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Abstract: With the prevalence of smartphones and the maturation of indoor positioning techniques,
predicting the movement of a large number of customers in indoor environments has become a
promising and challenging line of research in recent years. While most of the current predicting
approaches that take advantage of mathematical methods perform well in outdoor settings, they
exhibit poor performance in indoor environments. To solve this problem, in this study, a sequential
similarity-based prediction approach which combines the spatial and semantic contexts into a unified
framework is proposed. We first present a revised Longest Common Sub-Sequence (LCSS) algorithm
to compute the spatial similarity of the indoor trajectories, and then a novel algorithm considering
the indoor semantic R-tree is proposed to compute the semantic similarities; after this, a unified
algorithm is considered to group the trajectories, and then the clustered trajectories are used to train
the prediction models. Extensive performance evaluations were carried out on a real-world dataset
collected from a large shopping mall to validate the performance of our proposed method. The
results show that our approach markedly outperforms the baseline methods and can be used in
real-world scenarios.

Keywords: indoor trajectory; spatial similarity; semantic similarity; trajectory clustering; indoor
location prediction

1. Introduction

While a large number of studies focusing on outdoor trajectory prediction have been
carried out [1], research has shown that people tend to spend over 87% of their lifetime in
indoor environments such as dwellings, grocery stores, airplane terminals and conference
offices [2,3]. However, few studies have performed detailed analyses of the indoor trajectory
prediction problem which is crucial to the location-based services for human beings.

One of the main reasons is that the indoor positioning technique is immature [4], which
leads to an insufficient amount of appropriate experimental data. The Global Positioning
System (GPS) technology which is efficient in outdoor scenarios cannot accurately identify
the whereabouts of a user in an indoor environment due to severe signal blocking and the
complicated multi-path effects, leading to the localization performance declining greatly [5].
Different from GPS, the indoor positioning products such as Wi-Fi-based devices can
only record users’ positions in the range of activation, and users’ precise locations cannot
be captured if users walk away from the activation range. Because it is impractical to
deploy positioning devices everywhere, it is hard to track objects at any place in the indoor
environment. Another reason for this is that unlike in outdoor environments where people
only need to follow a road map, users face multiple features (e.g., elevators, doors, stores,
and corridors) in indoor settings, making it hard to precisely predict users’ movements in a
meaningful way.

Nowadays, with the development of indoor positioning technologies, such as iBeacon [6],
radio frequency identification (RFID) [5], Bluetooth [7], Wi-Fi [8] and the prevalence of
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Wi-Fi-enabled mobile products, indoor trajectory prediction, which is a promising research
field, gradually attracts much more attention. It provides users with flexible services that
can be used in location recommendation, movement reconstruction, coupon promotion, and
the provision of security services. For example, by being aware of the movement in advance,
vendors can quickly target possible shoppers and push advertisements through online
advertisement systems, which makes it possible to boost their sales even before customers
physically approach the store. Moreover, through this application, pedestrian flow in the
shopping mall can be predicted, making it possible to avoid traffic blocks and maximize
the effect of shopping coupon promotion. Last but not least, through the indoor prediction
system, managers can rearrange workers to achieve a much more efficient operation.

According to the prediction strategy, existing methods can be roughly classified into
two groups: individual-based and global-based approaches. The individual-based pre-
diction model assumes that an individual’s movement is independent of the others, and
we can only use the movement history of the user themselves to predict their future
locations [9,10]. Global-based prediction models mainly focus on solving the prediction
problem by utilizing the historical movement data of all users to predict a specific user’s fur-
ther location [11]. Data-mining techniques such as recurrent neural network (RNN) [12,13],
association rule [14,15] and layered Hidden Markov model (LHMM) [16] have been exten-
sively studied. Though the majority of the aforementioned approaches focus on the spatial
aspect, they fall short in describing the unique semantic feature of indoor trajectories, which
leads to the poor performance in indoor trajectory prediction.

Therefore, we propose a novel indoor trajectory prediction model, which concentrates
on the spatial and semantic aspects simultaneously. A large number of real-world datasets
was used to validate the performance of our study. The dataset was collected from about
120,000 anonymous users over a one-year period at a large inner-city shopping mall,
which has seven floors, 67 Wi-Fi access points, and more than 200 stores that belong to
34 categories across 90,000 square meters. Other information such as floor plans and
stores were provided by the owner of the shopping mall. Customers in the mall need to
register for free Wi-Fi service and have to accept the terms and conditions of the service
provider. Finally, there are three kinds of logs in the dataset: a Wi-Fi association log, a
web browsing log, and a web query log. Compared to our previous work [17], in this
study, we focus on the approach of similarity computation rather than model building. The
inter-relationship between spatial similarity and semantic similarity in prediction accuracy
was investigated, which provides us with a better understanding of human movement in
the indoor environment. In conclusion, the contributions of our study are summarized
as follows:

1. A revised LCSS algorithm is proposed to compute the spatial similarities of the indoor
trajectories.

2. Semantic features of the indoor trajectory are investigated and a novel algorithm
utilizing the semantic R-tree is proposed to compute the semantic similarities.

