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Abstract: G protein-coupled receptors (GPCRs) control the response of cells to many signals, and
as such, are involved in most cellular processes. As membrane receptors, they are accessible at
the surface of the cell. GPCRs are also the largest family of membrane receptors, with more than
800 representatives in mammal genomes. For this reason, they are ideal targets for drugs. Although
about one third of approved drugs target GPCRs, only about 16% of GPCRs are targeted by drugs.
One of the difficulties comes from the lack of knowledge on the intra-cellular events triggered by
these molecules. In the last two decades, scientists have started mapping the signaling networks
triggered by GPCRs. However, it soon appeared that the system is very complex, which led to the
publication of more than 320,000 scientific papers. Clearly, a human cannot take into account such
massive sources of information. These papers represent a mine of information about both ontological
knowledge and experimental results related to GPCRs, which have to be exploited in order to build
signaling networks. The ABLISS project aims at the automatic building of GPCRs networks using
automated deductive reasoning, allowing to integrate all available data. Therefore, we processed the
automatic extraction of network information from the literature using Natural Language Processing
(NLP). We mainly focused on the experimental results about GPCRs reported in the scientific papers,
as so far there is no source gathering all these experimental results. We designed a relational database
in order to make them available to the scientific community later. After introducing the more general
objectives of the ABLISS project, we describe the formalism in detail. We then explain the NLP
program using the finite state methods (Unitex graph cascades) we implemented and discuss the
extracted facts obtained. Finally, we present the design of the relational database that stores the facts
extracted from the selected papers.

Keywords: literature-based discovery; Finite State Methods; transducer cascades; Unitex; database
design; automated deductive reasoning

1. Motivation

In a living cell, the so-called signaling network is the intricate biochemical network
which triggers the adapted biological outcome in response to an external signal, such as the
increase in concentration of a given hormone. A living cell is able to respond to thousands
of different external signals in as many biological outcomes. These networks are involved in
all physiological processes in the human body and consequently in all pathologies. In most
cases, the first components in these cascades are membrane receptors. These molecules,
which are part of the cell membrane, are specialized in detecting a signal: the concentration
change of a given molecule, the presence of a nutrient and so on. These receptors are then
capable of producing a specific signal inside the cell, which then triggers a whole cascade
of biochemical interactions and reactions.
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Membrane receptors, governing the cell’s behavior and being accessible through gen-
eral circulation, represent the best option for chemically modifying physiological processes,
which is what drugs do. Indeed, about a third of available drugs target G-protein coupled
receptors (GPCR) [1,2], which represent the largest class of membrane receptors in all
mammals. Other drugs target other types of membrane receptors such as receptor protein
kinases, ion channels or membrane transporters.

Understanding the biochemical wiring of the cell is a necessary step towards the
rational design of new drugs. Knowing the network would allow us to decide what
receptor can be used and what stimulation it should receive to obtain a desired effect.
It would also help in understanding all the consequences of the stimulation of a given
receptor: the main effect, which is the expected benefit, but also secondary effects.

In the last two decades, scientists have started mapping this wiring, especially the
signaling networks triggered by GPCRs. However, it soon appeared that the system is
very complex, which led to the publication of more than 320,000 scientific papers (https://
medium.com/swlh/gpcr-research-trends-fb827144da02, accessed on 1 April 2022). Clearly,
a human cannot take into account such massive sources of information. This is precisely
the objective of the ABLISS project: to be able to extract network information from the
literature using Natural Language Processing (NLP), then build networks from these facts
using automated deductive reasoning.

In a previous work, some of the authors manually extracted experimental facts from
numerous papers and performed reasoning using some expert rules to infer new pieces of
knowledge on the Follicle-stimulating hormone (FSH)-dependent and Epidermal Growth
Factor(EGF)-dependent networks. Preliminary results were published in [3]. In order to
generalize the approach, the need for an automatic extraction method of facts from scientific
papers was crucial.

In our work, we chose to restrict information extraction from the “Results” section of
large sets of papers. In biology literature, this section is dedicated to the factual description
of experiments and their outcome, with minimal interpretation. Consequently, most of
the facts extracted from this section should ensue from experiments described within the
paper, as opposed to previous work, which is generally described in the introduction, or
functional hypotheses, which will be made in the discussion section.

The work described in this paper presents the first steps of the project:

1.  Formalization of biological facts.
2. NLP to extract facts from papers.
3. Building a database of predicates and facts.

2. Related Work

In biology, as in most areas of science, knowledge is shared in publications through raw
text. As stated here above, even in seemingly specialized domains, such as GPCR signaling,
the volume of these publications renders manual exploration impossible. Moreover, the
vocabulary used in these publications is very heterogeneous. Indeed, Gregory Grefenstette
has concluded from his studies that the probability that two experts use the same term for
the same concept is only 20% [4]. To overcome this problem, ontologies were developed,
starting in the 90s with EcoCyc [5], RiboWeb [6] and the well-known Gene Ontology [7].
Many different ontologies, some of them very specialized, have appeared [8], leading to
the need for organizing and guiding the design of ontologies. In 2021, the OBO (Open
Biological and Biomedical Ontologies) foundry [9] that establishes a set of principles for
ontology development gathered more than 150 active ontologies.

While ontologies allow us to define a controlled vocabulary and annotating pieces of
knowledge, the need to automatically extract these pieces of knowledge from plain text
has proved to be crucial and has been met by Text Mining (TM). The first attempts relied
on co-occurring terms to extract information concerning protein-protein interactions in
abstracts [10]. Refinements of co-occurrence-based methods allow us to successfully extract
this type of binary information (a simple relation between two named entities) [11]. To
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extract more complex pieces of knowledge, improvements were gradually added. The
first step towards NLP was the use of Link Grammar [12] and grammar-based parsers [13].
Different papers were then published illustrating the interest of NLP to analyze Biological
texts [14,15], particularly for literature-based discovery [16,17]. More recently, efforts
turned to deep-learning methods [18]. Although the results of simple tasks, such as
information classification or even relation extraction, are very positive [19], the pathway
extraction task, which is the object of the present work, is still problematic (F-score 0.37 [20]).
The work that best meets our objectives is certainly INDRA [21], a software aiming to
automatically build signal transduction pathways from text. INDRA uses various external
NLP software systems offered as web services, with a focus on DRUM [22]. DRUM obtains
a F-score of 0.57 when tested on selected passages of two scientific papers, which favorably
compares with eleven other NLP software tested on the same selected texts. However,
INDRA works on data extracted from public databases, and not on full-length scientific
papers. Consequently, it can be used only to combine information already extracted from
less structured sources and stored in a structured way. On the contrary, our objective is to
extract information directly from scientific publications, which are highly unstructured and
significantly larger than database extracts. To our knowledge, no equivalent work has been
published.

3. Formalism

Using automated reasoning involves working with a precise formalism to describe
components and interactions within the system. Different formalisms already existed at
the beginning of this project, such as Petri-nets [23], logic-based models [24] and others,
regrouped under the names executable biology or algorithmic systems biology [25-27]. However,
none of these formalisms fulfilled the list of our requirements, which can be summarized
as follows:

*  The predicates and rules have to be both machine and human-readable. Moreover,
they should be expressive enough for biologists to understand the meaning without
much outside indication.

