
����������
�������

Citation: Liu, J.; Zhu, T.; Zhang, Y.;

Liu, Z. Parallel Particle Swarm

Optimization Using Apache Beam.

Information 2022, 13, 119. https://

doi.org/10.3390/info13030119

Academic Editor: Haridimos

Kondylakis

Received: 7 January 2022

Accepted: 24 February 2022

Published: 28 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Parallel Particle Swarm Optimization Using Apache Beam
Jie Liu 1 , Tao Zhu 1, Yang Zhang 2 and Zhenyu Liu 1,*

1 Computer School, University of South China, Hengyang 421001, China; jieliu5326@gmail.com (J.L.);
tzhu@usc.edu.cn (T.Z.)

2 Science and Technology on Parallel and Distributed Processing Laboratory (PDL),
National University of Defense Technology, Changsha 410073, China; yangzhang15@nudt.edu.cn

* Correspondence: lzy@usc.edu.cn

Abstract: The majority of complex research problems can be formulated as optimization problems.
Particle Swarm Optimization (PSO) algorithm is very effective in solving optimization problems
because of its robustness, simplicity, and global search capabilities. Since the computational cost
of these problems is usually high, it has been necessary to develop optimization algorithms with
parallelization. With the advent of big-data technology, such problems can be solved by distributed
parallel computing. In previous related work, MapReduce (a programming model that implements
a distributed parallel approach to processing and producing large datasets on a cluster) has been
used to parallelize the PSO algorithm, but frequent file reads and writes make the execution time
of MRPSO very long. We propose Apache Beam particle swarm optimization (BPSO), which uses
Apache Beam parallel programming model. In the experiment, we compared BPSO and PSO based
on MapReduce (MRPSO) on four benchmark functions by changing the number of particles and
optimizing the dimensions of the problem. The experimental results show that, as the number of
particles increases, MRPSO remains largely constant when the number of particles is small (<1000),
while the time required for algorithm execution increases rapidly when the number of particles
exceeds a certain amount (>1000), while BPSO grows slowly and tends to yield better results than
MRPSO. As the dimensionality of the optimization problem increases, BPSO can take half the time
of MRPSO and obtain better results than it does. MRPSO requires more execution time than BPSO,
as the problem complexity varies, but both MRPSO and BPSO are not very sensitive to problem
complexity. All program code and input data are uploaded to GitHub.

Keywords: parallel particle swarm optimization; Apache Beam; MapReduce; swarm intelligence;
big data

1. Introduction

It is common for the real world to have a lot of optimization problems that are
complex, large-scale, and NP-Hard. A lot of these problems not only contain constraints
and objectives, but also have their modeling constantly changing. Unfortunately, it is hard
for a universal method to provide a solution.

Nowadays, more and more artificial intelligence methods (e.g., heuristics and meta-
heuristics) are used to solve such problems in many different domains, such as online learn-
ing [1], multi-objective optimization [1,2], scheduling [3], transportation [4], medicine [5],
data classification [6], etc. Many issues can theoretically be solved by searching through a
large number of possible answers intelligently. For the metaheuristic algorithm, the search
can begin with some type of guessing and then gradually refine the guesses until no further
refinement is possible. The process of this can be seen as a blind climb: we start our search
at a random point on the mountain and then, by jumping or stepping, keep moving upward
until we reach the top.

The particle swarm optimization algorithm [7], a classical metaheuristic, has proven to
be very effective in many fields [8–10]; it is a method for optimizing a problem by iteratively

Information 2022, 13, 119. https://doi.org/10.3390/info13030119 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13030119
https://doi.org/10.3390/info13030119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-4450-2048
https://doi.org/10.3390/info13030119
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13030119?type=check_update&version=1

Information 2022, 13, 119 2 of 13

improving a candidate solution relative to a given measure of quality. During PSO, each
particle has a velocity and position, and the optimization problem is transformed into
several optimization functions, called fitness functions. Each particle records its own best
value and updates the swarm’s best value.

In order to solve increasingly complex optimization problems, a useful method is
parallel PSO. The parallelization solutions include Hadoop MapReduce, MATLAB parallel
computing toolbox, CUDA, R Parallel package, Julia: Parallel for and MapReduce, OpenGL,
OpenCL, OpenMP with C++ and Rcpp, Parallel computing module in python, MPI, HPF,
PVM, POSIX threads, and Java threads on SMP machines [11].

Previous papers [12,13] have implemented MapReduce parallel PSO, which proved to
be very effective in training a radial basis function (RBF) network and enlarging the swarm
population and problem dimension sizes.

In this study, we used Apache Beam to implement parallelized PSO, as it is an open-
source unified model for defining both batch and streaming data-parallel processing
pipelines [14]. In the experiment, we used Apache Beam to parallelize the PSO algo-
rithm (BPSO) and compare it with the running time and results of MapReduce parallel
PSO (MRPSO).

In Section 2, we introduce the details of the PSO algorithm. In Section 3, we introduce
the basic concepts of Apache Beam, WordCount programming examples, and the advan-
tages of Apache Beam. In Section 4, we introduce, in detail, the algorithm ideas and steps
of Apache Beam PSO. In Section 5, we compare BPSO with MRPSO on four benchmark
functions, namely Sphere, Generalized Griewank, Generalized Rastrigin, and Rosenbrock
functions, by varying the number and dimensionality of particles. The experiments show
that BPSO can run faster and obtain better results than MRPSO under the same conditions.
Finally, we summarize the paper and give directions for future work in Section 6.