3. Second-order Markov Chain (2-MMC) and k-means algorithms are used to group the
trajectories to improve the accuracy of trajectory prediction.

4. The performance of our model is evaluated on a large-scale shopping mall dataset.
The results imply the advantage of our model against the baseline methods.

Please note that this work is an extended version of our conference paper [18]; com-
pared to the original work, this study has the following improvements: (1) we put forward
a new modeling approach that employs 2-MMC and k-means algorithms to construct the
mobility model and group the trajectories; (2) in the related work part, indoor position-
ing and trajectory cleaning techniques are introduced and discussed in detail; (3) in the
prediction phase, the tested trajectory is compared to the centroid first instead of all the
trajectories; (4) an example of the Wi-Fi access point is illustrated; (5) pseudocodes for the
algorithms such as spatial similarity calculation, semantic similarity calculation, model
building, and predicting are presented and discussed in detail; (6) the features of the dataset
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are discussed in the experimental part; and (7) other affecting factors such as the number of
clusters and orders of Markov models are investigated in the experiment.

The rest of this study is as follows: In Section 2, we present a literature review on
the problem of location prediction. In Section 3, preliminaries about indoor trajectory are
introduced. In Section 4, a novel methodological framework for indoor location prediction
is proposed. In Section 5, the performance of our approach is evaluated and compared
with the baselines. Lastly, in Section 6, we conclude our work, and suggestions for further
studies are presented.

2. Related Work

In this part, research on trajectory prediction will be introduced and the differences
between these works and our study will be discussed.

Indoor localization: Unlike the outdoor Global Positioning System (GPS), indoor posi-
tioning systems have only been mature in recent years and started to emerge in commercial
markets [19]. In [20], various positioning technologies used in indoor environments were
discussed, and a prototype application for users to navigate through the indoor settings
based on the technique of Wi-Fi Received Signal Strength Indicator (RSSI) is proposed.
In [21], an evaluation of possible supervised machine learning algorithms is carried out to
validate their performances in terms of localization accuracy in the indoor environment;
the results show that with the proper selection of algorithms and with a sufficient number
of samples for training, we can achieve accurate indoor positioning. While currently the
majority of Wi-Fi-based positioning techniques concentrate on increasing localization accu-
racy, they overlook the diversity of Wi-Fi signal distributions. The authors of [22] proposed
a new hybrid model based on the concept of Asymptotic Relative Efficiency (ARE) which
exploits signal distributions to strengthen the robustness of the localization systems in
complicated indoor environments. To achieve accurate self-positioning and tracking for
iPhone users in the indoor scenario, a hybrid method between Wi-Fi and pedestrian dead
reckoning (PDR) is provided [23]. In [24], the fingerprint-based positioning algorithms
are investigated and a novel criterion is proposed to help better select the reference points.
In [25], an automated method is introduced for the calibration of Received Signal Strength
(RSS)-fingerprinting-based positioning systems, and a robotic platform is employed to
gather fingerprints; then, the gathered fingerprints are used to train machine learning
models. To improve the accuracy of range-based localization under the condition of non-
line-of-sight in the indoor environment, the authors proposed a localization algorithm by
improving the range accuracy [26].

Existing prediction methods can be roughly classified into two groups based on their
prediction strategies.

Individual-based prediction considers a users’ movement behaviors to be indepen-
dent of each other, so only the trajectories of the specific object itself are used for the
prediction. Regarding the spatial and temporal aspects of trajectory data, time series analy-
sis is first introduced to predict objects’ further locations [9], and then Markov model [27]
and machine learning techniques [28,29] are investigated. In [28], the authors present a
time-ordered vector to model the movement history of customers, while in [29], the authors
proposed a classification tree to model the contextual aspects of the trajectory data. Other
studies focusing on forecasting the further whereabouts of users in the constrained road
networks are also investigated [30,31]. Finally, additional information such as Wi-Fi log [32]
or social data [33] are employed to tackle the trajectory prediction problem. The main
deficiencies of the individual-based prediction algorithms include: (1) the fact that these
methods require long-term trajectory sequences of a certain user which is unrealistic in
practice and (2) these approaches need to build an independent prediction model for each
user which fails in predicting further whereabouts of non-systematic users.

