sasakian metric is a Ricci soliton on a Hopf hypersurface.

###

1

Appendix B.3. ChatGPT

Table A3 shows the detailed results for the different ChatGPT prompting styles intro-
duced in Section 4.2.6.

Table A3. Experiment results for different ChatGPT prompting styles reported with accuracy metric.
Out-of-domain experiments are highlighted in blue. Highest values per test set are highlighted in
bold. (*) ChatGPT accuracies have been evaluated on randomly sampled subsets of 100 scientific
papers per test set and prompting style due to API limits.

Model Train Dataset TEST OOD-GPT3 OOD-REAL TECG TEST-
CC

ChatGPT-IO (*) - 69% 49% 89% 0% 3%
ChatGPT-CoT (*) - 63% 2% 70% 3% 1%
ChatGPT-IP (*) - 57% 18% 92% 7% 5%
ChatGPT-FS (*) TRAIN + GPT3 59% 2% 100% 0% 0%

Appendix B.4. Large Language Model Feature Extractor (LLMFE)

Figure A3 show an extract from the hierarchical clustering dendrogram learned during
the feature consolidation step of LLMFE.

Figure A3. Extract from the hierarchical clustering dendrogram learned during the feature consolida-
tion step of LLMFE. The full dendrogram lists all 884 features. The distance threshold was chosen so
that 83 clusters were created from the 884 features.

Information 2023, 14, 522 27 of 33

Appendix C. Explainability Results

Appendix C.1. Bag-of-Words Classifiers

Figures A4–A6 show the coefficients and feature importance learned by our Logis-
tic Regression (LR) and Random Forest (RF) classifiers on the TRAIN, TRAIN + GPT3,
and TRAIN-CG datasets, respectively.

(a) LR 1-gram coefficients (b) RF 1-gram feature importance

Figure A4. Explainability insights from our Logistic Regression (LR) and Random Forest (RF)
classifiers on the TRAIN dataset. (a) shows the 1-grams with the 10 lowest (indicating real) and
highest (indicating fake) coefficients learned by LR. (b) shows the feature importance extracted from
RF after training.

(a) LR 1-gram coefficients (b) RF 1-gram feature importance
Figure A5. Explainability insights from our Logistic Regression (LR) and Random Forest (RF)
classifiers on the TRAIN + GPT3 dataset. (a) shows the 1-grams with the 10 lowest (indicating real)
and highest (indicating fake) coefficients learned by LR. (b) shows the feature importance extracted
from RF after training.

Information 2023, 14, 522 28 of 33

(a) LR 1-gram coefficients (b) RF 1-gram feature importance
Figure A6. Explainability insights from our Logistic Regression (LR) and Random Forest (RF)
classifiers on the TRAIN-CG dataset. (a) shows the 1-grams with the 10 lowest (indicating real) and
highest (indicating fake) coefficients learned by LR. (b) shows the feature importance extracted from
RF after training.

Appendix C.2. RoBERTa

Selected samples of SHAP and LIME explanations for our RoBERTa classifier can be
found in Figures A7–A17.

Figure A7. RoBERTa: Example of SHAP explanation on a real abstract correctly classified.

Figure A8. RoBERTa: Example of SHAP explanation on a real misclassified abstract.

Figure A9. RoBERTa: Example of SHAP explanation on a SCIgen generated abstract correctly classified.

Figure A10. RoBERTa: Example of SHAP explanation on a GPT-2 generated abstract correctly classified.

Figure A11. RoBERTa: Example of SHAP explanation on a Galactica generated abstract correctly classified.

Information 2023, 14, 522 29 of 33

Figure A12. RoBERTa: Example of SHAP explanation on a ChatGPT generated abstract correctly classified.

Figure A13. RoBERTa: Example of LIME explanation on a real abstract correctly classified.

Figure A14. RoBERTa: Example of LIME explanation on a SCIgen generated abstract correctly classified.

Figure A15. RoBERTa: Example of LIME explanation on a GPT-2 generated abstract correctly classified.

Figure A16. RoBERTa: Example of LIME explanation on a Galactica generated abstract correctly classified.