2. Particle Swarm Optimization

PSO was originally proposed by Kennedy, Eberhart, and Shi [7,15] and was first
developed to simulate social behavior [16], using formulas to mimic the movements of a
bench of birds and fish.

In PSO, each particle updates its speed and position according to the best value found
by itself and the best value found by the particle swarm, gradually approaching the global
optimal value. Initially, each particle initializes its velocity and position in a function-
specific feasible region and calculates its fitness by applying a fitness function. Then, the
particle updates its speed and position by using the following equation [17]:

Vi,d = C∗
(
Vi,d + C1∗Rp ∗ (P_besti,d − Pi,d) + C2∗Rg ∗ (G_besti,d − Pi,d)

)
(1)

Xi,d = Xi,d + Vi,d (2)

the V is the particle’s velocity, i is the particle’s number in the swarm, d represents the
dimension of the particle, and Rp and Rg are uniformly distributed random numbers.

In addition, P_best represents the best-known position of the particle and G_best is
the best-known position of the entire swarm. C is a constriction factor derived from the
existing constants in Equation (1):

C =
2

2−ϕ−
√
ϕ2 − 4ϕ

(3)

ϕ = C1 + C2 (4)

where C1 = C2 = 2.05.
Finally, if the particle’s fitness value is better, it updates P_best and G_best to the

current position. When this is finished, the particle swarm has finished one iteration and is
ready to go on to the next. The update process is summarized in Algorithm 1.

Information 2022, 13, 119 3 of 13

Algorithm 1. PSO Algorithm Update Process.

while a termination criterion is not met:
for each particle i in the swarm:

for each dimension:
Update the particle’s velocity using Equation (1)
Update the particle’s position using Equation (2)

if f(Pi) better than f(P_besti):
Update the particle’s best known position

if f(P_besti) better than f(G_besti):
Update the swarm’s best known position

As PSO uses iteration to update the solutions, when will it stop? The termination
criterion can be the number of iterations performed or a solution where the adequate
objective function value is found [17].

PSO belongs to the field of swarm intelligence, so that it can be expressed in parallel.
In combination with big-data models, such as MapReduce [12,13] Apache Spark [18,19],
etc., the algorithm running speed can be improved further.

3. Apache Beam

Apache Beam is an open-source unified model for defining both batch and streaming
data-parallel processing pipelines; it was created by language-specific SDKs and subse-
quently executed by one of the distributed back-ends supported by Beam, which includes
Apache Nemo, Apache Flink, Hazelcast Jet, Apache Spark, Apache Samza, Twister2, and
Google Cloud Dataflow [14].

3.1. WordCount

In Apache beam, the user’s program is a Pipeline (managing a directed acyclic graph
of PTransforms and PCollections that is ready for execution [20]) and the input data are
divided as PCollection (representing a collection of data, which could be bounded or
unbounded in size [20]), which is transformed by PTransform (representing a computation
that transforms input PCollections into output PCollections [20]). The PTransform can
change, filter, group, analyze, or otherwise deal with elements in a PCollection. Then, we
use IOs to the result to an external source. With the Runner (specifying where and how
the pipeline should execute [20]) supported by the Apache Beam, we can run the pipeline
without changing the code.

The flowchart of the classical WordCount program is shown in Figure 1, below.

Information 2022, 13, x FOR PEER REVIEW 3 of 13

Finally, if the particle’s fitness value is better, it updates P_best and G_best to the
current position. When this is finished, the particle swarm has finished one iteration and
is ready to go on to the next. The update process is summarized in Algorithm 1.

Algorithm 1 PSO Algorithm Update Process
while a termination criterion is not met:

for each particle i in the swarm:
for each dimension:

Update the particle’s velocity using Equation (1)
Update the particle’s position using Equation (2)

if f(Pi) better than f(P_besti):
Update the particle’s best known position

if f(P_besti) better than f(G_besti):
Update the swarm’s best known position

As PSO uses iteration to update the solutions, when will it stop? The termination
criterion can be the number of iterations performed or a solution where the adequate ob-
jective function value is found [17].

PSO belongs to the field of swarm intelligence, so that it can be expressed in parallel.
In combination with big-data models, such as MapReduce [12,13] Apache Spark [18,19],
etc., the algorithm running speed can be improved further.

3. Apache Beam
Apache Beam is an open-source unified model for defining both batch and streaming

data-parallel processing pipelines; it was created by language-specific SDKs and subse-
quently executed by one of the distributed back-ends supported by Beam, which includes
Apache Nemo, Apache Flink, Hazelcast Jet, Apache Spark, Apache Samza, Twister2, and
Google Cloud Dataflow [14].

3.1. WordCount
In Apache beam, the user’s program is a Pipeline (managing a directed acyclic graph

of PTransforms and PCollections that is ready for execution [20]) and the input data are
divided as PCollection (representing a collection of data, which could be bounded or un-
bounded in size [20]), which is transformed by PTransform (representing a computation
that transforms input PCollections into output PCollections [20]). The PTransform can
change, filter, group, analyze, or otherwise deal with elements in a PCollection. Then, we
use IOs to the result to an external source. With the Runner (specifying where and how
the pipeline should execute [20]) supported by the Apache Beam, we can run the pipeline
without changing the code.

The flowchart of the classical WordCount program is shown in Figure 1, below.

Figure 1. Apache Beam WordCount pipeline data flow. Figure 1. Apache Beam WordCount pipeline data flow.

