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Abstract: To solve the problem of the redundant number of training samples in a correlation filter-
based tracking algorithm, the training samples were implicitly extended by circular shifts of the given
target patches, and all the extended samples were used as negative samples for the fast online learning
of the filter. Since all these shifted patches were not true negative samples of the target, the tracking
process suffered from boundary effects, especially in challenging situations such as occlusion and
background clutter, which can significantly impair the tracking performance of the tracker. Spatial
regularization in the SRDCF tracking algorithm is an effective way to mitigate boundary effects, but
it comes at the cost of highly increased time complexity, resulting in a very slow tracking speed of the
SRDCF algorithm that cannot achieve a real-time tracking effect. To address this issue, we proposed
a fast-tracking algorithm based on spatially regularized correlation filters that efficiently optimized
the solved filters by replacing the Gauss–Seidel method in the SRDCF algorithm with the alternating
direction multiplier method. The problem of slow speed in the SRDCF tracking algorithm improved,
and the improved FSRCF algorithm achieved real-time tracking. An adaptive update mechanism was
proposed by using the feedback from the high confidence tracking results to avoid model corruption.
That is, a robust confidence evaluation criterion was introduced in the model update phase, which
combined the maximum response criterion and the average peak correlation energy APCE criterion
to determine whether to update the filter, thereby avoiding filter model drift and improving the target
tracking accuracy and speed. We conducted extensive experiments on datasets OTB-2015, OTB-2013,
UAV123, and TC128, and the experimental results show that the proposed algorithm exhibits a
more stable and accurate tracking performance in the presence of occlusion and background clutter
during tracking.

Keywords: discriminative correlation filter; spatial regularization; boundary effects; constraint
optimization; occlusion detection

1. Introduction

The field of computer vision contains many kinds of technical studies for different ap-
plication scenarios. The typical application areas include video surveillance [1], unmanned
driving [2], human–computer interaction [3], intelligent robots [4], and drone precision
strikes [5], amongst others. The studies on tracking algorithms in the literature [6–9] show
that target tracking has always occupied an important position in the field of computer
vision. The target tracking process is to annotate the physical location of an object in a con-
tinuous sequence of video images, and eventually connect the target objects in consecutive
frames to form a target motion trajectory path. It is essentially based on the given target
image, using feature extraction and feature association techniques to match the features
most likely to belong to the same target in different frames, and then connect the matched
targets in consecutive frames to obtain the target’s motion trajectory and finally achieve the
task of target tracking.

The correlation filter-based tracking algorithm uses a large number of cyclically shifted
samples for learning and converts the correlation operation in the spatial domain into
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element multiplication in the frequency domain. This reduces the computational complexity
and significantly improves the tracking speed. The MOSSE tracker [10] was the pioneer
of the correlation filter algorithm, and its tracking speed can reach about 700 frames per
second. The CSK tracker [11] proposed cyclic shifting for dense sampling based on the
MOSSE tracker, and the later KCF tracker [12] also introduced cyclic shifting to generate
training samples. Although the use of circular shift solves the problem of redundancy
in the number of training samples, it also brings the problem of boundary effect. This is
because the training samples it generates contain periodic repetition of image blocks that
leads to inaccurate representation of parts of the input images, and inaccurate negative
training image blocks reduce the discriminative power of the learned model.

In 2015, Danelljan’s team proposed the SRDCF model [13] for the boundary effect
problem of the KCF algorithm. This model not only suppressed the background response
and expanded the search region, but also proposed a regularization component to correlate
the filters to solve the circular boundary effect problem. As the inclusion of the regular-
ization component in the SRDCF model destroyed the closed solution of the standard
discriminant correlation filter, the filter cannot be solved directly, so a Gauss–Seidel solver
was used to solve the filter iteratively. However, the iteration speed of the Gauss–Seidel
solver is too slow, resulting in a tracking speed of only 5 frames per second in this model,
which does not meet the requirement of real-time target tracking.

In order to improve the accuracy and speed of SRDCF model tracking, and then achieve
real-time target tracking, we proposed a fast-tracking algorithm based on a spatially regu-
larized correlation filter, and the main contributions of this paper are summarized below.

First: We used the alternate direction method of multipliers (ADMM) [14] solver to
replace the Gauss–Seidel solver in the process of solving the filter, which improved the
overall target tracking speed by increasing the computational speed of solving the filter.

Second: In the model update phase we not only utilized the maximum response value,
but also incorporated the average peak correlation energy (APCE) criterion [15], which
indicated the degree of fluctuation on the response map and the confidence level of the
detected targets. The fusion of these two criteria improved the accuracy of target tracking,
and to some extent, also improved the speed of target tracking.

Third: We evaluated the proposed tracking algorithm using tests on the datasets OTB-
2015, OTB-2013, UAV123, and TC128, and the experimental results show that the proposed
algorithm exhibits a more stable and accurate tracking performance in the presence of
occlusion and background clutter during tracking.