Global-based prediction models solve the trajectory prediction problem by assuming
that users’ moving behaviors tend to follow the crowd to a certain extent. Studies mainly
focus on mining frequent movement patterns and utilizing this global information to predict
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a user’s next location. Machine learning techniques such as Markov models, Apriori, and
recurrent neural networks (RNN) are extensively investigated. For example, an improved
Apriori algorithm is proposed to forecast the whereabouts of a group of shoppers [15]. The
authors of [34] employed a Markov model to transfer trajectory points into conversion
probabilities for trajectory prediction. Based on RNN, a spatial-temporal RNN model was
constructed [12]. However, the aforementioned group-based methods construct prediction
models for all users, overlooking the presence of similar subgroups [35]. To solve this
problem, a visitor prediction approach is proposed in [36]; the model first mines visitors
who are likely to visit the same place, and it then incorporates friends of those visitors, who
are influenced by the visitors’ activities and are likely to follow them. The authors proposed
a novel location prediction method that first considers the trajectories of individuals’
familiar strangers [37].

Apart from the model building, the prediction can also be carried out based on the
forms of domain knowledge (such as the topology of the map, or constraints on the motil-
ity of the people being tracked). For example, (1) with regard to the particle-filtering
techniques, the authors of [38] propose a probabilistic model to cleanse RFID data for
object tracking; a Bayesian inference based algorithm is utilized and a sequential sampler
is proposed to accurately and efficiently clean the RFID data. (2) with regard to proba-
bilistic conditioning techniques, the authors of [39] propose a probabilistic framework
for cleaning the data collected by Radio-Frequency IDentification (RFID) tracking systems;
the model consists of dumping the inconsistent trajectories and assigning to the others a
suitable probability of being the actual one. Probabilistic conditioning is adopted to com-
pute the probabilities. Additionally, a probabilistic cleaning model [40], which treats the
trajectories as events with integrity constraints encoding some knowledge about the map
and the motility characteristics of the monitored objects, is studied to reduce the inherent
uncertainty of trajectory data collected for RFID-monitored objects. (3) With regard to
graph-based techniques, the authors of [41] focus on false negatives in raw indoor RFID
tracking data, and a probabilistic distance-aware graph is proposed which considers the
transition probabilities, the characteristics of indoor topology and RFID readers simultane-
ously to identify false negatives and recover missing information in indoor RFID tracking
data. In [42], the authors propose a sampling technique to interpret RFID data, where a
sequence of readings was generated by a set of objects that simultaneously moved for a
time interval, their method considers readings, and hard and weak integrity constraints
implied by the topology of the floor plan, the capacity of the locations, and the objects’
speeds simultaneously.

Due to the limitations of existing indoor trajectory data, the aforementioned methods
have only experimented on small datasets: a small number of users and only seven access
points were assessed in [43], 2 days’ worth of data points as training data, and 1-day worth
of data points as testing data were used in [34], the time duration of the data was only 48 h
in [16]), and in [44], the dataset was acquired in a limited setting. Different from previous
studies, the dataset we used was collected from the general public in a big shopping mall,
and over 261,369 indoor trajectories were recorded. The dataset provides us with a unique
opportunity to explore the correlation between users’ physical movements and semantic
movements.

3. Preliminaries and Problem Definitions

In this section, important concepts will be introduced first to help understand our
prediction method.

Definition 1 (AP Point). In general, AP point stands for the Wi-Fi access point in the indoor
setting where each AP point has a unique ID and its activation range covers multiple stores. In our
study, each store belongs to a given category. We denote an AP point as APi = {i, Subcategoryi},
where Subcategoryi is a subset of all the store categories.
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In our study, floor plans of the shopping mall were overlaid with access point locations,
and the active ranges of the access points were approximated by Voronoi regions, each
centered on a single access point which encompasses all the points that are closest to it.
In order to correlate user physical movements captured by the access points, we label
each access point with semantics corresponding to its location in the shopping center.
As each access point covers a certain area with signal in the shopping mall, the service
area is approximated by the so called Voronoi cell, in which any location is closest to its
seed location (the access point) than to any other seed location. Once we obtain these
Voronoi cells, we know which shop falls under an AP from the shopping center floor plan
(on average, there are 3.67 shops in each Voronoi cell). We then assign a list of semantic
categories to an access point corresponding to each shop in the region covered by an
access point.

Table 1 is an example of an access point; AP15 covers six stores belonging to the
category of Cafe, Men’s Fashion, General Fashion, General Footwear, Men’s Footwear, and
Underwear. Then, we denote AP15 as AP15 = {15, [Cafe, Men’s Fashion, General Fashion,
General Footwear, Men’s Footwear, Underwear]}

Table 1. Illustration of AP15.

AP Store Name Store Category

AP15

Starbucks Cafe
Armani Men’s Fashion
Bulgari General Fashion
ECCO General Footwear

LOTTUSSE Men’s Footwear
Laperla Underwear

Definition 2 (Trajectory Point). We denote the indoor trajectory point as Pi = {(APn, ti)}.
When a customer logged into a Wi-Fi access point APn at the timestamp ti, n ∈ [1, k], where k is
the total number of Wi-Fi access points.

Definition 3 (Indoor Trajectory). The indoor trajectory T is an ordered sequence of trajectory
points detected in a user’s movement history, where T = {P1, P2, · · · Pm}.

