
����������
�������

Citation: Peng, H.; Wu, Y. A Dynamic

Convolutional Network-Based Model

for Knowledge Graph Completion.

Information 2022, 13, 133. https://

doi.org/10.3390/info13030133

Academic Editor: Vincenzo Moscato

Received: 28 December 2021

Accepted: 3 March 2022

Published: 4 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Dynamic Convolutional Network-Based Model for
Knowledge Graph Completion
Haoliang Peng * and Yue Wu

School of Computer Science and Engineering, Shanghai University, Shanghai 200444, China; ywu@shu.edu.cn
* Correspondence: penghaoliang@shu.edu.cn

Abstract: Knowledge graph embedding can learn low-rank vector representations for knowledge
graph entities and relations, and has been a main research topic for knowledge graph completion.
Several recent works suggest that convolutional neural network (CNN)-based models can capture
interactions between head and relation embeddings, and hence perform well on knowledge graph
completion. However, previous convolutional network models have ignored the different contribu-
tions of different interaction features to the experimental results. In this paper, we propose a novel
embedding model named DyConvNE for knowledge base completion. Our model DyConvNE uses a
dynamic convolution kernel because the dynamic convolutional kernel can assign weights of varying
importance to interaction features. We also propose a new method of negative sampling, which mines
hard negative samples as additional negative samples for training. We have performed experiments
on the data sets WN18RR and FB15k-237, and the results show that our method is better than several
other benchmark algorithms for knowledge graph completion. In addition, we used a new test
method when predicting the Hits@1 values of WN18RR and FB15k-237, named specific-relationship
testing. This method gives about a 2% relative improvement over models that do not use this method
in terms of Hits@1.

Keywords: knowledge graph; knowledge graph completion; dynamic convolution network;
knowledge graph embedding

1. Introduction

Knowledge graphs are usually expressed in a highly structured form, where nodes
denote the entities and edges represent different relations entities. This can be represented
as a triples (h, r, t), where h and t stand for the head and tail entities respectively, and r
represents the relation from h to t. At present, knowledge graphs have been widely used in
many fields of artificial intelligence, such as automatic question answering [1], dialogue
generation [2,3], personalized recommendation [4], and knowledge reasoning [5]. However,
most open knowledge graphs, such as Freebase [6], Wikidata [7], and DBpedia [8], are
constructed by automatic or semi-automatic methods. These graphs are usually sparse,
and the implicit relationships among a large number of entities have not been fully mined.
In Freebase, 71% of people do not have an exact date of birth, and 75% do not have
nationality information. The incompleteness of knowledge graphs has become a major
concern, and knowledge graph embedding [9] (KGE) is an effective solution to solve
the problem of incompletion. Knowledge graph embedding generates low-dimensional
embedding vectors of entities and relationships based on the existing triple relationships
in the knowledge graph, and then inputs these low-dimensional embedding vectors into
the score function, which can be a network to predict the missing relationships in the
knowledge graph [10]. All models strive to make the positive triples score higher, and the
negative triples score lower.

Recently, convolutional networks have been widely used to generate low-dimensional
embedding vectors of entities and relationships in knowledge graphs, because convolu-
tional networks can increase the interactions and capture interaction features between

Information 2022, 13, 133. https://doi.org/10.3390/info13030133 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13030133
https://doi.org/10.3390/info13030133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-3893-2765
https://doi.org/10.3390/info13030133
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13030133?type=check_update&version=2

Information 2022, 13, 133 2 of 15

head and relation embeddings. Empirical results have proved that increasing the number
of interactions is beneficial to the knowledge graph embeddings task [11]. For example,
ConvE [12] takes advantage of CNN and use 2D reshapings of head and relation embed-
dings to increase interactions. InteractE [11] takes advantage of circular convolution and
feature permutation to increase interactions. However, most previous models have the
following two problems. First, most previous models use the traditional convolutional
kernel to capture interaction features between the head and relation embeddings and then
they treat these interaction features uniformly. However, different interaction features have
different contributions to the experimental results. Second, in the field of knowledge graph
completion, traditional negative sampling is usually used to randomly replace the head
entity or tail entity of the positive triples to obtain a certain number of negative triples
before each round of model training, and then these positive triples and negative triples
are put together to train the model. These random samples contain many easy negative
samples; thus, this randomness reduces the model’s ability to distinguish hard negative
samples.

Based on the above observations, we propose a dynamic convolution network-based
model using a method of mining hard negative samples for knowledge graph completion;
we name it DyConvNE. In DyConvNE, for the first problem mentioned above, we use
dynamic convolution kernel [13] instead of traditional convolution kernel. The dynamic
convolutional network can assign different weights to these interaction features, allowing
the network to pay more attention to more important interaction features and ignore
unimportant interaction features. For the second problem mentioned above, we propose a
hard negative triples sampling method. The model has no difficulty in distinguishing the
easy negative samples, so these easy negative samples have limited training value for the
model. Therefore, it is necessary to select a part of the negative samples that are difficult for
the model to distinguish, called hard negative samples. Using these hard negative samples
to train model, the difficulty during training can be increased, making the model pay more
attention to details.

In particular, we propose a new test method when testing the Hits@1 values of
WN18RR and FB15k-237. When we want to predict the tail entity of the triple (h, r, ?),
the traditional method is to put all the entities that appeared in the training set on the
tail entity of the triple and then calculate their scores. However, there are many entities
for which it is not necessary to calculate scores with triples. For example, relations are
all parts of speech (verbs, adverbs, adjectives, etc.). If r is a verb, the tail entity of triple
must be a verb word; it cannot be an adverb word or adjective word, etc. Motivated by the
aforementioned observations, we only put the entities that appear after r in the training
set on the tail entity of the triple and then calculate their scores. We name this method
specific-relationship-testing.

