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Abstract: Drowning is one of the top five causes of death for children aged 1–14 worldwide. Accord-
ing to data from the World Health Organization (WHO), drowning is the third most common reason
for unintentional fatalities. Designing a drowning detection system is becoming increasingly neces-
sary in order to ensure the safety of swimmers, particularly children. This paper presents a computer
vision and deep learning-based early drowning detection approach. We utilized five convolutional
neural network models and trained them on our data. These models are SqueezeNet, GoogleNet,
AlexNet, ShuffleNet, and ResNet50. ResNet50 showed the best performance, as it achieved 100% pre-
diction accuracy with a reasonable training time. When compared to other approaches, the proposed
approach performed exceptionally well in terms of prediction accuracy and computational cost.

Keywords: drowning detection; drowning rescue; swimming pool surveillance; AI; deep learning;
machine learning; computer vision; CNN; convolution neural networks

1. Introduction

According to the World Health Organization (WHO) report [1], drowning is the third
most common reason for unintentional fatalities worldwide for children and young people
aged 1–14 years, with children under the age of 5 at highest risk. There are an estimated
236,000 annual drowning deaths around the world [2]. In 48 of the 85 countries, drowning
is one of the top five fatalities of children between the ages of 1 and 14 [3]. According to [4],
as the population increases and the development of hotels and villas with swimming pools
becomes more popular, the death rate due to drowning will increase. Several investigations
have been performed by governments and organizations to find appropriate ways to save
people. Some of these ways include providing information on dangers of drowning given
to parents through the child surveillance programs, encouraging fencing or draining of
garden ponds and domestic swimming pools, and increasing supervision of swimming in
lakes, rivers, and beaches in order to reduce the number of accidents. Unfortunately, these
solutions are not enough and can be considered rudimentary. The effective reduction in
drowning and the assurance of pool safety can be achieved through the implementation of
a smart automated monitoring system.

There are several approaches for automatic drowning detection which can be catego-
rized into two classes. The approaches of the first category are based on wearing sensing
devices that are attached to the swimmer through a wristband or goggles. These sensors
can monitor the swimmer behavior through providing measurements such as heart rate,
blood oxygen level, motion, hydraulic pressure, and depth. The second category involves
vision-based approaches where overhead or underwater cameras are used to monitor
the swimmers, and machine learning (ML) algorithms are employed to detect drowning
instances from the output of these cameras.

The main contribution of this study is the proposal of a ground-breaking technique that
quickly and automatically detects drowning victims based on deep learning convolutional
neural networks (CNNs). We investigated five pretrained CNN models for identifying
drowning cases within a swimming pool. These models were AlexNet [5], GoogleNet [6],
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SqueezeNet [7], ShuffleNet [8], and ResNet [9]. After fine-tuning these models and training
them on our dataset, all models successfully identified the drowning instances from normal
swimming events with a very high prediction accuracy and confidence level.

2. Related Work

Automatic drowning detection approaches can be classified as sensor-based and ML-
based approaches. There are very few available ML-based drowning detection approaches
in the literature. Alotaibi [10] proposed a swimming pool monitoring system based on
IoT and transfer learning. The motion sensor detects any objects around the swimming
pool and sends a signal to an overhead camera which captures a single image. The image
is sent via wireless communication to the server station, for processing and classification.
The ResNet50 model classifies the detected object as human, animal, or object. Li et al. [11]
proposed a technique for identifying drowning victims at sea. They created a dataset
of 6079 images using a team of actors. They employed the Yolov3 algorithm with some
modifications. Briefly, the residual module with channel attention mechanism was used
in the feature extraction network, a bottom-up structure was added to the feature fusion
network (FPN) structure, CIoU was used as a loss function, and a linear transformation
method was used to deal with the anchor boxes generated by a clustering algorithm. The
model classifies human targets into four categories: sea person, uncertain sea person, land
person, and uncertain land person. The model achieved an accuracy of 72.17%.