¢ The formalism should be chemically precise, meaning, for instance, that the different
states of a given molecule have to be defined. In other words, the activation of a given
molecule is not described as an activation but as the change of state from inactive to
active.

e The direct and indirect actions need to be distinguished.

*  The formalism has to allow the making of hypotheses.

In our formalism, we distinguish two types of predicates: background and network pred-
icates. background predicates describe mainly the ontological and topological knowledge:
the types of the components, the semantic relationships between the components and so
on. Network predicates describe the effect(s) of a component on another one: how a given
state of a first component can trigger a state transition of a second component.

3.1. Background Predicates
3.1.1. Components

The first category of background predicates describes the different components of the
system, shown in Figure 1. We chose not to use the SBO (Systems Biology Ontology)
ontology [28], since we did not need all the complexity it offers. Instead, we focused on the
components involved in signaling networks.
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Figure 1. Ontology of the different types of components in a signaling network.

The highest level, Signal, encompasses all events that can have an effect on the system,
either having physical existence (Particle), or not (Non-particle signal, such as temperature,
concentrations of various elements and so on). A particle can be specified as a molecule, a
radio-labeled molecule, a complex (which is a set of particles) or an organism. A molecule can
further be refined in RNA, DNA, simple molecule or protein. The component proteinOrGene is
used when the context does not allow us to distinguish between the two, since, in many
cases, the protein and the gene coding for this protein have the same name. Finally, two
types of proteins are individualized at level 5: antibody and peptide, as these have peculiar
properties. For each named component, an ontological rule exists to go up one level: an
antibody is a protein (IF antibody(X) THEN protein(X)), a protein is a molecule, a molecule is
a particle and a particle is a signal and so on.

Molecules and complexes are the two types of component which can have different
states. In our formalism, the state transition of a molecule reflects a chemical change of
this molecule. For a protein, such a change can, for instance, be phosphorylation (the
linking of a phosphate group on the protein) or a glycosylation (the linking of sugars on
the protein). In most formalisms, these different states are not individualized, which is an
important specificity of our methodology. For instance, as said before, in our formalism,
the activation of a component is written as the transition from the inactive to the active state.
This choice was made for two main reasons. First, a molecule has generally more than two
states and the active status of a chemical form of the molecule depends on the function
observed. An example is shown Figure 2: the component X has three states, X1, X, and
X3, each having a specific function: Xj triggers the state transition of component Y and X3
triggers the state transition of component Z. In such case, talking about activation of X is
not sufficient, since this component has at least two active states. The second reason is that
building the network of signaling system, which is what we intend to do in the present
work, is not sufficient to fully understand its biological outcome and consequently for
helping designing new drugs. Signaling networks are highly dynamical and their behavior
can be simulated. The formalism we use leads to network models that can be readily used
in dynamical simulation. It should be noted that depending on the type of molecule, the
number of possible states is variable and often cannot be defined at the initial stage.

In fact, one of the objectives of studying a given system is precisely to:

e  List the components of the system;
*  Determine the different states of each component;
*  Determine the actions each state triggers.

CIX — —

(CICIQ1 g GGG
e Bee.]

Figure 2. Example of a component having multiple active states.
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As already mentioned, a protein can have different states and predicates have been
introduced to link the different states, such as:

e Phosphorylated form, noted phosphoForm(X,Y,P), which means X is the protein Y,
phophorylated at positions listed in P. In the frequent case where the precise positions of
phosphorylations are not known P takes the value up for unknown position.

*  Acetylated form, similarly noted acetylForm(X,Y,P).

* A more generic predicate modifiedForm(X,Y) is used to encompass other types of
modifications, including those for which the precise chemistry is unknown, but change
the properties of the protein, such as active and inactive forms. Ontological rules
were written that allow us to identify phosphoForm and acetylForm as sub-categories
of modifiedForm. Note also that modifiedForm is made symmetrical by the rule IF
modifiedForm(X,Y) THEN modifiedForm(Y,X).

The predicate radioLabeledForm, although very similar, reflects a different biological
situation. Indeed, when we talk about a phosphoForm of a given component X, we designate
a state of this component. However, radiolabeling, which is the process of grafting a
radioactive atom on a molecule and is extensively used in experimental biology, modifies
all the states of this molecule. Therefore, the result is a new component, as opposed to a
new state. However, there is a strong relationship between the initial component and its
radiolabeled form: they have the same states, each state having the same actions on the rest
of the system and the transitions between the different states are due to the same causes.
For these reasons, it was important to single-out this case.

The predicates MutantGene, MutantProtein and MutantOrganism are rather similar to
radioLabelledForm, since they also generate new components: MutantProtein(X,Y,L), means
that X is a mutated version of Y (L being the list of mutations) and Y is a new protein, having
the same states as X and the transitions between the different states of Y are triggered
by the same events as for X. However, the properties of the different states of Y might
be different form the properties of the corresponding states of X. This is precisely why
mutations are often used in biological studies, since mutating a precise position of a protein
can, for instance, abolish one of its properties without affecting the others and thus allow
us to study the effects of this property on the rest of the system.

3.1.2. Other Types of Background Predicates

Background predicates are also used to describe the localization of the components,
which is important for the functioning of the system. Finally, background predicates are
used to define various other useful notions, such as:

*  Abbreviations and alternative names;

e  Methods;

¢  Organs;

*  Lists: for instance, the predicate particleList(L) allows defining L as a list of objects of
type particle and the predicate particleListElement(L,X) declares that Y is an element of
that list;

. Predicate transcribed(G,R) links the gene G and the mRNA R, resulting from the
transcription of G. Similarly, translated(R,P) links the mRNA R and the protein P,
resulting from the translation of R.

3.2. Network Predicates

Network predicates indicate an action of a component on another component. An
example is given Figure 3. In this example, we have two components, Y and X, which
each have different states. We want to formalize the fact that state Y, of component Y is
able to have an action on the state transition from X; to X, of component X. The predicate,
reactionModulation(Y2,X1,X2,E,D,S) means that Y, modulates the state transition from X;
to Xy, at some distance D, with the status S and the effect E. E gives the direction of this
action and can take the values increase, decrease or noeffect, which means that Y2 increases,
respectively decreases, respectively has no effect, on the transition. D is the distance of this
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action and can take the values direct, indirect or unknown. S is what we call the status of the
predicate and can take the values confirmed, hypothesis or bibliography.

Y OO0
JC0C Ead0ed

reactionModulation(Y2,X1,X2,E,D,S)

Figure 3. Predicate formalizing the fact that state Y, of component Y has effect E on the transition
from state X; to state X, of component X, with distance D and status S.

A status whose value is confirmed means that we have a proof, either experimental
or through deduction using other confirmed predicates, that the fact is true. The status
hypothesis means that we have no proof to back this predicate. However, as will be explained
hereafter, in some cases the result of a single experiment can be explained by different and
possibly mutually exclusive mechanisms and other experiments are necessary to select the
relevant one. Thus, when considering solely the result of this single experiment, we will
make the hypothesis that each of the possible mechanisms is true. Other rules, using further
experiments, will then allow us to decide between the different mechanisms. Finally, the
status bibliography is used when the authors of the analyzed sentence state that this fact
comes from previous paper or work.

