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Abstract: Due to the complexity and uncertainty of objective things, interval-valued intuitionistic
fuzzy (I-VIF) numbers are often used to describe the attribute values in multiple-attribute decision
making (MADM). Sometimes, there are correlations between the attributes. In order to make the
decision-making result more objective and reasonable, it is often necessary to take the correlation
factors into account. Therefore, the study of MADM based on the correlations between attributes
in the I-VIF environment has important theoretical and practical significance. Thus, in this paper,
we propose new operators (AOs) for I-VIF information that are able to reflect the completeness
of the information, attribute relevance, and the risk preference of decision makers (DMs). Firstly,
we propose some new AOs for I-VIF information, including I-VIF generalized Heronian mean
(I-VIFGHM), I-VIF generalized weighted Heronian mean (I-VIFGWHM), and I-VIF three-parameter
generalized weighted Heronian mean (I-VIFTPGWHM). The properties of the obtained operators,
including their idempotency, monotonicity, and boundedness are studied. Furthermore, an MADM
method based on the I-VIFGWHM operator is provided. Finally, an example is provided to explain
the rationality and feasibility of the proposed method.

Keywords: interval-valued intuitionistic fuzzy generalized Heronian mean; interval-valued intuition-
istic fuzzy generalized weighted Heronian mean; interval-valued intuitionistic fuzzy three-parameter
generalized weighted Heronian mean; multiple-attribute decision making

1. Introduction

MADM is an important branch of modern decision-making theory [1]. Its theory and
method are widely used in many fields, such as those related to the economy, management,
engineering, and the military [1–21]. Effective attribute value integration is a core problem
of MADM. Scholars have developed many AOs [22–28]. The generalized mean (GM) was
proposed as a connective operator by Dyckhoff and Pedrycz [28]. This operator makes it
easy to model the compensation degree, naturally including the minimum and maximum
operators along with the arithmetic and geometric means as special examples. The GM can
not only express the preferences of the DMs, but it can also take the decision information
from the perspective of the whole into account. Therefore, scholars have paid attention to
GM research.

With the increasing complexity of the social and economic environment, the decision-
making problems that are experienced in various fields of people’s lives and during pro-
duction are becoming more and more complex. It is often difficult for DMs to provide
evaluation information in the form of an accurate value. Zadel put forward the fuzzy
set concept, which states the uncertainty and fuzziness of things through membership.
Subsequently, Atanassov developed the fuzzy set and put forward the concept of the
intuitionistic fuzzy set, which describes the uncertainty and fuzziness of things through
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the non-membership degree and membership degree. Because of the complicacy and
nondeterminacy of things, it is sometimes difficult to express the non-membership degree
and membership degree of intuitionistic fuzzy sets using real values, and it is more suitable
to express them in the form of interval-valued numbers [27]. Therefore, Atanassov and
Gargov [29] extended the intuitionistic fuzzy set to the I-VIF set, and then the concepts
of the I-VIF number, score function of the I-VIF number, and exact function of the I-VIF
number were put forward [30]. With the introduction of I-VIF number ranking method [30],
the I-VIF information MADM method has become more and more important. Garg [31]
presented a new generalized improved score function and an I-VIF set-based method to
solve the MCDM problem. Wei [32] proposed two new entropy measures based on the
cosine function for intuitionistic fuzzy sets and I-VIF sets, which were applied to solve
multi-criteria fuzzy group decision-making problems.

At present, many AOs assume that attributes are mutually independent. In real
decisions, however, attributes are often interrelated. Therefore, more and more experts
and scholars study the MADM with interrelated attributes. The Heronian mean AO is an
important AO that considers the correlations between attributes. Wu [33] produced some
Dombi Heronian mean AOs with I-VIF numbers and two MADM methods based on the
I-VIF-weighted Dombi Heronian mean AO and interval-valued intuitionistic-weighted
Dombi geometric Heronian mean AO. Yu [34] proposed a generalized I-VIF Heronian mean
and a MCDM method based on this operator. Zang [35] proposed the interval-valued dual
hesitant fuzzy Heronian mean AO and the interval-valued dual hesitant fuzzy geometric
Heronian mean AO.

Therefore, the study of MADM based on the correlations between attributes in the
I-VIF environment has important theoretical and practical significance. Thus, in this paper,
we propose some new AOs for I-VIF information, including the I-VIFGHM, I-VIFGWHM,
and I-VIFTPGWHM. They have the virtues of both the Heronian mean and the GM and can
reflect the completeness of information, attribute relevance, and the risk preference of DMs.

The rest of the article is described below. In Section 2, some basic notions are intro-
duced. In Section 3, some new AOs for I-VIF information are proposed, including the
I-VIFGHM, I-VIFGWHM, and I-VIFTPGWHM. The properties of the obtained operators
are studied, including their idempotency, monotonicity and boundedness. In Section 4, the
MADM method based on the I-VIFGWHM operator is provided, and using an example,
the proposed method is compared with the existing MADM methods. In Section 5, we
provide a summary and prospects for future work.

2. Preliminaries

Definition 1. [29] Let Z be a nonempty set, and E =
{〈

z, θE(z), ϑE(z)
〉∣∣z ∈ Z

}
be the I-VIF set,

where θE(z), ϑE(z) ⊂ [0, 1], and supθE(z) + supϑE(z) ≤ 1, z ∈ Z.

If supθE(z) = infθE(z) and supϑE(z) = in f ϑE(z), then the I-VIF sets degenerate into
intuitionistic fuzzy sets.

Definition 2. [30] Let Z be a nonempty set, E =
{〈

z, θE(z), ϑE(z)
〉∣∣z ∈ Z

}
be a I-VIF set, and(

θE(z), ϑE(z)
)

be the I-VIF number and be abbreviated as ([χ, δ], [η, κ]), where [χ, δ], [η, κ] ⊂ [0, 1]
and δ + κ ≤ 1.

Definition 3. [30] Let α = ([χ, δ], [η, κ]), α1 = ([χ1, δ1], [η1, κ1]), and α2 = ([χ2, δ2], [η2, κ2])
be three I-VIF numbers, λ > 0, creating the following algorithms:

(1) α1 ⊕ α2 = ([χ1 + χ2 − χ1χ2, δ1 + δ2 − δ1δ2], [η1η2, κ1κ2])
(2) α1 ⊗ α2 = ([χ1χ2, δ1δ2], [η1 + η2 − η1η2, κ1 + κ2 − κ1κ2])

(3) λα =
([

1− (1− χ)λ, 1− (1− δ)λ
]
,
[
ηλ, κλ

])
(4) αλ =

([
χλ, δλ

]
,
[
1− (1− η)λ, 1− (1− κ)λ

])
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Theorem 1. [30] Let α = ([χ, δ], [η, κ]), α1 = ([χ1, δ1], [η1, κ1]), and α2 = ([χ2, δ2], [η2, κ2] be
three I-VIF numbers, and let all of the operation results in Definition 3 continue to be I-VIF numbers.

Theorem 2. [30] Let α = ([χ, δ], [η, κ]), α1 = ([χ1, δ1], [η1, κ1]), and α2 = ([χ2, δ2], [η2, κ2]) be
three I-VIF numbers, λ, λ1, λ2 ≥ 0, meaning that the following algorithms hold:

(1) Commutative law α1 ⊕ α2 = α2 ⊕ α1, α1 ⊗ α2 = α2 ⊗ α1;
(2) Distributive law λ(α1 ⊕ α2) = λα1 ⊕ λα2, (α1 ⊗ α2)

λ = αλ
1 ⊗ αλ

2 ;
(3) Associative law λ1α⊕ λ2α = (λ1 + λ2)α, αλ1 ⊗ αλ2 = (α)λ1+λ2 .