Definition 4 (Trajectory Similarity). Indoor trajectory T1 is similar to T2 if D(T1, T2) ≤ ε, where
D(.) is the distance function and ε is the distance threshold.

In the past few years, the trajectory distance function D(.) has been investigated
extensively and can be defined in various ways. For instance, the authors of [45] studied
examples of trajectory distance functions used for analyzing the movement data from
different objectives. During our background study, there was a set of distance functions
based on string matching such as dynamic time wrapping distance (DTW) [46], longest
common subsequence (LCSS) [47], edit distance for trajectories [48] and Euclidean dis-
tance [49]; these kinds of methods provide a straightforward way to depict trajectory as
a list of time-ordered spatial points. A survey of various distance metrics can be found
in [50]. Although the indoor environment is constrained, it is full of semantic information;
however, few studies to date have considered the influence of semantic features in indoor
environments. Different from the aforementioned algorithms, in this study, we propose a
new distance function that considers the spatial and contextual information simultaneously.

Definition 5 (Indoor Trajectory Prediction:). Given an indoor trajectory T = {P1, P2, · · · Pk},
the goal is to compute the position of Pn+1 in the (n + 1)th timestamp based on the previous
n timestamps.
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In the following sections, we use the terms indoor trajectory and trajectory interchange-
ably unless otherwise specified.

4. The Prediction System

In this part, our indoor trajectory prediction model considering both the spatial and
contextual aspects will be introduced. It is capable of solving the following problems:
(1) How do we define and compute the contextual similarity between trajectories? (2)
How do we group the trajectories and construct the predicting model for the test trajectory
without employing the whole dataset?

4.1. Trajectory Sequence Similarity Calculation

The main part of our prediction approach is to cluster the trajectory sequences. We
hold the assumption that users tend to follow the same movement patterns when their
trajectories are clustered in the same group and vice versa. Our model improves the
prediction accuracy by modeling similar trajectories.

Trajectories in indoor settings contain not only spatial information but also contextual
information. The spatial information is represented by the sequence of time-ordered Wi-Fi
access points the users have logged when moving inside the indoor environment, while
the contextual information describes the store categories in the shopping mall and reflects
the users’ shopping habits to some extent. In our study, we propose a unified framework
that considers spatial and semantic information simultaneously.

Spatial similarity mainly computes the similarity of users’ physical movement se-
quences in the geospatial space. We hold the assumption that when customers move around
in the indoor space, they will share much more common physical movement patterns as the
trajectory sequences become longer. So, we employed the longest common subsequence
(LCSS) to calculate the spatial similarity between indoor trajectories.

Definition 6 (Spatial Similarity). The spatial similarity between two trajectories is defined and
computed as follows:

spaRatio(T, R) =
LCSS(T, R)

min(‖T‖, ‖R‖) (1)

‖T‖ represents the number of Wi-Fi access points in trajectory T and the dynamic
programming method is used to calculate the LCSS between two trajectories; Algorithm 1
presents the detailed procedure.

Lemma 1. The defined spatial ratio function 1 between two trajectories is symmetric, i.e.,

spaRatio(T, R) = spaRatio(R, T) (2)

Proof. As the LCSS algorithm always returns the sub-sequence in common between two
trajectories, and the denominator always returns the minimum length, then the ratio is
always symmetric.

Semantic similarity mainly computes the similarity of contextual information be-
tween the trajectory sequences; the contextual information will reveal users’ shopping
behaviors to some extent.

In practice, based on the functions, an indoor building can be classified into various
sections. For instance, an airport terminal can be divided into check-in, security checking,
waiting room, and boarding sections; a supermarket can be divided into bakery, vegetables,
seafood, meat, and cooked food sections. Generally, users’ physical movements have
strong correlations with the section he/she is currently in [51–53]. For example, in an
airport terminal, the majority of passengers will follow the route of check-in, security
checking, waiting room, and boarding; and in a shopping mall, people will also show
certain navigational hobbies. As shown in Figure 1, a customer first spends some time
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buying shoes; after that he wants to eat something, and then he may enjoy the big hit movie
in the cinema. Through this, we can infer his sequential patterns and so the customer’s
behavior is highly predictable.

Algorithm 1 Spatial similarity calculation.

Input: trajectory sequences T, R
Output: the spatial similarity ratio between T and R

1: a← ‖T‖, b← ‖R‖,
2: Initialize M[a][b] //the matrix that stores the LCSS
3: for i← 1 to a do
4: M[i][0]← 0
5: end for
6: for j← 1 to b do
7: M[0][j]← 0
8: end for
9: for i← 1 to a do

10: for j← 1 to b do
11: max_len←= M[i− 1][j− 1] + 1
12: if max_len < M[i− 1][j] and M[i− 1][j] > M[i][j− 1] then
13: max_len← M[i− 1][j]
14: else if max_len < M[i][j− 1] and M[i− 1][j] > M[i][j− 1] then
15: max_len← M[i][j− 1]
16: end if
17: M[i][j] = max_len
18: end for
19: end for
20: len = min(a, b) // the minimum length of two trajectories
21: Return M[a][b]/len

Footwear

Food Court

Cinema

Figure 1. An example of a user’s movement in a shopping mall. The red squares denote the Wi-Fi
APs; the dashed lines show the movement of the customer.