The reactionModulation predicate can be considered as a root predicate, describing a
very simple mechanism. Other root predicates used in our system are:

e Jocalization(X,C,S), meaning that component X is found in compartment C, with status
S. The compartment used here corresponds to subcellular compartments: membrane,
cytoplasm, nucleus and so on.

e processModulation(X,P,E,D,S) means that component X has effect E on the process P at
some distance D and with the status S. Processes, which are defined in a dictionary,
are biological processes, for example transcription or translation.

e  quantityModulation(X,Y,E,D,S) means that component X has effect E on the quantity of
component Y at some distance D and with the status S.

These root predicates can then be refined. Table 1 lists the refinements of the reaction-
Modulation predicate. Similar refinements are made for the other types of root predicates.
The precise list depends on the root predicate, since some refinements do not make sense,
from the biological point of view, for some root predicates.

Finally, when extracting the predicates from the literature, two additional variables
are included in all relevant predicates:

e CL, for cell line, which gives the cell line in which the experiment has been conducted;
*  MET, for method, which gives the experimental protocol used.

These parameters will be present only in the initial facts extracted from the literature.
They are not used anymore in the reasoning part since in many cases their values are too
difficult to propagate through the rules.
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Table 1. Refinements of the root predicate reactionModulation. For the sake of clarity we omit the
comment on D and S in the second column, as they always have the same meaning.

Predicate Meaning
reactionModulationCell- The transition from state X; to state X, is faster
(X1,X»,E,CL1,CL,,D,S) (E = increase), respectively slower (E = decrease),

respectively equivalent (E = noeffect), in cell line
CL; than in cell line CL;
reactionModulationMediation- The action of Y on the transition from state X; to
M,Y,X1,X,,D,S) state X, is mediated by the component M, meaning
that the action of component Y on the transition from
state X to state X, of component X is depending on
the presence of component M.
reactionModulationPerturbator- The component [ increases (E = increase), respec-
(Y,1,X1,X5,E,D,S) tively decreases (E = decrease, respectively has no
effect (E = noeffect, on the action of Y on the transi-
tion from state Xj to state X.
reactionModulationSignalCell- The effect of Y on the transition from state Xj to
(Y,X1,X,,E,CL1,CL,,D,S) state Xj is higher (E = increase), respectively lower
(E = decrease), respectively the same (E = noeffect)
in cell line CL4 than in cell line CL,.
reactionModulationSignalCompare- The effect of Y on the transition from state Xj to
(Y,Z,X1,X5,E,D,S) state Xj is higher (E = increase), respectively lower
(E = decrease), respectively the same (E = noeffect)
than the effect of component Z on the same state
transition.

One such case is when two predicates obtained in different cell lines are the premises
of a rule, then the predicates in conclusion cannot be assigned to one of the two cell lines,
nor to both. For example, if we know that X triggers the state transition from Y; to Y5 in
cell line CL1, and that in cell line CL2, this action cannot be obtained in the absence of
component Z, we can make the hypothesis that Z mediates the action of X on Y. However,
we cannot decide whether this happens in cell line CL1, in cell line CL2 or in both. It would
of course be possible to make the three different hypotheses by mentioning explicitly the
cell lines concerned. However, it clearly appeared that this would drastically increase the
complexity and thus we preferred to ignore the CL parameter in the reasoning module. The
same is true for experimental protocols. However, these variables were kept in initial facts,
since they allow us to, for instance, filter initial facts relevant to a given cell line. Another
usage is when we arrive at contradicting conclusions in the reasoning module, it is possible
to trace back to initial facts leading to this contradiction and the protocols used. The user
can then decide if one of the protocols is more reliable than the other.

3.3. Rules

The network inference module that uses the rules, will not be described in this paper.
Still, it is important to rapidly present them, since some of the specific features of the
predicates presented here above are linked to them. Here, again we have two types of
rules: Background and Network rules. Background rules are further divided in two categories,
namely ontological rules and Typing rules. Ontological rules link the different types of
components in the hierarchy, for instance, the rule IF particle(X) THEN signal(X) means that
if X is a particle, then X is also a signal. Typing rules specify the type of the arguments of the
background predicates. For instance, the rules IF radiolabeledForm(X,Y) THEN molecule(X)
and IF radiolabeledForm(X,Y) THEN molecule(Y) mean that if X is a radiolabeled form of Y,
then X and Y are molecules.

Network rules are designed to deduce new background facts and thus new pieces
of knowledge on the studied network. An example of such a rule is given Figure 4. In
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this example, the initial facts establish that state Y, of component Y, respectively Z; of
component Z, have the effects E 4, respectively Ep on the transition from state X; to state
X, of component X. We can thus make the hypothesis that Y has the effect E4 * Eg on
the transition from state Z; to Z; of component Z. Of course, this is not the only possible
mechanism: for instance, Z could have an action on Y instead of the reverse and finally,
the actions of Y and Z can be independent from each other. In addition, since biology is
complicated, these hypotheses are not mutually exclusive.

AND

IF @ AND @
ceo jadoce NENcee [adoce |

reactionModulation(Y2,X1,X2,E5,Da,Sp) reactionModulation(Z1,X1,X2,Eg,Dg,SgmodifiedForm(Z1,22)

~
CIXE - CEX

reactionModulation(Y2,22,Z1,E,*Eg,ud,hypothesis)

THEN

IF reactionModulation(Y2,X1,X2,E5,Da,Sa) AND reactionModulation(Z1,X1,X2,Eg,Dg,Sg) AND modifiedForm(Z1,22)
THEN reactionModulation(Y2,22,21,E ,*Eg,ud,hypothesis)

Figure 4. Schematic representation of a rule.

4. NLP to Extract Predicates

The objective of the work presented here is to extract a set of facts, using predicates,
from natural language sentences found in scientific papers encompassing as much as
possible the scientific information related by these sentences. A few examples are given in
Table 2.

Table 2. Examples of sentences and corresponding facts. Abbreviations: HEK293, human embryonic
kidney 293 cells; FSHR, follicle-stimulating hormone receptor; ERK, mitogen-activated protein kinase;
B2AR, beta-2 adrenergic receptor.

Sentence Facts

In HEK 293 cells cell(HEK293)
transiently expressing the  protein(FSHR)

rat FSH-R, FSH transfectedCell(HEK293_FSHR, FSHR, HEK293)
stimulated ERK protein(FSH)

phosphorylation in a
dose-dependent manner
(Figure 1

protein(ERK)

phosphoForm(pERK, ERK)
reactionModulation(FSH, ERK, pERK, increase,
unknownDistance, confirmed, HEK293_FSHR,
unknownMethod)

Symetrically,
overexpression of
wild-type B-arrestin 1 or
B-arrestin 2 enhanced the
FSH-R internalization
(Figure 5A).

protein(p-arrestin 1)

protein(p-arrestin 2)

protein(FSHR)

process(Internalization)
processModulationTargeted(B-arrestin 1, Internalization,
FSHR, increase, unknownDistance, confirmed,
unknownCell, unknownMethod)
processModulationTargeted(B-arrestin 2, Internalization,
FSHR, increase, unknownDistance, confirmed,
unknownCell, unknownMethod)
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Table 2. Cont.