2. Related Work
2.1. Correlation Filtering

The correlation filter-based algorithm was first introduced in 2010 in the MOSSE
tracker [10] proposed by Bolme et al. This tracker gives the first frame target region, either
manually or conditionally, and then the features are extracted from this region and then
fast Fourier transform (FFT) [16] operation is conducted. The results are multiplied with
the correlation filter in the frequency domain, and then the inverse fast Fourier transform
(IFFT) operation is conducted to obtain the output response points, including the maximum
response point that is the target position of that frame. Finally, the frame target region
is added to the training samples and the correlation filter is updated. In 2012, based on
the MOSSE algorithm, Henriques et al. proposed the CSK algorithm [11], which used
a circular matrix to increase the number of training samples and solved the problem of
sample redundancy caused by sparse sampling in the traditional algorithm. In the same
year, Danelljan et al. proposed the correlation filter CCSK [17] by adding color name
features [17,18] to the CSK algorithm, which improved the characterization of sample
information and, thus, the robustness of the tracker. In 2014, Danelljan et al. proposed
the DSST model [19] for the problem of scale variation [20] in the field of target tracking.
The fDSST [21] algorithm used feature dimensionality reduction to further accelerate the
DSST algorithm, achieving a joint improvement in speed and performance. In 2015, Li et al.
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proposed the SAMF model [22], which used a kernel function approach to consider scale
variation while incorporating grayscale features, color features, and histogram of oriented
gradients (HOG) [23,24] features for target feature extraction. The powerful target feature
information improved the robustness of the target tracking model to some extent. The
2015 kernel correlation filter (KCF) [12] further improved the CSK [11] algorithm by using
multichannel HOG features and introduced the cyclic shift generation of training samples
in the KCF tracker. The cyclic shift generation of training samples yielded a cyclic data
matrix, and the cyclic data matrix was diagonalized using the discrete Fournier transform
(DFT) operation for fast computation, thereby reducing the computational effort of the
algorithm. Although the circular shift increased the number of training samples to a certain
extent, it also introduced the boundary effect problem. The boundary effect problem makes
the detection response values of the tracked target accurate only in and around the center
of the target, while the rest of the detection response values are not referenced by the
periodic repetition of the training samples, resulting in a very limited target search area
during the detection process. In 2015, Danelljan’s team proposed the SRDCF model [13]
for the boundary effect problem of the KCF algorithm, which not only suppressed the
background response and expanded the search area, but also proposed a regularization
component to correlate the filter to solve the circular boundary effect problem. In 2016,
Luca Bertinetto et al. proposed the Staple algorithm [25], in which two complementary
feature factors, HOG features and color features, were used to discover the target, fuse the
tracking results, and complement each other to solve the problem without having a large
impact on the tracking speed, while also improving the tracking effect.

In 2016, Danelljan et al. proposed the C-COT model [26], that recommended a con-
tinuous convolution filter approach using multilayer depth feature information based on
the SRDCFdecon model [27] and achieved a major breakthrough in the use of different
resolution features as filter inputs through a continuous spatial domain difference transfor-
mation operation. In 2017, Danelljan et al. proposed the ECO model [28], which was an
improved version of the C-COT model in terms of three aspects: model size, sample set
size, and update strategy. Firstly, filters with small contributions were filtered and removed.
The training sample set was then simplified to reduce the redundancy between adjacent
samples. Finally, the model was updated every 6 frames, which both reduced the number
of model updates and effectively mitigated the impact when the target is occluded. In 2018,
Danelljan’s team proposed the UPDT model [29], which used an adaptive fusion strategy
of deep and shallow features to fully integrate the two complementary features, which in
turn improved the performance of target tracking.

2.2. ADMM Solution

In 2015, Galoogahi et al. proposed the CFLB algorithm [30]. The CFLB algorithm added
spatial constraints to suppress the boundary effects generated when training correlation
filters. The spatial constraint of the CFLB algorithm is introducing a mask matrix in
the relevant filtering framework in order to occlude the background part of the training
samples. However, the mask matrix destroyed the cyclic shift sample collection and
the closed solution of the correlation filter was invalid. Therefore, the CFLB algorithm
used the ADMM [14] optimization algorithm to iteratively solve the filter coefficients. In
2017, Galoogahi et al. proposed the BACF model [31], which used the negative samples
generated by the real shift of the image to learn and update the filter more accurately, while
the alternating direction multiplier method (ADMM) was first proposed in the correlation
filter tracking algorithm to solve the optimization problem of limited real-time tracking. In
the same year, Lukezic et al. proposed a multi-channel and spatial reliability discrimination
correlation filter CSR-DCF [32]. This introduced channel and spatial reliability theory into
the correlation filter, expanded the region of interest, and changed the shape of the tracking
frame, meaning the robustness of the tracker was improved. In 2018, Li et al. proposed
the STRCF model [33] that added the spatial regularity term and temporal regularity term
to the discriminative correlation filter, and then effectively improved the model tracking
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performance. The addition of spatial and temporal regularity terms also increased the
complexity of the algorithm, and since the objective function in the STRCF model is convex,
ADMM was used to iteratively solve each subproblem to obtain the global optimum. In
2019, Dai’s team proposed the ASRCF model [34] based on the SRDCF model [13] and the
BACF model [31], which optimized the filter coefficients and adjusted the spatial weights
and used ADMM iterations to solve the problems of the scale filter and position filter
separately, which in turn led to the global optimum.