Chan et al. [12] presented an AlexNet CNN model with the use of NVIDIA Jetson
Nano. The model was trained using 1168 drowning images and 2333 non-drowning images.
The testing dataset contained 389 drowning images and 777 non-drowning images. The
dataset was created by 30 volunteers who made different poses in the pool. The model
achieved 85% classification accuracy. Handalage et al. [13] proposed a drowning rescue
system with three main functions: detecting drowning victims, sending drones to victims,
and detecting dangerous activities. The drowning detection component detects drowning
victims through a CNN model. The second component is the rescue drone which is sent to
the victim’s location coordinates. The third component detects dangerous activities such as
running around the swimming pool and drinking. The drowning detection system was
trained through 5000 images representing four categories: drowning stage 1, drowning
stage 2, drowning stage 3, and not drowning. The major source of the data was the
introduction of actors and the collection of videos in real time. The secondary source of
data was the Internet. Swimmers in the pool were detected using an overhead camera.
YOLO [14] was used to detect objects by locating one or more objects in the image and
sorting each object. The CNN model was implemented on the NVIDIA Jetson Nano board
in order to run multiple neural models in parallel.

Hasan et al. (2021) [15] presented a video dataset collected by overhead and underwa-
ter cameras, including three water activity behaviors which are swim, drown, and idle. The
dataset contained 47 overhead videos and 44 underwater videos, resulting in 24,729 and
22,010 video frames, respectively. Three pretrained CNN models, ResNet50 [9], VGG16 [16],
and MobileNet [17], were evaluated on this dataset. These models achieved a detection
accuracy of 96.85%, 83.25%, and 96.7% respectively.

3. Materials and Methods

The main contribution of this study is the development of an automated and intelligent
system for monitoring swimming pools for early drowning detection. We utilize deep
machine learning to efficiently process the swimmers’ images and enable early detection of
any drowning case.

3.1. Dataset

Our dataset contains 200 images that were collected through the Google search engine.
The data consist of two classes (drowning and swimming), where each class includes
100 images representing swimmers from both genders but different ages. We used 100 of



Information 2023, 14, 52 3 of 15

these images (50 drowning and 50 swimming) for model training and validation, while
the other 100 images (50 drowning and 50 swimming) were used for model testing. The
training and validation dataset was further split into 70% for training and 30% for validation.
Samples of the drowning and swimming images are presented in Figure 1.
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Machine learning algorithms usually require large training data to perform well. In
our case, the available data were limited, which may cause overfitting problems. To address
this issue, we utilized data augmentation and transfer learning. Data augmentation is a
mechanism for increasing the quantity of data by introducing slightly modified copies of
current data or newly created synthetic data from existing data [18]. It regularizes and aids
in the training of a machine learning model to reduce overfitting. Data augmentation in
deep learning takes the form of geometric modifications, flipping, color alteration, cropping,
rotation, noise injection, and random erasure to improve the image [19].

After loading our data into the network, we used two forms of data augmentation:
rotation and scaling. For each CNN, we used different rotational angles. For GoogleNet,
ShuffleNet, AlexNetr, and ResNet50 we used a rotational angle of −45◦ to 45◦. After many
trials and errors, this rotational angle achieved the highest accuracy for these four CNNs.
However, the rotational angle for SqueezNet that achieved the highest validation accuracy
was −60◦ to 60◦. On each image, random scaling factors in the range of 1 to 2 were applied
for all five CNNs.

The experiments in this work were implemented using the deep learning toolbox in
MATLAB where rotation angles and scale factors are picked randomly from continuous
uniform distributions within the specified intervals. Each epoch produces slightly different
transformed versions of each image in the training dataset while maintaining an equal
number of training images across epochs. These transformed images are not stored in
memory [20].

3.2. CNN Models

Deep learning algorithms including CNN have led to significant advances in the field
of computer vision in recent years. The major advantage of a CNN is that it can learn
directly from input images, eliminating the need for preprocessing and feature extraction
techniques [21,22].

Three of the most critical characteristics that are typically considered when selecting a
convolutional neural network model are classification accuracy, computational time, and
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memory requirement [23]. Due to time constraints, computational limitations, and the
unavailability of an adequate amount of training data, which often make it a significant
challenge to build a CNN model from scratch, using pretrained CNN models is considered
a good option. There are several publicly available pretrained CNN models [19]. In
this work, we examined five pretrained networks; AlexNet, GoogleNet, SqueezeNet,
ShuffleNet, and ResNet50. These models were selected in this study as they have been
successfully implemented in many state-of the-art research publications and have shown
great performance in several applications.