Figure A17. RoBERTa: Example of LIME explanation on a ChatGPT generated abstract correctly classified.

Appendix C.3. Galactica

Selected samples of SHAP explanations for our Galactica classifier can be found in
Figures A18–A21.

Figure A18. Galactica: Example of SHAP explanation on a real paper correctly classified.

Information 2023, 14, 522 30 of 33

Figure A19. Galactica: Example of SHAP explanation on a misclassified real paper.

Figure A20. Galactica: Example of SHAP explanation on a Galactica generated paper correctly classified.

Figure A21. Galactica: Example of SHAP explanation on a misclassified Galactica generated paper.

References
1. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.
2. Scao, T.L.; Fan, A.; Akiki, C.; Pavlick, E.; Ilić, S.; Hesslow, D.; Castagné, R.; Luccioni, A.S.; Yvon, F.; Gallé, M.; et al. Bloom: A

176b-parameter open-access multilingual language model. arXiv 2022, arXiv:2211.05100.
3. OpenAI. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774.
4. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models are Unsupervised Multitask Learners. OpenAI

Blog. 2019. Available online: https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf (accessed on 31 July 2023).
5. Keskar, N.S.; McCann, B.; Varshney, L.R.; Xiong, C.; Socher, R. CTRL: A Conditional Transformer Language Model for Controllable

Generation. arXiv 2019, arXiv:1909.05858. https://doi.org/10.48550/arXiv.1909.05858.
6. Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al.

Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv 2023, arXiv:2307.09288. https://doi.org/10.48550/arXiv.2307.09
288.

7. Zellers, R.; Holtzman, A.; Rashkin, H.; Bisk, Y.; Farhadi, A.; Roesner, F.; Choi, Y. Defending Against Neural Fake News. In
Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019.

8. OpenAI. ChatGPT. 2022. Available online: https://openai.com/blog/chat-ai/ (accessed on 26 February 2023).
9. Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H.P.d.O.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al.

Evaluating large language models trained on code. arXiv 2021, arXiv:2107.03374.
10. Liu, Y. Fine-tune BERT for extractive summarization. arXiv 2019, arXiv:1903.10318.
11. Dergaa, I.; Chamari, K.; Zmijewski, P.; Saad, H.B. From human writing to artificial intelligence generated text: Examining the

prospects and potential threats of ChatGPT in academic writing. Biol. Sport 2023, 40, 615–622. [CrossRef]
12. Stokel-Walker, C. AI bot ChatGPT writes smart essays-should academics worry? Nature 2022. [CrossRef]

https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://doi.org/10.48550/arXiv.1909.05858
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://openai.com/blog/chat-ai/
http://doi.org/10.5114/biolsport.2023.125623
http://dx.doi.org/10.1038/d41586-022-04397-7

Information 2023, 14, 522 31 of 33

13. Maynez, J.; Narayan, S.; Bohnet, B.; McDonald, R. On Faithfulness and Factuality in Abstractive Summarization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics. Online,
5–10 August 2021; pp. 1906–1919. [CrossRef]

14. Tian, R.; Narayan, S.; Sellam, T.; Parikh, A.P. Sticking to the facts: Confident decoding for faithful data-to-text generation. arXiv
2019, arXiv:1910.08684.

15. Stribling, J.; Krohn, M.; Aguayo, D. SCIgen—An Automatic CS Paper Generator. 2005. Available online: https://pdos.csail.mit.e
du/archive/scigen/ (accessed on 1 March 2023).

16. Taylor, R.; Kardas, M.; Cucurull, G.; Scialom, T.; Hartshorn, A.; Saravia, E.; Poulton, A.; Kerkez, V.; Stojnic, R. Galactica: A large
language model for science. arXiv 2022, arXiv:2211.09085.

17. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

18. Mitchell, E.; Lee, Y.; Khazatsky, A.; Manning, C.D.; Finn, C. DetectGPT: Zero-Shot Machine-Generated Text Detection using
Probability Curvature. arXiv 2023, arXiv:2301.11305.

19. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
20. Mosca, E.; Abdalla, M.H.I.; Basso, P.; Musumeci, M.; Groh, G. Distinguishing Fact from Fiction: A Benchmark Dataset for

Identifying Machine-Generated Scientific Papers in the LLM Era. In Proceedings of the 3rd Workshop on Trustworthy Natural
Language Processing (TrustNLP 2023), Toronto, ON, Canada, 9–14 July 2023; pp. 190–207.

21. Maronikolakis, A.; Schutze, H.; Stevenson, M. Identifying automatically generated headlines using transformers. arXiv 2020,
arXiv:2009.13375.

22. Liyanage, V.; Buscaldi, D.; Nazarenko, A. A Benchmark Corpus for the Detection of Automatically Generated Text in Academic
Publications. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, LREC 2022, Marseille, France,
20–25 June 2022; pp. 4692–4700.

23. Wang, Y.; Mansurov, J.; Ivanov, P.; Su, J.; Shelmanov, A.; Tsvigun, A.; Whitehouse, C.; Afzal, O.M.; Mahmoud, T.; Aji, A.F.; et al. M4:
Multi-generator, Multi-domain, and Multi-lingual Black-Box Machine-Generated Text Detection. arXiv 2023, arXiv:2305.14902.
https://doi.org/10.48550/arXiv.2305.14902.

24. He, X.; Shen, X.; Chen, Z.; Backes, M.; Zhang, Y. MGTBench: Benchmarking Machine-Generated Text Detection. arXiv 2023,
arXiv:2303.14822. https://doi.org/10.48550/arXiv.2303.14822.

25. Li, Y.; Li, Q.; Cui, L.; Bi, W.; Wang, L.; Yang, L.; Shi, S.; Zhang, Y. Deepfake Text Detection in the Wild. arXiv 2023, arXiv:2305.13242.
https://doi.org/10.48550/arXiv.2305.13242.

26. Bird, S.; Dale, R.; Dorr, B.; Gibson, B.; Joseph, M.; Kan, M.Y.; Lee, D.; Powley, B.; Radev, D.; Tan, Y.F. The ACL Anthology Reference
Corpus: A Reference Dataset for Bibliographic Research in Computational Linguistics. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation (LREC’08); European Language Resources Association (ELRA), Marrakech,
Morocco, 15–20 July 2008.

27. arXiv.org submitters. arXiv Dataset. 2023. [CrossRef]
28. Cohan, A.; Goharian, N. Scientific Article Summarization Using Citation-Context and Article’s Discourse Structure. In

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 12–17 September
2015; pp. 390–400. [CrossRef]

29. Saier, T.; Färber, M. Bibliometric-Enhanced arXiv: A Data Set for Paper-Based and Citation-Based Tasks. In Proceedings of the
8th International Workshop on Bibliometric-Enhanced Information Retrieval (BIR 2019) Co-Located with the 41st European
Conference on Information Retrieval (ECIR 2019), Cologne, Germany, 14 April 2019; pp. 14–26.

30. Lo, K.; Wang, L.L.; Neumann, M.; Kinney, R.; Weld, D. S2ORC: The Semantic Scholar Open Research Corpus. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 4969–4983. [CrossRef]

31. Kashnitsky, Y.; Herrmannova, D.; de Waard, A.; Tsatsaronis, G.; Fennell, C.C.; Labbe, C. Overview of the DAGPap22 Shared
Task on Detecting Automatically Generated Scientific Papers. In Proceedings of the Third Workshop on Scholarly Document
Processing, Association for Computational Linguistics. Gyeongju, Republic of Korea, 17 October 2022; pp. 210–213.

32. Gao, L.; Biderman, S.; Black, S.; Golding, L.; Hoppe, T.; Foster, C.; Phang, J.; He, H.; Thite, A.; Nabeshima, N.; et al. The Pile: An
800GB Dataset of Diverse Text for Language Modeling. arXiv 2021, arXiv:2101.00027.

33. Waswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, L.; Polosukhin, I. Attention is all you need. In
Proceedings of the NIPS, 4–9 December 2017.