To rank the I-VIF numbers, Xu [30] introduced the score function s(α) = (χ− δ + η − κ)/2
and exact function h(α) = (χ + δ + η + κ)/2 to calculate the score and accuracy of the I-VIF
number α = ([χ, δ], [η, κ]), resulting in the order relationship between two I-VIF numbers,
α1 and α2:

Definition 4. [30] Let any two I-VIF numbers be α1 and α2, and then

(1) If s(α1) < s(α2), then α1 < α2;
(2) If s(α1) = s(α2), then

(i) If h(α1) < h(α2), then α1 < α2;
(ii) If h(α1) = h(α2), then α1 ∼ α2.

3. Some New Aggregation Operators for I-VIF Information

In this section, we propose some new AOs for I-VIF information, including the
I-VIFGHM, I-VIFGWHM, and I-VIFTPGWHM.

Definition 5. Let z1, z2, · · · , zn be a set of nonnegative real numbers, where s, t ∈ R and,

t 6= 0, wi(i = 1, 2, · · · , n) is the weight of zi, and wi ≥ 0,
n
∑

i=1
wi = 1. Then

GWHMs,t(z1, z2, · · · , zn) =


1
λ

n

∑
i, j = 1

j = i

(
wizs

i + wjzs
j

)t/s


1/t

(1)

is the generalized weighted Heronian mean, where λ =
n
∑

i,j=1,j=i

(
wi + wj

)t/s.

Definition 6. Let αi = ([φi, fi], [gi, hi]), i = 1, 2, · · · , n be a set of I-VIF numbers, θ, ϑ > 0, s, t ∈ R,
and s, t 6= 0. Then,

I−VIFGHMs,t(α1, α2, · · · , αn) =

 2
n(n + 1)

n
⊕

i, j = 1
j = i

(
θ

θ + ϑ
αs

i ⊕
ϑ

θ + ϑ
αs

j

)t/s


1/t

(2)

is the I-VIFGHM.

Theorem 3. Let αi = ([φi, fi], [gi, hi]), i = 1, 2, · · · , n be a set of I-VIF numbers. If θ, ϑ > 0, s, t ∈ R,
and s, t 6= 0, then the result aggregated by the I−VIFGHM operator is still an I-VIF number, and
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I−VIFGHMs,t(α1, α2, · · · , αn) =

 2
n(n+1)

n
⊕

i, j = 1
j = i

(
θ

θ+ϑ αs
i ⊕

ϑ
θ+ϑ αs

j

)t/s


1
t

=






1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

i
)θ/(θ+ϑ)

(
1− φs

j

)ϑ/(θ+ϑ)
]t/s

}

2/n(n+1)


1/t

,


1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

i
)θ/(θ+ϑ)

(
1− f s

j

)ϑ/(θ+ϑ)
]t/s

}

2/n(n+1)


1/t



1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gi)

s]θ/(θ+ϑ)
[
1−

(
1− gj

)s
]ϑ/(θ+ϑ)

}t/s
}

2/n(n+1)


1/t

,

1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hi)

s]θ/(θ+ϑ)
[
1−

(
1− hj

)s
]ϑ/(θ+ϑ)

}t/s
}

2/n(n+1)


1/t





.

Proof. Using the operation laws of the I-VIF number, we obtain

αs
j =

([
φs

j , f s
j

]
,
[
1−

(
1− gj

)s, 1−
(
1− hj

)s
])

, αs
i =

(
[φs

i , f s
i ],
[
1− (1− gi)

s, 1− (1− hi)
s]),

θ

θ + ϑ
αs

i =
([

1− (1− φs
i )

θ/(θ+ϑ), 1− (1− f s
i )

θ/(θ+ϑ)
]
,
[(

1− (1− gi)
s)θ/(θ+ϑ),

(
1− (1− hi)

s)θ/(θ+ϑ)
])

ϑ

θ + ϑ
αs

j =

([
1−

(
1− φs

j

)ϑ/(θ+ϑ)
, 1−

(
1− f s

j

)ϑ/(θ+ϑ)
]

,
[(

1−
(
1− gj

)s
)ϑ/(θ+ϑ)

,
(

1−
(
1− hj

)s
)ϑ/(θ+ϑ)

])
θ

θ+ϑ αs
i ⊕

ϑ
θ+ϑ αs

j

=


[

1−
(
1− φs

i
)θ/(θ+ϑ)

(
1− φs

j

)ϑ/(θ+ϑ)
, 1−

(
1− f s

i
)θ/(θ+ϑ)

(
1− f s

j

)ϑ/(θ+ϑ)
]

,[(
1− (1− gi)

s)θ/(θ+ϑ)
(

1−
(
1− gj

)s
)ϑ/(θ+ϑ)

,
(
1− (1− hi)

s)θ/(θ+ϑ)
(

1−
(
1− hj

)s
)ϑ/(θ+ϑ)

]


then(
θ

θ+ϑ αs
i ⊕

ϑ
θ+ϑ αs

j

)t/s

=



[(
1−

(
1− φs

i
)θ/(θ+ϑ)

(
1− φs

j

)ϑ/(θ+ϑ)
)t/s

,
(

1−
(
1− f s

i
)θ/(θ+ϑ)

(
1− f s

j

)ϑ/(θ+ϑ)
)t/s

]
,

1−
(

1−
(
1− (1− gi)

s)θ/(θ+ϑ)
(

1−
(
1− gj

)s
)ϑ/(θ+ϑ)

)t/s
,

1−
(

1−
(
1− (1− hi)

s)θ/(θ+ϑ)
(

1−
(
1− hj

)s
)ϑ/(θ+ϑ)

)t/s




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and
n
⊕

i, j = 1
j = i

(
θ

θ+ϑ αs
i ⊕

ϑ
θ+ϑ αs

j

)t/s

=





1−
n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

i
)θ/(θ+ϑ)

(
1− φs

j

)ϑ/(θ+ϑ)
]t/s

}
,

1−
n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

i
)θ/(θ+ϑ)

(
1− f s

j

)ϑ/(θ+ϑ)
]t/s

}


,



n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gi)

s]θ/(θ+ϑ)
[
1−

(
1− gj

)s
]ϑ/(θ+ϑ)

}t/s
}

,

n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hi)

s]θ/(θ+ϑ)
[
1−

(
1− hj

)s
]ϑ/(θ+ϑ)

}t/s
}




that is, 2

n(n + 1)
n
⊕

i, j = 1
j = i

(
θ

θ + ϑ
αs

i ⊕
ϑ

θ + ϑ
αs

j

)t/s

=





1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

i
)θ/(θ+ϑ)

(
1− φs

j

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)

,

1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

i
)θ/(θ+ϑ)

(
1− f s

j

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)


,




n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gi)

s]θ/(θ+ϑ)
[
1−

(
1− gj

)s
]ϑ/(θ+ϑ)

}t/s
}

2
n(n+1)

,


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hi)

s]θ/(θ+ϑ)
[
1−

(
1− hj

)s
]ϑ/(θ+ϑ)

}t/s
}

2
n(n+1)




and then,
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 2
n(n+1)

n
⊕

i, j = 1
j = i

(
θ

θ+ϑ αs
i ⊕

ϑ
θ+ϑ αs

j

)t/s


1/t

=






1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

i
)θ/(θ+ϑ)

(
1− φs

j

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)



1/t

,


1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

i
)θ/(θ+ϑ)

(
1− f s

j

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)



1/t




1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gi)

s]θ/(θ+ϑ)
[
1−

(
1− gj

)s
]ϑ/(θ+ϑ)

}t/s
}

2
n(n+1)



1/t

,

1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hi)

s]θ/(θ+ϑ)
[
1−

(
1− hj

)s
]ϑ/(θ+ϑ)

}t/s
}

2
n(n+1)



1/t




Since

0 ≤


1−


n

∏
i, j = 1

j = i

{
1−

[
1− (1− f s

i )
θ/(θ+ϑ)

(
1− f s

j

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)



1/t

≤ 1,

0 ≤


1−


n

∏
i, j = 1

j = i

{
1−

[
1− (1− φs

i )
θ/(θ+ϑ)

(
1− φs

j

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)