AlexNet was one of the first deep convolutional networks that reached significant
accuracy [5]. The overfitting problem is solved in AlexNet by using dropout layers, where
a connection is dropped with a probability of 0.5 during testing. A probability of 0.5 was
chosen since it was the best fit for the network parameters and training options. Although
this prevents the network from overfitting by allowing it to escape from undesirable local
minima, it also doubles the number of iterations required for convergence. Millions of
images have been classified using this algorithm into object categories, such as faces, fruit,
cups, pencils, and animals. Networks take images as input and assign labels for those
objects. In addition, they take probabilities for the categories in which those objects fall.
There are two sets of images involved with the input to the network: 227 × 227 × 3 RGB
images [24–27]. The AlexNet architecture is shown in Figure 2.
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Figure 2. AlexNet architecture [27].

The inception module in the GoogleNet design solved most of the problems that
huge networks faced [6]. GoogleNet has an error rate of 6.67%, which is very close to
human performance. The design consists of 22 deep CNN layers, lowering the number of
parameters to four million (60 million compared to AlexNet). In addition to the 22 layers
of GoogleNet, there are five pooling layers [28]. The initiation modules comprise nine
linear layers altogether. There are also 1 × 1 convolution filters. In part due to the parallel
network implementation and layer reduction, the network has very good computational
and memory efficiency. The model size is also smaller than other networks [24,27]. The
GoogleNet architecture is presented in Figure 3.

SqueezeNet is a small CNN requiring less communication between servers during dis-
tribution training [7]. Smaller CNNs are also easier to implement on hardware with limited
memory, such as a field-programmable gate array (FPGA). SqueezeNet is a convolutional
neural network with 18 layers. Image categories are categorized into 1000 categories by
the pretrained network. The network learns complex function representations for a wide
variety of images. The goal of utilizing SqueezeNet is to create a smaller neural network
using fewer datasets that can be readily integrated into computer memory and transmitted
via a computer network [24,27,29]. The SqueezeNet architecture is shown in Figure 4.
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ShuffleNet is a very resource-efficient CNN architecture that was created specifically
for mobile devices with very little processing power [8]. The network architecture signifi-
cantly lowers computation costs while retaining accuracy by using two new operations,
pointwise group convolution and channel shuffle. The ShuffleNet architecture is illustrated
in Figure 5.
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ResNet was developed in 2016 by introducing some features that significantly increase
network accuracy and speed [9]. Not every neuron in the ResNet design needs to fire at



Information 2023, 14, 52 6 of 15

once. After learning a feature once, it does not try to learn it again; instead, it focuses on
learning additional features. This strategy enhances the effectiveness of model training.
The ResNet50 network consists of 50 layers, and its architecture is illustrated in Figure 6.
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When training any pretrained network, we start by modifying the parameters of the
basic design. In each of the CNN models, we tuned the pretrained network parameters,
i.e., the convolution 2D layer and the classification output layer. We modified the filter
size to 1 × 1, and the number of filters to 2 as we had two classes of data. We modified
the classification output layer to suit our output classification and labels. Furthermore, we
set the starting learning rate to 0.0001, the validation frequency to 5, and the maximum
epochs to 60, since we wanted to avoid the failure of training pauses based on error rates.
An epoch is a single learning cycle in which the learner is exposed to the whole training
dataset. Furthermore, the minimum batch size is equal to 11, which corresponds to the
memory needs (8.00 GB) of the CPU hardware, which operates at 1.8 GHz. Increasing
the number of epochs leads to better training and validation accuracy, but it may lead to
overfitting. The training dataset was randomly separated into two parts: 70% of the data
for training and 30% of the data for validation to avoid overfitting.

3.3. Evaluation Measures

A machine learning model can be assessed and compared to other methods using a
variety of performance metrics. The most commonly used evaluation metrics are accuracy,
sensitivity, specificity, precision, F1, and MCC. The accuracy (Ac) metric measures the
percentage of correctly predicted drowning and swimming instances in the testing dataset.
The percentage of drowning instances that were successfully predicted relative to all of the
drowning cases included in the dataset is known as sensitivity or recall (R). Precision (Pr)
measures the percentage of accurately predicted drowning cases to all predicted drowning
cases. The percentage of accurately predicted non-drowning cases to all non-drowning
cases listed in the dataset is known as specificity (Sp). These metrics can be mathematically
represented as follows [32,33]:

Ac =
(TP + TN)

(TP + TN + FN + FP)
(1)

R =
TP

(TP + FN)
(2)

Pr =
TP

(TP + FP)
(3)

Sp =
TN

(TN + FP)
(4)
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where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative instances, respectively.