34. Anil, R.; Dai, A.M.; Firat, O.; Johnson, M.; Lepikhin, D.; Passos, A.; Shakeri, S.; Taropa, E.; Bailey, P.; Chen, Z.; et al. PaLM 2
Technical Report. arXiv 2023, arXiv:2305.10403. https://doi.org/10.48550/arXiv.2305.10403.

35. Maheshwari, H.; Singh, B.; Varma, V. SciBERT Sentence Representation for Citation Context Classification. In Proceedings of the
Second Workshop on Scholarly Document Processing, Online, 10 June 2021; pp. 130–133.

36. MacNeil, S.; Tran, A.; Leinonen, J.; Denny, P.; Kim, J.; Hellas, A.; Bernstein, S.; Sarsa, S. Automatically Generating CS Learning
Materials with Large Language Models. arXiv 2022, arXiv:2212.05113.

37. Swanson, B.; Mathewson, K.; Pietrzak, B.; Chen, S.; Dinalescu, M. Story centaur: Large language model few shot learning as
a creative writing tool. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: System Demonstrations, Online, 21–23 April 2021; pp. 244–256.

http://dx.doi.org/10.18653/v1/2020.acl-main.173
https://pdos.csail.mit.edu/archive/scigen/
https://pdos.csail.mit.edu/archive/scigen/
http://dx.doi.org/10.1023/A:1010933404324
https://doi.org/10.48550/arXiv.2305.14902
https://doi.org/10.48550/arXiv.2303.14822
https://doi.org/10.48550/arXiv.2305.13242
http://dx.doi.org/10.34740/KAGGLE/DSV/5490982 (accessed on 31 July 2023).
http://dx.doi.org/10.18653/v1/D15-1045
http://dx.doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.48550/arXiv.2305.10403

Information 2023, 14, 522 32 of 33

38. Liu, S.; He, T.; Li, J.; Li, Y.; Kumar, A. An Effective Learning Evaluation Method Based on Text Data with Real-time Attribution—A
Case Study for Mathematical Class with Students of Junior Middle School in China. ACM Trans. Asian Low Resour. Lang. Inf.
Process. 2023, 22, 63:1–63:22. [CrossRef]

39. Jawahar, G.; Abdul-Mageed, M.; Lakshmanan, L.V.S. Automatic Detection of Machine Generated Text: A Critical Survey. In
Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), 8–13
December 2020; pp. 2296–2309. [CrossRef]

40. Gehrmann, S.; Strobelt, H.; Rush, A.M. Gltr: Statistical detection and visualization of generated text. arXiv 2019, arXiv:1906.04043.
41. Fagni, T.; Falchi, F.; Gambini, M.; Martella, A.; Tesconi, M. TweepFake: About detecting deepfake tweets. PLoS ONE 2021,

16, e0251415. [CrossRef]
42. Kushnareva, L.; Cherniavskii, D.; Mikhailov, V.; Artemova, E.; Barannikov, S.; Bernstein, A.; Piontkovskaya, I.; Piontkovski, D.;

Burnaev, E. Artificial Text Detection via Examining the Topology of Attention Maps. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event/Punta Cana, Dominican Republic, 7–11
November, 2021; Moens, M., Huang, X., Specia, L., Yih, S.W., Eds.; Association for Computational Linguistics: Cedarville, OH,
USA, 2021; pp. 635–649. [CrossRef]

43. Bakhtin, A.; Gross, S.; Ott, M.; Deng, Y.; Ranzato, M.; Szlam, A. Real or fake? Learning to discriminate machine from human
generated text. arXiv 2019, arXiv:1906.03351.

44. Ippolito, D.; Duckworth, D.; Callison-Burch, C.; Eck, D. Automatic detection of generated text is easiest when humans are fooled.
arXiv 2019, arXiv:1911.00650.

45. Kirchenbauer, J.; Geiping, J.; Wen, Y.; Shu, M.; Saifullah, K.; Kong, K.; Fernando, K.; Saha, A.; Goldblum, M.; Goldstein, T. On the
Reliability of Watermarks for Large Language Models. arXiv 2023, arXiv:2306.04634. https://doi.org/10.48550/arXiv.2306.04634.