The ADMM solution algorithm solved the optimization problem using two variables,
a change from solving the problem with one variable, such as the filter variable f and the
auxiliary variable g shown in Equation (3), and the specific ADMM solution process is
described in Section 3.2, “Improvement of the Solution Filter Optimization Method”.

3. The Proposed Algorithm

The spatially regularized correlation filter (SRDCF) effectively solves the boundary
effect problem, which is described in detail in Section 3.1. The FSRCF algorithm proposed in
this paper focuses on improving the tracking speed and tracking target occlusion problems
of the SRDCF tracker, which are described in detail in Section 3.2.

3.1. Spatial Regularization-Based Correlation Filter SRDCF

The SRDCF tracker was proposed as a solution to the boundary effect problem caused
by the circular shift of the KCF tracker. In the standard discriminative correlation filter
(DCF), higher values are usually assigned to the background region, resulting in a large
negative impact by the background information, which reduces the tracking performance.
In the SRDCF tracker, the regularization weights penalized the filter values corresponding
to the features in the background, and the main idea is to limit the boundary pixels of
the cyclic shift samples so that the filter coefficients near the boundary are close to 0. The
algorithm SRDCF objective function is as follows.

argmin
f

1
2
‖

D

∑
d=1

xd
t ∗ f d − y‖

2

+
1
2
‖

D

∑
d=1

w f d‖
2

(1)

xt denotes the input feature information of the t th frame training sample, d represents
the first dimension of the feature information, D represents the maximum dimension of
the feature information, * denotes the spatial correlation operator, y denotes the desired
output response value, w is the spatial regularization matrix, and f is the requested filter.
The higher the weight assigned to the penalty matrix w, the larger the regularization
coefficient, indicating a greater degree of penalty and suppression of the filter coefficients
at the boundary. Sample values near the boundary were intentionally ignored, which in
turn suppressed the boundary effect problem.

After deriving the filter f in Equation (1) using the Gauss–Seidel algorithm, the re-
sponse value of the input image is detected with Equation (2), where z represents the
feature information of the input image. The response value of the input image is obtained
by multiplying z with the updated filter of the previous frame f. The largest response value
of S f (z) is the target being tracked.

S f (z) =
D

∑
d=1

zd ∗ f d (2)

Although the SRDCF tracker effectively solves the boundary effect problem, there are
still two problems. First, the algorithm SRDCF joins the regularization component and
destroys the closed solution of the standard discriminant correlation filter, and therefore,
cannot solve the filter directly, meaning the Gauss–Seidel solver is used to solve the filter.
However, its computational effort in solving the updated filter model is too large and slow,
which affects the efficiency of the tracker and leads to the inability to perform real-time
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tracking. Second, when the tracking target is occluded, there is no relevant update strategy
in the SRDCF algorithm for judgment, and it still performs filter updates per frame. When
the tracking target is occluded, the wrong target information is obtained, and based on this,
the filter update leads to the drift of the target tracking model, and then the target is lost.

3.2. Fast Tracking Algorithm Based on Spatially Regularized Correlation Filter

The proposed fast-tracking algorithm, based on a spatially regularized correlation
filter, aims to improve the speed and accuracy of the SRDCF algorithm [13]. First, this
algorithm replaces the filter solver method in the SRDCF tracker from the Gauss–Seidel
solver to the ADMM [14] solver, improving the computational speed and tracking efficiency.
The ADMM solver uses Lagrange expressions to change the optimal solution of the large
problem into two sub-problems, solved separately, and the improved algorithm sets the
number of iterations of the solver to two, which can quickly obtain the approximate
filter solution. Second, in the model update phase, our algorithm adds the average peak
correlation energy (APCE) criterion [15] to the model update strategy, in addition to the
maximum response value of the reference response map Fmax. When both the criteria Fmax
and APCE of the current frame are greater than their respective historical averages by a
certain ratio, the obtained tracking results are considered as high confidence, indicating
that the tracking target is not occluded or lost, and the model is then updated according to
the set learning rate. The tracking flow chart of the FSRCF tracker in this article is shown
in Figure 1, and the structure is shown in Figure 2. The video sequence is first initialized
and the first frame of the video sequence is read in order to extract the target feature
information. The correlation filter model is solved using the target feature information, and
the target position and scale size are calculated using the target feature information and
the correlation filter model. The calculated APCE value and maximum response value are
lower than the set threshold to determine whether the correlation filter should be updated
or not. If the APCE value or maximum response value are lower than the set threshold, it
means that the tracking is not accurate, and the correlation filter is not updated to avoid
model drift. Only when the APCE value and the maximum response value are higher
than the set threshold is the relevant filter updated and the tracking target is tracked in a
cyclic step.
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Figure 1. The tracking flow diagram of the FSRCF tracker.
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3.2.1. Improvement of the Optimization Method for Solving the Filter