In our study, a specific semantic location can be covered by multiple access points.
Figure 2 depicts the detailed information about how many access points cover the same
semantic location. For example, the semantic location “P130 Unisex Fashion(MM)” is
covered by 17 Wi-Fi access points.
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Figure 2. Semantic locations w.r.t number of access points.

Based on the semantic-R-Tree, we calculated the semantic similarities by measuring
the correlations between the shop categories. We denote the leaf nodes as semantic labels
which represent the actual stores/sections in the indoor settings. As can be seen from
Figure 3, none leaf nodes represent the location category of the lower-level nodes. The
nodes will represent a larger section when they are at a higher level.

Shopping Mall

Food Sports Cosmetics Jewelry

DQ Starbucks Puma Dior CHOW TAI
FOOK TiffanyNike... ... ...

Figure 3. Location Semantic analysis.

Here, a revised DTW algorithm is utilized to compute the contextual similarity of
trajectories, as shown in Formula (3), Ti and Rj represent the shop category sequences of
trajectories T and R, respectively.

dist(T, R) =


0, m = n = 0
∞, m = 0 or n = 0

dist(Ti, Rj) + min


dist(Ti, Rj−1)
dist(Ti−1, Rj)

dist(Ti−1, Rj−1)
, m 6= 0, n 6= 0

(3)

Definition 7 (Semantic Similarity). The semantic similarity between two trajectories T and R
is defined as:

semRatio(T, R) =
1

1 + dist(T, R)
× mim(m, n)

max(m, n)
(4)

The first part of the formula uses the dynamic time warping (DTW) method to measure
the semantic distance of two trajectories, while it does not take into account the difference
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in trajectory length. The latter part of the formula introduces the trajectory length ratio to
solve the problem that the length of trajectories are not equal. If the trajectories T and R are
the same, then distTR(T, R) is zero, and the result of the formula calculation is 1; that is,
the trajectories are completely similar.

The pseudo-code of the Semantic Similarity Calculation is shown in Algorithm 2. It
first initializes the height of a semantic analysis tree SRT and lowest common ancestor
(LCA) (line 1); it then traverses the semantic analysis tree to obtain its height (line 2). After
calculating the length of indoor trajectory T1 and T2 (line 3), the semantic distances between
the two given trajectories is calculated (lines 4–11).

Algorithm 2 Semantic Similarity Calculation.

Input: two trajectory sequences T, R
semantic analysis R-Tree SRT

Output: the semantic similarity ratio between T and R
1: Initialize height, LCA,
2: height← get_SRT_height(root)
3: m← ‖T‖, n← ‖R‖ //length of trajectory T and R
4: //Compute semantic distances
5: while i ∈ m, j ∈ n do
6: LCA← getLCA(root, pi, pj) //obtain the LCA
7: h← getlevel(LCA, root) // compute the height of LCA
8: dist(Ti, Rj)← h/height
9: end while

10: while i ∈ m do
11: dist(T, R)← dist(Ti, Rj);
12: end while
13: Return semRatio(T, R) = 1

1+dist(T,R) ×
mim(m,n)
max(m,n)

After calculating the spatial and semantic similarities between trajectories, the final
indoor trajectory similarity is superimposed in two parts, which is defined in Formula (5).
Min–max normalization is employed here to solve the problem of differences in spatial and
semantic similarity.

Disttotal(T, R) = α ∗ spaRatio(T, R)−min(spaRatio)
max(spaRatio)−min(spaRatio)

+ (1− α) ∗ semRatio(T, R)−min(semRatio)
max(semRatio)−min(semRatio)

(5)

4.2. Indoor Trajectory Prediction Framework

We define the trajectory prediction problem as follows: Given a user’s trajectory
sequence in the indoor environment, our goal is to predict the location he is going to visit
next. The framework of our approach consists of two parts: (1) Model Building, which finds
the most similar trajectory group and builds the prediction model for the given trajectory,
and (2) Prediction, which forecasts the next location for a specific user.

Model Building Phrase: During the process of model building, our goal is to find the
given user’s trajectory similarity group and construct the prediction model. Since each user
has to compute similarity with all the others, there will be n(n− 1)/2 times of computations
in total. When we have a large number of users, it will be time consuming to conduct the
similarity computation. According to social contagion theory, people tend to be affected by
others and adjust themselves to crowds [54]. According to this philosophy, series subsets
of trajectories are extracted and the tested user’s trajectory similarity group Ci is obtained
by computing its similarity with the centroids in the subsets. The model building process is
shown in Algorithm 3.
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Algorithm 3 Model Building Phase.