46. Amancio, D.R. Comparing the topological properties of real and artificially generated scientific manuscripts. Scientometrics 2015,
105, 1763–1779. [CrossRef]

47. Williams, K.; Giles, C.L. On the use of similarity search to detect fake scientific papers. In Proceedings of the Similarity Search
and Applications: 8th International Conference, SISAP 2015, Glasgow, UK, 12–14 October 2015; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 332–338.

48. Nguyen, M.T.; Labbé, C. Engineering a tool to detect automatically generated papers. In Proceedings of the BIR 2016 Bibliometric-
enhanced Information Retrieval, Padua, Italy, 20 March 2016.

49. Cabanac, G.; Labbé, C. Prevalence of nonsensical algorithmically generated papers in the scientific literature. J. Assoc. Inf. Sci.
Technol. 2021, 72, 1461–1476. [CrossRef]

50. Beltagy, I.; Lo, K.; Cohan, A. SciBERT: A Pretrained Language Model for Scientific Text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 3615–3620. [CrossRef]

51. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2019,
arXiv:1910.01108.

52. Glazkova, A.; Glazkov, M. Detecting generated scientific papers using an ensemble of transformer models. In Proceedings of the
Third Workshop on Scholarly Document Processing, Gyeongju, Republic of Korea, 17 October 2022; pp. 223–228.

53. Liu, Z.; Yao, Z.; Li, F.; Luo, B. Check Me If You Can: Detecting ChatGPT-Generated Academic Writing using CheckGPT. arXiv
2023, arXiv:2306.05524. https://doi.org/10.48550/arXiv.2306.05524.

54. Yang, L.; Jiang, F.; Li, H. Is ChatGPT Involved in Texts? Measure the Polish Ratio to Detect ChatGPT-Generated Text. arXiv 2023,
arXiv:2307.11380. https://doi.org/10.48550/arXiv.2307.11380.

55. Rudduck, P. PyMuPDF: Python Bindings for the MuPDF Renderer. 2021. Available online: https://pypi.org/project/PyMuPDF/
(accessed on 7 March 2023).

56. Stribling, J.; Aguayo, D. Rooter: A Methodology for the Typical Unification of Access Points and Redundancy. 2021. Available
online: https://dipositint.ub.edu/dspace/bitstream/123456789/2243/1/rooter.pdf (accessed on 31 July 2023).

57. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 2014,
27, 3104–3112.

58. Cox, D.R. The regression analysis of binary sequences. J. R. Stat. Soc. Ser. B 1958, 20, 215–232. [CrossRef]
59. Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988, 24, 513–523. [CrossRef]
60. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
61. Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.; Xia, F.; Chi, E.; Le, Q.; Zhou, D. Chain-of-Thought Prompting Elicits

Reasoning in Large Language Models. arXiv 2023, arXiv:2201.11903.
62. Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings of the 2006 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006;
Volume 2, pp. 1735–1742.

63. Müllner, D. Modern hierarchical, agglomerative clustering algorithms. arXiv 2011, arXiv:1109.2378.
64. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;

Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]

http://dx.doi.org/10.1145/3474367
http://dx.doi.org/10.18653/v1/2020.coling-main.208
http://dx.doi.org/10.1371/journal.pone.0251415
http://dx.doi.org/10.18653/v1/2021.emnlp-main.50
https://doi.org/10.48550/arXiv.2306.04634
http://dx.doi.org/10.1007/s11192-015-1637-z
http://dx.doi.org/10.1002/asi.24495
http://dx.doi.org/10.18653/v1/D19-1371
https://doi.org/10.48550/arXiv.2306.05524
https://doi.org/10.48550/arXiv.2307.11380
https://pypi.org/project/PyMuPDF/
https://dipositint.ub.edu/dspace/bitstream/123456789/2243/1/rooter.pdf
http://dx.doi.org/10.1111/j.2517-6161.1958.tb00292.x
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1038/s41592-019-0686-2

Information 2023, 14, 522 33 of 33

65. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 13–17
August 2016; pp. 1135–1144.

66. Lundberg, S.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. International Conference on Machine Learning.
arXiv 2017, arXiv:1705.07874.