1/t

≤ 1,

0 ≤ 1−


1−


n

∏
i, j = 1

j = i

{
1−

{
1−

[
1− (1− gi)

s]θ/(θ+ϑ)
[
1−

(
1− gj

)s
]ϑ/(θ+ϑ)

}t/s
}

2
n(n+1)



1/t

≤ 1,
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0 ≤ 1−


1−


n

∏
i, j = 1

j = i

{
1−

{
1−

[
1− (1− hi)

s]θ/(θ+ϑ)
[
1−

(
1− hj

)s
]ϑ/(θ+ϑ)

}t/s
}

2
n(n+1)



1/t

≤ 1.

and, for all i = 1, 2, · · · , n, [φi, fi], [gi, hi] ⊂ [0, 1], fi + hi ≤ 1, we obtain

0 ≤


1−


n

∏
i, j = 1

j = i

{
1−

[
1− (1− f s

i )
θ/(θ+ϑ)

(
1− f s

j

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)



1/t

+1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hi)

s]θ/(θ+ϑ)
[
1−

(
1− hj

)s
]ϑ/(θ+ϑ)

}t/s
}

2
n(n+1)



1/t

≤


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hi)

s]θ/(θ+ϑ)
[
1−

(
1− hj

)s
]ϑ/(θ+ϑ)

}t/s
}

2
n(n+1)



1/t

+1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hi)

s]θ/(θ+ϑ)
[
1−

(
1− hj

)s
]ϑ/(θ+ϑ)

}t/s
}

2
n(n+1)



1/t

= 1.

The proof is complete. �
Next, we will determine some properties of the I−VIFGHM operator.

Property 1. (Idempotency) Suppose that αi = α = ([φ, f ], [g, h]) and θ, ϑ > 0, s, t ∈ R, s, t 6= 0.
Then,

I−VIFGHMs,t(α1, α2, · · · , αn) = I−VIFGHMs,t(α, α, · · · , α)

=

 2
n(n+1)

n
⊕

i,j=1
j=i

(
θ

θ+ϑ αs ⊕ ϑ
θ+ϑ αs

)t/s


1
t

=

 2
n(n+1)

n
⊕

i,j=1
j=i

αt
(

θ
θ+ϑ ⊕

ϑ
θ+ϑ

)t/s


1
t

= α.

Property 2. (Monotonicity) Let αi = ([φαi , fαi ], [gαi , hαi ]), βi =
([

φβi , fβi

]
,
[
gβi , hβi

])
i = 1, 2, · · · , n be two sets of I-VIF numbers, where φαi ≤ φβi , fαi ≤ fβi , gαi ≥ gβi , hαi ≥ hβi ,
i = 1, 2, · · · , n. I f θ, ϑ > 0, s, t ∈ R, and s, t > 0; then,

I−VIFGHMs,t(α1, α2, · · · , αn) ≤ I−VIFGHMs,t(β1, β2, · · · , βn).

Proof. On the one hand, if 0 ≤ φαi ≤ φβi ≤ 1, i = 1, 2, · · · , n, s > 0, then φs
αi
≤ φs

βi
, and

since 0 ≤ θ
θ+ϑ , ϑ

θ+ϑ ≤ 1, we obtain
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1− φs
αi
≥ 1− φs

βi
≥ 0, 1− φs

αj
≥ 1− φs

β j
≥ 0,

(
1− φs

αi

)θ/(θ+ϑ)
≥
(

1− φs
βi

)θ/(θ+ϑ)
≥ 0,(

1− φs
αj

)ϑ/(θ+ϑ)
≥
(

1− φs
β j

)ϑ/(θ+ϑ)
≥ 0;

1 ≥
(

1− φs
αi

)θ/(θ+ϑ)(
1− φs

αj

)ϑ/(θ+ϑ)
≥
(

1− φs
βi

)θ/(θ+ϑ)(
1− φs

β j

)ϑ/(θ+ϑ)
≥ 0,

0 ≤ 1−
(

1− φs
αi

)θ/(θ+ϑ)(
1− φs

αj

)ϑ/(θ+ϑ)
≤ 1−

(
1− φs

βi

)θ/(θ+ϑ)(
1− φs

β j

)ϑ/(θ+ϑ)
≤ 1,[

1−
(

1− φs
αi

)θ/(θ+ϑ)(
1− φs

αj

)ϑ/(θ+ϑ)
]t/s
≤
[

1−
(

1− φs
βi

)θ/(θ+ϑ)(
1− φs

β j

)ϑ/(θ+ϑ)
]t/s

,

1−
[

1−
(

1− φs
αi

)θ/(θ+ϑ)(
1− φs

αj

)ϑ/(θ+ϑ)
]t/s
≥ 1−

[
1−

(
1− φs

βi

)θ/(θ+ϑ)(
1− φs

β j

)ϑ/(θ+ϑ)
]t/s

,

n

∏
i, j = 1,

j = i

{
1−

[
1−

(
1− φs

αi

)θ/(θ+ϑ)(
1− φs

αj

)ϑ/(θ+ϑ)
]t/s

}
≥

n

∏
i, j = 1,

j = i

{
1−

[
1−

(
1− φs

βi

)θ/(θ+ϑ)(
1− φs

β j

)ϑ/(θ+ϑ)
]t/s

}

then 
n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

αi

)θ/(θ+ϑ)(
1− φs

αj

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)

≥


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

βi

)θ/(θ+ϑ)(
1− φs

β j

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)

,

Therefore,

1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

αi

)θ/(θ+ϑ)(
1− φs

αj

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)

≤ 1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

βi

)θ/(θ+ϑ)(
1− φs

β j

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)

.
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resulting in
1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

αi

)θ/(θ+ϑ)(
1− φs

αj

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)



1/t

≤


1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

βi

)θ/(θ+ϑ)(
1− φs

β j

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)



1/t (3)

Similarly, it can be determined that
1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

αi

)θ/(θ+ϑ)(
1− f s

αj

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)



1/t

≤


1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

βi

)θ/(θ+ϑ)(
1− f s

β j

)ϑ/(θ+ϑ)
]t/s

}

2
n(n+1)



1/t (4)

On the other hand, for all i = 1, 2, · · · , n since 1 ≥ gαi ≥ gβi ≥ 0, then 1− gαj ≤ 1− gβ j ,

and since θ, ϑ, s, t > 0, then (1− gαi )
s ≤

(
1− gβi

)s, 1 − (1− gαi )
s ≥ 1 −

(
1− gβi

)s,[
1− (1− gαi )

s] θ
θ+ϑ ≥

[
1−

(
1− gβi

)s
] θ

θ+ϑ ,

[
1− (1− gαi )

s] θ
θ+ϑ

[
1−

(
1− gαj

)s] ϑ
θ+ϑ ≥

[
1−

(
1− gβi

)s
] θ

θ+ϑ
[
1−

(
1− gβ j

)s] ϑ
θ+ϑ

,

1−
[
1− (1− gαi )

s] θ
θ+ϑ

[
1−

(
1− gαj

)s] ϑ
θ+ϑ ≤ 1−

[
1−

(
1− gβi

)s
] θ

θ+ϑ
[
1−

(
1− gβ j

)s] ϑ
θ+ϑ

,{
1−

[
1− (1− gαi )

s] θ
θ+ϑ

[
1−

(
1− gαj

)s] ϑ
θ+ϑ

}t/s

≤
{

1−
[
1−

(
1− gβi

)s
] θ

θ+ϑ
[
1−

(
1− gβ j

)s] ϑ
θ+ϑ

}t/s

,

1−
{

1−
[
1− (1− gαi )

s] θ
θ+ϑ

[
1−

(
1− gαj

)s] ϑ
θ+ϑ

}t/s

≥ 1−
{

1−
[
1−

(
1− gβi

)s
] θ

θ+ϑ
[
1−

(
1− gβ j

)s] ϑ
θ+ϑ

}t/s ,

n
∏

i, j = 1
j = i

1−
{

1−
[
1− (1− gαi )

s] θ
θ+ϑ

[
1−

(
1− gαj

)s] ϑ
θ+ϑ

}t/s


≥
n
∏

i, j = 1
j = i

1−
{

1−
[
1−

(
1− gβi

)s
] θ

θ+ϑ
[
1−

(
1− gβ j

)s] ϑ
θ+ϑ

}t/s


,
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
n
∏

i, j = 1
j = i

1−
{

1−
[
1− (1− gαi )

s] θ
θ+ϑ

[
1−

(
1− gαj

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)