The algorithm in this paper replaces the Gauss–Seidel solver with the alternating
direction method of multipliers solver in the computational process of solving the filter.
The specific steps of solving filter f iteratively with the ADMM solver are as follows. Filter
f is one of the variables of the ADMM solver iteration, and the auxiliary variable g is
introduced in the solving process, and the constraint is set as f = g.

argmin
f

1
2‖

D
∑

d=1
xd

t ∗ f d − y‖
2

+ 1
2

D
∑

d=1
‖w f d‖2

s.t. ĝ = f̂ =
√

TF f

(3)

∧ denotes the Fourier transform, T is the size of the input picture x, and
√

TF f is the
2D expression for the discrete Fourier transform.

The Lagrangian expression is introduced as:

L( f , ĝ, ς̂) = 1
2‖

D
∑

d=1
x̂d

t ∗ ĝd − ŷ‖
2

+ 1
2

D
∑

d=1
‖w f̂ d‖2

+ ς̂T
D
∑

d=1

(
ĝd −

√
TF f̂ d

)
+ µ

2

D
∑

d=1
‖ĝd −

√
TF f̂ d‖2

(4)

ς is the Lagrangian vector, µ denotes the penalty factor, and the ADMM algorithm is
used to solve the following subproblem iteratively. The iterative steps are as follows:

gk+1 = 1
2‖

D
∑

d=1
x̂d

t ∗ ĝd − ŷ‖
2

+ ς̂T
D
∑

d=1

(
ĝd −

√
TF f̂ d

)
+ µ

2

D
∑

d=1
‖ĝd −

√
TF f̂ d‖2

f k+1 = 1
2

D
∑

d=1
‖w f̂ d‖2

+ ς̂T
D
∑

d=1

(
ĝd −

√
TF f̂ d

)
+ µ

2

D
∑

d=1
‖ĝd −

√
TF f̂ d‖2

ςk+1 = ςk + µ
(

gk+1 − f k+1
) (5)

Subproblem g:

ĝ = 1
2‖

D
∑

d=1
x̂d

t ∗ ĝd − ŷ‖
2

+ ς̂T
D
∑

d=1

(
ĝd −

√
TF f̂ d

)
+ µ

2

D
∑

d=1
‖ĝd −

√
TF f̂ d‖2

=

(
D
∑

d=1
x̂d

t ·x̂dT
t + TµI

)−1( D
∑

d=1
ĝd·x̂dT

t − Tς̂T +
D
∑

d=1
Tµ f̂ d

) (6)

Using the accelerated Sherman-Morrison formula, the solution is obtained as follows:

ĝ =
1
µ

(
D

∑
d=1

Tĝd·x̂d
t − ς̂T +

D

∑
d=1

µ f̂ d

)
−

D

∑
d=1

x̂d
t

µb

(
TĝdŜx − Ŝς + µŜ f

)
(7)

Among them:

Ŝx =
D

∑
d=1

x̂d
t ·x̂d

t
T (8)

Ŝς =
D

∑
d=1

x̂dT
t ·ς̂ (9)

Ŝ f =
D

∑
d=1

x̂dT
t · f̂ d (10)

b = Ŝx + Tµ (11)
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Subproblem f:

f̂ = 1
2

D
∑

d=1
‖w f̂ d‖2

+ ς̂T
D
∑

d=1

(
ĝd −

√
TF f̂ d

)
+ µ

2

D
∑

d=1
‖ĝd −

√
TF f̂ d‖2

=
(
wT ·w + µ

)−1
(

ς̂T +
D
∑

d=1
µĝd

) (12)

Subproblem f:
ς̂k+1 = ς̂k + µ

(
ĝk+1 − f̂ k+1

)
(13)

3.2.2. Occlusion Detection

Most existing trackers do not consider whether the detection is accurate or not. In fact,
once a target is detected incorrectly in the current frame, for example if severe occlusion
or complete loss occurs, this can lead to tracking failure in the subsequent frames. In this
paper, we introduced the average peak correlation energy (APCE) criterion to determine
the confidence level of the target object, and both the peak and fluctuation of the response
plot show the confidence level of the tracking result. When the target is accurately tracked
the response map has only one peak and all other regions are smooth. In contrast, the
response map fluctuates drastically when the target is occluded. If we continue to use
incorrect samples to track the target in subsequent frames, the tracking model is corrupted.
Therefore, in addition to referring to the maximum response value Fmax of the response
map, the average peak correlation energy (APCE) criterion is added to the model update
strategy. The tracking result in the current frame is only considered as high confidence
when both the criteria Fmax and APCE of the current frame are greater than their respective
historical averages by a certain ratio, indicating that the tracking target is not occluded.
The learning rate is then set accordingly to update the model.

The average peak correlation energy (APCE) criterion is defined as follows:

APCE =
|Fmax − Fmin|2

mean
(

∑w,h(Fw,h − Fmin)
2
) (14)

where Fmax and Fmin are the maximum and minimum response of the current frame,
respectively. Fw,h is the element value of the wth row and hth column of the response matrix.
If the tracking target is moving slowly and can be easily distinguished, the APCE value is
generally high. However, if the target is moving fast and has significant deformation, the
value of APCE is low even if the tracking is correct.