67. Mosca, E.; Szigeti, F.; Tragianni, S.; Gallagher, D.; Groh, G. SHAP-Based Explanation Methods: A Review for NLP Interpretability.
In Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Republic of Korea, 12–17 October
2022; pp. 4593–4603.

68. Mosca, E.; Harmann, K.; Eder, T.; Groh, G. Explaining Neural NLP Models for the Joint Analysis of Open-and-Closed-Ended
Survey Answers. In Proceedings of the 2nd Workshop on Trustworthy Natural Language Processing (TrustNLP 2022), Seattle,
WA, USA, 14 July 2022; pp. 49–63. [CrossRef]

69. Thomas, G.; Hartley, R.D.; Kincaid, J.P. Test-retest and inter-analyst reliability of the automated readability index, Flesch reading
ease score, and the fog count. J. Read. Behav. 1975, 7, 149–154. [CrossRef]

70. Gunning, R. The Technique of Clear Writing; McGraw-Hill: New York, NY, USA, 1952. Available online: https://books.google.de/
books?id=ofI0AAAAMAAJ (accessed on 31 July 2023).

71. DiMascio, C. py-readability-metrics. 2019. Available online: https://github.com/cdimascio/py-readability-metrics (accessed on
31 July 2023).

72. Mosca, E.; Agarwal, S.; Rando Ramírez, J.; Groh, G. “That Is a Suspicious Reaction!”: Interpreting Logits Variation to Detect NLP
Adversarial Attacks. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Dublin, Ireland, 22–27 May 2022; pp. 7806–7816. [CrossRef]

73. Huber, L.; Kühn, M.A.; Mosca, E.; Groh, G. Detecting Word-Level Adversarial Text Attacks via SHapley Additive exPlanations.
In Proceedings of the 7th Workshop on Representation Learning for NLP, Dublin, Ireland, 26 May 2022; pp. 156–166. [CrossRef]

74. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C. Hugging Face’s Transformers: State-of-the-Art Natural Language
Processing. 2019. Available online: https://github.com/huggingface/transformers (accessed on 31 July 2023) .

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.18653/v1/2022.trustnlp-1.5
http://dx.doi.org/10.1080/10862967509547131
https://books.google.de/books?id=ofI0AAAAMAAJ
https://books.google.de/books?id=ofI0AAAAMAAJ
https://github.com/cdimascio/py-readability-metrics
http://dx.doi.org/10.18653/v1/2022.acl-long.538
http://dx.doi.org/10.18653/v1/2022.repl4nlp-1.16
https://github.com/huggingface/transformers

	Introduction
	Related Work
	Machine-Generated Text Detection Benchmarks
	Scientific Publication Corpora: Human and Machine-Generated
	Generative NLP for Scientific Articles
	Detection of Machine-Generated Text
	Detection of Machine-Generated Scientific Publications

	Benchmark Dataset
	Real Papers Collection
	Fake Papers Generation
	SCIgen
	GPT-2
	Galactica
	ChatGPT
	GPT-3

	Co-Created Papers Generation

	Detection Experiments
	Data Splits and Generalization Tests
	Classifiers
	Bag-of-Words Classifier
	GPT-3
	Galactica
	RoBERTa
	DetectGPT
	ChatGPT
	Large Language Model Feature Extractor (LLMFE)

	Performance
	Explainability Insights
	Word-Level Insights from LR and RF
	LIME and SHAP Insights for Galactica, RoBERTa, and GPT-3
	Abstract Features from LLMFE
	Readability Metrics for Different Generators
	Generated Texts Length

	Limitations and Future Work
	Discussion, Ethical Considerations, and Broader Impact
	Conclusions
	Generation Examples
	ChatGPT
	Galactica
	Abstract Generation
	Introduction Generation
	Conclusion Generation

	GPT-2
	Abstract Generation
	Introduction Generation
	Conclusion Generation

	GPT-3
	Abstract Generation
	Introduction Generation
	Conclusion Generation

	SCIgen

	Classifier Details
	Bag-of-Words Classifiers
	GPT-3
	ChatGPT
	Large Language Model Feature Extractor (LLMFE)

	Explainability Results
	Bag-of-Words Classifiers
	RoBERTa
	Galactica

	References