Our contributions are as follows:

1. We propose a new model, called DyConvNE, based on a dynamic convolution net-
work, which uses dynamic convolution to dynamically assign weights to the interac-
tion features of the extracted entities and relationship embeddings;

2. We propose a method to mine hard negative samples and demonstrate the effective-
ness of the method through ablation experiments;

3. We use specific-relationship-testing to obtain better performance on Hits@1;
4. We conduct some experiments to evaluate the performance of the proposed method.

Experimental results demonstrate that our method obtains competitive performance
on both WN18RR and FB15k-237.

2. Related Work

Recently, there have been many surveys of knowledge graph embedding, such
as [14,15], and many different knowledge graph embedding models have been proposed.
Models of knowledge graph embedding can be roughly divided into (1) decomposition-
based models, (2) translation-based models, and (3) neural network-based models

Information 2022, 13, 133 3 of 15

RESCAL [16], NTN [17], and HOLE [18] models are typical decomposition-based
models. Both RESCAL and NTN use tensor products. These tensor products capture rich
interactions, but require a large number of parameters to establish a relational model, so
calculations are very troublesome. To overcome these shortcomings, HOLE uses cyclic
correlation of entity embedding to create a more effective and scalable representation
decomposition.

In contrast, translation models such as TransE [19], DISTMULT [20], and ComplEx [21]
have proposed simple models. TransE regards the relationship in the knowledge graph
as a kind of translation vector between entities. For each triple (h, r, t), TransE uses the
vector R of relation r as the translation between the head entity vector H and the tail
entity vector T. We can also regard R as the translation of H from T. DISTMULT uses
a bilinear diagonal model to learn embedding, which is a special case of using bilinear
projection in NTN and TransE. DISTMULT uses weighted element dot products to model
entity relationships. ComplEx uses complex embeddings and Hermitian dot products to
learn embedding. These translation models are faster, require fewer parameters, and are
relatively easy to train.

Recently, many neural network models have been proposed for knowledge graph
embedding. Recently, CNN-based methods have been proposed to capture the interactive
interaction features with parameter efficient operators, such as ConvE [12], ConvKB [22],
and InteractE [11]. ConvE reshapes the initial input into a matrix form and then uses 2D
convolution to predict links. It consists of a convolutional layer, a fully connected layer,
and an inner product layer for final prediction. Using multiple filters to extract global
relationships can generate different feature maps. The concatenation of these feature maps
represents input triples. ConvKB is an improvement of ConvE. ConvKB does not need
to reshape the input and captures more interactive features through convolutional layer.
Compared with ConvE, which captures local relationships, ConvKB retains translation
features and shows better experimental performance. InteractE proved that capturing more
interactions between head and relation embeddings is beneficial to the final prediction
result, so InteractE reorders the initial vector and reshapes the feature combination into
many matrices and then puts those matrices into the convolutional layer to obtain more
multi-feature interaction. However, InteractE only increases the interaction between head
and relation embedding without taking into account the fact that the importance of different
interaction features is not the same. Therefore, we propose to use dynamic convolution to
assign weights of varying importance to interaction features to solve this problem.

3. Our Approach

In this section, we first describe the background and definitions used in the rest of
the paper in Section 3.1 and introduce our model in Section 3.2. Then we introduce the
dynamic convolutional network in Section 3.3, and the method of mining hard negative
samples in Section 3.4. Finally, we introduce the loss function used in Section 3.5.

3.1. Definition

Knowledge Graph, Knowledge Graph Embedding and Negative Sampling are defined
as follows.

Definition 1 (Knowledge Graph). G = (ε,R), where ε,R indicate the entity set(nodes) and
relationship set (edges) of the knowledge graph, respectively. A triple (h, r, t) is represented as the
relation (edge) r ∈ R between head entity (node) h ∈ ε and tail entity (node) t ∈ ε in G.

Definition 2 (Knowledge Graph Embedding). Knowledge graph embedding aims to learn an
effective representation of entities, relations, and a scoring function f , which can be a network, such
that for a given input triple, v = (eh, er, et), where eh, er, et indicate h, r, t embedding vectors.
f (v) gives a v a higher score if v is valid. Therefore, we can predict the missing head entity h

Information 2022, 13, 133 4 of 15

given query (?, r, t)m or tail entity t given query (h, r, ?), with the learned entity and relation
embedding and the scoring function.

Definition 3 (Negative Sampling). Negative sampling generates negative triples by corrupting
valid triples. Let K+ =

{(
hj, rj, tj

)
| j = 1, 2, · · · , N

}
denote the complete knowledge graph,

where
(
hj, rj, tj

)
represents the valid triple in the knowledge graph. Negative sampling produces

sets of corrupted triples (negative triples) T′ = {(h, r, t′) | t′ ∈ ε, (h, r, t′) /∈ K+}. During
model training, negative sampling takes a certain number of negative triples from T′ for training.

3.2. Our Model

The overall framework of our model is shown in Figure 1. Table 1 presents the
parameters of our model. Our model contains three dynamic convolutional layers, a flatten
layer, and a fully connected layer (FC). The first dynamic convolutional layer (DConv1)
has 64 filters and the size of the kernel is 3 × 3. The next two dynamic convolutional layers
(DConv2, DConv3) have 128 and 256 filters, and the two kernels are both 3 × 3. For all
dynamic convolutional layers, apply the same padding and size of stride. The calculation
rule of the output is defined in Section 3.3.