As can be seen from the picture above, in the beginning, an input file is read by the
Pipeline object and outputs a PCollection whose elements consist of lines of text. The
transformation then splits the rows in the PCollection, where each element is a separate
word. When the output of the previous step is received, the Count provided by the SDK
converts it and outputs a PCollection of key/value pairs, where each key represents a
unique word in the text, and the associated value is the number of occurrences of each

Information 2022, 13, 119 4 of 13

key. The following conversion formats each key/value pair into a printable string that is
suitable for writing to the output file. Finally, the Write conversion writes the string to
the file.

3.2. Benefits of Apache Beam

With the development of big-data technology, a programming model called MapRe-
duce can be used to solve the optimization problem of parallel PSO [12,13]. In addition, a
MapReduce program usually consists of a mapping process (used to filter or sort data) and
a reduction method (used to collect data to generate results).

However, the MapReduce task must be written as an acyclic data-flow program, that
is, a stateless mapper followed by a stateless reducer, which is executed by the batch
job scheduler [21]. Therefore, it is difficult to repeatedly query the dataset and solve
optimization problems through iterative calculations. In addition, the algorithm is very
slow when iterating, because it must save the data to the disk and reread the data from the
disk for each iteration.

In order to overcome the abovementioned shortcomings, Apache Beam appeared,
which unifies batch processing and stream data-parallel processing. The Apache Beam
program is a pipeline, and data flow in the pipeline similar to water. We can use PTransform
to transform the data into the format we need. With the rapid development of big data,
more and more engines for large-scale data analysis appear, such as Apache Nemo, Apache
Spark, Apache Flink, Google Cloud Dataflow, etc. While changing the big-data engine,
we must relearn new languages and grammar, which wastes a lot of time and energy. In
Apache Beam, we only need to care about the following four issues: What results are
being calculated? Where in event time? When in processing time? How do refinements
of results relate? We do not have to understand all the details of various runners and
their implementations; instead, we need to focus on the logical composition of our data-
processing jobs, rather than the physical orchestration of parallel processing.

The model behind Beam evolved from Google FlumeJava, MapReduce, Millwheel,
etc. [20], so Apache Beam can express MapReduce naturally: MapElements, GroupByKey,
and Combine. GroupedValues in Apache Beam replace Map, Shuffle, and Reduce in
MapReduce, respectively.

Apache beam allows end-users to write pipelines by using existing SDKs and run
them on existing runners. Users can focus on writing their application logic and have
solutions to complex optimization problems within a reasonable time. Since Apache Beam
can be used in any cluster of ordinary PCs with multiple distributed processing back-ends,
more and more people will be able to use this parallel algorithm to solve huge optimization
problems in practical applications.

4. Apache Beam PSO (BPSO)

First, we need to convert the standard PSO serialization process to parallelization. In
standard PSO, after initialization, each particle changes its speed and position, and then
calculates their fitness value and updates the most well-known position of the individual.
In this process, each particle can be executed independently.

Considering the above process, we designed a BPSO with Map-Element function, as
shown in Function 1. First, the particle object was initialized by a line of string. Second, we
used (1) and (2) to update the velocity and position of the particle. Third, we compared the
updated fitness through the new position and updated the individual best position of the
particle. Since we wanted all particles to be in the solution space, when the position and
velocity of any particle were out of range, we initialized the particles in the solution space.
Finally, we used the message of each neighborhood ID and particle to send out key-value
pairs (including particle ID, neighbors, current position, current fitness, speed, personal
best position, personal best fitness, swarm’s best position, and swarm’s best fitness [12], as
shown in Figure 2) to their neighbors if we found a better position.

Information 2022, 13, 119 5 of 13

Function 1 BPSO Map-Element

Function map_element(line):

//Initialize the particle according to each line:
particle p = Particle(line)

//Update and limit position and velocity
particle.update_velocity_position(p);
particle.limit_velocity_position(p);

//Compare fitness and update personal best position and fitness
If is_better(p.personal_best_position, p.position):

p.personal_best_position = p.position;
p.personal_best_value = p.fitness;

//Compare the best fitness:
If is_better(p.swarm_best_fitness, p.personal_best_fitness):

p.swarm_best_position = p.personal_best_position;
p.swarm_best_value = p.personal_best_value;

//Send messages to neighbors:
for i in p.neighborhood:

output(p.neighborhood[i], p.message);
output (p.id, p.message);

Information 2022, 13, x FOR PEER REVIEW 5 of 13

the particle. Since we wanted all particles to be in the solution space, when the position
and velocity of any particle were out of range, we initialized the particles in the solution
space. Finally, we used the message of each neighborhood ID and particle to send out key-
value pairs (including particle ID, neighbors, current position, current fitness, speed, per-
sonal best position, personal best fitness, swarm’s best position, and swarm’s best fitness
[12], as shown in Figure 2) to their neighbors if we found a better position.

(3;2,4;27.01,−22.74;1246.65;72.98,92.78;10.55,8.73;187.52;2.22,2.23;9.90)

Figure 2. Message of particle 3 (fitness function, sphere function; dimension, 2).

Function 1 BPSO Map-Element
Function map_element(line):

//Initialize the particle according to each line:
particle p = Particle(line)

//Update and limit position and velocity
particle.update_velocity_position(p);
particle.limit_velocity_position(p);

//Compare fitness and update personal best position and fitness
If is_better(p.personal_best_position, p.position):

p.personal_best_position = p.position;
p.personal_best_value = p.fitness;

//Compare the best fitness:
If is_better(p.swarm_best_fitness, p.personal_best_fitness):

p.swarm_best_position = p.personal_best_position;
p.swarm_best_value = p.personal_best_value;

//Send messages to neighbors:
for i in p.neighborhood:

output(p.neighborhood[i], p.message);
output (p.id, p.message);

In serial PSO, when any particle finds a better position, the best position of the swarm
is updated. However, in a parallel model such as Apache Beam, each particle is a subset
of a PCollection, and it must send messages to others through communication. Therefore,
we designed the BPSO Combine-Grouped-Values as Function 2.