≥


n
∏

i, j = 1
j = i

1−
{

1−
[
1−

(
1− gβi

)s
] θ

θ+ϑ
[
1−

(
1− gβ j

)s] ϑ
θ+ϑ

}t/s



2/n(n+1) ,

1−


n
∏

i, j = 1
j = i

1−
{

1−
[
1− (1− gαi )

s] θ
θ+ϑ

[
1−

(
1− gαj

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)

≤ 1−


n
∏

i, j = 1
j = i

1−
{

1−
[
1−

(
1− gβi

)s
] θ

θ+ϑ
[
1−

(
1− gβ j

)s] ϑ
θ+ϑ

}t/s



2/n(n+1) ,


1−


n

∏
i, j = 1
j = i

1−
{

1−
[
1− (1− gαi )

s] θ
θ+ϑ

[
1−

(
1− gαj

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)


1/t

≤


1−


n

∏
i, j = 1
j = i

1−
{

1−
[
1−

(
1− gβi

)s
] θ

θ+ϑ
[
1−

(
1− gβ j

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)


1/t
,

1−


1−


n

∏
i, j = 1
j = i

1−
{

1−
[
1− (1− gαi )

s] θ
θ+ϑ

[
1−

(
1− gαj

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)


1/t

≥ 1−


1−


n

∏
i, j = 1
j = i

1−
{

1−
[
1−

(
1− gβi

)s
] θ

θ+ϑ
[
1−

(
1− gβ j

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)


1/t
. (5)

Similarly, it can be determined that
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1−


1−


n
∏

i, j = 1
j = i

1−
{

1−
[
1− (1− hαi )

s] θ
θ+ϑ

[
1−

(
1− hαj

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)


1/t

≥ 1−


1−


n
∏

i, j = 1
j = i

1−
{

1−
[
1−

(
1− hβi

)s
] θ

θ+ϑ
[
1−

(
1− hβ j

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)


1/t (6)

According to (3), (4), (5), and (6), we have

1−


n
∏

i, j = 1
j = i

1−
[

1−
(

1− φs
αi

) θ
θ+ϑ
(

1− φs
αj

) ϑ
θ+ϑ

]t/s



2/n(n+1) 

1/t

−
〈

1−

1−


n
∏

i, j = 1
j = i

1−
{

1−
[
1−

(
1− gαi

)s
] θ

θ+ϑ
[
1−

(
1− gαj

)s] ϑ
θ+ϑ

}t/s



2/n(n+1) 

1/t 〉

≤

1−


n
∏

i, j = 1
j = i

1−
[

1−
(

1− φs
βi

) θ
θ+ϑ
(

1− φs
β j

) ϑ
θ+ϑ

]t/s



2/n(n+1) 

1/t

−
〈

1−

1−


n
∏

i, j = 1
j = i

1−
{

1−
[
1−

(
1− gβi

)s
] θ

θ+ϑ
[
1−

(
1− gβ j

)s] ϑ
θ+ϑ

}t/s



2/n(n+1) 

1/t 〉

(7)

and
1−


n
∏

i, j = 1
j = i

1−
[

1−
(

1− f s
αi

) θ
θ+ϑ
(

1− f s
αj

) ϑ
θ+ϑ

]t/s



2/n(n+1)


1/t

−
〈

1−


1−


n
∏

i, j = 1
j = i

1−
{

1−
[
1− (1− hαi )

s] θ
θ+ϑ

[
1−

(
1− hαj

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)


1/t 〉

≥


1−


n

∏
i, j = 1
j = i

1−
[

1−
(

1− f s
βi

) θ
θ+ϑ
(

1− f s
β j

) ϑ
θ+ϑ

]t/s



2/n(n+1)


1/t
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−
〈

1−


1−


n

∏
i, j = 1
j = i

1−
{

1−
[
1−

(
1− hβi

)s
] θ

θ+ϑ
[
1−

(
1− hβ j

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)


1/t〉
(8)

Let α = I−VIFGWHMs,t(α1, α2, · · · , αn), β = I−VIFGWHMs,t(β1, β2, · · · , βn), and
use sα and sβ to represent the scores of α and β respectively. Then,

2sα =


1−


n
∏

i, j = 1
j = i

1−
[

1−
(

1− φs
αi

) θ
θ+ϑ
(

1− φs
αj

) ϑ
θ+ϑ

]t/s



2/n(n+1)


1/t

−
〈

1−


1−


n
∏

i, j = 1
j = i

1−
{

1−
[
1− (1− gαi )

s] θ
θ+ϑ

[
1−

(
1− gαj

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)


1/t 〉
,

+


1−


n
∏

i, j = 1
j = i

1−
[

1−
(

1− f s
αi

) θ
θ+ϑ
(

1− f s
αj

) ϑ
θ+ϑ

]t/s



2/n(n+1)


1/t

−
〈

1−


1−


n
∏

i, j = 1
j = i

1−
{

1−
[
1− (1− hαi )

s] θ
θ+ϑ

[
1−

(
1− hαj

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)


1/t 〉

2sβ =


1−


n
∏

i, j = 1
j = i

1−
[

1−
(

1− φs
βi

) θ
θ+ϑ
(

1− φs
β j

) ϑ
θ+ϑ

]t/s



2/n(n+1)


1/t

−
〈

1−


1−


n
∏

i, j = 1
j = i

1−
{

1−
[
1−

(
1− gβi

)s
] θ

θ+ϑ
[
1−

(
1− gβ j

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)


1/t 〉

+


1−


n
∏

i, j = 1
j = i

1−
[

1−
(

1− f s
βi

) θ
θ+ϑ
(

1− f s
β j

) ϑ
θ+ϑ

]t/s



2/n(n+1)


1/t

−
〈

1−


1−


n
∏

i, j = 1
j = i

1−
{

1−
[
1−

(
1− hβi

)s
] θ

θ+ϑ
[
1−

(
1− hβ j

)s] ϑ
θ+ϑ

}t/s



2/n(n+1)


1/t 〉
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From (7) and (8), we can determine that sα ≤ sβ. Then,

I−VIFGHMs,t(α1, α2, · · · , αn) ≤ I−VIFGHMs,t(β1, β2, · · · , βn),

That is, the monotonicity is valid.
The proof is complete. �

Property 3. (Boundedness) Let αi = ([φαi , fαi ], [gαi , hαi ]) (i = 1, 2, · · · , n) be a set of I-VIF
numbers, let

ζ+ = [maxi{φαi}, maxi{ fαi}], [mini{gαi}, mini{hαi}],

and let
ζ− = [mini{φαi}, mini{ fαi}], [maxi{gαi}, maxi{hαi}],

then
ζ− ≤ I−VIFGHMs,t(α1 , α2 , · · · , αn ) ≤ ζ+.

Proof. Using Property 1, we obtain

I−VIFGHMs,t(ζ−, ζ−, · · · , ζ−
)
= ζ−

and I−VIFGHMs,t(ζ+, ζ∓, · · · , ζ+) = ζ+, Then, using Property 2, we have

I−VIFGHMs,t(ζ−, ζ−, · · · , ζ−
)
≤ I−VIFGHMs,t(α1 , α2 , · · · , αn ) ≤ I−VIFGHMs,t(ζ+, ζ∓, · · · , ζ+

)
Therefore, Property 3 can be proven. �
Next, the I−VIFGWHM operator is presented.