Figure 1. Overview of DyConvNE. In the DyConvNE model, the head and relation embeddings
are first reshaped into four permutation matrices. Then, these matrices are used as an input to the
dynamic convolutional layer. The resulting feature map tensors are flattened and projected in a
200-dimensional space and matched with all candidate object embeddings. Please refer to Section 3.2
for details.

Table 1. Parameter settings for our model.

Layer Size of Stride Number of Filters Size of Kernel Size of Padding Output Size

Input - - - - 20 × 20 × 4
DConv1 1 64 3 × 3 1 20 × 20 × 64
DConv2 1 128 3 × 3 1 20 × 20 × 128
DConv3 1 256 3 × 3 1 20 × 20 × 256
Flatten - - - - 102,400

FC - - - - 200

For example, we have the valid triple p = (h, r, t) and the input query q = (h, r, ?).
The embedding corresponding to h, r, t are eh, er, et, respectively, and the dimensionality
of embeddings is 200. First, we use the Chequer method proposed in InteractE to randomly
scramble and combine the head embedding (eh) and relationship embedding (er) into
a matrix:

v1 = φchk(eh, er) (1)

where φchk denotes the Chequer method and v1 ∈ R20×20. We use the Chequer method
four times to obtain four different matrices, denoted as v1, v2, v3, and v4. These matrices
have the same size. The Chequer method has proven to be effective in increasing interac-
tion between head embedding and relationship embedding [11]. Next, the four different

Information 2022, 13, 133 5 of 15

matrices are viewed as four channels of the input for the first dynamic convolutional layer
(DConv1). We first use 3× 3 dynamic convolution (proposed in Section 3.3) to capture
interaction features and assign weights of varying importance to interaction features, which
can be formulated as:

v1
3×3 = r

(
[v1||v2||v3||v4] ∗Ω1

)
(2)

where || denotes the concatenation operation, r denotes Relu activation function [23], ∗
denotes the convolutional operation, [v1||v2||v3||v4] ∈ R20×20×4, Ω1 is the parameter of the
first dynamic convolutional layer (DConv1), and v1

3×3 ∈ R20×20×64 denotes the interaction
features from the first dynamic convolutional layer (DConv1).

Second, we use two 3× 3 dynamic convolutions to capture high-level interaction
features and assign weights of varying importance to high-level interaction features:

v3×3 = r
(

r
(

v1
3×3 ∗Ω2

)
∗Ω3

)
(3)

where v1
3×3 is the input interaction features, Ω2 is the parameter of the second dynamic

convolutional layer (DConv2), Ω3 is the parameter of the third dynamic convolutional
layer (DConv3), r denotes Relu activation function [23], and v3×3 ∈ R20×20×256 denotes the
output interaction features from the third dynamic convolutional layer (DConv3).

Then, the final output interaction features v3×3 are flattened to 102,400 units and a
fully connected layer is applied to obtain the predicted embedding of the given query:

et̂ = r
(

vec(v3×3)W1
)

(4)

where W1 ∈ R102,400×200 is the parameter of the fully connected layer and r denotes Relu
activation function [23].

Finally, in order to train the model, we need to sample some negative samples. First,
we use our method (mining hard negative samples) to collect a small number of hard
negative samples θ1 of tail entity for the valid triple (h, r, t). Second, we use the normal
negative sampling method to collect a large number of negative samples θ2 of tail entity.
Therefore, we obtain a negative tail entity set θ = θ1 ∪ θ2. The label of t is 1 and the label of
tail entity in θ1 and θ2 is 0. Then, we multiply the predicted tail embedding et̂ with the valid
tail embedding et and the tail embedding in the negative sample set θ to obtain the logits.
We put logits into the loss function, intending to make the logits of the valid tail embedding
et larger and larger, and the logits of the tail embedding obtained from negative sampling θ
smaller and smaller. The number of negative samples and the setting of hyperparameters
for our model are in Section 4.2.

3.3. Dynamic Convolution

Most previous convolutional network models like InteractE [11] and ConvE [12]
use traditional convolutional filters to capture interaction features between the head and
relation embeddings; then, they treat these interaction features uniformly. However, we
think that the different interaction features should have different contributions to the
experimental results. In this paper, we are inspired by the concept of dynamic convolution,
which was proposed in [13] and was used in image processing. We propose to employ
dynamic convolution to assign weights of varying importance to interaction features.
Different from [13], which computes weights over convolutional kernels, we compute
weights over convolutional filters (output channels).

The goal of dynamic convolution is to learn a group of filter weights, which can assign
weights of varying importance to filters. We illustrate the overall framework of dynamic
convolution in Figure 2, and Table 2 presents parameters of one dynamic convolutional
layer, which has Cout filters and a kernel size of s1 × s2. Dynamic convolution can build
upon transformation mapping an input X ∈ RH×W×Cin to feature maps (interaction
features) Y ∈ RH′×W ′×Cout . In the notation that follows, we use V = [con v1, . . . , con vCout]

Information 2022, 13, 133 6 of 15

to denote the learned set of convolutional filters, where con vc ∈ Rs1×s2×Cin refers to
the parameters of the c-th filter and s1, s2 indicate the size of the convolutional kernel.
Therefore, for the traditional convolutional layer, if the input is X ∈ RH×W×Cin we can
obtain output U = [u1, u2, . . . , uCout]:

uc = con vc ∗ X =
Cin

∑
s=1

con vs
c ∗ xs (5)

where ∗ represents the convolution operation, con vc = [con v1
c , con v2

c , . . . , con vCin
c], X =

[x1, x2, . . . , xCin], and uc ∈ RH′×W ′ . con vs
c ∈ Rs1×s2 is a 2D kernel representing a single

channel of con vc that acts on the corresponding channel of X. To simplify the notation, bias
terms are omitted.