Before this operation, we used GroupByKey (an Apache Beam transformation similar
to the Shuffle stage of MapReduce) to collect all the values associated with each unique
key. As Function 2 said, initially we used variables to record the particles whose id is the
key and store the best position and fitness of the swarm. Second, we queried the list of
values to find the best position and fitness and find the particle that matches the corre-
sponding key. Third, we output the message of the best particle.

In this process, each particle initializes and updates its personal best position. If a
particle finds a better position than the individual best position, then it updates the indi-
vidual best position and compares this position with the swarm’s best position.. Then it
sends a message with the neighbor ID. When other particles receive this message, they
use this information to update the personal and swarm’s best position. With the sharing
of information, particle swarms gather near the optimal value to complete the search for
the optimal value.

Figure 2. Message of particle 3 (fitness function, sphere function; dimension, 2).

In serial PSO, when any particle finds a better position, the best position of the swarm
is updated. However, in a parallel model such as Apache Beam, each particle is a subset of
a PCollection, and it must send messages to others through communication. Therefore, we
designed the BPSO Combine-Grouped-Values as Function 2.

Before this operation, we used GroupByKey (an Apache Beam transformation similar
to the Shuffle stage of MapReduce) to collect all the values associated with each unique key.
As Function 2 said, initially we used variables to record the particles whose id is the key
and store the best position and fitness of the swarm. Second, we queried the list of values
to find the best position and fitness and find the particle that matches the corresponding
key. Third, we output the message of the best particle.

In this process, each particle initializes and updates its personal best position. If
a particle finds a better position than the individual best position, then it updates the
individual best position and compares this position with the swarm’s best position.. Then
it sends a message with the neighbor ID. When other particles receive this message, they
use this information to update the personal and swarm’s best position. With the sharing of
information, particle swarms gather near the optimal value to complete the search for the
optimal value.

Different from the traditional PSO algorithm, the standard PSO algorithm [17] uses
a ring topology and only communicates between the left and right neighbors instead of
all particles. As the communication between particles decreases, the algorithm runs more
efficiently and the communication cost is lower.

Information 2022, 13, 119 6 of 13

Function 2 BPSO Combine-Grouped-Values

Function combine_grouped-values(key,value_list):
particle = None
swarm_best_position = None
swarm_best_fitness = Double.MAX_VALUE

//Iterate through the list of all values to find the best position:
for v in value_list:

temp = Particle(v)

//Find the particle corresponding to the key:
if temp.id == key:

p = temp

//Update the best position of the particle swarm:
if is_better(temp.personal_best_position, swarm_best_position):

swarm_best_position = temp.personal_best_position
swarm_best_fitness = temp.personal_best_fitness

//Update the best position of the particle swarm of particles and output
p.swarm_best_position = swarm_best_position
p.swarm_best_fitness = swarm_best_fitness
output (p.message)

5. Experimental Results

We implemented the standard PSO (MRPSO) based on MapReduce and the standard
PSO (BPSO) based on Apache Beam. All algorithms related to particle operations are
encapsulated in particle classes, so the basic operation of the above algorithm in the
experiment is the same. All experimental codes and input data were uploaded to GitHub:
https://github.com/keeper-jie/apache_beam_pso.git (accessed on 11 February 2022).

The experimental platform for this paper was based on a server: Ubuntu 18.04.6
LTS, 64 GB RAM, and 40 Intel® Xeon (R) Silver 4114 CPU @ 2.20 GHz. The experimental
computer program of the experiment was written by using JDK 8u311, Apache Beam 2.23.0,
and Hadoop 3.3.1. The experiment used Direct Runner as the Pipeline Runner of Apache
Beam. In contrast to other papers [12,13] that used clusters to conduct experiments, we
used a single server to ensure that the hardware conditions were identical.

In order to fully compare with the previous work [13], we selected four classic bench-
mark functions, as shown in Table 1. On the one hand, f1 and f4 are simple unimodal
problems, while f2 and f3 are highly complex multimodal problems with many local min-
ima; on the other hand, the variables of f4 are dependent and others are independent,
which have related variables, such as the i-th and (i + 1)-th variables. It is worth noting that
the best fitness of all the four optimization functions is 0.

Table 1. Benchmark function.

Equation Name Bounds

f1 =
D
∑

i=1
x2

i
Sphere/Parabola (−100, 100)D

f2 = 1
4000

D
∑

i=1
x2

i −
D
∏
i=1

cos
(

xi/
√

i
)
+ 1 Generalized Griewank (−600, 600)D

f3 =
D
∑

i=1

[
x2

i − 10 ∗ cos(2πxi) + 10
] Generalized Rastrigin (−10, 10)D

f4 =
D−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

Rosenbrock function (−10, 10)D

https://github.com/keeper-jie/apache_beam_pso.git

Information 2022, 13, 119 7 of 13

In order to better compare the operating speed of BPSO and MRPSO, we define
Speedup as follows:

S =
Tmr

Tb
(5)

where S is Speedup, Tmr is the execution time of MRPSO, and Tb is the time of BPSO
under the same conditions (iteration, dimension, and swarm population). In the following
paragraphs, N is swarm’s population, and D is dimension.