Input: Indoor trajectory dataset D, weight coefficient: α
Output: the location prediction model of every user modeli,

Cluster centers: Centroidi
1: m← ||D||
2: Initialize Matrix[m][m]
3: for i← 1 to m do //compute the spatial and semantic similarity of two trajectories
4: for j← i + 1 to m do
5: spaRatio(Ti, Tj)← Obtain spatial similarity between Ti and Tj
6: semRatio(Ti, Tj)← Obtain semantic similarity between Ti and Tj
7: end for
8: end for
9: Compute min(spaRatio), max(spaRatio), min(semRatio), max(semRatio)

10: for i← 1 to m do //compute the trajectory distance matrix
11: for j← i + 1 to m do
12: dist← Disttotal(Ti, Tj)
13: Matrix[i][j]← dist
14: end for
15: end for
16: //obtain the clusters and centroid
17: {Ci}, {Centroidi} = kmeans(Matrix[m][m])
18: //construct the model
19: for T ∈ Ci do
20: model = 2-MMC(T)
21: models.add(model)
22: end for
23: Return Models, Centroidi

Our proposed approach uses the 2-MMC algorithm for constructing the model. The
core of the 2-Markov-based prediction is that the next visiting location of the tested object is
only related to its two previous locations without considering the whole movement history.

We did not employ the standard Markov model because its prediction performance
is not stable and will be affected by the last state badly, where the next location is only
related to the current one. For instance, a customer lives a simple lifestyle of “home→
subway→ workplace” and “workplace→ subway→ Gym”. When his current location is
subway, the standard Markov-based approach will return one place between workplace
and gym as the prediction result, meaning almost half of the overall predictions are wrong.
In contrast, when using the 2-MMC algorithm, we can benefit from his previous location
which is workplace, and the current one is subway; obviously, the next place he will attend
is gym. As can be seen from the above example, 2-MMC performs better without extremely
increasing the state space.

In Markov theory, the probability of moving to a new state depends on the current
state and the transition matrix between states. So, predicting the probability of a user u
visiting a new location at (n + 1)th timestamp given u′s visited location sequence ordered
by his/her check-in timestamps can be depicted as Formula (6).

P(Pn+1 = APn+1|Pn = APn, Pn−1 = APn−1, · · · , P1 = AP1)

= P(Pn+1 = APn+1|Pn = APn) (6)

Based on Equation (6), the chance of a customer going to a new position APi+1 by
considering the first-order Markov Chain can be represented as Formula (7):

Pr(APj|APi) =
F(APi− > APi+1)
n
∑

k=1
F(APi− > APk)

(7)
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As for the second-order Markov model, we will build a larger transition matrix because
there will be many more combinations between the last two history locations and the
probability of moving to a new location considering the last two locations is (Formula (8)):

Pr(APi+1|APi, APi−1) =
F(APi−1, APi− > APi+1)
n
∑

k=1
F(APi−1, APi− > APk)

(8)

where the numerator is the count of single movement from APi−1 to APi+1 in the training
dataset while the denominator represents the sum of the transition trajectories that are
originated from APi−1; n is the total number of Wi-Fi access points.

Predicting phrase: After model building, there is a one-to-one correspondence be-
tween centroids and models. That is, Centroidi corresponds to Modeli. Given a new
customer’s indoor trajectory, the goal is to predict his/her next location with the high-
est possibility. The distances between the given indoor trajectory and centroids are first
calculated to determine which group the trajectory belongs to, and then the correspond-
ing prediction model is employed to forecast the most likely further whereabouts of the
customer. The prediction process of the proposed approach is shown in Algorithm 4.

Algorithm 4 Prediction Process.

Input: tested trajectory T, weight coefficient α
Prediction models:{modeli}
Cluster centroids: {Centroidi}

Output: Set of predicted locations
1: for Centroidi in {Centroidi} do
2: //Compute the similarity between T and Centroidi
3: dist← Disttotal(T, Centroidi)
4: end for
5: //Obtain the most similar Centroidi
6: id = argmax(dist)
7: model = models[id] //model building
8: {locationi} = model(T)
9: return Set of predicted locations

5. Experimental Results and Analysis

In this section, the experiments we performed will be outlined to validate our proposed
algorithm with the dataset collected from a large shopping mall. All algorithms were
implemented in Python 3 and ran on a Windows 10 Pro PC with a 2.90 GHz Core i7-7500U
CPU. A five-fold cross-validation was carried out in the experiments. We split the dataset
into training and testing parts from the perspective of check-in time instead of using a
random partition method. This is because it makes no sense to use the values from the
future to forecast values in the past, and so we will avoid looking further when we train
the model and preserve the relation of temporal dependency between observations.