Table 2. Parameter settings for one dynamic convolutional layer.

Layer Size of Stride Number of Filters Size of Kernel Size of Padding Output Size

Input - - - - H ×W × Cin
Avg. Pool - - - - 1× 1× Cin

Conv1 1 Cin/4 1 × 1 0 1× 1× Cin/4
Relu - - - - 1× 1× Cin/4

Conv2 1 Cout 1 × 1 0 1 × 1 × Cout
Softmax - - - - 1× 1× Cout
Output - - - - H′ ×W ′ × Cout

Figure 2. The overall framework of the dynamic convolutional layer.

For dynamic convolutional layer, we apply squeeze-and-excitation [24] to compute
filter weights. Firstly, the input X ∈ RH×W×Cin is squeezed by the average pooling layer to
become X1 ∈ R1×1×Cin , such that the a-th element of X1 = [x1

1, x2
1, . . . , xCin

1] is calculated by:

xa
1 =

1
H ×W

H

∑
i=1

W

∑
j=1

xa(i, j) (6)

Information 2022, 13, 133 7 of 15

where xa ∈ RH×W is the a-th element in X. Then, we use two 1 × 1 convolutions (with a
Relu between them) and softmax to generate normalized weights α = [α1, α2, . . . , αCout]
for convolutional filters V:

α = σ(V2 ∗ r(V1 ∗ X1)) (7)

where α ∈ R1×1×Cout , V1 is the parameter of the Conv1, V2 is the parameter of the Conv2,
r denotes Relu activation function [23], and σ denotes the softmax function. Finally, the
output Y = [y1, y2, . . . , yk] of the dynamic convolutional layer can be formulated as:

yc = (convc×αc) ∗ X (8)

where ∗ denotes convolution, yc ∈ RH′×W ′ is the c-th element in Y, and αc ∈ R1×1 is the
c-th element in α.

Therefore, the essence of dynamic convolution is to add different weights to the
convolutional filters at different inputs, which can capture more important interaction
features and allow the network to pay more attention to more important interaction features,
instead of unimportant interaction features.

3.4. Mining Hard Negative Samples

Negative sampling generates negative triples by corrupting valid triples. Let K =
{(hi, ri, ti) | i = 1, 2, · · · , N} denote all valid triples in the knowledge graph, T+ denote
all entities in the knowledge graph, and Ti = {(hi, ri, t′) | t′ ∈ T+, (hi, ri, t′) /∈ K+} de-
note all negative triples of the valid triple (hi, ri, ti). We divide the negative triples Ti into
two grades. If the model easily distinguishes between a negative triple (hi, ri, ta) ∈ Ti and
the valid triple (hi, ri, ti), we named such a negative triple an easy negative sample. Using
a large amount of easy negative samples will not achieve the purpose of training a better
model. If the model hardly distinguishes between a negative triple (hi, ri, tb) ∈ Ti and
the valid triple (hi, ri, ti), we named such a negative triple a hard negative sample. Hard
negative samples can increase the difficulty of the model during training and allow the
model to pay more attention to details.

Figure 3 shows the process involved in our method of mining hard negative samples.
In order to effectively select hard negative samples, the method we use is to mine through
the model itself. If model input is a valid triple (hi, ri, ti), we firstly randomly select
k negative triples from Ti and obtain Ni = {(hi, ri, nc) | c = 1, · · · , k, (hi, ri, nc) ∈ Ti}.
Next, we use valid triple (hi, ri, ti) and Ni to train the initial model for one epoch and
obtain a trained model M1. Then, we use M1 to predict the missing tail entity at (hi, ri, ?),
and obtain logits about the position of all entities T+in this tail entity. We use logits to sort
these tail entities from high to low: (hi, ri, e1), (hi, ri, e2), . . . , (hi, ri, e|T+ |). We define
that triples ranked higher than rs are likely to be valid triples, triples ranked between rs and
rt are hard negative triples (hard negative samples), and triples ranked lower than rt are
easy negative triples (easy negative samples). Therefore, we obtain the set of hard negative
samples Pi = {(hi, ri, ec) | c = rs, rs + 1, · · · , rt, (hi, ri, ec) ∈ Ti}. We can use the hard
negative samples obtained from this epoch model to train the next epoch model. Finally,
we merge Pi to the negative sampling of (hi, ri, ti) in the next epoch training. After that,
this operation is repeated with the model obtained from the previous epoch of training.

In our method, k, rs, rt are hyperparameters whose values are different for WN18RR
and FB15k-237. We select the k from {1000, 5000, 10,000}, the rs-rt of FB15k-237 from
{10th-100th, 20th-100th, 30th-100th, 40th-100th}, and the rs-rt of WN18RR from {10th-
200th, 20th-200th, 30th-200th, 40th-200th}. Finally, as shown in Table 3, the k is set to 1000
for FB15k-237 and 5000 for WN18RR and the rs-rt is set to 30th–100th for FB15k-237 and
20th–200th for WN18RR.

Information 2022, 13, 133 8 of 15

Figure 3. Process involved in mining hard negative samples.