To make it easier for the reader to reproduce our experiments, in contrast to Refer-
ence [17], which initialized the particle population in a specific range, we initialized the
position and velocity of all particles to the boundary value of the feasible region, so that
the particle could move from the minimum position of the boundary to the maximum
position of the boundary, and vice versa. It is worth noting that we would reset the par-
ticle’s position and velocity if the particle exceeded the feasible range: particle’s position
P ε U

(
blower, bupper

)
and particle’s velocity V ε U

(
−
∣∣bupper − blower

∣∣, ∣∣bupper − blower
∣∣),

where U stands for the uniformly distributed random, and bupper and blower represent the
lower and upper boundaries of the search space, respectively. The experimental results and
analysis are as follows.

5.1. Running Time and Speedup vs. Swarm Population

We ran both BPSO and MRPSO on f1, f2, f3, and f4 10 times, independently, and
record the average running time of the algorithm. The results are shown in Tables 2–5. In
the experiment, the dimension of the particle was 30, and the number of iterations of the
algorithm was 1000.

Table 2. MRPSO and BPSO running time and speedup on f1.

N MRPSO Time BPSO Time Speedup

100 1198.49 436.08 2.75
500 1192.87 578.18 2.06

1000 2189.19 740.49 2.96
2000 3197.82 988.38 3.24

Table 3. MRPSO and BPSO running time and speedup on f2.

N MRPSO Time BPSO Time Speedup

100 1206.55 438.46 2.75
500 1213.93 637.24 1.90

1000 2212.14 776.57 2.85
2000 3209.24 1031.51 3.11

Table 4. MRPSO and BPSO running time and speedup on f3.

N MRPSO Time BPSO Time Speedup

100 1210.64 446.73 2.71
500 1209.00 616.24 1.96

1000 2209.92 770.61 2.87
2000 3210.92 1013.85 3.17

Table 5. MRPSO and BPSO running time and speedup on f4.

N MRPSO Time BPSO Time Speedup

100 1203.08 450.84 2.67
500 1209.39 620.17 1.95

1000 2208.28 769.74 2.87
2000 3215.17 1008.69 3.19

Information 2022, 13, 119 8 of 13

By analyzing Tables 2–5 and Figure 3, we can draw the following conclusions:

1. Swarm Population: When the population size is small (less than 1000), the running
time of MRPSO is similar, but when the number of particles changes from 1000 to 2000,
the execution time of MRPSO increases rapidly. This may be because the initial file is
too small, causing the framework running time (read and write files) to become the
main influencing factor. As particles increase, the computation and communication
costs become more important. However, as the number of particles continues to
increase, the execution time of BPSO increases slowly.

2. Speedup: In the best case, the execution time off BPSO is about one-third of that of
MRPSO; in the worst case, the execution time of the BPSO algorithm is about one-half
of that of MRPSO.

3. Problem Complexity: As can be seen from Figure 3, under the same number of
particles, BPSO and MRPSO are not very sensitive to the benchmark functions of
different computational complexity, and the difference in algorithm running time is
relatively small.

Information 2022, 13, x FOR PEER REVIEW 8 of 13

Table 4. MRPSO and BPSO running time and speedup on 𝑓 .

N MRPSO Time BPSO Time Speedup
100 1210.64 446.73 2.71
500 1209.00 616.24 1.96
1000 2209.92 770.61 2.87
2000 3210.92 1013.85 3.17

Table 5. MRPSO and BPSO running time and speedup on 𝑓 .

N MRPSO Time BPSO Time Speedup
100 1203.08 450.84 2.67
500 1209.39 620.17 1.95
1000 2208.28 769.74 2.87
2000 3215.17 1008.69 3.19

By analyzing Tables 2–5 and Figure 3, we can draw the following conclusions:
1. Swarm Population: When the population size is small (less than 1000), the running

time of MRPSO is similar, but when the number of particles changes from 1000 to
2000, the execution time of MRPSO increases rapidly. This may be because the initial
file is too small, causing the framework running time (read and write files) to be-
come the main influencing factor. As particles increase, the computation and com-
munication costs become more important. However, as the number of particles con-
tinues to increase, the execution time of BPSO increases slowly.

2. Speedup: In the best case, the execution time off BPSO is about one-third of that of
MRPSO; in the worst case, the execution time of the BPSO algorithm is about one-
half of that of MRPSO.

3. Problem Complexity: As can be seen from Figure 3, under the same number of par-
ticles, BPSO and MRPSO are not very sensitive to the benchmark functions of dif-
ferent computational complexity, and the difference in algorithm running time is
relatively small.

Figure 3. Running time and swarm population.

5.2. Particle’s Fitness Value vs. Swarm Population
We ran BPSO and MRPSO 10 times independently on 𝑓 , 𝑓 , 𝑓 , and 𝑓 , as well as

recorded the particle best-fit values for each run and took the average value. The results
are shown in Tables 6–9. In the experiments, the particle size is 30 and the number of
iterations of the algorithm is 1000.

0

500

1000

1500

2000

2500

3000

3500

100 500 1000 2000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Swarm Population

f1-MRPSO

f1-BPSO

f2-MRPSO

f2-BPSO

f3-MRPSO

f3-BPSO

f4-MRPSO

f4-BPSO

Figure 3. Running time and swarm population.

5.2. Particle’s Fitness Value vs. Swarm Population

We ran BPSO and MRPSO 10 times independently on f1, f2, f3, and f4, as well as
recorded the particle best-fit values for each run and took the average value. The results are
shown in Tables 6–9. In the experiments, the particle size is 30 and the number of iterations
of the algorithm is 1000.

Table 6. Mean of the particle best-fit values in MRPSO and BPSO on f1. The bold numbers refers to
the better results.