As shown in Figure 3c, demonstrated by sharper peaks and less noise, the target is
clearly within the detection range, the response map is smooth overall, and there is only
one sharp peak. This indicates that the tracking target is not obscured or lost, and the
model is updated normally at this time. Otherwise, as shown in Figure 3d, if the tracking
target is obscured or lost, the overall response map is disordered and has multiple peaks,
which causes the target tracking model to drift and lead to target tracking failure if the
model is updated.

Incorporating the APCE criteria into the model update strategy has two advantages:
firstly, it solves the target model offset problem to a certain extent and thus improves the
target tracking accuracy. Secondly, the model is not updated when the tracked target is oc-
cluded, thus saving computation time, and increasing the target tracking speed. Algorithm
1 shows the brief flow of the algorithm in this paper, where the APCE_Average is the total
APCE values of all previous successfully tracked video frames divided by the total number
of successfully tracked video frames, and the F_(max)Average is the total F_max values of
all previous successfully tracked video frames divided by the total number of successfully
tracked video frames.
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Algorithm 1: Fast Tracking Algorithm Based on Spatial Regularization Correlation Filter

Input: initial target bounding box (X, Y, W, H) and other initialization parameters
Output: target bounding box1. Enter the first frame and initialize the target filter model;
2. for the 2, 3, . . . until the last frame do
3. Establish 5 scales around the tracking target, and extract Gray and HOG features;
4. Use formula (2) to calculate the filter response value;
5. Determine the optimal scale of the target;
6. Use formula (14) to calculate the APCE value;
7. if APCE > 0.5 * APCE_Average and F_max > 0.6 * F_(max)Average then
8. While ADMM iterative do
9. use formulas (7) and (12) to solve auxiliary variables ĝ and f̂ respectively;
10. use formula (13) to update the Lagrangian vector ς;
11. end while
12. Update the filter model;
13. end if
14. Update APCE_Average;
15. end for

4. Experiment and Analysis

To verify the performance of the algorithm, the experiments were conducted on
MATLAB 2018a as the development platform, running on Windows 10 with an Intel(R)
Core(TM) i5-10400 CPU @ 2.90GHz processor.

4.1. Experimental Dataset and Evaluation Criteria
4.1.1. Experimental Dataset

The OTB-2015 dataset [35] had a total of 100 video sequences, the OTB-2013 dataset [36]
had a total of 51 video sequences, and the UAV123 dataset [37] had a total of 123 video
sequences. Both the OTB-2015 dataset and the OTB-2013 dataset included 11 scene chal-



Information 2022, 13, 184 10 of 20

lenges, namely illumination change (IV), scale change (SC), occlusion (OCC), deformation
(DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-plane rotation
(OPR), out of view (OV), background clutter (BC), and low resolution (LR). The UAV123
dataset contained 12 challenge scenarios, namely illumination change (IV), scale change
(SC), fast motion (FM), background clutter (BC), low resolution (LR), full occlusion (FOC),
partial occlusion(POC), out of view (OV), similar object (SOB), aspect ratio change (ARC),
camera motion (CM), and viewpoint change(VC).

4.1.2. Experimental Evaluation Criteria

In order to compare the performance of each algorithm, we used three metrics to
evaluate the algorithms in this paper. The first metric is precision. Precision is defined as
the percentage of the total number of frames in the video sequence for which the difference
between the center position of the tracking and the standard center position is less than a
certain threshold. The percentage obtained varied by setting different thresholds, and the
threshold value was set to d = 20 in this experiment.

Precision =
N

∑
i=1

f (15)

f =

{
1, CLE ≤ d
0, CLE > d

(16)

CLE = dis(p1, p2) (17)

where N denotes the number of frames in a video sequence, CLE denotes the center
position error in a frame, d denotes a specific threshold, dis(-) denotes the Euclidean
distance between two points, p1 denotes the center of the tracked target, and p2 denotes
the actual target center.

The second metric is the success rate. The ratio of the area of the overlap between
the tracked frame and the standard frame in the current frame to the total area covered by
it is the success rate, and this is the value VOR. The tracking was considered successful
if the obtained VOR value exceeded a specific threshold, which was set to d = 50 in this
experiment. The success rate was calculated as the proportion of the total video that is
successfully tracked and is shown as follows.

VOR =

{
1, k ≥ d
0, k < d

(18)

Success rate =
Area(BT ∩ BG)

Area(BT ∪ BG)
(19)

In Equation (19), BT denotes the tracking area of the current frame, BG denotes the
standard target area, ∩ denotes the overlapping area of both. and ∪ denotes the total
coverage area of both.

The third metric is the speed of the tracking algorithm, which was expressed in frames
per second (FPS).