Table 3. Hyperparameter settings for mining hard negative samples on FB15k-237 and WN18RR.

Parameter Value

FB15k-237 WN18RR

k 1000 5000
rs 30th 20th
rt 100th 200th

3.5. Training Objective

For training the model parameters, we apply a logistic sigmoid to the logits of the
scores of (h, r, t), and use the Adam optimizer [25] to train DyConvNE by minimizing the
following binary cross-entropy loss:

L(p, l) = − 1
N ∑

i
(li · log(pi) + (1− li) · log(1− pi)) (9)

where p is the prediction and l is the label. For valid triples, we define its label as 1; for
negative triples, it is defined as 0.

4. Experiments

In this part, we apply two public datasets, FB15k-237 and WN18RR, to validate the
effectiveness of our proposed DyConvNE model for knowledge graph completion. Firstly,
we give a detailed description of the datasets in Section 4.1 and an experimental setup
of our model in Section 4.2. Then, we compare with other models to demonstrate the
better performance of our model in Section 4.3 and we show the experimental results of
our specific-relationship-testing method in Section 4.4. Finally, we present a case study
in Section 4.5, an ablation study in Section 4.6, and a hard negative sampling study in
Section 4.7.

4.1. Datasets

To evaluate our proposed approach, we used two benchmark datasets: WN18RR [12]
and FB15K-237 [26]. WN18RR and FB15k-237 are the subsets of WN18 and FB15k after

Information 2022, 13, 133 9 of 15

removing the inverse relations, respectively. Previous works suggest that the task of
knowledge graph completion in WN18 and FB15K suffers from the problem of inverse
relations, whereby one can achieve state-of-the-art results using a simple reversal rule-
based model [11]. Therefore, corresponding subset datasets WN18RR and FB15k-237
were created to resolve the reversible relation problem in WN18 and FB15K. Table 4
shows the summary statistics of the datasets. The WN18RR dataset has 40,943 entities, 11
relations, and 86,835 triples. The FB15k-237 dataset has 14,541 entities, 237 relations, and
272,115 triples.

Table 4. Statistics of the datasets.

Dataset |ε| |R|
Triples

Train Valid Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3034 3134

4.2. Experimental Setup

In the current epoch of model training, we use the model that has been trained in the
previous epoch to sample a certain number of hard negative samples for each valid triple
(h, r, t). We obtain the hard negative sampling set of head entity θ1 and the hard negative
sampling set of tail entity θ2. Then, we use the normal negative sampling method to collect
a certain number of negative head entity sets θ3 and negative tail entity sets θ4. We replace
the head entity and tail entity in the original triple (h, r, t) with the entities obtained by
negative sampling to obtain the two replaced triple sets (nh, r, t), where nh ∈ h∪ θ1 ∪ θ3,
and (h, r, nt)l where nt ∈ t ∪ θ2 ∪ θ4. The triple sets are put into the model for training,
and label smoothing is used with a parameter of 0.1 for the training label. The parameters
of our model are selected via grid search according to the MRR on the validation set. We
select the initial learning rate from {0.001, 0.01, 0.1, 0.0002, 0.0001}, the dimensionality of
embedding from {100, 200}, and the batch size from {64, 128, 256, 512}.

As shown in Table 5, for the FB15k-237 dataset, we use the Adam optimizer [25]. The
initial learning rate we used was 0.001, and the dimensionality of embedding was 200.
The learning rate decay strategy was used to decay 0.005 every 150 rounds. We trained
the model up to 500 epochs with a batch size of 128 and a number of negative samples of
1070, including 70 hard negative samples. The selection range of hard negative samples
was from the 30th to the 100th among the ranked entities. For the WN18RR dataset, the
initial learning rate we used was 0.001, and the dimensionality of embedding was 200. The
learning rate decay strategy was used to decay 0.005 every 150 rounds. We trained the
model up to 500 epochs with a batch size of 256 and a number of negative samples of 5180,
including 180 hard negative samples. The selection range of hard negative samples is from
the 20th to the 200th among the ranked entities.

Table 5. Hyperparameter settings of our model.

Parameter Value

FB15k-237 WN18RR

Learning rate 0.001 0.001
Epoch 500 500

Batch size 128 256
The dimensionality of embedding 200 200

4.3. Main Results

We follow the “Filtered” setting protocol [19] to evaluate our model, i.e., ranking all
the entities excluding the set of other valid entities that appeared in training, validation,
and test sets. We use Mean Reciprocal Rank (MRR), Mean Rank (MR), and Hits@1 and

Information 2022, 13, 133 10 of 15

Hits@10 indicators to evaluate our model. Note that lower MR, higher MRR, and higher
Hits@1 or Hits@10 indicate better performance.

We have compared our results with various advanced methods: TransE [19], Dis-
Mult [20], ComplEx [21], ConvE [12], ConvKB [22], CACL [27], SACN [28], InteractE [11].
The experimental results are summarized in Table 6. As shown in Table 6, DyConvNE gains
significant improvements on FB15k-237 and WN18RR. On FB15k-237 dataset, the MRR
of our model is 0.358, Hits@1 is 26.5, Hits@10 is 54.2, and MR is 181. On FB15k-237, our
model obtains the best result on Hits@1 and Hits@10, and the second-best result on MRR
and MR. On the WN18RR dataset, the MRR of our model is 0.474, Hits@1 is 43.5, Hits@10
is 55.2, and MR is 4531. On WN18RR, our model obtains the best result on Hits@1, MRR,
and Hits@10, and a comparable result on MR. We conduct ablation experiments in Section
4.5 to further demonstrate the effectiveness of our proposed dynamic convolution and of
mining hard negative samples.