The F-measure (F1) is an evaluation metric that integrates precision and recall into
a single value. A statistic that strikes a compromise between prediction sensitivity and
specificity is the Mathew correlation coefficient (MCC). MCC is a numeric scale that goes
from −1, which denotes an inverse prediction, through 0, which stands for a random
classifier, to +1, which denotes a flawless prediction [34–36].

F1 =
2PR

P + R
(5)

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
(6)

4. Results and Discussion
4.1. Model Training and Validation

We examined five different pretrained CNN models. We started with GoogleNet
training, as shown in Figure 7, which required a total of 60 epochs with two iterations
per each epoch for a total of 120 iterations for the network to properly train and validate
the data. It achieved a validation accuracy of 91.67% after 120 iterations. The network
training took 3 min and 36 s to complete. Furthermore, the validation was carried out in a
five-iteration process to verify that the system was well trained, while avoiding overfitting
of the data.
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To train SqueezeNet, we used a total of 20 epochs with two iterations per each epoch,
as shown in Figure 8. The model achieved a validation accuracy of 100% after 40 iterations,
which is ideal accuracy and indicates a well-trained network. The training procedure took
only 26 s, which was significantly less time than the other two networks. To avoid data
overfitting, the validation frequency was also performed in a five-iteration process.
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Figure 8. The training performance of SqueezeNet.

However, there were 15 epochs overall for training AlexNet (Figure 9), with two itera-
tions per epoch, allowing the network to train and validate the data extremely successfully.
It attained a validation accuracy of 91.67% after 30 iterations. The network training took
1 min and 5 s to complete, and the validation was carried out through a five-iteration
process.
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As shown in Figure 10, we used a total of 18 epochs with two iterations for each epoch
to properly train and validate the data for ShuffleNet. After 36 iterations, we achieved a
prediction performance of 100%, which is optimal accuracy and suggests a well-trained
network. Exactly 7 min and 18 s were needed for the training process, far slower than the
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time required for the three previous networks. The validation frequency was also carried
out using a five-iteration process to prevent data overfitting.
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Figure 10. The training performance of ShuffleNet.

As shown in Figure 11 we used a total of 20 epochs with five iterations for each epoch
to properly train and validate the data for ResNet50. After 40 iterations, we achieved a
predictive performance of 100%, which is optimal accuracy and suggests a well-trained
network. Exactly 2 min and 33 s were needed for the training process, a moderate time
compared to the other four networks. The validation frequency was also carried out using
a five-iteration process.
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Figure 11. The training performance of ResNet50.

As demonstrated in Figures 7–11, we employed a single CPU system. We used the
same initial learning rate of 0.0001 for all of five networks, whereas the maximum iterations
and number of epochs were varied for each model. Because SqueezeNet had the fastest
training time, it was found to be one of the best networks in terms of validation accuracy.
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While ResNet50 also achieved 100% validation accuracy, SqueezeNet was faster than
ResNet50. AlexNet and GoogleNet both had the same validation accuracy of 91.67% with a
higher training time than SqueezeNet, taking 3 min and 36 s for GoogleNet and 1 min and
5 s for AlexNet. Although ShuffleNet showed perfect validation accuracy, it took a long
training time. Table 1 details the training and validation performance of the five networks.

Table 1. Convolution neural network training results.

CNN Model Validation
Accuracy

Elapsed
Time

No. of
Epochs

Max
Iterations Frequency Learning

Rate
Hardware
Resources

Google Net 91.67% 3 min 36 s 60 120 5 iterations 0.0001 Single CPU
Squeeze Net 100% 26 s 20 40 5 iterations 0.0001 Single CPU

Alex Net 91.67% 1 min and 5 s 15 30 5 iterations 0.0001 Single CPU

Shuffle Net 100% 7 min and
18 s 18 36 5 iterations 0.0001 Single CPU

ResNet50 100% 2 min and
33 s 20 40 5 iterations 0.0001 Single CPU

4.2. Model Testing and Evaluation

Our testing dataset consisted of 100 unseen images with 50 drowning instances and
50 normal swimming instances. This testing dataset was a completely separate set which
was not used in the training and validation process. Figure 12 presents samples of the
testing data. This dataset was used to test the five CNN models, and the testing results
are summarized in the confusion matrices presented in Tables 2–6. Samples of the classi-
fication results of the five CNN models along with their confidence level are illustrated
in Table 7. On the basis of their confusion matrices, the five CNN models were evaluated
and compared through six performance measures: accuracy (Ac), recall (R), precision (Pr),
specificity (Sp), F1, and MCC. The performance metrics of these models are summarized in
Table 8.