4.2. Comparative Experiments on the OTB2015 Dataset
4.2.1. Quantitative Analysis

Experiments were conducted on 100 video sequences of the OTB2015 dataset, and
Figure 4 shows the precision plot and success plot of seven algorithms (BACF [31], SRDCF [13],
SAMF [22], KCF [12], DSST [19], CSK [11], and OURS) used in experiments on the OTB-
2015 dataset. Compared with the benchmark algorithm SRDCF, the results show that our
algorithm improves by 3.1% and 4.9% in precision and success rate, respectively. Compared
with the BACF algorithm, the algorithm in this paper improves the accuracy by 0.2% and
the success rate by 0.5%. Compared with the KCF algorithm, the algorithm in this paper
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improves the accuracy by 12.2% and the success rate by 21.7%. As shown in Table 1, the
average performance metrics were obtained for all algorithms tested on the OTB-2015
dataset, and the bold text indicates that the current tracker’s performance ranked first in the
comparison process. The algorithm in this paper improves the tracking speed from about
7 frames per second to about 29 frames per second compared to the SRDCF algorithm,
enabling the tracking to achieve real-time results.
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Table 1. Average performance of algorithms tested on the OTB-2015 dataset.

Tracker Precision (Threshold) Success Rate (AUC) Speed (FPS)

OURS 80.3% 75.8% 29.86
BACF 80.1% 75.3% 34.49

SRDCF 77.2% 70.9% 7.71
SAMF 74.6% 66.4% 28.12
KCF 68.1% 54.1% 306.51
DSST 68.0% 52.6% 42.93
CSK 51.6% 41.0% 589.15

Figure 5 shows the accuracy and success rate of the algorithms regarding six attributes
(background clutter (BC), deformation (DEF), motion blur (MB), scale change (SC), out-of-
plane rotation (OPR), and out-of-view (OV)) of the OTB2015 dataset and shows that the
algorithm in this paper performs best in the first five attributes. When the tracking target
reappears in the video frame after a short time out of the field of view, only the maximum
value in the response graph is used to judge whether the tracking target is inaccurate. In
addition to referring to the maximum response value, this paper also integrates the APCE
standard. When both criteria reach the set threshold, it was determined as a tracking target.
This update strategy led to an increase of 12.2% in accuracy and 11.3% in success rate
compared with the benchmark algorithm Staple in the out-of-view (OV) attribute.
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Figure 5. Accuracy and success rate plots of 7 tracking algorithms tested on the BC, DEF, MB, SC,
OPR, and OV attributes of the OTB2015 dataset.

4.2.2. Qualitative Analysis

We selected 11 subsets (in the order of Jogging1, Bird1, Tiger2, Bolt2, Football1, Diving,
Blurbody, Jumping, FleetFace, Freeman1, Dudek) from the OTB-2015 dataset for the com-
parison experiments. These 11 subsets represented multiple complex scenes of short-term
target occlusion, long-term target occlusion, illumination change, scale change, background
clutter, deformation, motion blur, fast motion, in-plane rotation, out-of-plane rotation, and
out-of-field. Figure 6, Figure 8 and Figure 9 show the tracking results in target occlusion,
background clutter, and the fast motion tracking scenes, and the algorithm in this paper
maintains a strong robustness compared with the other six algorithms. The experimental
results are analyzed as follows.
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a: Short-Term Target Occlusion

Target occlusion contaminates the target model and leads to irreversible errors if no
measures are taken to eliminate the interference caused by target occlusion. Short-time
target occlusion is shown in Figure 6 Jogging1 (left). After the target encounters short-term
occlusion at frame 70, the KCF, CSK, and DSST algorithms are unable to track accurately in
the later frames, resulting in target tracking failure. Compared with other algorithms, the
algorithm in this paper (FSRCF) has the highest tracking accuracy.

b: Long-Term Target Occlusion

As shown in Figure 6 Bird1 (right), the BACF, SRDCF, KCF, CSK, DSST, and SAMF
algorithms all fail to track the target in the later frames after the target encounters long-term
occlusion at frame 117. Only the FSRCF algorithm always tracked the target stably. The
reason is that the algorithm in this paper uses occlusion detection, i.e., the APCE criterion
is added. When occlusion occurs, the target model will not be updated, thus avoiding
causing target model drift and leading to tracking failure.

c: Illumination Change

As shown in Figure 7 Tiger2 (left), the light has a normal brightness at frame 10,
while the brightness increases from frame 174 to frame 264. Compared with the other six
algorithms, the algorithm in this paper has the highest accuracy in tracking the target with
a large change in brightness.
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d: Scale Variation

The target size usually changes during tracking, so the tracker must adjust the bound-
ing box according to the target size, otherwise it may fail due to the lack of complete target
information or the acquisition of redundant background information. Figure 7 Bolt2 (right)
shows the tracking results in a video sequence with scale variation, where the target scales
from small to large from frame 11 to frame 103, and from large to small from frame 177
to frame 293. The SRDCF, KCF, DSST, and SAMF algorithms all failed to track this scale
change. In the existing methods, two DCF-based trackers, DSST and SAMF, are designed
to handle scale changes. But the DSST algorithm and SAMF algorithm cannot adapt to
the scale variation in these sequences. Although the algorithm in this paper uses almost
the same scale adaptation strategy as the SAMF algorithm, it still outperforms the SAMF
algorithm in capturing targets with different scales.