Sentence

Facts

These data indicate that
ERK activation stimulated
by the B2AR is mediated
largely by B-arrestin
isoforms.

protein(ERK)

modifiedForm(ERK,ERK _active)
modifiedForm(ERK,ERK _inactive)

protein(B2AR)

reactionModulation(82AR, ERK _inactive, ERK_active,
increase, unknownDistance, confirmed, unknownCell,
unknownMethod)

protein(p-arrestin)
reactionModulationMediation(B-arrestin, f2AR,

ERK _inactive, ERK_active, increase, unknownDistance,
confirmed, unknownCell, unknownMethod)

The NLP part of our project uses Finite State Methods presented in this paper. We
use cascade of Finite State Transducers [29-31], where the transducers are Augmented
Transition networks (ATN). We use the Unitex platform [32] to implement our cascades.
In this framework, we can use variables to enrich the text by adding information and/or
reorganize it by moving around some elements. Each cascade includes graphs, some of
which are presented hereafter, for instance, at Figure 5. The Table 3 describes the notation

used in Unitex graphs.

\<abstract

e

\<boxed-text

<abstractIncomplete>
<abstractBegin>

taglgnore+abstr: gin}

N

\<Vabstract\>
\<Vboxed-text\>

<abstractEnd>

V
,taglgnore+abstractEnd}

+abstractincomplete}

toolNoTaglgnore

taglgnore+abstractComplete}

]

<abstractBegin>

:.|...('.r|o :

) ®

<abstract’>

Figure 5. Graph (A) marks the beginning and the end of the abstract, recursive graph (B) transforms
1000 tokens of the text of the abstract in only one and graph (C) replaces the abstract by < abstract/ >.
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Table 3. Description of Unitex graphs.

This graph should be read from left to right and rec-

e ognizes the sequence XX
-6 This graph recognizes all the sequences belonging to
the category CC
N This graph recognizes the sequence XX and merges
AA it with AA (or replaces it by AA)
N This grey box calls a subgraph named SG

[rex]) )
'@
3

No!

If various paths are possible, the maximum matches
is chosen: XX YY and not XX

{ .CC+FF}

This graph recognizes two sequences (XX and YY)
and merges them in a new token XX YY whose cate-
gory is CC with the optional feature FF

— =) e

This graph recognizes the sequence YY except if the
right context (beginning by YY) is XX

)
P 1| ) | Lo )l )@

This loop recognizes all tokens until the right context
XX

$[1,100%

This loop can recognize one to ten times XX
b E3)
' ’w@' For the same number of tokens matched, the path
i =3 with the maximum last weight is chosen: ${2}$
${13% No!
woow The parenthesis delimit a part of the recognized text
(=) that is stored in a variable vv (in superscript). This

(He really said: $vv$)

variable is used in the output ($vv$)

v wo }
[ @ .SET! Yes!
( )
s P

$VV.UNSET$ No!

The box $vv.SET$ tests if the variable $vv$ is not
empty; contrariwise the box $vv.UNSETS$ tests if the
variable $0v$ is empty

The first step is to cut the “Results” section of each selected paper in individual
sentences. We then extract from these sentences the background predicates (mostly com-
ponents) and the experimental predicates, corresponding to actions of a component on

another one.

4.1. Processing Chain

The processing chain to extract predicates is a PHP script that calls three Unitex
cascade scripts. This chain is divided in three parts:

1.  Preprocessing (Section 4.1.1)

(a) A PHP script downloads papers selected beforehand based on a list of key-

words.

(b)  An Unitex cascade script normalizes and reduces a paper to its “Results”

section if it exists.

(c) A PHP script eliminates papers in which the keywords used to for initial
selection are not present in the results section.
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2. Analysis (Section 4.1.2): A Unitex cascade script scans each paper and creates an
XML-TEI file, structured paper by paper, paragraph by paragraph and sentence by
sentence (Section 4.2.1).

3. Statistics (Section 4.2.2): A Unitex cascade script computes statistical results for the
set of papers and for each paper and creates two output XML files.

4.1.1. Preprocessing

The starting point is the download of biological papers. For our proof-of-concept
study, we are studying the GPCR-triggered pathway that depends on both B-arrestin
and ERKs. The choice of this pathway relies on (1) the fact that the BIOS (Biology and
Bioinformatics of Signaling Systems) group, to which the last author of this paper belongs,
is internationally recognized in the domain of GPCR signaling, in particular for its studies
on the role of B-arrestins. (2) Restricting to the B-arrestin/ERK pathway lead to an amenable
size of the literature corpus. (3) Although ERK takes part in many signaling pathways
(and not only GPCR-triggered), its exact role is not well known. We selected a corpus
of publications using three keywords: ERK, arrestin and phosphorylation. We collected
5141 papers containing these three keywords in the full text.

The first Unitex cascade standardizes the text (spaces, dashes, apostrophes, suspension
points...) and transcribes the HTML codes in Unicode characters (for instance, &#x003B2;
to B). It then deletes the text before and after the “Results” section. This is not as simple as
it can seem, since in some papers the abstract is a structured abstract, including a “Results”
sub-section. Therefore, the first step is to delete the abstract to make sure that there is
only one “Results” section. This deletion requires the three graphs shown Figure 5 (the
deletion of the beginning and the end of the paper uses the same method), resulting in the
replacement of the whole abstract by the tag < abstract/ >.

After the first Unitex cascade, we eliminate the papers without a “Results” section. We
also eliminate all the papers which do not have the three keywords in the “Results” section.
This reduces the number of papers to be analyzed to 548.

4.1.2. Analysis

This part is the core of the chain, in which we scan all papers and create an XML-TEI
file with all the recognized predicates.

This cascade starts with preliminary treatments. First, parts of text that are not perti-
nent (editorial notes, footnotes, tables, figures and so on) are removed, using graphs similar
to those presented Figure 5. Second, a graph splits paragraphs in sentences (Figure 6). We
then replace contracted verbs by the developed form, replacing, for instance, don't by do not.
We also develop numerated lists, replacing, for instance, SIP1 to S1P3 by S1P1, S1P2, S1P3
(Found in the sentence In agreement, migration of MEFs, which express transcripts for S1P1 to
S1P3, but not S1P4 and S1P5, toward S1P was increased when the S1P2 receptor was deleted.)
(S1PX: sphingosine 1-phosphate receptor X, S1P: sphingosine 1-phosphate).

pattematWithDot
listAbreviationWithDot

ListMweWithUppe:Dat
listWordWithUpperDot
pattemAcronym

<NB>
pattemMajMin
pattemMajl

toolLettisGrec
pattemWithDot
listAbreviationWithMajDot

Figure 6. This graph splits the text in sentences and adds the TEI tags for sentences: < s > and
< /s>.
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The cascade allowing the construction of the biological predicates can then be applied.
One important feature of Unitex is that it allows the use of dictionaries. First, we use the
Unitex English dictionary, which allows us, for instance, to tag verbs, adjectives and so
on. Second, we use a dictionary of 277,387 proteins and 582,373 genes, built from public
databases, to identify protein and gene names in the text. Finally, we use a specific custom
dictionary containing 4041 entries which allows to tag entities specific to the study of
biochemical networks, such as methods, actions and so on. This dictionary contains for
instance:

. 1032 methods;

¢ 13 molecule families, which are expression used to designate a set of similar molecules,
but are not present in the general dictionaries;

* 242 molecules that were added because they were not present in the general dictionaries;

¢ 111 localizations, corresponding to sub-cellular compartments;

. 1674 organisms;

* 93 biological process;

* 360 words or expressions describing an effect of a component on another one, which
we gather under the term “regulations”.