Table 2. AlexNet confusion matrix.

Actual
Swimming (−) Drowning (+)

Predicted
Swimming (−) 50 (TN) 1(FN)
Drowning (+) 0 (FP) 49 (TP)

Table 3. GoogleNet confusion matrix.

Actual
Swimming (−) Drowning (+)

Predicted
Swimming (−) 47 (TN) 2 (FN)
Drowning (+) 3 (FP) 48 (TP)

Table 4. ShuffleNet confusion matrix.

Actual
Swimming (−) Drowning (+)

Predicted
Swimming (−) 42 (TN) 11 (FN)
Drowning (+) 8(FP) 39(TP)
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Table 5. SqueezeNet confusion matrix.

Actual
Swimming (−) Drowning (+)

Predicted
Swimming (−) 49 (TN) 2 (FN)
Drowning (+) 1 (FP) 48 (TP)

Table 6. ResNet50 confusion matrix.

Actual
Swimming (−) Drowning (+)

Predicted
Swimming (−) 50 (TN) 0 (FN)
Drowning (+) 0 (FP) 50 (TP)
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Table 7. Samples of testing results of the five CNN models along with their confidence levels.

Testing Samples CNN Model Prediction and Confidence Level
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Table 8. Testing results of the five CNN models.

CNN
Model Ac R Sp Pr F1 MCC

SqueezeNet 97.00% 96.00% 98.00% 97.95% 96.96% 93.97%
GoogleNet 95.00% 96.00% 94.00% 94.12% 95.04% 90.05%

AlexNet 99.00% 98.00% 100.00% 100.00% 98.98% 98.01%
ShuffleNet 81.00% 78.00% 84.00% 82.97% 80.408% 62.11%
ResNet50 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

The five CNN models were able to correctly distinguish the swimmer’s predicament
with a very high confidence level. ResNet50 and AlexNet showed the best prediction
performance in terms of all six evaluation metrics. The next best performer was SqueezeNet,
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while the ShuffleNet model showed the lowest classification performance among the five
CNN models.

To additionally minimize false positive and false negative rates, it would be interesting
to combine more than one CNN model, i.e., three or five models, into one system, where the
final decision of the system is based on a voting criterion of the individual model outputs.

For further evaluation of our proposed approach, we compared it with other current
approaches. The accuracy, machine learning technique, and dataset size of the various
systems currently in use are compared in Table 9 and Figure 13. Although it was trained on
a smaller amount of data, our proposed approach outperformed other existing approaches
in terms of accuracy, as illustrated in Table 9 and Figure 13.

Table 9. Comparison of drowning detection approaches.

Approach Dataset Size Training:Testing Data Ratio Technique Accuracy

Chan et al. (2020) [12] 4667 images 75%:25% AlexNet 85.0%

Handalage et al. (2021) [13] 5000 images 90%:10% YOLO 85.6%

Hasan et al. (2021) [15] 91 videos (46,739 video frames) 90%:10% MobileNet 96.7%

Our proposed approach 200 images 50%:50% ResNet50 100.0%
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5. Conclusions

This paper presented a deep learning-based approach for early drowning detection.
We examined five pretrained convolutional neural networks and trained them on our data.
SqueezeNet, GoogleNet, AlexNet, ShuffleNet and ResNet50 as the five networks achieved
prediction accuracies of 97%, 95%, 99%, 81%, and 100%, respectively. The best model
among them was ResNet50, since it achieved the highest validation and testing accuracy.
When compared to other techniques, the system performed exceptionally well in terms
of prediction accuracy and training time. Experimental results proved that the proposed
models could successfully detect drowning cases within swimming pool environments
with very high confidence levels.

The suggested method can be implemented in a variety of pools and settings, including
schools, gyms, hotels, and villas. This method can be installed and combined with an alarm
system, or it can be integrated with an automated drowning rescue system.
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More pretrained CNN models and more drowning/swimming image data can be
examined to expand on this research. It would be fascinating to test these models in various
swimming conditions with varying lighting and settings. To further minimize false positive
and false negative rates, it will be interesting to implement more than one CNN model, i.e.,
three or five models in one system, with the final decision of the system based on a voting
criterion of the model outputs.
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