Table 6. Experimental results on WN18RR and FB15K-237 test sets. Results are taken from the
corresponding papers. Hits@N values are in percentage. The best score is in bold and second best
score is underlined.

Models
WN18RR FB15k-237

MR MRR Hits@1 Hits@10 MR MRR Hits@1 Hits@10

TransE [19] 2300 0.243 4.27 53.2 323 0.279 19.8 44.1
DisMult [20] 7000 0.444 41.2 50.4 512 0.281 19.9 44.6

ComplEx [21] 7882 0.449 40.9 53 546 0.278 19.4 45
CACL [27] 3154 0.472 - 54.3 235 0.349 - 48.7
SACN [28] - 0.470 43.0 54.0 - 0.350 26.0 54.0
ConvE [12] 4464 0.456 41.9 53.1 245 0.312 22.5 49.7

ConvKB [22] 2554 0.248 - 52.5 257 0.396 - 51.7
InteractE [11] 5202 0.463 43.0 52.8 172 0.354 26.3 53.5

DyConvNE (ours) 4531 0.474 43.5 55.2 181 0.358 26.5 54.2

4.4. Specific Relationship Testing

We experimented with our specific-relationship-testing method on FB15k-237 and
WN18RR. The experimental results are summarized in Table 7. The traditional testing
method is to replace either h or t with other entities in ε to create a set of invalid triples for
each valid test triple (h, r, t) and then rank the valid test triple (h, r, t) and invalid triples
in ascending order of their scores. If the valid test triple ranks first, the prediction is correct,
and the total accuracy rate (Hits@1) increases. Our specific-relationship testing method
considers the entity pairs connected by different relationships to be domain-specific. For
example, if the relation r is place-lived, its tail entity must be a place name and not a
person’s name, age, etc. Therefore, in our specific-relationship-testing method, we replace
either h1 or t1 with entities that should have appeared in the head entity or tail entity
of the triple with relation r1 in the training se, to create a set of invalid triples for each
valid test triple (h1, r1, t1). Then, we rank the valid test triple (h1, r1, t1) and invalid
triples in ascending order of their scores. Special attention is required when using the
specific-relationship-testing method, since only Hits@1 can be compared to the traditional
testing method because Hits@1 represents the accuracy rate. Other evaluation metrics (MR,
MRR, and Hits@10) are not comparable because of the change in the number of invalid
triples.

Information 2022, 13, 133 11 of 15

Table 7. The result of Hits@1 after using specific-relationship-testing on FB15K-237 and WN18RR.
Hits@1 values are in percentage. The best score is in bold.

Models Wn18RR FB15k-237

Hits@1 Hits@1

TransE [19] 4.27 19.8
DisMult [20] 41.2 19.9

ComplEx [21] 40.9 19.4
SACN [28] 43.0 26.0
ConvE [12] 41.9 22.5

InteractE [11] 43.0 26.3

DyConvNE 43.5 26.5

DyConvNe-SR 46.3 28.4

In the experiment, we used the same trained model and different testing methods
to predict the Hits@1 of FB15k-237 and WN18RR. DyConvNE uses the traditional test-
ing method, and DyConvNE-SR uses the specific-relationship-testing method. As shown
in Table 7, DyConvNE-SR obtained the highest Hits@1 on WN18RR and also the high-
est Hits@1 on FB15k-237. DyConvNE-SR achieved better results than DyConvNE, and
DyConvNE-SR gained significant improvements of 2.8% in Hits@1 on WN18RR and 1.9%
in Hits@1 on FB15k-237.

4.5. Case Study

To further analyze how the specific-relationship-testing method contributes to knowl-
edge graph completion, we give two examples in Table 8. For the query (Pixar Animation
Studios, artist, ?), target (Randy Newman) ranks fourth when using traditional testing
methods, and first when using our method. The traditional testing method ranks John
A. Lasseter, Pete Docter, and Andrew Stanton in the first, second, and third place. Still,
these are animators, directors, and screenwriters, respectively, not artists. When using
the specific-relationship-testing method, all predictions for the query are a set of entities
with the type “artist”. For the second example (?, profession, theatrical producer), target
(Emanuel “Manny” Azenberg) ranks second when using the traditional testing method
and first when using our method. The traditional testing method ranks The Shubert Or-
ganization first, but it is not a person and has no attribute of profession. When using our
method, all predictions for the query are a set of entities with the type “person”. These ex-
amples clearly show how our specific-relationship-testing method benefits the knowledge
graph completion.

Table 8. Two examples of top five predictions for the given queries. Two test triples were selected
from the FB15k-237 test data set. The target in top predictions is underlined.