Definition 7. Let αi = ([φi, fi], [gi, hi]), i = 1, 2, · · · , n be a set of I-VIF numbers. The weight

wi ≥ 0 should satisfy
n
∑

i=1
wi = 1, and let λ =

n
∑

i=1,j=i
(wi + wj)

t/s. If s, t > 0, then

I−VIFGWHMs,t(α1, α2, · · · , αn) =

 1
λ

n
⊕

i, j = 1
j = i

(
wiα

s
i ⊕ wjα

s
j

)t/s


1
t

is the I−VIFGWHM.

Theorem 4. Let αi = ([φi, fi], [gi, hi])(i = 1, 2, · · · , n) be a set of I-VIF numbers and the weight

wi ≥ 0 satisfy
n
∑

i=1
wi = 1. If s, t > 0, then the result aggregated by the I−VIFGWHM operator

is still an I-VIF number, and

I−VIFGWHMs,t(α1, α2, · · · , αn) =

 1
λ

n
⊕

i, j = 1
j = i

(
wiα

s
i ⊕ wjα

s
j

)t/s


1
t
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=






1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

i
)wi
(

1− φs
j

)wj
]t/s

}

1/λ


1/t

,


1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

i
)wi
(

1− f s
j

)wj
]t/s

}

1/λ


1/t



1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gi)

s]wi
[
1−

(
1− gj

)s
]wj
}t/s

}

1/λ


1/t

,

1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hi)

s]wi
[
1−

(
1− hj

)s
]wj
}t/s

}

1/λ


1/t





.

Proof. By the operation laws of I-VIF number, we achieve

αs
j =

([
φs

αj
, f s

αj

]
,
[
1−

(
1− gαj

)s
, 1−

(
1− hαj

)s])
, αs

i =
([

φs
αi

, f s
αi

]
,
[
1− (1− gαi )

s, 1− (1− hαi )
s]),

wiα
s
i =

([
1−

(
1− φs

αi

)wi
, 1−

(
1− f s

αi

)wi
]
,
[[

1− (1− gαi )
s]wi ,

[
1− (1− hαi )

s]wi
])

,

wjα
s
j =

([
1−

(
1− φs

αj

)wj
, 1−

(
1− f s

αj

)wj
]
,
[[

1−
(

1− gαj

)s]wj
,
[
1−

(
1− hαj

)s]wj
])

,

wiα
s
i ⊕ wjα

s
j =


[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
, 1−

(
1− f s

αi

)wi
(

1− f s
αj

)wj
]
,[[

1− (1− gαi )
s]wi

[
1−

(
1− gαj

)s]wj
,
[
1− (1− hαi )

s]wi
[
1−

(
1− hαj

)s]wj
] ,

then

(
wiα

s
i ⊕ wjα

s
j

)t/s

=


[[

1−
(

1− φs
αi

)wi
(

1− φs
αj

)wj
]t/s

,
[
1−

(
1− f s

αi

)wi
(

1− f s
αj

)wj
]t/s

]
,[

1−
{

1−
[
1−

(
1− gαi

)s
]wi
[
1−

(
1− gαj

)s]wj
}t/s

, 1−
{

1−
[
1−

(
1− hαi

)s
]wi
[
1−

(
1− hαj

)s]wj
}t/s

]
 ,

and
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n
⊕

i, j = 1
j = i

(
wiα

s
i ⊕ wjα

s
j

)t/s
=





1−
n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
]t/s

}
,

1−
n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

αi

)wi
(

1− f s
αj

)wj
]t/s

}


,



n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
}t/s

}
,

n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hαi )

s]wi
[
1−

(
1− hαj

)s]wj
}t/s

}




,

that is,

1
λ

n
⊕

i, j = 1
j = i

(
wiα

s
i ⊕ wjα

s
j

)t/s
=





1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
]t/s

}

1/λ

,

1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

αi

)wi
(

1− f s
αj

)wj
]t/s

}

1/λ


,




n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− gαi

)s
]wi
[
1−

(
1− gαj

)s]wj
}t/s

}

1/λ

,


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− hαi

)s
]wi
[
1−

(
1− hαj

)s]wj
}t/s

}

1/λ





,

and
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 1
λ

n
⊕

i, j = 1
j = i

(
wiα

s
i ⊕ wjα

s
j

)t/s


1
t

=






1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
]t/s

}

1/λ


1/t

,


1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

αi

)wi
(

1− f s
αj

)wj
]t/s

}

1/λ


1/t



1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
}t/s

}

1/λ


1/t

,

1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hαi )

s]wi
[
1−

(
1− hαj

)s]wj
}t/s

}

1/λ


1/t





.

Since

0 ≤


1−


n

∏
i, j = 1
j = i

{
1−

[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
]t/s

}


1/λ


1/t

≤ 1,

0 ≤


1−


n

∏
i, j = 1
j = i

{
1−

[
1−

(
1− f s

αi

)wi
(

1− f s
αj

)wj
]t/s

}


1/λ


1/t

≤ 1,

0 ≤ 1−


1−


n

∏
i, j = 1
j = i

{
1−

{
1−

[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
}t/s

}

1/λ


1/t

≤ 1,
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0 ≤ 1−


1−


n

∏
i, j = 1
j = i

(
1−

(
1−

(
1− (1− hαi )

s)wi
(

1−
(

1− hαj

)s)wj
)t/s

)
1/λ


1/t

≤ 1

and for all i = 1, 2, · · · , n, µαi + ναi ≤ 1, we obtain

0 ≤


1−


n

∏
i, j = 1
j = i

{
1−

[
1−

(
1− f s

αi

)wi
(

1− f s
αj

)wj
]t/s

}


1/λ


1/t

+1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hαi )

s]wi
[
1−

(
1− hαj

)s]wj
}t/s

}

1/λ


1/t

≤


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hαi )

s]wi
[
1−

(
1− hαj

)s]wj
}t/s

}

1/λ


1/t

+1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hαi )

s]wi
[
1−

(
1− hαj

)s]wj
}t/s

}

1/λ


1/t

= 1.

The proof is complete. �

Next, we will present some of the properties of the I−VIFGWHM operator.

Property 4. (Idempotency) For i = 1, 2, · · · , n, if αi = α = ([φ, f ], [g, h]), then

I−VIFGWHMs,t(α1, α2, · · · , αn) = I−VIFGWHMs,t(α, α, · · · , α) =

 1
λ

n
⊕

i,j=1
j=i

(
wiα

s ⊕ wjα
s)t/s


1
t

=

 1
λ

n
⊕

i,j=1
j=i

αt(wi ⊕ wj
)t/s


1
t

=

 αt

λ

n
⊕

i,j=1
j=i

(
wi ⊕ wj

)t/s


1
t

= α

.

Property 5. (Monotonicity) Suppose that αi = ([φαi , fαi ], [gαi , hαi ]) and βi =
([

φβi , fβi

]
,
[
gβi , hβi

])
(i = 1,2,· · · ,n) are two sets of I-VIF numbers, where φαi ≤ φβi , fαi ≤ fβi , and gαi ≥ gβi , hαi ≥ hβi .
Then

I−VIFGWHMs,t(α1, α2, · · · , αn) ≤ I−VIFGWHMs,t(β1, β2, · · · , βn).