The graphs use these dictionaries from codes as <protein>, <gene> or < methods>.
These dictionaries allow us to create ontological facts. For instance, in the detailed example
(see Section 4.3), we recognize in a paper the sequence ERK1/2 that appears in the protein
dictionary, we tag it protein(ERK1/2) and we associate to this fact the type background and
the subtype ontological.

We added a fifth dictionary used initially to eliminate the ambiguous entries between
protein or gene on the one hand, and the English dictionary entries on the other hand. For
instance, the entry do is a verb in the Unitex English dictionary but also a gene in the gene
dictionary. In our work, we retain only the verb entry.

The next sixteen graphs tag expansions of proteins, as for example the graph of Figure 7
that distinguishes protein expansions and signal expansions. We then apply three graphs to
expand also proteins, genes, signals, compounds, domains and complexes. The ambiguity
between a protein and a gene is often resolved by the context of the sentence, and one of
our graphs as been designed specifically for this task.

peptide [}

¢ terminal ,-signal}
BT -
¢ terminugs peptide '
carboxyl
E N 5
|]Jke i
-protein}

| acid D I{sequence) K

Figure 7. The graph to distinguish proteins from signals.

The goal of the graph presented in Figure 8 is very different. As we explained in the
introduction of this section, we are above all interested in experimental results, to which we
give the status confirmed, as opposed to other facts are annotated bibliography or hypothesis.
The status bibliography can be deduced from the context of the sentence, either when there
is an explicit reference to published work, or when author use expressions such as “in
previous work”. For instance: As LiCl directly inhibits GSK3 kinase in the cytoplasm to stabilize
of B-catenin (Stambolic et al. 1996) (GSK3: glycogen synthase kinase-3) the inhibition fact
comes from another paper. explains that the inhibition fact comes from another paper.
In this case, the cascade will tag the predicates with the status bibliography. The status
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hypothesis is sometimes also similarly deduced from the context, but can also be deduced
from the verb, as we show below.

introduction

not |}

B

\<hypothesis\/i> [}

V
-HypothesisForm}

Previous studies

,.BiblioForm}

Figure 8. The graph to identify the status of an experimental fact.

The last step of this cascade, comprising three main graphs, builds the predicates in
their final form. These are of course the most difficult graphs to build, since they extract the
most complicated pieces of information. The initial versions of these graphs, which were
used in the present work, were written by analyzing in detail eleven papers which do not
belong to our GPCR/arrestin/ERK corpus.

The first task is to tag the background relation predicates. As of today, we have
graphs for six such predicates: acetylForm, deletedGene, isoform, knockOut, modifiedForm and
phosphoForm. These graphs tag the predicates and merge the lists of their arguments.

For instance, the graph of the Figure 9 tags the predicate modifiedForm(X,Y), which
means X is a modified form of molecule Y, whom arguments are typed X:none and Y:molecule
(see Section 3). In the sentence of detailed example, Pre-treatment with SR1 blocked ERK1/2
activation by both receptors. (see Section 4.3), we recognize the protein ERK1/2 and the
term “activation”, leading to the construction of a modifiedForm predicate, tagged modified-
Form(ERK1/2_active, ERK1/2_inactive).

<proteinEntity>
<moleculeEntity>

<domainEntity>

<compoundEntity> } )

{

stimulate
activate

<proteinEntity>
Iy

<stimulation>

<activation>

{

b ©
,modifiedForm}<argS>"$a$"_active, "$a$"_inactive</argS>

___|<moleculeEntity>
( <compoundEntity> )

<domainEntity>

Figure 9. The graph to tag predicates of type modifiedForm.

We then tag regulation verbs (as defined in the specific dictionary): inhibition (block,
inhibit, attenuate, decrease), activation (activation, stimulate, increase), expression (express,
transcript, detectable, level), etc. At this stage, analysis of the verbs can be used to decide
the status hypothesis. Indeed, the presence of verbs such as may or could, indicate that the
authors are making an hypothesis. For instance, the sequence could be directly inhibited is
tagged hypothesis by the graph of Figure 10.



Information 2022, 13, 262

14 of 25

)

<block>

e ST
<inhibit>

¥ <aftenuate>
<decrease>

hibit}<arg>decrease</arg>

<blocks
<inhibit>
<attenuate>
<decrease> ,verbl

<block>

i)
<mhibit>

¥ <attenuate>
<decrease>

<block>
<mhibit>

be
have been

<attenuate>

<decrease>

<block>
<inhibit>
<attermate>

<decrease>

verblnhibit}<arg> rease<larg><hypothesis/>

<block>
<inhibit>
directly |} <attenuate>

<decrease> .verbinhibit}<arg>noeffec</arg><hypothesis/>

not
have not been

Figure 10. The graph to tag inhibition verbs.

The third step is to tag the network predicates. We have described eighteen of them:
association, associationCell, associationCompetition, associationModulation, associationModulation-
Perturbator, associationModulationSignalCompare, cellBindingModulation, expressed, expressed-
Cell, expressionCorrelation, localization, processTargetedCell, reactionModulationCell, reaction-
ModulationMediation, reactionModulationMediation, reactionModulationPerturbator, transport-
Modulation and transportModulationPerturbator. As for the background predicates, these
graphs tag the predicates and merge the lists of their arguments.

An example of such graph is given Figure 11. This graph tags the predicate reac-
tionModulationPerturbator(X,1,Y,Z,E,D,S,CL,MET), which means Signal I modifies (increase,
decrease, noeffect) the effect of X on the reaction Y -> Z, in cell line C , whom arguments are
typed I:signal, Y:molecule, Z:molecule, E:increase,decrease,noeffect, D:diretc,indirect,unknown,
S:confirmed,infirmed, hypothesis, CL:cell,organism,organ and MET:method (see Section 3). In the
sentence “Pre-treatment with SR1 blocked ERK1/2 activation by both receptors.” (see Section 4.3),
we recognize the reactionModulationPerturbator predicate, tagged reactionModulationPer-
turbator(SR1, unknownSignal, ERK1/2_active, ERK1/2_inactive, decrease, unknownDistance,
confirmed, unknownCell, relation) (SR1: Delta(14)-sterol reductase TM7SF2).
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reactionModulationPerturbator}<argC>"$X$", unknownSignal, $Y$, $V3,..unknownDistance, Statut, unknownCell, unknownMethod</argC>
ligtEntity
noArgBalise
<V
<black>
<inhibit>
— <TOKEN>
:“”‘e‘“;“' E; <predicat>
. activatior
B e e <gtimulat> — E:n‘:_ln%?r;hsa
X X <increase> WVl
<proteinEntity> Vs
(— <moleculeEntity> ) B <verb> | patemBatiseVerbSpe =)
<compoundEntity>
{ Q[})
<predicat>
nLAlgBahse - - $Z.UNSET$ ,.reactionModulationP or+predicat+imbri argC>" , unknownSignal, $¥$, $V§$, unknownDistance, Statut, "$CL$", unknownMethod</argC>
—|e <TOKEN> in patemBalise ArgCL
V>
$Z.SET$ reactionModulatioRP erturbator}< SX$", "$ZS", §Y$, $V$, unknownDistance, Statut, "$CL$", unknownMethod</argC>
Z | <potemEntity> $CL.UNSETS$ ,.reactionMo ionPerturbator}<argC>"$X$", "$Z%", $¥$, $V$, unknownDistance, Statut, unknownCell, unknownMethod</argC>
<moleculeEntity>
catalyzed by (— <compoundEntity> )
:Ejﬁ’gﬁ:}f‘y‘f’ $CL.SET$ ,.reactionModulationPerturbatort<argC>"$X5%", "$Z%", $Y$, $V§, decrease, unknownDistance, Statut, "$CL$", unknownMethod<largC>
paternBaliseArgZE