Query and Target Top Predictions

Traditional Testing
Method

Specific-Relationship-Testing
Method

John A. Lasseter Randy Newman
Query: (Pixar Animation Studios, Pete Docter Mike Patton
artist, ?) Andrew Stanton Ziggy Marley
Target: Randy Newman Randy Newman AC/DC

Walt Disney Pictures Blondie

The Shubert Organization Emanuel “Manny” Azenberg
Query: (?, profession, Emanuel “Manny” Azenberg Marvin Neil Simon
theatrical producer) Marvin Neil Simon Tony Kushner
Target: Emanuel “Manny” Azenberg Tony Kushner Arthur Asher Miller

Arthur Asher Miller John Patrick Shanley

Information 2022, 13, 133 12 of 15

4.6. Ablation Study

In the ablation experiment, we ensured that the experiment was performed on FB15k-
237 and WN18RR under the condition that the hyperparameters of the model DyConvNE,
such as the learning rate, remained unchanged. First, we removed the method of mining
hard negative samples in the DyConvNE, replaced the dynamic convolution in the model
with traditional convolution, and obtained a general model DyConvNE-conv. As shown in
Table 9, the MR of DyConvNE-conv on FB15k-237 is 186, the MRR is 0.353, and the @10
is 53.9. The MR of DyConvNE-conv on WN18RR is 5455, the MRR is 0.44, and the @10 is
51.6. Then, we only removed the method of mining hard negative samples in the model in
DyConvNE and retained the dynamic convolution to get the model DyConvNE-dyconv. It
can be observed that this model is better than DyConvNE-conv’s MR, MRR, and @10 on
both FB15k-237 and WN18RR, which proves the effectiveness of the dynamic convolution
operation. Then, our original model DyConvNE-dyconv-neg, which includes dynamic
convolution and mining hard negative samples, was compared to the DyConvNE-dyconv
model The MR dropped by 4, the MRR increased by 0.002, and the Hits@10 increased by
0.2% on FB15k-237. DyConvNE-dyconv-neg also achieved better results on WN18RR. The
ablation study proves that mining hard negative samples can make the model perform
better.

Table 9. The result of ablation study on FB15K-237 and WN18RR test sets. Hits@10 values are in
percentage. The best score is in bold.

Models
FB15k-237 WN18RR

MR MRR Hits@10 MR MRR Hits@10

DyConvNE-conv 186 0.353 53.9 5455 0.44 51.6
DyConvNE-dyconv 185 0.356 54.0 4801 0.452 52.5

DyConvNE-dyconv-neg 181 0.358 54.2 4531 0.474 55.2

4.7. Hard Negative Sampling Study

We present the results of our model on FB15k-237 in terms of Hits@10 in Figure 4 for
rank (rs-rt) ∈ {0th- 0th, 10th–100th, 20th–100th, 30th–100th, 40th–100th}. We also present
the results of our model on WN18RR in terms of Hits@10 in Figure 5 for rank (rs-rt) ∈
{0th- 0th, 10th–200th, 20th–200th, 30th–200th, 40th–200th}. The results show that the
different rank (rs-rt) have different effects on the two datasets. The rank 0th-0th denotes
that the model only uses the traditional negative sampling method, which is equivalent to
the DyConvNE-dyconv model in Section 4.6. Figures 4 and 5 show that using a suitable
rank of mining hard negative samples can achieve better performance than models using
the traditional negative sampling method. Our model achieved the best results on the
FB15k-237 when the rank (rs-rt) was set to 30th–100th, and our model achieved the best
results on the WN18RR when the rank (rs-rt) was set to 20th–200th.

Information 2022, 13, 133 13 of 15

Figure 4. Experimental results on FB15k-237, evaluated in terms of Hits@10 for rank (rs-rt) ∈ {0th-
0th, 10th–100th, 20th–100th, 30th–100th, 40th–100th}.

Figure 5. Experimental results on WN18RR, evaluated in terms of Hits@10 for rank (rs-rt) ∈ {0th-
0th, 10th-200th, 20th-200th, 30th-200th, 40th-200th}.

5. Conclusions

In this paper, we propose a new knowledge graph completion model named DyCon-
vNE. Our model first employs dynamic convolution instead of traditional convolution
to assign weights of varying importance to interaction features. Then, our model uses a
new method of generating negative samples (mining hard negative samples) to increase
the difficulty of model training. We proved the effectiveness of our model through experi-
ments. The Hits@10 of our model reached 55.2% on the WN18RR dataset and 54.2% on
the FB15k-237 dataset, which was better than the previous knowledge graph completion
model. Finally, we propose a specific-relationship-testing method, which can reduce the
number of candidate entities when testing. Our specific-relationship-testing method can
improve Hits@1 by 2% on WN18RR and FB15k-237. In the future, we intend to extend our
method to introduce attribute information of entities and relationships into the knowledge
graph embedding to improve the accuracy of the knowledge graph embedding.

Author Contributions: H.P., theoretical study, analysis, findings, manuscript writing; Y.W., design
review, manuscript review, and supervision. All authors discussed the results and contributed to the
final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Information 2022, 13, 133 14 of 15

Data Availability Statement: All the benchmarking datasets used in this study can be downloaded
using the following URL: https://figshare.com/articles/dataset/KG_datasets/14213894 (accessed
on 27 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, X.; Zhang, J.; Li, D.; Li, P. Knowledge graph embedding based question answering. In Proceedings of the 12th ACM

International Conference on Web Search and Data Mining, Melbourne, Australia, 11–15 February 2019; pp. 105–113.
2. He, H.; Balakrishnan, A.; Eric, M.; Liang, P. Learning symmetric collaborative dialogue agents with dynamic knowledge graph

embeddings. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC,
Canada, 30 July–4 August 2017; pp. 1767–1776.

3. Madotto, A.; Wu, C.; Fung, P. Mem2seq: Effectively incorporating knowledge bases into end-to-end task-oriented dialog systems.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July
2018; pp. 1468–1478.

4. Zhang, F.; Yuan, N.; Nicholas, J.; Lian, D.; Xie, X.; Ma, W. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA,
USA, 13–17 August 2016; pp. 353–362.