Proof. On the one hand, since 0 ≤ φαi ≤ φβi ≤ 1, i = 1, 2, · · · , n,s > 0, then φs
αi
≤ φs

βi
, and

since 0 ≤ wi ≤ 1, we achieve
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1− φs
αi
≥ 1− φs

βi
≥ 0, 1− φs

αj
≥ 1− φs

β j
≥ 0,

(
1− φs

αi

)wi ≥
(

1− φs
βi

)wi ≥ 0,
(

1− φs
αj

)wj ≥
(

1− φs
β j

)wj ≥ 0;

1 ≥
(

1− φs
αi

)wi
(

1− φs
αj

)wj ≥
(

1− φs
βi

)wi
(

1− φs
β j

)wj ≥ 0,

0 ≤ 1−
(

1− φs
αi

)wi
(

1− φs
αj

)wj ≤ 1−
(

1− φs
βi

)wi
(

1− φs
β j

)wj ≤ 1,[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
]t/s
≤
[
1−

(
1− φs

βi

)wi
(

1− φs
β j

)wj
]t/s

,

1−
[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
]t/s
≥ 1−

[
1−

(
1− φs

βi

)wi
(

1− φs
β j

)wj
]t/s

,

n

∏
i = 1
j = i

{
1−

[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
]t/s

}
≥

n

∏
i = 1
j = i

{
1−

[
1−

(
1− φs

βi

)wi
(

1− φs
β j

)wj
]t/s

}
,

Then,


n

∏
i, j = 1

j = i

{
1−

[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
]t/s

}


1/λ

≥


n

∏
i, j = 1

j = i

{
1−

[
1−

(
1− φs

βi

)wi
(

1− φs
β j

)wj
]t/s

}


1/λ

,

Therefore,

1−


n

∏
i, j = 1

j = i

{
1−

[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
]t/s

}
1/λ

≤ 1−


n

∏
i, j = 1

j = i

{
1−

[
1−

(
1− φs

βi

)wi
(

1− φs
β j

)wj
]t/s

}
1/λ

.

As such, we have
1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
]t/s

}

1/λ


1/t

≤


1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

βi

)wi
(

1− φs
β j

)wj
]t/s

}

1/λ


1/t (9)
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Similarly, we can obtain
1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

αi

)wi
(

1− f s
αj

)wj
]t/s

}

1/λ


1/t

≤


1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

βi

)wi
(

1− f s
β j

)wj
]t/s

}

1/λ


1/t (10)

On the other hand, for i = 1, 2, · · · , n, since 1 ≥ gαi ≥ gβi ≥ 0, then 1− gαj ≤ 1− gβ j ,

and since wi > 0, then (1− gαi )
s ≤

(
1− gβi

)s, 1− (1− gαi )
s ≥ 1−

(
1− gβi

)s,[
1− (1− gαi )

s]wi ≥
[
1−

(
1− gβi

)s
]wi

,

[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
≥
[
1−

(
1− gβi

)s
]wi
[
1−

(
1− gβ j

)s]wj
,

1−
[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
≤ 1−

[
1−

(
1− gβi

)s
]wi
[
1−

(
1− gβ j

)s]wj
,{

1−
[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
}t/s

≤
{

1−
[
1−

(
1− gβi

)s
]wi
[
1−

(
1− gβ j

)s]wj
}t/s

,

1−
{

1−
[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
}t/s

≥ 1−
{

1−
[
1−

(
1− gβi

)s
]wi
[
1−

(
1− gβ j

)s]wj
}t/s

,

n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
}t/s

}

≥
n
∏

i = 1
j = i

{
1−

{
1−

[
1−

(
1− gβi

)s
]wi
[
1−

(
1− gβ j

)s]wj
}t/s

} ,


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
}t/s

}

λ

≥


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− gβi

)s
]wi
[
1−

(
1− gβ j

)]swj
}t/s

}

λ ,
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1−
〈

n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
}t/s

}〉λ

≤ 1−
〈

n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− gβi

)s
]wi
[
1−

(
1− gβ j

)s]wj
}t/s

}〉λ ,


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
}t/s

}

1/λ


1/t

≤


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− gβi

)s
]wi
[
1−

(
1− gβ j

)s]wj
}t/s

}

1/λ


1/t ,

1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
}t/s

}

1/λ


1/t

≥ 1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− gβi

)s
]wi
[
1−

(
1− gβ j

)s]wj
}t/s

}

1/λ


1/t . (11)

Similarly, we can obtain

1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hαi )

s]wi
[
1−

(
1− hαj

)s]wj
}t/s

}

1/λ


1/t

≥ 1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− hβi

)s
]wi
[
1−

(
1− hβ j

)s]wj
}t/s

}

1/λ


1/t

.

(12)

According to (9), (10), (11), and (12), we have
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
1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
]t/s

}

1/λ


1/t

−
〈

1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− gαi )

s]wi
[
1−

(
1− gαj

)s]wj
}t/s

}

1/λ


1/t 〉

≤


1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

βi

)wi
(

1− φs
β j

)wj
]t/s

}

1/λ


1/t

−
〈

1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− gβi

)s
]wi
[
1−

(
1− gβ j

)s]wj
}t/s

}

1/λ


1/t 〉
,

(13)

and
1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

αi

)wi
(

1− f s
αj

)wj
]t/s

}

1/λ


1/t

−
〈

1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1− (1− hαi )

s]wi
[
1−

(
1− hαj

)s]wj
}t/s

}

1/λ


1/t 〉

≥


1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

βi

)wi
(

1− f s
β j

)wj
]t/s

}

1/λ


1/t

−
〈

1−


1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− hβi

)s
]wi
[
1−

(
1− hβ j

)s]wj
}t/s

}

1/λ


1/t 〉
.

(14)
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Let α = I−VIFGWHMs,t(α1, α2, · · · , αn), β = I−VIFGWHMs,t(β1, β2, · · · , βn), and
use sα and sβ to represent the scores of α and β respectively. Then

2sα =

1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
]t/s

}

1/λ 

1/t

−
〈

1−

1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− gαi

)s
]wi
[
1−

(
1− gαj

)s]wj
}t/s

}

1/λ 

1/t 〉

+

1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

αi

)wi
(

1− f s
αj

)wj
]t/s

}

1/λ 

1/t

−
〈

1−

1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− hαi

)s
]wi
[
1−

(
1− hαj

)s]wj
}t/s

}

1/λ 

1/t 〉
,

2sβ =

1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− φs

βi

)wi
(

1− φs
β j

)wj
]t/s

}

1/λ 

1/t

−
〈

1−

1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− gβi

)s
]wi
[
1−

(
1− gβ j

)s]wj
}t/s

}

1/λ 

1/t 〉

+

1−


n
∏

i, j = 1
j = i

{
1−

[
1−

(
1− f s

βi

)wi
(

1− f s
β j

)wj
]t/s

}

1/λ 

1/t

−
〈

1−

1−


n
∏

i, j = 1
j = i

{
1−

{
1−

[
1−

(
1− hβi

)s
]wi
[
1−

(
1− hβ j

)s]wj
}t/s

}

1/λ 

1/t 〉
.

From (13) and (14), we were able to determine that sα ≤ sβ. Then

I−VIFGWHMs,t(α1, α2, · · · , αn) ≤ I−VIFGWHMs,t(β1, β2, · · · , βn),

that is, the monotonicity is valid.
The proof is complete. �

Property 6. (Boundedness) Let αi = ([φαi , fαi ], [gαi , hαi ])(i = 1, 2, · · · , n) be a set of I-VIF
numbers, let

ζ+ = [maxi{φαi}, maxi{ fαi}], [mini{gαi}, mini{hαi}],

and let
ζ− = [mini{φαi}, mini{ fαi}], [maxi{gαi}, maxi{hαi}],

then
ζ− ≤ I−VIFGWHMs,t(α1 , α2 , · · · , αn ) ≤ ζ+.
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Proof. Using Property 4, we find

I−VIFGWHMs,t(ζ−, ζ−, · · · , ζ−
)
= ζ−

and I−VIFGWHMs,t(ζ+, ζ∓, · · · , ζ+) = ζ+. Then, from Property 5, we have

I−VIFGWHMs,t(ζ−, ζ−, · · · , ζ−
)
≤ I−VIFGWHMs,t(α1 , α2 , · · · , αn ) ≤ I−VIFGWHMs,t(ζ+, ζ∓, · · · , ζ+

)
Therefore, Property 6 can be proven. �

Definition 8. Let αi = ([φi, fi], [gi, hi]) (i = 1, 2, · · · , n) be a set of I-VIF numbers, the weight

wi ≥ 0 satisfy
n
∑

i=1
wi = 1, and let λ =

n
∑

i=1

n
∑
j=i

n
∑

k=j

(
wi + wj + wk

)t/s. If s, t > 0, then

I−VIFTPGWHMs,t(α1, α2, · · · , αn) =

 1
λ

n
⊕

i, j, k = 1,
k = j = i

(
wiα

s
i ⊕ wjα

s
j ⊕ wkαs

k

)t/s


1
t

is the I-VIFTPGWHM.