N MRPSO Fitness Value BPSO Fitness Value

100 128.14 133.96
500 9.37 2.46

1000 7.09 0.68
2000 5.60 0.41

Information 2022, 13, 119 9 of 13

Table 7. Mean of the particle best-fit values in MRPSO and BPSO on f2. The bold numbers refers to
the better results.

N MRPSO Fitness Value BPSO Fitness Value

100 2.48 2.92
500 1.09 1.02
1000 1.05 1.00
2000 1.05 1.00

Table 8. Mean of the particle best-fit values in MRPSO and BPSO on f3. The bold numbers refers to
the better results.

N MRPSO Fitness Value BPSO Fitness Value

100 92.79 96.45
500 93.16 43.86

1000 56.40 35.90
2000 60.67 21.58

Table 9. Mean of the particle best-fit values in MRPSO and BPSO on f4. The bold numbers refers to
the better results.

N MRPSO Fitness Value BPSO Fitness Value

100 208.13 214.30
500 42.30 32.92

1000 40.48 29.94
2000 37.67 27.43

By analyzing Tables 6–9, we can draw the following conclusions:

1. Swarm Population: With a relatively small number of particles (100), MRPSO gives a
little better result than BPSO, and as the number of particles increases (500 to 2000),
BPSO can often give better results than MRPSO. For BPSO and MRPSO, increasing
the number of particles tends to give better results with the same problem dimension.

2. Problem Complexity: For simple unimodal problems (f1 and f4), the results of BPSO
can be similar to or even better than those of MRPSO for the same particle number
condition, regardless of whether the functions have dependence or not. For complex
multimodal non-dependent problems (f2), BPSO and MRPSO results are similar, and,
in some cases (f3), BPSO tends to give better results.

5.3. Running Time and Speedup vs. Problem Dimension

We fixed other conditions (2000 particles and 1000 iterations) and changed the dimen-
sions of the optimization problem (30, 50, 100, and 200, respectively) to compare the execu-
tion time difference between MRPSO and BPSO. The results are shown in Tables 10–13.

Table 10. MRPSO and BPSO running time and speedup on f1.

D MRPSO Time BPSO Time Speedup

30 3197.82 988.38 3.24
50 4327.67 3760.29 1.15

100 6877.07 4462.22 1.54
200 11,858.53 5398.02 2.20

Information 2022, 13, 119 10 of 13

Table 11. MRPSO and BPSO running time and speedup on f2.

D MRPSO Time BPSO Time Speedup

30 3209.24 1031.51 3.11
50 4399.53 3641.00 1.21

100 7155.96 4508.83 1.59
200 11,937.03 5395.53 2.21

Table 12. MRPSO and BPSO running time and speedup on f3.

D MRPSO Time BPSO Time Speedup

30 3210.92 1013.85 3.17
50 4414.91 3819.42 1.16

100 7360.37 4470.32 1.65
200 12,593.52 5396.43 2.33

Table 13. MRPSO and BPSO running time and speedup on f4.

D MRPSO Time BPSO Time Speedup

30 3215.17 1008.69 3.19
50 4309.39 3582.94 1.20

100 7086.78 4323.71 1.64
200 11,995.85 5412.74 2.22

The following conclusions can be drawn from Tables 10–13 and Figure 4:

1. Speedup: As the optimization problem dimension increases, the MRPSO runtime gets
longer, while the BPSO grows slowly, and at problem dimension 50, the two runtimes
are very close, with a speedup of 3 in the best case and 1.1 in the worst case.

2. Problem complexity: It is interesting to note that, although the complexity of the
benchmark functions is different, there is no significant difference in the algorithm
execution time, and there is no significant difference in whether the benchmark
functions have dependencies or not.

Information 2022, 13, x FOR PEER REVIEW 10 of 13

Table 10. MRPSO and BPSO running time and speedup on 𝑓 .

D MRPSO Time BPSO Time Speedup
30 3197.82 988.38 3.24
50 4327.67 3760.29 1.15
100 6877.07 4462.22 1.54
200 11,858.53 5398.02 2.20

Table 11. MRPSO and BPSO running time and speedup on 𝑓 .

D MRPSO Time BPSO Time Speedup
30 3209.24 1031.51 3.11
50 4399.53 3641.00 1.21
100 7155.96 4508.83 1.59
200 11,937.03 5395.53 2.21

Table 12. MRPSO and BPSO running time and speedup on 𝑓 .

D MRPSO Time BPSO Time Speedup
30 3210.92 1013.85 3.17
50 4414.91 3819.42 1.16
100 7360.37 4470.32 1.65
200 12,593.52 5396.43 2.33

Table 13. MRPSO and BPSO running time and speedup on 𝑓 .

D MRPSO Time BPSO Time Speedup
30 3215.17 1008.69 3.19
50 4309.39 3582.94 1.20
100 7086.78 4323.71 1.64
200 11,995.85 5412.74 2.22

The following conclusions can be drawn from Tables 10–13 and Figure 4:
1. Speedup: As the optimization problem dimension increases, the MRPSO runtime gets

longer, while the BPSO grows slowly, and at problem dimension 50, the two runtimes
are very close, with a speedup of 3 in the best case and 1.1 in the worst case.

2. Problem complexity: It is interesting to note that, although the complexity of the
benchmark functions is different, there is no significant difference in the algorithm
execution time, and there is no significant difference in whether the benchmark
functions have dependencies or not.

Figure 4. Running time and dimensions.