Figure 11. The graph to tag predicates of type reactionModulationPerturbator.
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4.2. Resulting Files
4.2.1. XML-TEI File of Predicates

The resulting file of our extraction of predicates is a XML-TEI file that follows the
structure below:

<teiCorpus>

<teiHeader>ABLISS project presentation</teiHeader>
<tei>

<teiHeader>First text metadata</teiHeader>
<text>First text</text>

</tei>

<tei>Following text</tei>

</ teiCorpus >

The text (restricted to the “Results” section ) is presented paragraph by paragraph and
sentence by sentence. For each sentence, the extracted predicates are described:

<div type="paragraph">

<div type="sentence" >
text of one sentence
<desc type="background" subtype="ontological" >predicate</desc>

<desc type="background" subtype="relation" >predicate< /desc>

<desc type="network" subtype="action">predicate</desc>

</div>
<div type="sentence">. .. </div>

</div>
4.2.2. XML Files of Statistics

Then we use the standOff cascade module of Unitex to extract statistics. We built two
files: first, the global statistics of the ensemble of all texts and, second, the statistics text by
text. These statistics files are XML-TEI files. The structure of the global statistics file is:

<tei>
<teiHeader>ABLISS project presentation</teiHeader>
<listAnnotation tag="desc" subtype="ontological" >
<ontological>
<fact>gene("Amph")< /fact>
<frequency value="18"/>
< fontological>

< /listAnnotation>
<listAnnotation tag="desc" subtype="relation">. .. </listAnnotation>

<listAnnotation tag="desc" subtype="action">... </listAnnotation>
<[tei>
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4.3. Detailed Example

To illustrate the complete process, we detail here an example: the sentence Pre-treatment
with SR1 blocked ERK1/2 activation by both receptors. (see Figure 12) from [33].

SR1

ERK1/2_inactive ERK1/2_active

Figure 12. Pre-treatment with SR1 blocked ERK1/2 activation by both receptors.

The XML-TEI code resulting from the analysis of the complete paper is given below.
The file starts with details on the paper itself, then gives the predicates found for each
sentence. Only the part corresponding to the specific above sentence is detailed here.

<tei>
<teiHeader>
<titleStmt>
<title>Rapid CB1 cannabinoid receptor desensitization defines the time course
of ERK1/2 MAP kinase signaling< /title>
<author>Tanya L. Daigle, Christopher S. Kearn, Ken Mackie< /author>
< /titleStmt>
<publicationStmt>
<publisher>Neuropharmacology< /publisher>
<date>2005 May</date>
<biblScope unit="vol">54< /biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="pp">36</biblScope>
<idno type="PMID">17681354< /idno>
<idno type="DOI">10.1016/j.neuropharm.2007.06.005< /idno>
<idno type="PMCID">PM(C2277473< /idno>
< /publicationStmt>
< /teiHeader>
<text>

<div type="paragraph">

<div type="sentence" >

Pre-treatment with SR1 blocked ERK1/2 activation by both receptors.

<desc type="background" subtype="ontological">
method(Pre-treatment)

< /desc>

<type="background" subtype="ontological">
protein(SR1)

< /desc>

<type="background" subtype="ontological">
protein(ERK1/2)

< /desc>

<type="background" subtype="relation"
modifiedForm(ERK1/2 active, ERK1/2 inactive)

</desc>
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<desc type="network" subtype="action" >
reactionModulationPerturbator(SR1, unknownSignal,
ERK1/2 active, ERK1/2 inactive, decrease, unknownDistance, confirmed, unknownCell, un-
knownMethod)
< /desc>
< [div>

</div>
< [text>
<[tei>

4.4. Evaluation

To evaluate the performance of our Processing chain, we applied it to two papers in the
list of 548 extracted using the keywords discussed previously. Note that these papers have
not been used to build the graphs.

1.  Flores 2014 [34];
2. Delgado 2016 [35].

We then evaluated the precision, recall and F-score by manually checking the predi-
cates identified by the automated system. This evaluation was conducted by two biologists
of our team. For each sentence, each predicate has been annotated as true positive or false
positive. They also searched for missing predicates (false negatives). Then we computed
Precision and Recall:

. truepositives
Precision = — Y
(truepositives + falsepositives)
truepositives
Recall =

(truepositives + falsenegatives)

There were few disagreements between the reviewers. These were discussed, and
each time a consensus was easily reached. Indeed, most disagreements came from too
quick reading by one or the other. For instance, in the sentence Beta-arrestins were shown to
coordinate multiple signaling networks downstream from many GPCRs, the chain recognized the
protein Beta, the protein arrestins and the complex Beta-arrestins; the first reviewer validated
this, but the second said that Beta-arrestins as a whole was a protein, which is the correct
interpretation.

During our analysis, we distinguished our ability to tag ontological predicates (Table 4)
from the use of Unitex graphs to recognize relation and action predicates (Table 5). Indeed,
the former is an easier task and leads to a high number of predicates, while the latter is
more difficult and leads to a much lower number of predicates.

As for ontological predicates identification, our dictionaries fully cover our domain
and we recognized all the ontological predicates: the chain has not produced false negatives
(recall equals 100%). However, the precision is only 59.3%. We give a few examples:

¢ We found protein(proteins), which is is a false positive. This error comes from a confu-
sion between the tag <protein>, which designates a protein in our protein dictionary,
and the lemma protein in the Unitex English dictionary. Thus, we will revise our
graphs to avoid such a confusion.

¢ In the sentence Negative regulation of sub-picomolar relaxin signalling requires PKA, PDE4
and B-arrestin 2 (PKA: cAMP-dependent protein kinase, PDE4: cAMP-specific 3',5'-
cyclic phosphodiesterase 4), we found only protein(B-arrestin) instead of p-arrestin 2.
This comes from the fact that both terms are present in the dictionary of proteins,
which is a good thing, since some authors do not specify which isoform has been used.
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However, we have to take this into account in our graph, so that S-arrestin 2 will have
the precedence on protein(p-arrestin).