Theorem 5. Let αi = ([φi, fi], [gi, hi]) (i = 1, 2, · · · , n) be a set of I-VIF numbers and the weight

wi ≥ 0 satisfy
n
∑

i=1
wi = 1. If s, t > 0, then the result aggregated by the I-VIFTPGWHM operator

is still the I-VIF number, and

I−VIFTPGWHMs,t(α1, α2, · · · , αn) =

 1
λ

n
⊕

i, j, k = 1,
k = j = i

(
wiα

s
i ⊕ wjα

s
j ⊕ wkαs

k

)t/s


1
t

=





1−


n
∏

i, j, k = 1,
k = j = i

{
1−

[
1−

(
1− φs

αi

)wi
(

1− φs
αj

)wj
(

1− φs
αk

)wk
]t/s

}

1/λ 

1/t

,

1−


n
∏

i, j, k = 1,
k = j = i

{
1−

[
1−

(
1− f s

αi

)wi
(

1− f s
αj

)wj
(

1− f s
αk

)wk
]t/s

}

1/λ 

1/t


,



1−

1−


n
∏

i, j, k = 1,
k = j = i

{
1−

{
1−

[
1−

(
1− gαi

)s
]wi
[
1−

(
1− gαj

)s]wj [
1−

(
1− gαk

)s
]wk
}t/s

}

1/λ 

1/t

,

1−

1−


n
∏

i, j, k = 1,
k = j = i

{
1−

{
1−

[
1−

(
1− hαi

)s
]wi
[
1−

(
1− hαj

)s]wj [
1−

(
1− hαk

)s
]wk
}t/s

}

1/λ 

1/t





4. MADM Method Based on I-VIFGWHM Operator

In this section, we provide an MADM method based on the I-VIFGWHM operator.
Then, using an example, we compare the proposed method with existing MADM methods.
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The rationality and feasibility of this method are explained, and the effect of the parameters
s, t on the decision results is discussed.

4.1. MADM Method Based on I-VIFGWHM Operator

For an MADM problem, assume that the scheme set is Y = {y1, y2, y3, . . . , yn}, the at-
tribute set is Z = {z1, z2, z3, . . . , zm}, and the attribute weight vector is λ = (λ1, λ2, λ3 . . . , λm),

where λj > 0, and
m
∑

j=1
λj = 1. I-VIF sets are used to represent the characteristic information

of scheme yi,
yi =

{(
zj, θyi (zj), ϑyi (zj)

∣∣zj ∈ Z
)}

(i = 1, 2, · · · , n),

where ϑyi (zj), θyi (zj) represents the degree to which yi does not satisfy attribute zj, and satisfies
attribute zj, respectively, and ϑyi (zj) ⊂ [0, 1], θyi (zj) ⊂ [0, 1], and supθyi (zj) + supϑyi (zj) ≤ 1.

If θyi (zj) = [χij, δij] and ϑyi (zj) = [ηij, κij], then the corresponding I-VIF number is
αij = ([χij, δij], [ηij, κij]), i = 1, 2, · · · , n, j = 1, 2, · · · , m, and the I-VIF decision matrix
D = (αij)n×m is obtained.

The following list indicates the decision-making steps.
Step 1. For the data type in the scheme set, normalize the decision matrix D into

<̃ = (r̃ij)n×m according to the following formula:

(r̃ij)n×m =

{
αij If scheme zi is benefit data,
^
α ij If scheme zi is cos t data

,

where ᾰij is the complement of αij, that is, ᾰij =
([

ηij, κij
]
,
[
χij, δij

])
.

Step 2. I I-VIFGWHM operator is then used to integrate the characteristic information
r̃ij(j = 1, 2, · · · , m) of yi for all of its attributes zj(j = 1, 2, · · · , m), to obtain the comprehen-

sive interval-valued attribute value
·
r̃i, i = 1, 2, · · · , n of scheme yi.

Step 3. The score value (SV) s
( ·

r̃i

)
and accuracy h

( ·
r̃i

)
of the comprehensive interval-

valued attribute value
·
r̃i of each scheme yi are calculated from the score function and the

exact function, respectively.

Step 4. Using the SV s
( ·

r̃i

)
and accuracy h

( ·
r̃i

)
, each scheme yi(i = 1, 2, · · · , n) is

sorted, and the best scheme (BS) is obtained.

4.2. Example of MADM Based on I-VIFGWHM Operator

To explain the rationality and feasibility of the MADM method proposed in this paper,
using the Example in reference [34], we compare the decision-making results with other
methods.

Example. Assume that a high technology company manufacturing electronic goods
has plans to evaluate and select a USB connector supplier. Four suppliers z1,z2,z3 and z4 are
selected as candidates. Four evaluation standards are taken into account, including finance
(c1), performance (c2), technology (c3), and organizational culture (c4). The indicator weight
vector is obtained by w = (0.2, 0.3, 0.3, 0.2)T . The evaluation information on the projects
zi(i = 1, 2, 3, 4) under the factors c = {c1, c2, c3, c4} are represented by the I-VIF numbers
(I-VIFNs) and are listed in Table 1.
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Table 1. The I-VIF decision matrix.

c1 c2 c3 c4

z1 ([0.6,0.7], [0.1,0.2]) ([0.5,0.6], [0.2,0.3]) ([0.4,0.5], [0.3,0.5]) ([0.5,0.7], [0.1,0.3])
z2 ([0.2,0.3], [0.4,0.6]) ([0.4,0.5], [0.1,0.2]) ([0.4,0.5], [0.3,0.5]) ([0.4,0.5], [0.2,0.3])
z3 ([0.3,0.4], [0.5,0.6]) ([0.4,0.5], [0.2,0.3]) ([0.4,0.6], [0.3,0.4]) ([0.4,0.5], [0.2,0.3])
z4 ([0.5,0.6], [0.3,0.4]) ([0.6,0.7], [0.2,0.3]) ([0.5,0.6], [0.3,0.4]) ([0.4,0.6], [0.3,0.4])

Now, we will demonstrate the process for determining the best supplier in terms of
the proposed method.

Step 1. All of the attribute values are of the benefit type; therefore, the decision
attribute matrix does not need to be normalized.

Step 2. When the values of the parameters s and t change, the aggregated I-VIFNs can
be found using the I-VIFGWHM operator and are displayed in Table 2.

Table 2. The aggregated IIFNs for different s, t.

z1 z2 z3 z4

s = 0.1, t = 0.1 ([0.4924,0.6161],[0.1730,0.3268]) ([0.3591,0.4615],[0.2145,0.3656]) ([0.3801,0.5126],[0.2750,0.3805]) ([0.5126,0.6322],[0.2664,0.3678])
s = 1, t = 0.1 ([0.3489,0.4486],[0.3487,0.5018]) ([0.2474,0.3217],[0.3997,0.5405]) ([0.2625,0.3601],[0.4589,0.5529]) ([0.3601,0.4578],[0.4505,0.5422])
s = 1, t = 1 ([0.4949,0.6188],[0.1712,0.3224]) ([0.3645,0.4652],[0.2107,0.3557]) ([0.3812,0.5150],[0.2713,0.3757]) ([0.5150,0.6331],[0.2656,0.3669])

s = 1, t = 10 ([0.5546,0.7131],[0.0099,0.1686]) ([0.4373,0.5647],[0.0019,0.0901]) ([0.4385,0.6511],[0.0576,0.1978]) ([0.6511,0.7978],[0.0618,0.2022])
s = 10, t = 0.1 ([0.4836,0.6013],[0.2076,0.3414]) ([0.3540,0.4474],[0.2529,0.3773]) ([0.3643,0.4903],[0.3053,0.4000]) ([0.4903,0.5972],[0.3088,0.4028])
s = 10, t = 1 ([0.5022,0.6215],[0.1893,0.3203]) ([0.3707,0.4660],[0.2315,0.3515]) ([0.3791,0.5097],[0.2838,0.3780]) ([0.5097,0.6172],[0.2887,0.3828])

Step 3. The corresponding SVs are calculated from the score function and are listed
in Table 3.