0

2000

4000

6000

8000

10000

12000

14000

30 50 100 200

Ex
cu

tio
n

Ti
m

e
(s

ec
on

ds
)

Dimension

f1-MRPSO

f1-BPSO

f2-MRPSO

f2-BPSO

f3-MRPSO

f3-BPSO

f4-MRPSO

f4-BPSO

Figure 4. Running time and dimensions.

5.4. Particle’s Fitness Value vs. Problem Dimension

As in the experimental idea of Section 5.2, we recorded and analyzed the experimental
results of MRPSO and BPSO with the same particles (2000) but different dimensions (30, 50,
100, and 200, respectively), and the data are recorded in Tables 14–17.

Information 2022, 13, 119 11 of 13

Table 14. Mean of the particle best-fit values in MRPSO and BPSO on f1. The bold numbers refers to
the better results.

D MRPSO Fitness Value BPSO Fitness Value

30 5.60 0.41
50 49.47 19.62

100 345.25 226.72
200 1184.81 1065.62

Table 15. Mean of the particle best-fit values in MRPSO and BPSO on f2. The bold numbers refers to
the better results.

D MRPSO Fitness Value BPSO Fitness Value

30 1.05 1.00
50 1.50 1.19

100 4.34 3.30
200 11.93 10.37

Table 16. Mean of the particle best-fit values in MRPSO and BPSO on f3. The bold numbers refers to
the better results.

D MRPSO Fitness Value BPSO Fitness Value

30 92.79 21.58
50 135.50 101.66

100 456.46 332.56
200 948.23 909.30

Table 17. Mean of the particle best-fit values in MRPSO and BPSO on f4. The bold numbers refers to
the better results.

D MRPSO Fitness Value BPSO Fitness Value

30 37.67 27.43
50 134.10 90.79

100 505.26 400.99
200 1438.01 1291.71

By analyzing Tables 14–17, we can obtain the following conclusions:

1. Problem Dimension: The results of both BPSO and MRPSO deteriorate to different
degrees as the problem dimension increases, but BPSO always obtains better results
than MRPSO.

2. Problem Complexity: For simple unimodal problems (f 1 and f 4), highly complex
multimodal problems (f 2 and f 3), and problems with or without dependencies (f 4 and
others), the gap between BPSO and MRPSO shrinks with increasing dimensionality;
however, the results tend to be better than those of MRPSO.

6. Conclusions and Future Work

In this study, we implemented PSO by using Apache Beam, and then we designed
experiments (increasing the number of particles and optimizing problem dimensions) and
compared them with MapReduce PSO on four benchmark functions. The experiment
proved the following:

1. As the number of particles increases, the running time of MRPSO is fixed when the
number of particles is small, and the running time increases rapidly when the number
of particles is large, while the running time of BPSO increases slowly and linearly
according to the number of particles.

Information 2022, 13, 119 12 of 13

2. With the growth of the optimization problem dimension, the execution time of MRPSO
basically increases linearly, while the growth of BPSO is slow.

3. With a constant number of particles or a constant problem dimension, the BPSO
execution time does not differ significantly with the complexity of the problem, as
does the MRPSO.

4. By comparing the BPSO and MRPSO results, BPSO tends to obtain better results than
MRPSO when the number of particles, dimensionality, and problem complexity are
changed respectively.

Therefore, when using parallel particle swarm algorithms or swarm intelligence
algorithms later, Apache Beam is a good choice (compared to MapReduce), as it can usually
reduce program runtime and get better results.

Interestingly, in our initial experiments, BPSO found a better location before sending
its information to its neighbors, which reduced the communication between particles, and
although the program took less time to execute, the results were often not as good as those
of MapReduce. By reviewing the official Apache Beam documentation [22] and debugging
BPSO and MRPSO, we found that, since Apache Beam is not thread-safe, under the same
conditions (dimension, number of swarms, and iterations), the communication between
particles is not sufficient (there is no guarantee that the neighbor of the current particle
will receive the information sent by the current particle in time, because it is possible
that the neighbor’s process will execute earlier), so BPSO results are usually worse than
MPSO. We modified the program logic to send information about the particles to their
neighbors after each particle update (regardless of whether a better location is found), and
experiments proved that BPSO yielded better results than MRPSO, which, combined with
the faster memory-based operation of BPSO, is reason enough to use Apache Beam instead
of MapReduce.

Along this line, we can try to change the communication of particles by modifying
the topology between them to reduce the program running time or to obtain better results,
which will be the direction of future work.

Author Contributions: Investigation, J.L.; methodology, J.L. and T.Z.; experiment, J.L.; supervision,
T.Z. and Z.L.; validation, J.L., Y.Z. and T.Z.; writing—original draft, J.L.; writing—review and editing,
T.Z., Y.Z. and Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (No.
62006110) and the Natural Science Foundation of Hunan Province (No. 2019JJ50499).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: The first author (Liu Jie) thanks Wenjuan Chen for her support and company.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, H.; Zhang, C. An Online-Learning-Based Evolutionary Many-Objective Algorithm. Inf. Sci. 2020, 509, 1–21. [CrossRef]
2. Biswas, D.K.; Panja, S.C.; Guha, S. Multi Objective Optimization Method by PSO. Procedia Mater. Sci. 2014, 6, 1815–1822.

[CrossRef]
3. Dulebenets, M.A.; Pasha, J.; Abioye, O.F.; Kavoosi, M.; Ozguven, E.E.; Moses, R.; Boot, W.R.; Sando, T. Exact and Heuristic

Solution Algorithms for Efficient Emergency Evacuation in Areas with Vulnerable Populations. Int. J. Disaster Risk Reduct. 2019,
39, 101114. [CrossRef]

4. Estevez, J.; Graña, M. Robust control tuning by PSO of aerial robots hose transportation. In Proceedings of the International
Work—Conference on the Interplay between Natural and Artificial Computation, Elche, Spain, 1–5 June 2015; pp. 291–300.