In the sentence Thus, the Ga i3-GBy-PI3K-PKC( pathway does not generate the cAMP
detected by the pmEpac2 sensor (Gai3: guanine nucleotide-binding protein G(i) subunit
alpha-3, GB: guanine nucleotide binding protein (G protein) subunit beta, Gy: guanine
nucleotide binding protein (G protein) subunit gamma, PI3K: Phosphatidylinositol
3-kinase, PKC{: protein kinase C subunit {, cAMP: cyclic adenosine monophosphate),
the list of proteins complex(Gai3 — GBy — PI3K — PKC{) was incorrectly identified
as a complex. Indeed, the hyphen between two protein names can either mean a
complexation between the two, or just a list, which can only be decided using the
context. We will work on this problem, which is far from simple.

As illustrated by these three examples, beyond the simple evaluation of performance,

this work gave us valuable insights for improving our graphs.

Table 4. Precision and recall for ontological predicates computed on two papers.

True Positives False Negatives False Positives

Flores 2014 348 0 518
Delgado 2016 879 0 322
Total 1227 0 840

Precision Recall F-Measure
Flores 2014 40.2% 100% 57.3%
Delgado 2016 73.2% 100% 84.5%
Total 59.4% 100% 74.5%

Table 5. Precision and recall for relation and action predicates computed on two papers.

True Positives False Negatives False Positives

Flores 2014 50 91 8
Delgado 2016 33 144 13
Total 83 235 21

Precision Recall F-Measure
Flores 2014 86.2% 35.5% 50.3%
Delgado 2016 71.7% 18.6% 29.6%
Total 79.8% 26.1% 39.3%

As for network predicates identification, we obtained a good precision (79.8%), but

a poor recall score (26.1%). This poor recall score is partially explained by the the incom-
pleteness of our list of predicates (see the list of implemented predicates in Section 4.1.2, to
compare with the list of needed predicates in Section 3). For instance:

1.

In the sentence Together these results suggest that WIN induced prolonged activation of
ERK1/2 in the mutant receptor that is solely mediated by B-arrestin 1, a predicate reaction-
ModulationMediation should in theory be found here, but the needed graph does not
exist yet.

In the sentence HEK293 cells expressing SEP-CB1Rs or 5426A/5430A were cotransfected
with B-arrestin 2 siRNA and exposed to WIN (SEP: septin, CB1R: canabinoid receptor 1,
WIN: WDR5-interaction inhibitor), the predicate transfectedCell should be found, but
we have not yet created a graph for it.

As shown by these examples, implementing the missing graphs will lead to significant

improvements of both precision and recall. Indeed, in the first paper, only 18 out of the
91 false negatives correspond to implemented recognition graphs. To improve precision,
we should also lower the number of false positives. Here, again, analysis of the errors
made in this first automated extraction gave us valuable leads for improvement. Firstly,
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improvement of dictionaries and ontological predicates tagging will mechanically improve
precision of network predicate tagging. Indeed, a predicate cannot be recognized if needed
arguments have not be found in the sentence. For example, in the sentence Lysates from
untreated and agonist-treated (1 [Y4M WIN for 5 and 15 min) cells expressing the S426A/S430A
receptor were applied to a nitrocellulose membrane spotted with antibodies for 43 kinases along
with control antibodies., our graphs generated the fact expressed(”S-426A/S”, ud, confirmed,
“cells”, um). We counted this as a false positive network predicate. However, the error
comes from the fact that 5-426A/S has been wrongly tagged as molecule, the correct tagging
being mutantProtein(5426A/S430A receptor). However, the graph corresponding to the
mutantProtein does not exist yet.

5. From the NLP Extracted Facts to the Database

We have designed a SQL-relational database ABLISS-DB to store the background
knowledge on signaling networks as well as network facts describing experimental results
collected from the literature. The database schema is also suited for storing the expert
inference rules needed for building the GPCR-triggered signaling networks from these
facts, using deductive reasoning. Only the step concerning storage of facts is currently
completed.

Our motivation for storing all the facts extracted by the transducer cascades method is
manifold. First, network facts, as extracted from the “Results” section of scientific papers,
are of major interest but unfortunately they are not stored in public databases. Secondly,
building a database gives us the opportunity to specify the predicates of interest, providing
both a formal description and a precise biological meaning. Finally, the database allows for
some form of validation of the facts extracted by the transducer cascades method, when
uploaded into the database.

5.1. Specification of Predicates

Facts are built using predicates with precise values for their arguments. Predicates
correspond to those targeted by the biologists but, since scientific knowledge in this domain
is constantly evolving, we kept the possibility of adding, changing or deleting predicates.
Therefore, the schema allows for the description of predicates as first class citizen, with all
their characteristics, according to the dictionaries designed by biologist experts. In some
sense, the database maintains a dictionary of all the predicates of interest.

In our schema, predicates are described using three tables: Predicate, PredArgument
and PredArgType. The Predicate table (Table 6) has 4 attributes that describe, for each
predicate, its name, its arity, its type, and an extended description of its meaning (in natural
language) with respect to its arguments. The PredArgument table (Table 7a) stores for each
predicate, the rank and name of each of its arguments.

As an illustration, the specification of the predicates protein(P), modifiedForm(X,Y) and
reactionModPert(X,1,Y,Z,E,D,S,CL,MET) are represented in the database by the tuples listed
in Tables 6 and 7a,b (where reactionModPert is here an abbreviation for reactionModulation-
Perturbator).

Table 6. The Predicate table.

PredName Arity Type Description

modifiedForm 2 background molecule X is a modified form of molecule Y
protein 1 background P is a protein

reactionModPert 9 network  Signal I has effect E on the effect of X on the

reaction Y -> Z, in cell line CL at the distance D,
using method MET with the status S
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Table 7. Tables related to predicate arguments.

(a) The PredArgument Table.

PredName ArgRank ArgName
modifiedForm 1 X
modifiedForm 2 Y
protein 1 P
reactionModPert 1 X
reactionModPert 2 1
reactionModPert 3 Y
reactionModPert 4 Z
reactionModPert 5 E
reactionModPert 6 D
reactionModPert 7 S
reactionModPert 8 CL
reactionModPert 9 MET
(b) The PredArgType Table
PredName ArgRank ArgTypeld
modifiedForm 1 AT1
modifiedForm 2 AT1
protein 1 AT2
reactionModPert 1 AT3
reactionModPert 2 AT3
reactionModPert 3 AT1
reactionModPert 4 AT1
reactionModPert 5 AT4
reactionModPert 6 AT5
reactionModPert 7 AT6
reactionModPert 8 AT7
reactionModPert 8 ATS8
reactionModPert 9 AT9

The PredArgType table is used to describe the type of each argument. The motivation
for representing separately argument types is due to the fact that, for some predicates, some
arguments can have several types. For example, the 8th argument of reactionModPert,
named CL, has two types namely, AT7 and ATS8, which are cell line and organ. Indeed,
biological experiments can be conducted either on cultured cells (CL will then designate a
type of cell) or on biological tissues, extracted from an organ (CL will then designate this
organ). Descriptions of the possible types for predicate arguments are stored in a separate
table ArgumentType (Table 8).