Table 3. Scheme sorting results for different s, t.

s(z1) s(z2) s(z3) s(z4) Scheme Sorting Results

s = 0.1, t = 0.1 0.3043 0.1202 0.1185 0.2553 z1 > z4 > z2 > z3
s = 1, t = 0.1 −0.0265 −0.1855 −0.1946 −0.0874 z1 > z4 > z2 > z3
s = 1, t = 1 0.3101 0.1316 0.1246 0.2578 z1 > z4 > z2 > z3

s = 1, t = 10 0.5445 0.4551 0.4171 0.5924 z4 > z1 > z2 > z3
s = 10, t = 0.1 0.2679 0.0856 0.0747 0.188 z1 > z4 > z2 > z3
s = 10, t = 1 0.3071 0.1269 0.1135 0.2277 z1 > z4 > z2 > z3

Step 4 Using the SVs, each scheme is sorted. Additionally, the sorted schemes are
listed in Table 3.

From Table 3, it can be observed that the scheme-ranking results (RRs) are relatively
stable with the changes in the values of the parameters s and t.

Keep the values of parameter s unchanged (s = 1) and let t take values from 1 to 11.
The score change that takes place in each scheme can be obtained and are as displayed
in Figure 1.
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Figure 1. s = 1, t ∈ [1, 11].

From Figure 1, it can be seen that when t ∈ [1, 5.5] and s is fixed, alternative one (z1) is
the BS. If s is fixed and t ∈ [5.5, 11], then alternative four (z4) is the BS. When the values of
parameter t increase, the SVs also increase.

Keep the values of parameter t unchanged (t = 1), and let s take values from 1 to 11.
The score change for each scheme can be obtained and are as displayed in Figure 2.

Figure 2. t = 1, s ∈ [1, 11].

Figure 2 displays that when the value of t remains unchanged (t = 1) and s increases,
scheme one (z1) is always the BS.

From Figures 1 and 2 we can find that the SVs of the four schemes increase when
the values of parameters s and t increase. In practical decision-making, DMs can choose
different parameter values in terms of their own risk preference. Optimistic DMs can
choose larger parameters, while pessimistic DMs can choose smaller parameters.

As s and t change, the SVs of the four schemes change are listed in Figures 3–6.
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To sum up, we can see that the SVs will also change with the change of s and t,
indicating that the decision-maker’s parameter choice affects the SVs. Thus, in the DM
process, the appropriate parameters can be selected in terms of the risk preference of DMs.
The results demonstrate the stability and flexibility of the given approach in Section 4.1.

4.3. Comparison

In this section, using the above example, we compare the obtained method with
other methods, including the interval-valued intuitionistic fuzzy weighted average op-
erator (IIFWA) [27], the interval-valued intuitionistic fuzzy weighted geometric operator
(IIFWG) [27], and the method created by Yu [34] based on the generalized I-VIF weighted
Heronian mean AO.

It can be seen from Table 4 that when the parameters s and t select a specific value,
the best scheme is obtained using the method proposed in this paper, and that scheme is
the same as the one obtained using the method based on the IIFWA, the method based
on the IIFWG, and Yu’s [34] method (p = q = 0.5). The scheme ranking of each method
is different from that of the method based on the IIFWG. In order to facilitate the list, the
above table only provides the results of the comparison of the methods during parameter
selection. Next, when the parameters change, the scheme RRs obtained by the proposed
method and Yu’s [34] method are further compared.

Table 4. Comparison results.

Methods Score Value Ranking Result

The method based on IIFWA s(x1) = 0.3101, s(x2) = 0.1316,
s(x3) = 0.1246, s(x4) = 0.2578 x1 > x4 > x2 > x3

The method based on IIFWG s(x1) = 0.2724, s(x2) = 0.0701,
s(x3) = 0.0900, s(x4) = 0.2452 x1 > x4 > x3 > x2

Yu’s [34] method (p = q = 0.5 ) s(x1) = −0.5149, s(x2) = −0.6164,
s(x3) = −0.6245, s(x4) = −0.5630 x1 > x4 > x2 > x3

The proposed method (s = t = 0.5 ) s(x1) = 0.3068, s(x2) = 0.1252,
s(x3) = 0.1212, s(x4) = 0.2564 x1 > x4 > x2 > x3

From Figures 1 and 2, it can be seen that the different SVs of the alternatives can be
acquired when parameters s, t changed. The obtained RRs are as follows:

a When s is fixed and t ∈ [1, 5.5], the RR is z1 > z4 > z2 > z3.
b When s is fixed and t ∈ [5.5, 11], the RR is z4 > z1 > z2 > z3.
c When t is fixed and s ∈ [1, 11], the RR is z1 > z4 > z2 > z3.

From reference [34], we can see that different SVs of the alternatives can be acquired
when parameters p, q are varied. The RRs are as follows:

a When q is fixed and p ∈ [0, 5.5], the RR is z1 > z4 > z2 > z3.
b When q is fixed and p ∈ [5.5, 6.5], the RR is z4 > z1 > z2 > z3.
c When q is fixed and p ∈ [6.5, 10], the RR is z4 > z2 > z1 > z3.
d When p is fixed and q ∈ [0, 4.9], the RR is z1 > z4 > z2 > z3.
e When p is fixed and q ∈ [4.9, 5.9], the RR is z4 > z1 > z2 > z3.
f When p is fixed and q ∈ [5.9, 10], the RR is z4 > z2 > z1 > z3.

From the above comparison, we can see that when the parameters take certain values,
the scheme RRs that are obtained are different from that obtained by the method based on
the IIFWA and the method based on IIFWG. The main reason for this is that the proposed
method and Yu’s [34] method consider the correlations between attributes, while the
method based on the IIFWA and the method based on the IIFWG assume that the attributes
are independent of each other. Therefore, for the MADM problem regarding the correlations
between attributes, the proposed method and Yu’s [34] method are more reasonable. Based
on the results of the above comparison, it can also be observed that the scheme RRs of the
proposed method and Yu’s [34] method are different as the parameters changes. The results
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obtained by the method provided in this paper are relatively stable. However, the BS that
was obtained by the two methods belongs scheme one (z1) or scheme four (z4).

To sum up, the results illustrate the flexibility and stability of the proposed methods.
As such, the proposed methods are effective and feasible and are sufficient to deal with
practical MADM problems. However, this is only a case study. The above conclusion can
only explain that the method proposed in this paper is relatively stable in this specific case,
but this does not mean that this method is better than other methods in other cases. In fact,
each method has a specific application environment in which it is appropriate.

5. Conclusions

In this paper, the Heronian mean is further extended in the I-VIF environment. Some
new AOs are proposed for I-VIF information. The properties of the obtained operators,
including their idempotency, monotonicity, and boundedness properties, are discussed. On
these bases, a MADM method that is based on the I-VIFGWHM operator was obtained,
and an example was analyzed.

From the example analysis, it can be observed that the proposed method can reflect
the correlations between attributes, and decision makers can choose different parameters
according to their own risk preference. In actual decision-making applications, decision-
makers need to evaluate decision-making objects from multiple perspectives and not only
consider the interaction between attributes, but also the overall information of the decision
objects as well as the risk preferences of decision makers. As such, this method can better
meet the various needs of decision-makers.

The research in this paper has certain limitations. In the method propsed in this paper,
only a case analysis is used to illustrate how this method is valuable in this case, but this
does not mean that it is better than other methods in other cases.

We also have some suggestions for decision makers. Decision makers can choose
different s and t parameter values based on their own risk preference. Optimistic decision
makers can choose larger parameters, and pessimistic decision makers can choose smaller
parameters. In future research, we will study other applications of the method proposed
in this paper and will provide a more indepth generalization of the operator in other
environments.
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