5.1. Experiment Setup

Data acquisition: The data were collected from about 120,000 anonymized users over
1 year period at a large inner-city shopping center with seven floors and 67 Wi-Fi access
points across 90,000 square meters. Customers can register for free Wi-Fi services and have
to accept the terms and conditions of the service provider. According to the mall operator,
the mall consists of more than 200 stores that belong to 34 shop categories. Details about
the dataset are shown in Table 2.
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Table 2. Brief overview of the dataset.

Item Value

APs 67
associations 907,084

shops 200
shop categories 34

trajectories 261,369

An example of the trajectory points is shown in Table 3.

Table 3. An example of the trajectory points.

tra_id ap_Name Association_Time Disassociation_Time

7BTAVNC wap013 9/5/20:57 9/5/21:17
7BTAVNC wap023 9/5/20:52 9/5/20:57
7BTAVNC wap048 9/5/20:47 9/5/20:52

According to the layout of the shopping mall, the proximal areas of the 67 access
points (covering over 200 stores) belong to more than 30 categories (e.g., Sports, Books,
Entertainment, and Drinks) and can be categorized into three main categories, Retail, Food,
and Navigational, which have 46, 11, and 10 Wi-Fi access points, respectively. Detailed
analyses of each category with reference to the accessed times are shown in Table 4.

Table 4. Access times w.r.t each store category

Store Category % Access Times Average Duration (h)

Food 23% 1.39
Retail 70% 2.29

Navigational 7% 1.00
Total 100% 2.77

Data Processing: Our dataset was collected through Wi-Fi positioning; due to the un-
stable mobile terminal signal, abnormal, erroneous, and invalid data were easily generated.
We consider the following two kinds of trajectory points as noise points:

1. Abnormal time points: If the sampling interval of two adjacent trajectory points was
0 s, it was considered as an abnormal time trajectory point.

2. Abnormal floor points: If a trajectory point was not in the study area or jumped
between different floors in a short time period, it was considered as an abnormal point.

Figure 4 depicts the trend about the number of trajectories w.r.t the length. We omit the
trajectories whose lengths are smaller than three, as they are too short to convey meaningful
visiting hobbies. As can be seen from the figure, more than 90% of the trajectories tend to
access three to nine Wi-Fi access points.

We analyzed the retention time of all users’ login data; as can be seen from Figure 5, the
majority of customers tend to spend less than thirty minutes in an area which corresponds
to their shopping behaviors.
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Figure 5. Distribution: Duration of stay.

Parameters: Table 5 summarizes the complete set of the parameters that we used in
the experiments. A parameter was set to the default value where any other parameter was
being varied.
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Table 5. Parameters that we used in our experiments.

Parameter Values Default

number of groups (N) 5, 10, 15, 20, 25, 30 20
weight coefficient (α) 0.9, 0.8, 0.7, · · · , 0 0.4
number of correct predicted locations (k) 1, 3, 5, 7, 9 -
order of markov model (r) 1, 2, 3, 4, 5 2

Evaluation Metrics: In this study, our indoor trajectory predicting model ranks each
candidate (i.e., Wi-Fi access point) concerning a target trajectory and returns the top-k
highest locations as prediction results to the tested trajectory. The metric Accuracy@k was
employed to validate the quality of the proposed method.

• Accuracy@K: This measures how close our predicted location is to the true location of
the tested trajectory.

Accuracy@k =
number o f locations correctly predicted

total number o f test locations
(9)

Note that we did not employ mean absolute error (MAE) as our performance metric in
the experiments. The reason is that MAE is a measure of the deviation of recommendations
from the true user-specified values. However, in our problem, users have no ratings with
regard to the next location and the metric is not suitable for our problem.

Comparative methods: We compare our model with the following baseline methods
to verify the effectiveness of our spatial-contextual-based method.

1. HMM, which is extensively used in human movement prediction [55].
2. LHMM is a layered mechanism for modeling the spatial-temporal trajectory se-

quences [16].
3. MMC, which is effective in time-ordered sequence prediction [56].

5.2. Experimental Results

In this part, we will evaluate the performances of our indoor trajectory prediction
model. The effect of the weight coefficient α is first investigated, and then the influence of
group number is studied; after this, the order of Markov model to the prediction accuracy
is tested. Finally, the proposed spatial-contextual similarity-based prediction approach is
compared with the baseline methods.

5.2.1. The Influence of Weight Coefficient

The weight coefficient α is mainly used to validate the influence of spatial and con-
textual similarity on the performance of prediction accuracy. During the experiment, we
tested and found the optimal value for parameter α from [0, 0.1, 0.2, · · · , 1]. When α is set
to 0 or 1, it means only the spatial or the contextual similarity is considered to affect the
trajectory prediction results.