e: Background Clutter

In Figure 8 Football (left), the tracking target is challenged by background clutter
through frames 65 to 74, where the bounding box is more likely to drift onto the cluttered
background. The SRDCF, KCF, CSK, DSST, and SAMF algorithms all failed to track in
this situation. The successful tracking of the FSRCF algorithm is attributed to the use of
the APCE criterion for occlusion detection, which enhanced the robustness of the target
tracking model.
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f: Deformation

In Figure 8 Diving (right), the FSRCF algorithm is able to locate and track accurately
despite the deformation from frame 91 to frame 176, while the BACF, SRDCF, KCF, CSK,
DSST, and SAMF algorithms all failed to track. The success of the FSRCF algorithm was
due to the use of the APCE criterion for occlusion detection, which enhanced the robustness
of the target tracking model.

g: Motion Blur

In Figure 9 Blurbody (left), the challenge was tracking the target through the target
blur from frame 226 to frame 321. The algorithms KCF, CSK, DSST, and SAMF all failed to
track, while the algorithms BACF, SRDCF, and FSRCF tracked accurately. This is related,
to a large extent, to the fact that the target model of this paper’s algorithm is based on the
spatial regularization of the SRDCF algorithm, which makes target tracking more accurate.

h: Fast Motion

Fast motion will blur the target and we need a larger search range to ensure that the
target can be captured again. The video sequences in Figure 9 Jumping (right) are used to
test the performance of these trackers in handling fast moving targets. In these sequences,
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only the SRDCF and FSRCF algorithms accurately tracked the target when fast motion
occurred. The algorithm in this paper uses a large search window and the high confidence
APCE criterion, which ensures that targets are not easily lost when moving fast.
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i: In-Plane Rotation

The challenge of in-plane or out-of-plane rotation is caused by the movement or
change in viewpoint of the target, and this challenge makes modeling the appearance of
the target difficult. In the rotation test of the FleetFace (left) video sequence in Figure 10,
none of the trackers lost their targets, but some trackers suffered from significant scale drift
due to the rotation of the target in and out of the image plane. The ability of the algorithm
in this paper to closely track the targets and maintain a high degree of overlap suggests
that the algorithm in this paper coped well with the rotation challenge.
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j: Out-of-Plane Rotation

In Figure 10 Freeman1 (right) video sequence, the SRDCF, KCF, CSK, DSST, and
SAMF algorithms all failed to track in frame 134, and only the BACF algorithm and the
present algorithm tracked accurately. The ability of the SRDCF algorithm to re-track the
target in frames 161 to 198 may be related to the regularization component of the SRDCF
algorithm, because the tracking process is used to find the maximum response value in the
search range in each frame, and the regularization component can increase the background
regularization strength and can re-track the target in this process.
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4.3. Comparative Experiments on the OTB2013 Dataset

Experiments were conducted on 51 video sequences of the OTB2013 dataset, and
Figure 11 shows the precision plot and success plot of 11 algorithms (BACF [31], SRDCF [13],
SAMF [22], KCF [12], DSST [19], CSK [11], Staple [25], ASLA [37], IVT [38], MUSTER [39],
and OURS) tested on the OTB-2013 dataset. Compared with the benchmark SRDCF
algorithm, our algorithm improves by 2.1% under the success rate criterion. Compared
with the Staple algorithm, the algorithm in this paper improves the accuracy by 2% and
the success rate by 0.8%. Compared with the KCF algorithm, the algorithm in this paper
improves the accuracy by 8.8% and the success rate by 17.1%. As shown in Table 2, all
algorithms tested on the OTB-2013 dataset obtained the average performance metrics,
and the bold letters indicate that the current tracker’s performance ranked first in the
comparison process. The algorithm in this paper improves the tracking speed from about
8 frames per second to about 28 frames per second compared to the SRDCF algorithm,
which enables tracking to achieve real-time results.
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Table 2. Average performance of algorithms tested on the OTB-2013 dataset.

Tracker Precision (Threshold) Success Rate (AUC) Speed (FPS)

OURS 81.3% 78.3% 28.75
SRDCF 82.2% 76.2% 8.10
Staple 79.3% 75.4% 44.90
SAMF 77.3% 71.6% 33.49
KCF 72.5% 61.2% 333.15
DSST 72.2% 58.4% 41.48
CSK 54.1% 44.0% 627.53