5. D’Angelo, G.; Pilla, R.; Tascini, C.; Rampone, S. A Proposal for Distinguishing between Bacterial and Viral Meningitis Using
Genetic Programming and Decision Trees. Soft Comput. 2019, 23, 11775–11791. [CrossRef]

http://doi.org/10.1016/j.ins.2019.08.069
http://doi.org/10.1016/j.mspro.2014.07.212
http://doi.org/10.1016/j.ijdrr.2019.101114
http://doi.org/10.1007/s00500-018-03729-y

Information 2022, 13, 119 13 of 13

6. Dubey, A.K.; Kumar, A.; Agrawal, R. An Efficient ACO-PSO-Based Framework for Data Classification and Preprocessing in Big
Data. Evol. Intel. 2021, 14, 909–922. [CrossRef]

7. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Perth, WA, Australia, 1995; Volume 4, pp. 1942–1948.

8. Houssein, E.H.; Gad, A.G.; Hussain, K.; Suganthan, P.N. Major advances in particle swarm optimization: Theory, analysis, and
application. Swarm Evol. Comput. 2021, 63, 100868. [CrossRef]

9. Jain, N.K.; Nangia, U.; Jain, J. A Review of Particle Swarm Optimization. J. Inst. Eng. India Ser. B 2018, 99, 407–411. [CrossRef]
10. Eberhart; Shi, Y. Particle Swarm Optimization: Developments, Applications and Resources. In Proceedings of the 2001 Congress

on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, Korea, 27–30 May 2001; IEEE: Seoul, Korea, 2001; Volume 1,
pp. 81–86.

11. Lalwani, S.; Sharma, H.; Satapathy, S.C.; Deep, K.; Bansal, J.C. A Survey on Parallel Particle Swarm Optimization Algorithms.
Arab. J. Sci. Eng. 2019, 44, 2899–2923. [CrossRef]

12. McNabb, A.W.; Monson, C.K.; Seppi, K.D. Parallel Pso Using Mapreduce. In Proceedings of the 2007 IEEE Congress on
Evolutionary Computation, Singapore, 25–28 September 2007; pp. 7–14.

13. Mehrjoo, S.; Dehghanian, S. Mapreduce based particle swarm optimization for large scale problems. In Proceedings of the 3rd
International Conference on Artificial Intelligence and Computer Science, Penang, Malaysia, 12–13 October 2015; pp. 12–13.

14. Beam Overview. Available online: https://beam.apache.org/get-started/beam-overview/ (accessed on 7 January 2022).
15. Shi, Y.; Eberhart, R. A Modified Particle Swarm Optimizer. In Proceedings of the 1998 IEEE International Conference on

Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage,
AK, USA, 4–9 May 1998; IEEE: Anchorage, AK, USA, 1998; pp. 69–73.

16. Kennedy, J. The Particle Swarm: Social Adaptation of Knowledge. In Proceedings of the 1997 IEEE International Conference on
Evolutionary Computation (ICEC ’97), Indianapolis, IN, USA, 13–16 April 1997; IEEE: Indianapolis, IN, USA, 1997; pp. 303–308.

17. Bratton, D.; Kennedy, J. Defining a standard for particle swarm optimization. In Proceedings of the 2007 IEEE Swarm Intelligence
Symposium, Honolulu, HI, USA, 1–5 April 2007; pp. 120–127.

18. Sherar, M.; Zulkernine, F. Particle Swarm Optimization for Large-Scale Clustering on Apache Spark. In Proceedings of the
2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; IEEE:
Honolulu, HI, USA, 2017; pp. 1–8.

19. Cui, L. Parallel Pso in Spark. Master’s Thesis, University of Stavanger, Stavanger, Norway, 2014.
20. GitHub—Apache/Beam: Apache Beam Is a Unified Programming Model for Batch and Streaming. Available online: https:

//github.com/apache/beam (accessed on 7 January 2022).
21. MapReduce—Wikipedia. Available online: https://en.wikipedia.org/wiki/MapReduce#Lack_of_novelty (accessed on 7 Jan-

uary 2022).
22. Beam Programming Guide. Available online: https://beam.apache.org/documentation/programming-guide/#requirements-

for-writing-user-code-for-beam-transforms (accessed on 11 February 2022).

http://doi.org/10.1007/s12065-020-00477-7
http://doi.org/10.1016/j.swevo.2021.100868
http://doi.org/10.1007/s40031-018-0323-y
http://doi.org/10.1007/s13369-018-03713-6
https://beam.apache.org/get-started/beam-overview/
https://github.com/apache/beam
https://github.com/apache/beam
https://en.wikipedia.org/wiki/MapReduce#Lack_of_novelty
https://beam.apache.org/documentation/programming-guide/#requirements-for-writing-user-code-for-beam-transforms
https://beam.apache.org/documentation/programming-guide/#requirements-for-writing-user-code-for-beam-transforms

	Introduction
	Particle Swarm Optimization
	Apache Beam
	WordCount
	Benefits of Apache Beam

	Apache Beam PSO (BPSO)
	Experimental Results
	Running Time and Speedup vs. Swarm Population
	Particle’s Fitness Value vs. Swarm Population
	Running Time and Speedup vs. Problem Dimension
	Particle’s Fitness Value vs. Problem Dimension

	Conclusions and Future Work
	References