Figure 6 depicts the influence of coefficient α on the performance metric Accuracy@k.
When parameter k ∈ {1, 3, 5, 7, 9}, the prediction accuracy first shows an increasing
and then decreasing trend. Our method exhibits a relatively high performance when
0.3 ≤ α ≤ 0.7. When α = 0.4, Accuracy@5 achieved 58.2% with improvements of 20.8% and
18.3% compared to α = 0 and α = 1, respectively, implying that both the spatial similarity
and contextual similarity contributed to the prediction accuracy.
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Figure 6. Influence of weight coefficient α on prediction accuracy.

5.2.2. Effect Analysis of the Number of Clusters

Because the number of the tested trajectory similarity groups impacts the performance
of our method, we employed parameter N to represent the number of clustered groups
and observe the changes in performance metric accuracy@k under different settings of N.
Figure 7 shows the results.
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Figure 7. Impact of group number on prediction accuracy.

Initially, with the increment of groups, the prediction accuracy increases gradually.
We infer that the reason is that at the early beginning there are too many trajectories in
the group and the prediction performance of our model may be interfered by the data
noise, so with the decrease in data noises, the prediction accuracy rises. When N = 20, the
prediction accuracy achieves the best score, 3%, 3.9%, and 5.7% for P@1, P@3, and P@5,
respectively. However, after this, the prediction accuracy shows a trend of decreasing. The
reason may be that with the increment of parameter N, the model of the test trajectory has
fewer references to make accurate predictions. However, we claim that even though in our
experiment the highest prediction accuracy is achieved when N = 20, the optimal value
for N varies according to different datasets. Because N represents the balance between the
positive information and the data noise, the strength of social contagion and interference
varies for datasets [54].
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5.2.3. Influence of Markov Order

We validated the influence of Markov order on the prediction accuracy of our algo-
rithm, and the results are shown in Figure 8. As can be seen from the figure, when the
order of the Markov model increases from one to two, the prediction accuracy increases
greatly, our model achieves prediction accuracies of 29%, 39% and 58% for p@1, p@3 and
p@5, respectively. However, after that, the prediction accuracy declines gradually.
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Figure 8. Influence of Markov order to prediction accuracy.

We infer that the reason is that, for the first-order Markov model, its prediction ability
is affected badly by the last state, where the prediction is only made in the last state, leading
to unsatisfactory prediction performances. For the higher-order Markov models, there is
a possibility that the tested trajectory cannot find a pattern to match, and that the model
will not return prediction results for the given tested trajectory. Since constructing the
high-order Markov model is time consuming and the prediction ability has not improved,
we just employ the second-order Markov model in our experiments.

5.2.4. Baseline Comparison

To validate the efficiency of our proposed method, it was compared with three baseline
methods. We set the coefficient α and cluster number N to 0.4 and 20, respectively, as a
default. As can be concluded from Figure 9, we ascertain that our method performs the best
where the precision of our approach can be improved by 66∼98%, 14∼72% and 28∼70%
for P@1, P@3, and P@5, respectively, compared with the baseline methods.

The reason for this may be that the comparing approaches take the trajectory prediction
problem as a time-ordered sequential modeling issue and the similarity between trajecto-
ries is not taken into consideration. Moreover, the contextual information in the indoor
environment is also an important factor for the trajectory prediction problem which none
of the baseline methods have considered. In general, our method significantly outperforms
the baseline methods in terms of prediction accuracy.
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6. Conclusions and Further Work

Precise and robust trajectory prediction plays a critical role in indoor location-based
services, especially in large shopping malls. For instance, predicting the next store to be
visited by a customer as well as providing information about the store to the user not only
offers a personalized shopping experience but also makes it possible to boost sales even
before the customer physically approaches the store.

In this paper, we first consider the spatial and contextual similarities of indoor trajec-
tories, and a revised LCSS and a novel semantic R-tree-based algorithm are proposed to
compute the similarity between trajectories. Then, we classify and group the trajectories by
employing the K-means algorithm according to the similarity matrix and construct the pre-
dicting model based on the 2-MMC algorithm. We evaluated our approach on a real-world
indoor trajectory dataset. The experiment results show that our model outperforms the
baseline methods remarkably in prediction accuracy.

To this end, we summarize the advantages of our method as follows: (1) We put forward
a semantic_RTree-based algorithm to simulate users’ semantic movements. (2) Through the
similarity-based approach, we have gained a better understanding of the inter-relationship
between spatial and semantic aspects on the performance of trajectory prediction. (3) Our
method provides us with an insight into the prediction accuracy and the size of the training
data. (4) It is efficient to group the trajectories rather than compare the test trajectory with
all the other trajectories in the database. However, there are still limitations in this study:
(1) Though we used a dataset for the shopping mall, the effectiveness of our method for other
indoor environments is unclear. (2) We still do not have a clear understanding of how the
temporal aspects such as retention time will affect the prediction accuracy.

Future studies could potentially (1) use more types of indoor trajectory data to verify
the model, such as trajectories in the airport or in the hospital or (2) integrate more factors
to enhance the robustness of our model, such as temporal factors.
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