5. Chen, X.; Jia, S.; Xiang, Y. A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 2020, 141, 112948. [CrossRef]
6. Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring

human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC,
Canada, 9–12 June 2008; pp. 1247–1250.

7. Vrandečić, D.; Krötzsch, M. Wikidata: A free collaborative knowledgebase. Commun. ACM 2014, 57, 78–85. [CrossRef]
8. Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.; Hellmann, S.; Morsey, M.; van Kleef, P.; Auer, S.

Dbpedia—A large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 2015, 6, 167–195. [CrossRef]
9. Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Philip, S. A survey on knowledge graphs: Representation, acquisition, and applications.

IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 494–514. [CrossRef] [PubMed]
10. Dai, Y.; Wang, S.; Xiong, N. N.; Guo, W. A survey on knowledge graph embedding: Approaches, applications and benchmarks.

Electronics 2020, 9, 750. [CrossRef]
11. Vashishth, S.; Sanyal, S.; Nitin, V.; Agrawal, N.; Talukdar, P.P. InteractE: Improving Convolution-Based Knowledge Graph

Embeddings by Increasing Feature Interactions. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY,
USA, 7–12 February 2020; AAAI Press: Palo Alto, CA, USA, 2020; pp. 3009–3016.

12. Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2d knowledge graph embeddings. In Proceedings of the
AAAI Conference on Artificial Intelligence, Palo Alto, CA, USA, 4–9 February 2017; AAAI Press: Palo Alto, CA, USA, 2017;
pp. 1811–1818.

13. Chen, Y.; Dai, X.; Liu, M.; Chen, D.; Yuan, L.; Liu, Z. Dynamic convolution: Attention over convolution kernels. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2020; pp. 11030–
11039.

14. Rossi, A.; Barbosa, D.; Firmani, D.; Matinata, A.; Merialdo, P. Knowledge graph embedding for link prediction: A comparative
analysis. ACM Trans. Knowl. Discov. Data TKDD 2021, 15, 1–49. [CrossRef]

15. Wang, M.; Qiu, L.; Wang, X. A Survey on Knowledge Graph Embeddings for Link Prediction. Symmetry 2021, 13, 485. [CrossRef]
16. Nickel, M.; Tresp, V.; Kriegel, H.P. A Three-Way Model for Collective Learning on Multi-Relational Data. In Proceedings of the

ICML, Washington, DC, USA, 28 June–2 July 2011; pp. 809–816.
17. Socher, R.; Chen, D.; Manning, C.; Ng, A. Reasoning with Neural Tensor Networks for Knowledge Base Completion; MIT Press:

Cambridge, MA, USA, 2013; pp. 926–934.
18. Nickel, M.; Rosasco, L.; Poggio, T.A. Holographic Embeddings of Knowledge Graphs. In Proceedings of the AAAI Conference on

Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; AAAI: Phoenix, AZ, USA, 2016; pp. 1955–1961.
19. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data.

Adv. Neural Inf. Process. 2013, 26, 2787–2795.
20. Yang, B.; Yih, W.; He, X.; Gao, J.; Deng, L. Embedding entities and relations for learning and inference in knowledge bases. In

Proceedings of the ICLR (Poster), San Diego, CA, USA, 7–9 May 2015.
21. Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex embeddings for simple link prediction. In Proceedings of

the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; ICML: New York City, NY, USA, 2016;
pp. 2071–2080.

22. Nguyen, D.Q.; Nguyen, T.D.; Nguyen, D.Q.; Phung, D.Q. A novel embedding model for knowledge base completion based on
convolutional neural network. In Proceedings of the NAACL-HLT, New Orleans, LA, USA, 1–6 June 2018; pp. 327–333.

23. Xavier, G.; Antoine, B.; Yoshua, B. Deep sparse rectifier neural networks. In Proceedings of the AISTATS, Lauderdale, FL, USA,
11–13 April 2011; pp. 315–323.

https://figshare.com/articles/dataset/KG_datasets/14213894
http://doi.org/10.1016/j.eswa.2019.112948
http://dx.doi.org/10.1145/2629489
http://dx.doi.org/10.3233/SW-140134
http://dx.doi.org/10.1109/TNNLS.2021.3070843
http://www.ncbi.nlm.nih.gov/pubmed/33900922
http://dx.doi.org/10.3390/electronics9050750
http://dx.doi.org/10.1145/3424672
http://dx.doi.org/10.3390/sym13030485

Information 2022, 13, 133 15 of 15

24. Jie, H.; Li, S.; Gang, S. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

25. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
26. Toutanova, K.; Chen, D.; Pantel, P.; Poon, H.; Choudhury, P.; Gamon, M. Representing Text for Joint Embedding of Text and

Knowledge Bases. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon,
Portugal, 17–21 September 2015; pp. 1499–1509.

27. Oh, B.; Seo, S.; Lee, L. Knowledge graph completion by context-aware convolutional learning with multi-hop neighborhoods. In
Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26 October
2018; pp. 257–266.

28. Shang, C.; Tang, Y.; Huang, J.; Bi, J.; He, X.; Zhou, B. End-to-End Structure-Aware Convolutional Networks for Knowledge Base
Completion. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
AAAI Press: Palo Alto, CA, USA, 2019; pp. 3060–3067.

	Introduction
	Related Work
	Our Approach
	Definition
	Our Model
	Dynamic Convolution
	Mining Hard Negative Samples
	Training Objective

	Experiments
	Datasets
	Experimental Setup
	Main Results
	Specific Relationship Testing
	Case Study
	Ablation Study
	Hard Negative Sampling Study

	Conclusions
	References