Table 8. The ArgumentType table.

ArgTypeld Description TypeName; Possible Values

AT1 a set of atoms (at least two) molecule

AT2 a long chain of amino acid residues protein

AT3 a signal signal

AT4 result of the action of some process effect; choice: increase, decrease, noeffect

AT5 specifies how far the action is performed distance; choice: direct, indirect, unknownDistance
AT6 the confidence into the fact status; choice: confirmed, biblio, hypothesis

AT7 cell lines as listed in the dictionary cell line

ATS8 list of organs from the dictionary organ

AT9 list of experimental methods from the dictionary method
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This approach enables to add at any time a new predicate (a new line in the Predicate
table), by specifying its arity and giving its description, using the already described argu-
ment types, or by adding new kinds of argument types and describing them. Similarly;,
existing predicates can be modified.

5.2. Storing Facts

Facts obtained from the NLP extraction are automatically stored in two tables named
respectively BackgroundKnowledge and NetworkFacts. NetworkFacts can contain the
description of facts coming from the NLP extraction as well as facts deduced by rules, using
the reasoning module (not yet completed). In that case, we store the rules used to obtain
these facts. The Extracted attribute indicates whether the network fact has been extracted
(value yes) or deduced by rules (value no). In addition, for each extracted fact, we provide
metadata by mentioning the source it comes from, that is, the bibliographic article from
which it has been automatically extracted. A table Source describes the title of the paper,
the authors and the name of the journal.

Adding a fact into the database requires multiple verification steps. First, we check
whether the predicate with which the fact is built already exists in the Predicate table.
If this is the case, we check that the number of arguments of the fact corresponds to
the predicate arity. Further verification on the adequacy of argument types can then be
performed. When everything succeeds a new fact is added in the tables. Facts that do not
comply with existing predicates specifications are gathered separately and a warning is
issued for user feedback.

If the predicate underlying the new fact does not exist in the table, it first has to be
added as a new entry into the Predicate table with its name, its arity, its family and its
description. Then we can proceed to the addition of this new fact. In the following we
illustrate the tables with the facts of the detailed example of Section 4.3. We have two back-
ground knowledge facts: protein(SR1) and modifiedForm(ERK1/2_active, ERK1/2_inactive),
and one network fact: reactionModulationPerturbator(SR1, unknownSignal, ERK1/2_active,
ERK1/2_inactive, decrease, unknownDistance, confirmed, unknownCell, unknownMethod), for
which we have described the underlying predicates (Table 9).

Table 9. Tables relative to facts.

(a) BackgroundKnowledge (b) NetworkFacts (c) SourcesOfFacts
idFact PredName idFact PredName  Extracted idFact idSource
bkF1 modifiedForm  nfl reactModPert yes bkF1 17681354
bkF2 protein .. .. . bfF2 17681354
. . nfl 17681354

The idSource can be a PMID (Pubmed ID) or a reference in a dictionary, depending on
the provenance of the fact. Another table describes the bibliographic source (not shown
here). Note that several articles can provide us with the same fact, thus reinforcing our
confidence in the fact. Finally the ArgValuesFacts table gives the values of each argument
of the predicate for each fact. We show below the lines of the ArgValuesFacts table
corresponding to the three facts we have selected (Table 10).
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Table 10. The ArgValuesFacts table.

idFact PredName ArgRank Value

bkF1 modifiedForm 1 ERK1/2_active
bkF1 modifiedForm 2 ERK1/2_inactive
bkF2 protein 1 SR1

nfl reactModPert 1 SR1

nfl reactModPert 2 unknownSignal
nfl reactModPert 3 ERK1/2_active
nfl reactModPert 4 ERK1/2_inactive
nfl reactModPert 5 decrease

nfl reactModPert 6 unknownDistance
nfl reactModPert 7 confirmed

nfl reactModPert 8 unknownCell

nfl reactModPert 9 unknownMethod

A graphical representation of the relational tables introduced in this section is given in
Figure 13. For each table, underlined attributes compose the key when it is a strict subset
of attributes. Blue arrows are used to show foreign keys where arrow’s head points to
the referenced attribute(s). Finally, arrows crossing a triangle are meant to capture ISA
relationships (inheritance).

Predicate PredArgument PredArgType
P PredName | Preddame - { Preddame
Arity ArgRank } ArgRank
Type ArgHame ArgTypeld
Description
Fact ArgValuesFacts ArgumentType
IdFact ArgTypeld
IdFact Frediame } Description
bef PredMame ArgRank — TypeName
VE%F Choice
SourceOfFacts Source
|d5ource
BackgroundKnowledge NetworkFacts IdFact 200UrCe
g s IdSource r‘-""/-) Title
Extracted Publisher
Year
Authors

Figure 13. Graphical representation of relational tables.

6. Conclusions and Future Work

Our objective was to extract experimental results from scientific papers automatically.
We concentrated on the “Results” section of papers, since it contains the experimental
results obtained by the authors, as opposed to previous work (state of the art), mostly
found in the introduction section. We also dismissed the discussion sections, as this section
is dedicated to interpretation of the experimental results in light of previous work, and
attempts to put them back in the more general context of the studied process. By doing so,
we ensure that there is as little interpretation of the results as possible, and thus less bias.
To this aim, we defined a new formalism suiting our needs, which we have introduced in
this paper. To extract facts (instantiated predicates) from scientific texts, we used Finite
State Methods, through Unitex graph cascades. The graphs were written based on eleven
papers, and on a specialized dictionary that we have created. Finally, we have designed a
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database to store (1) the predicates and (2) the extracted facts, from the output of the NLP
program.

Our formalism includes 130 relation and action predicates. However, at present only 24
are described in our Unitex charts, and we plan to continue in this direction. Even if many
graphs are still missing, we obtained a F-measure of 39.3%, as evaluated independently on
two papers, which compares favorably with existing methods. This evaluation also led us
to propose several tracks for improving the results, both on recall and on precision.

Beyond the trails discussed in the evaluation section, another way of improving our
results is to consider the texts not only sentence by sentence, but as a whole. Indeed, as
was shown in the different examples, when studying a single sentence, many attributes
remain unidentified. For example, let us consider the already cited sentence Together these
results suggest that WIN induced prolonged activation of ERK1/2 in the mutant receptor that is
solely mediated by B-arrestin 1. Although we will be able to obtain the fact reactionModula-
tion(WIN, ERK1/2_inactive, ERK1/2_active, increase, unknownDistance, confirmed, unknownCell,
unknownMethod), we will not be able to instantiate the attributes of the cellular context and
the method, since the information is not in the sentence itself. To overcome this issue, we
intend to implement a tool allowing the study of coordinations and anaphora. This will
allow us to extract information missing in a sentence from previous sentences, for example,
in the same paragraph, as sentences concluding on a experimental result are often found at
the end of the paragraph precisely describing the experimental context and protocols.

In the future, the ABLISS database will also store the logical rules, needed for auto-
mated network inferences, as well as the deduced facts. A user-friendly interface will be
developed to allow the continuous addition of new experimental facts and expert rules, as
well as the querying of the database by biologists.
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