BACF 83.5% 80.5% 36.07
MUSTER 85.0% 76.8% 5.61

ASLA 59.3% 54.4% 2.22
IVT 48.3% 41.3% 43.19

4.4. Comparative Experiments on the UAV123 Dataset

The UAV123 dataset contained 123 video sequences taken by an unmanned aerial
vehicle (UAV), including search and rescue, wildlife and crowd monitoring, and navigation,
among others. The average sequence length of this dataset was 915 frames. It contained a
large number of long-term video tracking sequences, which present great difficulty and
challenge to the trackers. For trackers without a relocation mechanism, once model drift
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occurs, tracking fails. Figure 12 shows the precision plot and success plot of 11 algorithms
(BACF [31], SRDCF [13], SAMF [22], KCF [12], DSST [19], CSK [11], Staple [25], ASLA [37],
IVT [38], MUSTER [39], and OURS) tested on the UAV123 dataset. Compared with the
benchmark algorithm SRDCF, the algorithm FSRCF improves the success rate by 0.8%.
Compared with the SAMF algorithm, the algorithm in this paper improves the accuracy by
5.1% and the success rate by 5.4%. Compared with the MUSTER algorithm, the algorithm
in this paper improves the accuracy by 4.8% and the success rate by 8.6%. Compared with
the KCF algorithm, the algorithm in this paper improves the accuracy by 11.8% and the
success rate by 17.1%. As shown in Table 3, all algorithms tested on the UAV123 dataset
obtained the average performance metrics, and the bold letters indicate that the current
tracker’s performance ranked first in the comparison process. The algorithm in this paper
improves the tracking speed from about 12 frames per second to about 35 frames per second
compared to the SRDCF algorithm, which enables tracking to achieve real-time results.
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Table 3. Average performance of algorithms tested on the UAV123 dataset.

Tracker Precision (Threshold) Success Rate (AUC) Speed (FPS)

OURS 64.1% 54.0% 35.78
BACF 66.3% 55.5% 39.44

SRDCF 64.9% 53.2% 12.62
Staple 64.1% 53.7% 81.16
SAMF 59.9% 48.6% 11.53
KCF 52.3% 36.9% 560.31
DSST 58.6% 38.9% 84.04
CSK 48.8% 32.9% 1076.03

MUSTER 59.3% 45.4% 1.88
ASLA 54.7% 47.3% 2.76

IVT 43.3% 36.7% 42.81

4.5. Comparative Experiments on the TC128 Dataset

Experiments were conducted on 129 color video sequences of the TC128 dataset,
and Figure 13 shows the precision plot and success plot of 11 algorithms (BACF [31],
SRDCF [13], SAMF [22], KCF [12], DSST [19], CSK [11], Staple [25], ASLA [37], IVT [38],
MUSTER [39], and OURS) tested on the TC128 dataset. Compared with the benchmark
algorithm SRDCF, our algorithm improves by 0.1% and 3.3% in precision and success rate,
respectively. Compared with the BACF algorithm, the algorithm in this paper improves
the accuracy by 1.8% and the success rate by 1.6%. Compared with the KCF algorithm,



Information 2022, 13, 184 18 of 20

the algorithm in this paper improves the accuracy by 11.6% and the success rate by 16.9%.
As shown in Table 4, all algorithms tested on the TC128 dataset obtained the average
performance metrics, and the bold letters indicate that the current tracker’s performance
ranked first in the comparison process. The algorithm in this paper improves the tracking
speed from about 8 frames per second to about 35 frames per second compared to the
SRDCF algorithm, which enables tracking to achieve real-time results.
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Table 4. Average performance of algorithms tested on the TC128 dataset.

Tracker Precision (Threshold) Success Rate (AUC) Speed (FPS)

OURS 66.7% 63.1% 35.11
BACF 64.9% 61.5% 39.73

SRDCF 66.6% 59.8% 8.57
Staple 67.0% 61.7% 80.07
SAMF 63.7% 58.5% 20.95
KCF 55.1% 46.2% 454.76
DSST 53.9% 44.1% 67.38
CSK 39.8% 32.1% 847.83

MUSTER 63.5% 56.0% 5.62
ASLA 48.6% 40.0% 2.28

IVT 35.5% 29.2% 37.69

5. Conclusions

In this paper, in order to alleviate the inefficiency of the SRDCF model due to the use
of Gauss–Seidel solvers and the inability to track in real time, we introduced the alternating
direction multiplier method solver to replace the Gauss–Seidel solver, thus improving the
tracking efficiency and meeting the demand for real-time tracking. Compared with the
benchmark SRDCF algorithm, the algorithm in this paper improves the tracking speed
from about 7 frames per second to about 29 frames per second in the dataset OTB2015;
improves the tracking speed from about 8 frames per second to about 28 frames per second
in the dataset OTB2013; improves the tracking speed from about 12 frames per second
to about 35 frames per second in the dataset UAV123; and improves the tracking speed
from about 8 frames per second to about 35 frames per second in the dataset TC128. To
avoid the common model drift problem in the field of target tracking, this paper used the
maximum response value and average peak correlation energy (APCE) criteria in the model
update strategy to determine the reliable part of the tracking trajectory. Incorporating the
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APCE criterion improved the target tracking accuracy by solving the target model drift
problem to a certain extent, saved computation time, and improved the tracking speed by
not updating the model when the tracked target was occluded. Experimental results show
that the proposed tracker outperforms several other algorithms in tests on the OTB-2013,
OTB-2015, UAV123, and TC128 datasets.
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